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Abstract We introduce an invariant of a finite point configuration A ⊂ R
1+n which

we denote the cuspidal form of A. We use this invariant to extend Esterov’s charac-
terization of dual-defective point configurations to exponential sums; the dual variety
associated with A has codimension at least 2 if and only if A does not contain any
iterated circuit.
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1 Introduction

The main undertaking of fewnomial theory is to bound the number of connected com-
ponents of the positive part of a variety defined by a system of equations solely in
terms of the number of variables n and the total number of monomials N appearing in
the system. Since the constitutive monograph [12] of Khovanskiı̆, fewnomial theory
has often been studied alongside the theory of exponential sums. After all, the coordi-
natewise exponential map exp : Rn → R

n+ is a diffeomorphism, and when replacing
monomials zα by exponentials e〈w,α〉 the fundamental examples (read: Descartes’ rule
of signs) remain valid.

Fewnomial theory has also been studied using Gel’fand, Kapranov, and Zelevin-
sky’s “A-philosophy.” In this approach, one considers the family of all polynomials
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which can be expressed using a fixed set (the support set) A of exponent vectors α.
This family is studied using A-discriminants and Gale duality. See, e.g., [1,4,9].

However, an “A-philosophy” for exponential sums has not been properly devel-
oped. We are aware only of [15], where the A-discriminant and its Horn–Kapranov
uniformization were generalized to the case of exponential sums. We put ourself in
this setting and consider the family

(C×)A =
{

f (w) =
∑
α∈A

cα e〈w,α〉
∣∣∣∣ cα ∈ C

×
}

,

where A ⊂ R
1+n is a finite set, and N = #A. We have many names for those we

love; the support set A is also known as the Bohr spectrum (or, simply, spectrum) of
an exponential sum f ∈ (C×)A.

The work presented in this article emerged from an innocent question of whether a
theorem of Katz [11] holds also in the framework of exponential sums. The answer is
affirmative, as we show in Theorem 3.5. This theorem has already seen an application
in [7] to reduce a fewnomial hypersurface bound from exponential to subexponential in
the dimension. Ourmain line of thought goes, however, in a slightly different direction.

We associate to the spectrum A ⊂ R
1+n a combinatorial invariant in the form of a

homogeneous polynomial PA(t) of degree n, whichwe call the cuspidal form of A, see
Definition 3.1. Here, t denotes the parameters of the Horn–Kapranov uniformization
of the A-discriminant X̌ A, and hence, the cuspidal form depends also on a choice of
Gale dual of A. The name “cuspidal form” reflects the fact that PA(t) describes the
preimage of the cuspidal locus of X̌ A under the Horn–Kapranov uniformization. In
particular, as one observes immediately, the configuration A is dual defective if and
only if PA(t) vanishes identically.

The core part of this work is to describe the properties of the cuspidal form PA(t)
as an invariant of the spectrum A. Our main technical results are concerned with
factorizations. For example, if A is a diagonal configuration (Definition 4.3), then
the cuspidal form PA(t) factors as a product of the cuspidal forms of the diagonal
configurations of A.

We spend a fair amount of energy describing linear factors of PA(t). These are of
two distinct types. The first type consists of linear factors corresponding to rows of the
Gale dual. These factors correspond to points α ∈ A such that A\{α} is dual defective.
Such factors are studied in Sects. 4.1 and 5. The complementary type corresponds to
discriminant varieties embedded into the cuspidal locus of X̌ A. This generalizes results
of [13], where the cuspidal form first appeared in the special case of n = 1 (when
PA(t) is itself a linear form).

As an application,we extendEsterov’s characterization from [5,6] of dual-defective
point configurations to the case of exponential sums: A point configuration A is dual
defective if and only if it does not contain any iterated circuit (Theorem 6.4). Our proof
uses in addition to the properties of the cuspidal form only the pigeonhole principle.

Finally, in Sect. 8 we study the special case n = 2 when PA(t) is a quadratic form.
We consider the rank and the signature of PA(t), which are invariant under the choice
of Gale dual. It turns out (Theorem 8.1) that the rank of PA(t) is at most 3, independent
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of the number of variables m. The degenerate case that the rank is at most 2 occurs
if and only if the spectrum A is contained in a conic section; the type of the conic
section is described by the signature of PA(t). Spectra A contained in conic sections
have appeared in the study of self-dual toric varieties; see, e.g., the Togliatti surface
in [3, §4.1], whose spectrum consists of six points on an ellipse.

It is possible to consider, for example, complex instead of real spectra. The A-
discriminant variety, in the sense of exponential sums, remains well defined. The
characterization of dual-defective point configurations as those who do not contain
an iterated circuit remains valid. However, for complex spectra, the relationship to
combinatorics is lost, as we cannot, for example, talk about Newton polygons.We have
chosen to stay in the real world as this is the most interesting case for applications.

2 Prelude: Gale duality and the Horn–Kapranov uniformization

In this section, we introduce notation and briefly describe some standard constructions
and results associatedwith A-discriminants and adapt them to the settingof exponential
sums.

2.1 The setup

Recall that A is a finite subset of R1+n with N elements. By ordering the elements
of A, we obtain an isomorphism C

A � C
N . With an ordering chosen, by abuse of

notation, we identify A with the (1 + n) × N -matrix A = (
α1, . . . , αN

)
. Doing so,

we often write ck for the coefficient of e〈w,αk 〉 and identify an exponential sum f with
its (column) coefficient vector c = (c1, . . . , cN )T.

The properties of the exponential sum f which we are interested in (e.g., the exis-
tence of a singular point) are invariant of linear changes of variables. That is, if we
denote by MN ,n(R) the space of all such matrices A, then we are interested in the
orbits under the left action of GL1+n(R).

If A ⊂ Z
1+n , then the exponential sum is said to be polynomial, and the configu-

ration A is said to be algebraic. In this case, we can associate to f the (1+ n)-variate
polynomial g(z) = ∑

α∈A cα zα . The analytic variety Z( f ) is an infinite covering of
the quasi-affine variety Z(g) ⊂ (C×)1+n . We often descend to the algebraic case in
examples.

Two natural assumptions are imposed. Firstly, A is assumed to be pseudo-
homogeneous. That is, we assume the existence of a linear form ξ ∈ Hom(R1+n,R)

such that 〈ξ, α〉 = 1 for all α ∈ A. Secondly, it is assumed that ξ is unique. These two
assumptions are equivalent to that thematrix A is of full rank (equal to 1+n)with the all
ones vector in its rowspan. In particular, theNewton polygonN = Conv

(
α1, . . . , αN

)
has dimension n. We do not assume that the columns of A are distinct.

We associate to A the map expA given by

expA : C1+n → (C×)N , w �→
(

e〈w,α1〉, . . . , e〈w,αN 〉)T ,
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where C
N should be considered as the dual space of CA. In the algebraic case, the

map expA parametrizes a torus. By taking Zariski closure, one obtains a toric variety
denoted X A. Its projectively dual X̌ A is known as the A-discriminantal variety, see
[8]. In the case that A is algebraic and X̌ A is a hypersurface, its defining polynomial
DA is called the A-discriminant. In the algebraic case, the locus DA(c) = 0 is the
closure of the locus of all g which has a singular point in (C×)1+n . In the general case,
we define X̌ A ⊂ (C×)A by that f ∈ X̌ A if and only if the exponential sum f has
a singular point in C

1+n . Notice that we do not take a Zariski closure in the general
case, as X̌ A ⊂ (C×)A is not necessarily algebraic for real spectra.

Example 2.1 A point configuration A is said to be a pyramid if all points but one is
contained in some strict affine subspace. It is straightforward to check that if A is a
pyramid, then the discriminant locus X̌ A is empty.

Example 2.2 The codimension m of a spectrum A is given by m = N −n −1. A point
configuration of codimension 1, which is not a pyramid, is said to be a circuit. Let us
consider a circuit in two dimensions. Using the GL1+n(R)-action, we can assume that
A is of the form

A =
⎛
⎝ 1 1 1 1
0 1 0 α11
0 0 1 α12

⎞
⎠ .

The formula of the discriminant DA(c) in the algebraic case, from [8, p. 274], gener-
alizes to the binomial exponential expression

DA(c) = c3

(
c0

α11 + α12 − 1

)α11+α12−1

−
(−c1

α11

)α11
(−c2

α12

)α12

.

Themultivaluedness of the exponential functions requires some cautionwhenhandling
this expression. For this reason, we refrain from using the A-discriminant DA(c) in
our analysis.

Remark 2.3 In examples, it is more convenient to consider a family of inhomogeneous
n-variate exponential sums. For an exponential sum f in the variables z1, . . . , zn ,
the corresponding pseudo-homogeneous exponential sum is given by ez0 f . For a
family of n-variate inhomogeneous polynomials with support set A, this corresponds
to adjoining a top row of all ones in its matrix representation. In this case, ξ =
(1, 0, . . . , 0).

2.2 The Horn–Kapranov uniformization

Our main tool is the Horn–Kapranov uniformization of the A-discriminant hyper-
surface from [10]. For exponential sums, this map was deduced in [15, Thm. 1.7].
Step-by-step, the standard deduction of the Horn–Kapranov uniformization (cf. [2,
Prop. 4.1]) is sufficient to cover also the case of exponential sums.

A Gale dual of A is a matrix B yielding an exact sequence of C-vector spaces
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0 C
m

C
A

C
1+n 0.

B A

Since A has full rank, the rank of B is m. Let us denote the rows of B by βk for
k = 1, . . . , N , and let us introduce coordinates t in C

m . Let Cm
B denote the inverse

image of (C×)A under the map B. The exceptional locus HB = C
m \Cm

B is the union
of the linear subspaces Z(βk). Assuming that A is not a pyramid (i.e., assuming that
no βk = 0), then HB is a central hyperplane arrangement.

Theorem 2.4 (Kapranov, Rojas–Rusak) The dual variety X̌ A is parametrized by the
map

� : (C×)1+n × C
m
B → (C×)A, �(ω; t) = expA(ω) ∗ (Bt),

where ∗ denotes componentwise multiplication.

The exponential sum f = �(ω; t) has a singular point with coordinates w = −ω.
The map � is far from injective as, for example, the parameter space and (C×)A

have the same dimensions. However, that � is homogeneous in t and the existence of
the linear form ξ implies that� parametrizes a strict (multivalued) analytic subvariety
of (C×)A.

Remark 2.5 In the algebraic case, the A-discriminantal polynomial has 1 + n homo-
geneities, arising from the matrix A. In Kapranov’s paper [10], these homogeneities
were removed by composition with the map expB : (C×)A → (C×)m . The composite
map is, in this algebraic case, a rational function of t . To avoid real powers of linear
forms, we settle for the map � of Theorem 2.4.

Let us end this section with a well-known property of Gale duality. For a square
matrix M , we denote its determinant by |M |.
Lemma 2.6 ([14, Lem. 2.10]) Let B be any Gale dual of A, and let σ ⊂ [N ] be a
choice of 1 + n indices with sign sgn(σ ) = ∏

k∈σ (−1)k . Denote by Aσ the maximal
cofactor of A obtained by keeping the columns indexed by σ and let Bσ denote the
complementary maximal cofactor of B obtained by deleting the rows indexed by σ .
Then, there is a nonzero constant C(B), independent of σ , such that

|Aσ | = C(B) sgn(σ ) |Bσ |.

Remark 2.7 In the algebraic case, it is natural to assume that ZA = Z
1+n , in which

case Ā can be chosen as an integer unimodular matrix. That is, also B̄ is integer
unimodular, and hence, B is a Gale dual in the combinatorial sense. In this case, we
have that C(B) = ±1, depending on B.

3 The cuspidal form

In this section, we define the cuspidal form PA(t). To simplify notation, we impose
the assumption that the top row of A is equal to the all ones vector, and we let Â denote
the n × N matrix obtained from A by deleting the top row.
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Let B denote a Gale dual of A. In slight deviation from the notation in Lemma 2.6,
we let � denote the set of all subsets σ ⊂ [N ] of cardinality n. For each σ ∈ �, let
Âσ denote the maximal cofactor of Â obtained by deleting all columns corresponding
to indices k /∈ σ .

Definition 3.1 We define the cuspidal form PA(t) to be

PA(t) =
∑
σ∈�

∣∣∣ Âσ

∣∣∣2 ∏
k∈σ

〈βk, t〉. (1)

The vanishing locus of PA(t) will be called the cuspidal locus in Cm . We say that the
PA(t) is trivial if it vanishes identically.

The cuspidal form appeared in unpublished works of Dickenstein, Feichtner, and
Sturmfels (Dickenstein, personal communication, 2017) in the special case n = 1, it
was considered in [13].

We have that PA(t) is a homogeneous form of degree n in the coordinates t . Hence
it defines, in the case that it is nontrivial, a hypersurface in Pm−1. (Except, of course,
for the case m = 1.)

The cuspidal form PA(t) depends on the choice of Gale dual B. As two Gale
duals differ by a change of coordinates in C

m , we consider this dependence to be
implicitly understood from that PA(t) is written as a polynomial in the variables t .
Since we can choose coordinates in C

m arbitrarily, one cannot, in general, ask for a
combinatorial interpretation of the coefficients of PA(t). When there is a canonical
choice of coordinates, however, there are reasonable interpretations.

Example 3.2 Let A be a pyramid. That is, there is a point α ∈ A such that A \ {α} is
contained in an affine space of dimension n − 1. This is equivalent to that βα = 0.
Thus, if α ∈ σ , then 〈βα, t〉 = 0, and if α 
= σ then | Âσ | = 0. Hence, each term of
(1) vanishes, implying that PA(t) vanishes identically.

Example 3.3 Let m = 1, and let Ak denote the (n + 1) × (n + 1) submatrix of
A obtained by deleting the kth entry and assume, without loss of generality, that
α1 = (1, 0, . . . , 0)T. Then, each σ ∈ � containing 1 has | Âσ | = 0, and each σ not
containing 1 has | Âσ | = |Ak | where k = k(σ ) is the unique index greater than 1 not
contained in σ . By Lemma 2.6, we can choose a Gale dual B according to the rule
that βk = (−1)k |Ak |. Hence,

PA(t) = tn

(∏
k>1

(−1)k |Ak |
)∑

k>1

(−1)k |Ak | = sgn(n) tn
n+2∏
k=0

|Ak |

where sgn(n) = (−1)(
n
2). Notice, in particular, that PA(t) vanishes identically if and

only if |Ak | = 0 for some k, which is equivalent to that A is a pyramid.
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3.1 The cuspidal locus of X̌

Recall the assumption that the top row of A consists of the all ones vector. Let us
dehomogenize � by setting ω0 = 1. That is, we consider the parametrization map
� : (C×)n × C

m
B → X̌ A. In standard terminology, a point f = �(ω; t) ∈ X̌ A is a

cusp of X̌ A if and only if the image of the pushforward

d� : T(w;t)
(
(C×)n × C

m
B

) → T f X̌ A

is an affine space of dimension at most N − 2 = n + m − 1. That is, f is a cusp if and
only if the Jacobian matrix

J�(ω; t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 〈β1, t〉 e〈ω,α1〉 . . . αN1 〈βN , t〉 e〈ω,αN 〉
...

. . .
...

α1n 〈β1, t〉 e〈ω,α1〉 . . . αNn 〈βN , t〉 e〈ω,αN 〉
β11e〈ω,α1〉 . . . βN1e〈ω,αN 〉

...
. . .

...

β1me〈ω,α1〉 . . . βNme〈ω,αN 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

has rank at most n + m − 1. (We drop the subindex � in the notation.)

Theorem 3.4 We have that f is a cusp of X̌ A if and only if there exists a (w, t) ∈
(C×)n × C

m
B such that f = �(ω; t) and PA(t) = 0.

Proof We need to determine when the maximal minors of J (ω; t) vanish. This does
not depend onω: the common factors e〈ω,αk 〉 of each column of J (ω; t) can be factored
outside of any minor. We compute the maximal minors of J (1; t).

For each submatrix S ⊂ A obtained by deleting any number of columns, let Ŝ
denote the matrix S with the top row (consisting of all ones) deleted. In particular, α̂
denotes the column of Â corresponding to the column α ∈ A.

Let Jk denote the maximal minor of J (1; t) obtained by deleting the kth column.
Without loss of generality, we impose two assumptions. Firstly, as permuting the
columnsonly alters the value of aminor by±1,we can assume that k = 1. Secondly,we
assume that α11 = · · · = α1n = 0 (i.e., that α1 = (1, 0 . . . , 0)T). Indeed, multiplying
J (1; t) from the left by

T =
(

In −α̂1tT

0 Im

)

corresponds to the translation α̂ �→ α̂ − α̂1. As |T | = 1, all maximal minors are
invariant under this action.

Let �′ denote the set of all subsets σ ⊂ [N ] \ {1} of cardinality n, and for each
σ ∈ �′ set σ̄ = {1}∪σ . By the Laplace expansion in complementary minors (of sizes
n × n and m × m)
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J1 =
∑
σ∈�′

sgn(σ )

(∏
k∈σ

〈βk, t〉
) ∣∣∣ Âσ

∣∣∣ |Bσ̄ | .

We make three observations. Firstly, since α1 = (1, 0, . . . , 0)T, we have that |Aσ̄ | =∣∣∣ Âσ

∣∣∣. Secondly, according to Lemma 2.6 (assuming that C(B) = 1), we have that

|Bσ̄ | = sgn(σ̄ ) |Aσ̄ |. Thirdly, we have that sgn(σ ) = sgn(σ̄ ). All in all, we conclude
that

J1 =
∑
σ∈�′

∣∣∣ Âσ

∣∣∣2
(∏

k∈σ

〈βk, t〉
)

.

Since α̂1 = 0, we have that | Âσ | = 0 for any σ with 1 ∈ σ . Hence, J1 = PA(t). �

3.2 Katz’ theorem

In the algebraic case, it follows from Katz’ dimension formula [11], see also [8, §1.5],
that the Jacobian J (ω; t) has full rank at (ω; t) if and only if the Hessianmatrix H f (w)

of f = �(ω; t) at the point w = −ω is singular. This statement remains true if one
generalizes to exponential sums. It is possible to obtain a proof of this fact by making
the appropriate modifications to the exposition in [8, §1.5]; since we have introduced
the cuspidal form (1), we prefer the following more direct approach.

Theorem 3.5 Let f = �(ω; t) ∈ X̌ A. Then, the Hessian matrix H f (w) is singular
at w = −ω if and only if PA(t) = 0. In particular, if X̌ A is a hypersurface and f is
a smooth point on X̌ A, then the Hessian matrix H f (−ω) is nonsingular.

Proof We only need to prove the first part. As in the proof of Theorem 3.4, the torus
action can be quoted out. Hence, it suffices to consider the case ω = 0, where the
singular point is located at w = 0. We have that

f ′′
kl(0) =

N∑
j=1

α jkα jl〈β j , t〉, 1 ≤ k, l ≤ n.

In particular, the pth column Hp of H f (1), for p = 1, . . . , n is a sum of N vectors

Hp =
N∑

j=1

α j p〈β j , t〉 α̂ j .

For any two such columns, the j th summands are both multiples of α̂ j . In particular,
we can expand the determinant

∣∣H f (0)
∣∣ =

∑
σ∈�

∑
π

∣∣αkπ(k)〈βk, t〉 α̂k
∣∣
k∈σ
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where π runs over the set of all bijections π : σ → [n]. It follows that

∣∣H f (0)
∣∣ =

∑
σ∈�

(∏
k∈σ

〈βk, t〉
) ∑

π

∣∣αkπ(k) α̂k
∣∣
k∈σ

=
∑
σ∈�

(∏
k∈σ

〈βk, t〉
) ∣∣∣ Âσ

∣∣∣2 ,

which completes the proof. �

4 Properties of the cuspidal form

In this section, we investigate the cuspidal form PA(t) as a function of the spectrum
A.

4.1 Subconfigurations of A

We denote by Z(β) the hyperplane in Cm with equation 〈β, t〉 = 0.

Theorem 4.1 Let α ∈ A be such that A \ {α} has rank 1+ n, let t ′ be coordinates in
Z(β) and t = (t ′, tm) coordinates in C

m. Then,

PA\{α}(t ′) = PA(t)
∣∣

Z(β)
.

Proof By assumption, if we write A = (A′, α), then A′ is of rank 1+ n and codimen-
sion m − 1. We can chose a Gale dual B of A of the form

B =
(

B ′ ∗
0 1

)
,

where B ′ is a Gale dual of A′. The theorem follows from that the restriction of PA(t)
to Z(β) is given by tm = 0. First, for any σ ∈ � with N ∈ σ , we have that the term
of PA(t) corresponding to σ has the monomial tm as a factor. Second, we have that
〈βk, t〉 restricted to tm = 0 equals 〈β ′

k, t ′〉 for any k = 1, . . . , N − 1. �
Corollary 4.2 If A′ ⊂ A is such that PA′ is nontrivial, then PA is nontrivial.

4.2 Diagonal and upper triangular configurations

Definition 4.3 We say that a point configuration A is upper triangular if it can, after
acting by GL1+n(R), be written in the form

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
0 Ã1 ∗ · · · ∗
0 0 Ã2 · · · ∗
...

...
...

. . .
...

0 0 0 · · · Ãm

⎞
⎟⎟⎟⎟⎟⎠ , (2)
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where we associate to each Ã j the point configuration A j defined by Â j = (0, Ã j ).
The configurations A j for j = 1, . . . m are called the diagonal configurations of A. If
all elements marked by ∗ vanish, then the point configuration is said to be diagonal.

Remark 4.4 A configuration A is an iterated circuit in the sense of Esterov [5,
Def. 3.15] if and only if after applying an integer affine transformation it is an upper
triangular configuration all of whose diagonal configurations are circuits.

Theorem 4.5 Let A be a diagonal point configuration with diagonal configurations
A1, . . . , Am. Then, PA(t) = PA1(t1) · · · PAm (tm).

Proof By induction, it suffices to consider the case m = 2. For a minor | Âσ | of Â to
be nonvanishing, it must hold that the set σ ∈ � consists of n j columns corresponding
to points in Ã j for j = 1, 2. Therefore, for each nonvanishing term of PA(t) we have
the factorization

|Aσ | = |Aσ1 | |Aσ2 |

where σ j ∈ � j for j = 1, 2 and σ = σ1 ∪ σ2. We can write A j and its Gale dual in
the block forms

A j =
(
1 1
0 Ã j

)
and B j =

( ∗
B̃ j

)
.

Then, a Gale dual of A can be written as

B =
⎛
⎝ ∗ ∗

B̃1 0
0 B̃2

⎞
⎠ .

Hence, for each σ = σ1 ∪ σ2 it holds that

∏
k∈σ

〈βk, t〉 =
⎛
⎝ ∏

k∈σ1

〈βk, t1〉
⎞
⎠

⎛
⎝ ∏

k∈σ2

〈βk, t2〉
⎞
⎠ ,

where we, by abuse of notation, interpret βk as a row both of B and of B̃ j when k ∈ σ j .
�

Remark 4.6 Let A be an iterated circuit. By Example 3.3, we have that PA j (t j ) is a
nontrivial monomial in the single variable t j of degree n j for each j = 1, . . . , m.
It is straightforward to check that the coefficient of the monomial tn1

1 tn2
2 · · · tnm

m is
unchanged if one deletes all the elements of A marked by a star in (2). In particu-
lar, it follows from Theorem 4.5 that the monomial of PA(t) with exponent vector
(n1, n2, . . . , nm) is given by PA1(t1) · PA2(t2) · · · PAm (tm). In particular, PA(t) is non-
trivial in this case.
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5 Linear factors

Corollary 5.1 Let α ∈ A. If the cuspidal form PA\{α} vanishes identically, then 〈βα, t〉
divides PA(t).

Proof This follows from Theorem 4.1 and Hilbert’s Nullstellensatz. �
Example 5.2 Consider the point configuration and Gale dual

A =
⎛
⎝ 1 1 1 1 1
0 1 2 0 1
0 0 0 1 2

⎞
⎠ and BT =

(
2 − 1 0 − 2 1
1 − 2 1 0 0

)
.

Deleting any of the two last columns of A, we obtain a pyramid, which has trivial
cuspidal form by Example 3.2. Notice that the corresponding rows of the Gale dual
B are parallel. The cuspidal form in this case is PA(t) = 4t1(t2 − t1). In particular,
Corollary 5.1 cannot be extended to a bijective correspondence between α ∈ A with
PA\{α} trivial and linear factors of PA(t).

Proposition 5.3 Let A be a point configuration such that PA(t) is nontrivial. Assume
that one (and therefore every) Gale dual B has a set of k parallel rows β1, . . . , βk . Let
β j = γ jβ for some β 
= 0 and scalars γ j for j = 1, . . . , k. Then, 〈β, t〉k−1 divides
PA(t). If, in addition, β1 + · · · + βk = 0, then 〈β, t〉k divides PA(t).

Proof Let the columns α1, . . . , αk of A correspond to the k rows β1, . . . , βk of B. By
Lemma 2.6, any maximal minor of A not containing all but at most one of the columns
α1, . . . , αk vanishes. In particular, the remaining points α̂k+1, . . . , α̂N are contained
in some n − k + 1-dimensional affine subspace. Since A has full rank, we can write
A in the form (where we have reordered so that α1, . . . , αk are the k last columns)

A =
⎛
⎝ 1 1 1

Â′ ∗ ∗
0 Ik−1 γ

⎞
⎠ and B =

⎛
⎝ B ′ ∗

0 −γ

0 1

⎞
⎠ . (3)

Here, A′ is an (n − k + 2) × (N − k)-matrix with Gale dual B ′, and γ ∈ R
k−1. Set

|γ | = γ1 + · · · + γk−1. We have that γ j 
= 0 for each j , as A is not a pyramid. Under
these assumptions β = (0, . . . , 0, 1), so that 〈β, t〉 = tm .

To prove the first part of the proposition, we note that any maximal minor of Â
which does not contain at least k − 1 of the rightmost k columns vanishes. Hence,
each nonvanishing term of (1) is divisible by tk−1

m .
Let us now compute the coefficient of tk−1

m . If we pick a maximal minor of Â
containing all of the k last columns, then the corresponding monomial is divisible by
tk
m . Hence, we need only to consider the maximal minors of Â containing exactly k −1
of the last k columns. The determinant of a (k − 1) × (k − 1) submatrix of (Ik−1, γ )

obtained by deleting the j th column is, up to sign, equal to γ j if j = 1, . . . , k − 1,
and it is equal to 1 if j = k. Notice, also, that these k − 1 columns give a factor tk−1

m
of the corresponding term of PA(t). Hence, when computing the coefficient of tk−1

m
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in PA(t), one should, for the remaining n − k + 1 columns of the maximal minor in
question, replace the factor 〈βα, t〉 with 〈β ′

α, t ′〉 where t ′ = (t1, . . . , tm−1) and β ′
α is

the corresponding row of B ′. Let �′ denote the set of all subsets of [N − k] of size
n − k + 1. All in all, we find that the coefficient of tk−1

m in the cuspidal form PA(t) is

∑
σ∈�′

∣∣∣ Â′
σ

∣∣∣2
⎛
⎝∏

j∈σ

〈β ′
j , t ′〉

⎞
⎠

⎛
⎝

⎛
⎝k−1∏

j=1

(−γ j )

⎞
⎠ +

k−1∑
i=1

γ 2
i

∏
j 
=i

(−γ j )

⎞
⎠

= (−1)k−1 γ1 · · · γk−1 (1 − |γ |) PÂ(t ′).

Thus, if |γ | = 1, which is equivalent to the original assumption that β1+· · ·+βk = 0,
then PA(t) is divisible by tk

m . �
Example 5.4 Let us stay in the situation considered in Proposition 5.3. The coefficient
of tk−1

m obtained at the end of that proof is

(−1)k−1 γ1 · · · γk−1 (1 − |γ |) PÂ(t ′),

where γ j 
= 0 for j = 1, . . . , k − 1. It can happen that this coefficient vanishes even
if |γ | 
= 1, as PÂ(t ′) can be trivial. For example, consider the point configuration and
Gale dual

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 0 1
0 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 7
− 1 − 1 − 1
− 1 0 − 1
0 − 1 − 1
1 0 0
0 1 0
0 0 − 3
0 0 − 2
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, that last three rows of the Gale dual are parallel, but they do not sum to zero.
The cuspidal form corresponding to this choice of Gale dual is

PA(t) = 6 t33

(
7t23 + 2t2t3 − 5t22 + 2t1t3 + 2t1t2 − 5t21

)
.

6 Defect duals

A point configuration A and, in the algebraic case, the toric variety X A, are said to
be dual defective if the dual variety X̌ A has codimension at least 2. The following
theorem is an immediate consequence of the properties of the Jacobian matrix.

Theorem 6.1 The point configuration A is dual defective if and only if PA(t) is trivial.
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Proof If A is dual defective, then the rank of the Jacobian matrix J (w; t) is at most
n +m −1 for generic (w; t). It follows that its maximal minors, which are polynomial
in (w; t), vanish for generic (w; t), and hence, they vanish identically. Conversely, if
X̌ A is a hypersurface, as the smooth locus of X̌ A is nonempty, we can find a point
f = �(w; t) for which the Jacobian matrix J (w; t) has rank n + m. �
Example 6.2 Let A be a pyramid. We saw in Example 3.2 that the polynomial PA(t)
is trivial, implying (the well-known result) that X A is dual defective.

Proposition 6.3 If A has a subset A′, of full dimension, such that A′ is not dual
defective, then A is not dual defective.

Proof This (well-known result) follows from Corollary 4.2. �
Let us now recover Esterov’s results on dual-defective point configuration from

[5, Lem. 3.17] and [6, Cor. 3.20] and extend it from the algebraic case to the case of
exponential sums.

Theorem 6.4 A spectrum A ⊂ R
1+n is dual defective if and only if A does not contain

any iterated circuit.

Proof By Theorem 6.1 and Proposition 6.3, we translate to the equivalent statement
that PA(t) is trivial if and only if A does not contain an iterated circuit. The only
if -direction is proven in Remark 4.6.

Let us prove the if -direction. Assume that PA(t) is nontrivial. We use a double
induction over the codimension m and the dimension n, where the base cases m = 1
for arbitrary dimension are covered by Example 3.3.

If PA\{α}(t) is nontrivial for some α ∈ A, then by induction on codimension, A\{α}
contains an iterated circuit, implying that A contains an iterated circuit as well. Hence,
it suffices to consider the case when PA\{α} is trivial for all α ∈ A.

By Corollary 5.1, we have that 〈β, t〉 divides PA(t) for all rows β of B. However,
B has N rows, while PA(t) is a homogeneous, nontrivial polynomial of degree n.
By the pigeonhole principle, the Gale dual B must have parallel rows. For a family
β1, . . . , βk of parallel rows of B, where k > 1, let us borrow the notation from the
proof of Proposition 5.3: that β j = γ jβ for some scalars γ j 
= 0 for j = 1, . . . , k,
and for some β 
= 0. Then, again by a comparison of the number of rows of B and
the degree of PA(t), there must exist a family, β1, . . . , βk of parallel rows of B, where
k > 1, such that 〈β, t〉k does not divide PA(t). Let us fix such a family.

Let us write A and B as in (3), and let γ = (γ1, . . . , γk)
T be as in the proof of

Proposition 5.3. Since 〈β, t〉k does not divide PA(t), we have that |γk | 
= 1. Therefore,
the k × k-submatrix of A (

1 1
Ik−1 γ

)

has rank k. (Recall that each γk 
= 0, for otherwise A, is a pyramid.) This has two
consequences. First, we have that (0, Ik−1, γ ) is a k-dimensional circuit. Second, by
applying an integer affine transformation, we can eliminate all entries marked by ∗ in
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(3). Thus, by Theorem 4.5, and with the notation of (3), it holds that PA′(t) is a factor
of PA(t). In particular, PA′(t) is nontrivial, and hence, A′ contains an iterated circuit
of dimension k − 1, by induction on codimension and dimension. It follows that A
contains an iterated circuit. �

7 Rationality of the cuspidal locus

Let A be algebraic and choose a Gale dual B of A. We focus in this section on
the reduced A-discriminant, whose Horn–Kapranov uniformization �A(t) is given
by t �→ �(1; t)B = (Bt)B , see [10] and Remark 2.5. We denote the reduced A-
discriminant by X̌ B .

The casen = 1was studied in detail in [13],where the cuspidal form PA(t) appeared
in this special case. For n = 1, the cuspidal form is, for every m, a nontrivial linear
form in t vanishing along some hyperplane in P

m−1. In particular, the cuspidal locus
of X̌ A is always unirational, and if it is a subvariety of X̌ A of codimension one, then it
is rational. Actually, a stronger statement holds: there is a point configuration E , with
Gale dual F , such that the cuspidal locus of the reduced discriminant X̌ B is isomorphic
to the reduced discriminantal variety X̌ F . Let us here explain the corresponding result
for general n.

Theorem 7.1 Let A be algebraic with Gale dual B. For each rational linear subspace
L of PA(t) not contained in the exceptional locus HB (see Sect. 2.2), there is an
algebraic point configuration E, with Gale dual F, and a canonical morphism which
embeds the reduced discriminant X̌ F into the cuspidal locus of X̌ B.

Proof Express L in implicit form as the image an injective linear transformation
M : Pk−1 → P

m−1, where by assumption M can be chosen as an integer matrix.
Since AB M = 0, we can extend A (by adding rows) to an integer matrix E yielding
an exact sequence

0 C
k

C
A

C
1+n+m−k 0.

B M E

It follows that (�A ◦ M)M = �E , and, hence, the morphism �A ◦ M ◦ �−1
E embeds

X̌ F into the cuspidal locus of X̌ E . �
The singular locus of X̌ A is in general not rational. Let us give a simple example.

Example 7.2 Let n = 3 and N = 7, so that PA(t) is a cubic form in three variables.
In particular, if PA(t) is nonsingular, then the cuspidal locus of X̌ A is birational to
a smooth cubic curve. Such a curve is unirational but not rational. For an explicit
example when PA(t) is nonsingular, we present the point configuration

A =

⎛
⎜⎜⎝
1 1 1 1 1 1 1
0 1 1 2 3 3 3
3 0 2 2 1 2 3
0 3 2 2 2 3 0

⎞
⎟⎟⎠ .
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8 The bivariate case: the signature of the quadratic form

In the case that n = 2 the polynomial PA(t) is a quadratic form. Being defined only
up to choice of coordinates, let us in this section consider the (real) invariants given by
the rank and the signature of PA(t). Recall from the literature that each real m-variate
quadratic form is defined by a real symmetric m ×m-matrix Q. We write the signature
sA of PA(t) as the triple sA = (s+, s−; s0) where s± denotes the number of positive,
respectively, and negative eigenvalues of Q, and s0 denotes the algebraic multiplicity
of zero as an eigenvalue of Q. It holds that s+ + s− + s0 = m, and the rank of PA(t)
is given by s+ + s−.

Theorem 8.1 Let n = 2 and let sA denote the signature of PA(t). In each of the below
cases, it is assumed that A does not belong to any previous cases. Then,

(i) sA = (0, 0; m) if and only if A is a pyramid.
(ii) sA = (1, 0; 0) if and only if A is contained in a nonreal parabola.
(iii) sA = (0, 1; m − 1) if and only if A is contained in a real parabola or in two

parallel lines.
(iv) sA = (1, 1; m − 2) if and only if A is contained in a hyperbola or in two

nonparallel lines.
(v) sA = (0, 2; m − 2) if and only if A is contained in an ellipse.
(vi) sA = (1, 2; m − 3) in all other cases.

Remark 8.2 In the case (ii) of Theorem 8.1, it holds that m = 1 so that A consists
of four points in the plane. As PA(t) is nontrivial, A is a circuit. We can read of the
signature of the circuit A from Example 3.3: the Newton polygon N is a simplex.

More generally, as soon as A has codimension m = 1, then one can read of the
combinatorial type of A from the cuspidal form PA(t) using Example 3.3. Indeed, the
Newton polygon N is a simplex if and only if sA = (1, 0; 0), it is a quadrilateral if
and only if sA = (0, 1; 0), and A is a pyramid if and only if sA = (0, 0; 1).

To prove Theorem 8.1, we write A in the form

A =
⎛
⎝ 1 1 1 1 · · · 1
0 1 0 α11 · · · αm1
0 0 1 α12 · · · αm2

⎞
⎠ . (4)

We write αk = (αk1, αk2)
T, for simpler notation. We set |αk | = αk1 + αk2 for all k.

We choose the dual matrix

BT =

⎛
⎜⎜⎜⎝

|α1| − 1 −α11 −α12 1 0 · · · 0
|α2| − 1 −α21 −α22 0 1 · · · 0

...
...

...
...

...
. . .

...

|αm | − 1 −αm1 −αm2 0 0 · · · 1

⎞
⎟⎟⎟⎠ . (5)

123



64 J Algebr Comb (2019) 49:49–67

Lemma 8.3 Let n = 2, and let A and B be as in (4) and (5). Then, the quadratic form
PA(t) is given by the matrix Q = (

g(αk, α j )
)

k, j where 1 ≤ k, j ≤ m and

g(αk, α j ) = 1

2

(
αk1α j2(1 − αk1 − α j2) + αk2α j1(1 − αk2 − α j1)

+ (αk1α j2 − αk2α j1)
2
)

.

Proof By Theorem 4.1, it suffices to consider the case m = 2, which is a straightfor-
ward computation. �

Let us introduce notation for the following k × k-minor of the matrix Q from
Lemma 8.3:

Gk

(
α1, . . . , αk

δ1, . . . , δk

)
=

∣∣∣∣∣∣∣
g(α1, δ1) · · · g(α1, δk)

...
. . .

...

g(αk, δ1) · · · g(αk, δk)

∣∣∣∣∣∣∣ .

From this point on, proving the above statements is a matter of endurance during
computations. We avoid most details in this presentation. We invite the reader to
verify the following claims (preferably using a computer).

Lemma 8.4 The polynomial Gk vanishes identically if k ≥ 4.

Proof The case k > 4 follows from the case k = 4 by a Laplace expansion. The case
k = 4 is a straightforward computation. �

Thus, only the polynomials G2 and G3 are relevant for our investigation. The
polynomial G2 has, when expanded, 96 terms. The polynomial G3 is simpler; it admits
a factorization

G3

(
α1, α2, α3
δ1, δ2, δ3

)
= 1

4
H(α1, α2, α3) · H(δ1, δ2, δ3) (6)

where H(α1, α2, α3) is the following polynomial with (when expanded) 24 terms:

H(α1, α2, α3) = α11α12α22α31(1 − α22)(1 − α31)

− α11α12α21α32(1 − α21)(1 − α32)

+ α12α21α31α32(1 − α12)(1 − α21)

− α12α21α22α31(1 − α12)(1 − α31)

− α11α22α31α32(1 − α11)(1 − α22)

+ α11α21α22α32(1 − α11)(1 − α32).

Lemma 8.5 Assume that 0, e1, e2, α1, and α2 are five distinct points in R
2. Then, the

polynomial G2 vanishes for δ1 = α1 and δ2 = α2 if and only if there is a parabola
containing the five points.
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Proof We assume that α11(1 − α11) 
= 0, as this is the most difficult case. The cases
α11 = 0 or α11 = 1 can be treated in analogous fashion. The general equation of a
parabola passing through the points 0, e1, and e2 is P(x) = 0 where

P(x) = a2x21 + 2abx1x2 + b2x22 − a2x1 − b2x2. (7)

Requiring in addition that the parabola passes through α1 gives that, in projective
coordinates

[a : b] = [
α11α12 ± √

α11α12(α11 + α12 − 1) : α11(1 − α11)
]
. (8)

(Recall that we assume α11(1 − α11) 
= 0.) Let P1(x) and P2(x) denote the two
parabolic equations obtained from the possible choices of signs. We leave it to the
reader to verify that

P1(α2)P2(α2) = 4α2
11(1 − α11)

2 G2

(
α1, α2
α1, α2

)
.

�
Remark 8.6 Assume that A, written in the form (4), is contained in a parabola C . For
any indices i, j, and k, we obtain a quadratic polynomial

Ri jk(x) = G2

(
αi , α j

αk, x

)
.

Let us assume that R121 is nontrivial, implying that the points 0, e1, e2, α1, and
α2 are in general position (in the sense that there is a unique conic passing through
them). By Lemma 8.5, R121(x) vanishes for x = α2. It is straightforward to verify that
R121(x) also vanishes for x = 0, e1, e2, and α1. Hence, R121(x) defines the parabola
C . In particular, R121(x) vanishes for all α ∈ A.

Assume now that A has at least six points, and in addition that R123(x) is nontrivial.
We have that R123(x) vanishes at x = α2 and at x = α3, as it coincides (up to a
constant) with P232(α1), respectively, P323(α1) for those values. It is straightforward
to check that R123(x) also vanishes for x = 0, e1, and e2. Hence, also R123(x) defines
the parabola C . In particular, R123(x) vanishes for all α ∈ A.

Lemma 8.7 Assume that 0, e1, e2, α1, α2, and α3 are six distinct points in R
2. Then,

the polynomial H(α1, α2, α3) from (6) vanishes if and only if there is a conic containing
all six points.

Proof The general equation of a conic passing through the points 0, e1, and e2 is
P(x) = 0 where

P(x) = ax21 + bx1x2 + cx22 − ax1 − cx2 (9)

Requiring in addition that the conic passes through α1 and α2 gives the coefficients,
up to multiplication by a constant,
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⎧⎨
⎩

a = α12α22(α21 − α11 − α12α21 + α11α22)

b = α12α21(1 − α12)(1 − α21) − α11α22(1 − α11)(1 − α22)

c = α11α21(α12 − α12α21 − α22 + α11α22)

We leave it for the reader to verify that, with these coefficients, the polynomial P(x)

evaluated at x = α3 is equal to H(α1, α2, α3). �
Proof of Theorem 8.1 It is well known that for n = 2 the point configuration A is dual
defective if and only if A is a pyramid. This proves part (i) of the theorem.

If the codimensionm = 1, then A consists of four points in the plane, throughwhich
two parabolas pass. It can be seen from (8) that the limiting case between real and
nonreal parabolas is the case of a pyramid. Thus, this case follows from Example 3.3.

We now assume that m > 1. Classical geometry says that there is a unique conic
passing through five points in generic position (i.e., no four are colinear) in the plane.
We allow the conic to be degenerate. Assuming that A is not a pyramid, it has a
subconfiguration A1 of five points in generic position. Let A1 constitute the first five
columns of (4).

Let us first prove the relaxed statement, where we only consider the rank of the
cuspidal form PA(t). It follows from Lemma 8.4 that the rank is at most three.

If the rank is at most two, then by Lemma 8.7 any choice of six points of A is
contained in a conic. However, the five points of A1 determine a unique conic C . By
adjoining the remaining points one by one, we conclude that A is contained in the conic
C . Conversely, if A is contained in a conic, then G3 vanishes for all α and δ by (6).

If the rank is at most one, then by Lemma 8.5 any choice of five points is contained
in a parabola. In particular, the five points of A1 are contained in a parabolaC . Let α be
an additional point. Then, by Lemma 8.7, A1∪{α} is contained in a conic. But C is the
unique conic containing A1, so α ∈ C . It follows that A is contained in C . Conversely,
if A is contained in a parabola, then G2 vanishes for all α and δ by Lemma 8.5 and
Remark 8.6.

Let us now turn to the refined statement of Theorem 8.1 regarding signatures. For
each class in the above list, it suffices to consider the minimal m such that there
is a point configuration in this class. Indeed, there is a “minimal” subconfiguration
witnessing the class containing A, and by Theorem 4.1 we can delete the remaining
points without altering the rank. In particular, parts (ii) and (iii) follow from the above
discussion on codimension m = 1.

Any twominimal configurations of one class can be continuously deformed to each
other without leaving the class in question. Therefore, it suffices to consider one rep-
resentative of each class. Since a generic configuration can be continuously deformed
to a configuration contained either in an ellipse or in a parabola, part (vi) follows from
parts (iv) and (v) and the fact that the rank is 3 in the generic case. Hence, we finish
the proof with Examples 8.8 and 8.9. �
Example 8.8 Consider the point configuration and Gale dual

A =
⎛
⎝ 1 1 1 1 1
3 − 3 5 5 − 5
0 0 4 − 4 4

⎞
⎠ and BT =

(
5 − 5 − 3 0 3

− 8 2 3 3 0

)
.
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We obtain the cuspidal form PA(t) = −576(5t1−4t2)(5t1+4t2), which has signature
sA = (1, 1; 0).
Example 8.9 Consider the point configuration and Gale dual

A =
⎛
⎝ 1 1 1 1 1
0 1 0 1 2
0 0 1 2 1

⎞
⎠ and BT =

(
2 − 2 − 1 0 1
2 − 1 − 2 1 0

)
.

We obtain the cuspidal form PA(t) = −4(t21 + t1t2 + t22 ), which has signature sA =
(0, 2; 0).
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