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Abstract Strong external difference families (SEDFs) were introduced by Paterson
and Stinson as a more restrictive version of external difference families. SEDFs can be
used to produce optimal strong algebraic manipulation detection codes. We character-
ize the parameters (v,m, k, λ) of a nontrivial SEDF that is near-complete (satisfying
v = km + 1). We construct the first known nontrivial example of a (v,m, k, λ) SEDF
having m > 2. The parameters of this example are (243, 11, 22, 20), giving a near-
complete SEDF, and its group is Z

5
3. We provide a comprehensive framework for the

study of SEDFs using character theory and algebraic number theory, showing that the
casesm = 2 andm > 2 are fundamentally different.We prove a range of nonexistence
results, greatly narrowing the scope of possible parameters of SEDFs.

Keywords Character sum · Exponent bound · Finite projective geometry · Mathieu
group · Partial difference set · Strong external difference family

1 Introduction

LetG be an abelian group of order v with identity 1.We shall work in the setting of the
group ring Z[G]: given a subset D of G, we write the group ring element

∑
d∈D d as
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D (by a standard abuse of notation), and the group ring element
∑

d∈D d−1 as D(−1).
Let D1, D2, . . . , Dm be mutually disjoint k-subsets of G, where m ≥ 2, and let λ be
a positive integer. Then {D1, D2, . . . , Dm} is a (v,m, k, λ)-external difference family
in G if ∑

1≤i, j≤m
i �= j

D j D
(−1)
i = λ(G − 1) in Z[G], (1.1)

and is a (v,m, k, λ)-strong external difference family (SEDF) in G if

Dj

∑

1≤i≤m
i �= j

D(−1)
i = λ(G − 1) in Z[G] for each j satisfying 1 ≤ j ≤ m. (1.2)

The use of “strong” arises because a (v,m, k, λ)-SEDF is necessarily a (v,m, k,mλ)-
external difference family.

External difference families have applications in authentication codes and secret
sharing [23]. An external difference family in a cyclic group gives rise to difference
systems of sets [7], which can be applied to construct synchronization codes [18].
Paterson and Stinson [25] introduced SEDFs and showed how to produce optimal
strong algebraic manipulation detection codes from them. Algebraic manipulation
detection codes have many applications, including robust secret sharing schemes,
securemultiparty computation, and nonmalleable codes [8–10]. A succession of recent
papers has demonstrated that SEDFs are interesting combinatorial objects in their own
right: see Proposition 1.1 for a summary of constructive results, Proposition 1.3 for a
characterization result, and Proposition 1.4 for a selection of nonexistence results.

The parameters of a (v,m, k, λ)-SEDF satisfy the counting relation

k2(m − 1) = λ(v − 1). (1.3)

A (v,m, k, λ)-SEDF is trivial if k = 1; it follows from (1.3) that the parameters of
a trivial SEDF have the form (v, v, 1, 1), and an SEDF with these parameters exists
(trivially) in every groupof orderv. The followingproposition describes the parameters
and groups of the known nontrivial SEDFs, all of which satisfy m = 2.

Proposition 1.1 A (v,m, k, λ)-SEDF exists in the group G in each of the following
cases:

(1) (v,m, k, λ) = (k2 + 1, 2, k, 1) and G = Zk2+1 [25, Example 2.2].
(2) (v,m, k, λ) = (v, 2, v−1

2 , v−1
4 ) and v ≡ 1 (mod 4), provided there exists a

(v, v−1
2 , v−5

4 , v−1
4 ) partial difference set in G [11, Section 3], [15, Theorem 4.4].

(3) (v,m, k, λ) = (p, 2, p−1
4 ,

p−1
16 )where p = 16t2+1 is a prime and t is an integer,

and G = Zp [3, Theorem 4.3].
(4) (v,m, k, λ) = (p, 2, p−1

6 ,
p−1
36 ) where p = 108t2 + 1 is a prime and t is an

integer, and G = Zp [3, Theorem 4.6].

Remark 1.2 Proposition 1.1 (3) describes a construction which was presented in [3,
Theorem 4.3] with a prime power q in place of the prime p and with G = Fq in place
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of G = Zp. However, if q = 16t2 + 1 is a prime power and t is an integer, then q
must be a prime because Catalan’s conjecture is known to hold [22].

When λ = 1, the parameters of a nontrivial (v,m, k, λ)-SEDF have been charac-
terized.

Proposition 1.3 A nontrivial (v,m, k, 1)-SEDF exists if and only if m = 2 and v =
k2 + 1 [25, Theorem 2.3].

The following proposition describes parameter sets (v,m, k, λ) for which a non-
trivial SEDF is known not to exist in all groups of order v.

Proposition 1.4 Anontrivial (v,m, k, λ)-SEDFdoes not exist in each of the following
cases:

(1) m ∈ {3, 4} [21, Theorems 3.3 and 3.6]
(2) m > 2 and v is prime [21, Theorem 3.9]
(3) m > 2 and λ = 2 [15, Corollary 3.2]
(4) m > 2 and λ > 1 and λ(k−1)(m−2)

(λ−1)k(m−1) > 1 [15, Theorem 3.5]
(5) m > 2 and there is a prime p dividing v for which gcd(km, p) = 1 and m �≡ 2

(mod p) [3, Theorem 3.5].
(6) λ ≥ k [3, Lemma 1.1]

It is known [21,Lemma1.2] that ifv = km, then an (v,m, k, λ)-SEDF is necessarily
trivial. The same proof idea as in [21] gives the following generalization.

Lemma 1.5 Suppose there exists a (v,m, k, λ)-SEDF for which gcd(k, v − 1) = 1.
Then the SEDF is trivial.

Proof The counting relation (1.3) gives m − 1 = λ
k2

(v − 1). Since gcd(k, v − 1) = 1,

it follows that λ/k2 is an integer and so m − 1 ≥ v − 1. Since v ≥ km, this implies
that k = 1. ��

Lemma 1.5 implies that the parameters of a nontrivial (v,m, k, λ)-SEDF {D1, D2,

. . . , Dm} satisfy v > km and, by taking a translate of all the subsets Dj if necessary,
we may therefore assume that 1 /∈ ⋃m

j=1 Dj . In the extremal case v = km + 1,
the subsets D1, D2, . . . , Dm partition the nonidentity elements of the group G and
(following [11]) we call the SEDF near-complete.

In this paper, we present constructive and nonexistence results for nontrivial SEDFs
using character theory and algebraic number theory. In Sect. 2, we give a character-
theoretic framework for the study of SEDFs and demonstrate that the cases m = 2
and m > 2 are fundamentally different. In Sect. 3, we characterize the parameters of
a nontrivial near-complete SEDF by establishing an equivalence with a collection of
partial difference sets. In particular, we construct a near-complete (243, 11, 22, 20)-
SEDF in Z

5
3 by reference to the point-orbits of the Mathieu group M11 acting on the

projective geometry PG(4, 3). This is the first known nontrivial example of an SEDF
with m > 2. In Sect. 4, we use algebraic number theory to obtain an exponent bound
on a group containing a SEDF and apply it to rule out various SEDFs with m = 2,
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leaving only 5 open cases for the parameters of a (v,m, k, λ) SEDF with v ≤ 50 and
m = 2. In Sect. 5 we obtain nonexistence results for SEDFs with m > 2, introducing
the “simple character value property” under which strong necessary conditions can
be derived. This leaves only 70 open cases for the parameters of a (v,m, k, λ) SEDF
with v ≤ 104 and m > 2.

2 A character-theoretic approach

Let Ĝ denote the character group of an abelian group G, and let χ0 ∈ Ĝ be the
principal character. Each character χ ∈ Ĝ is extended linearly to the group ring Z[G].
The following formula is a consequence of the orthogonality properties of characters.

Proposition 2.1 (Fourier inversion formula). Let G be an abelian group and let A =∑
g∈G cgg ∈ Z[G]. Then

cg = 1

|G|
∑

χ∈Ĝ
χ(A)χ(g) for each g ∈ G.

Suppose {D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-SEDF in a group G, and
write D = ⋃m

i=1 Di . Then (1.2) is equivalent to

Dj (D
(−1) − D(−1)

j ) = λ(G − 1) in Z[G] for each j satisfying 1 ≤ j ≤ m.

Apply a nonprincipal character χ ∈ Ĝ to obtain

χ(Dj )
(
χ(D) − χ(Dj )

) = −λ for all nonprincipal χ ∈ Ĝ and for each j. (2.1)

Some basic restrictions were derived from (2.1) in [21, Lemma 3.1]. We now extend
that analysis.

It follows from (2.1) that for each j satisfying 1 ≤ j ≤ m,

|χ(Dj )|2 = λ if and only if χ(D) = 0. (2.2)

Define

Ĝ0 = {nonprincipal χ ∈ Ĝ | χ(D) = 0}, (2.3)

ĜN = {nonprincipal χ ∈ Ĝ | χ(D) �= 0},

so that Ĝ may be partitioned (with respect to D) as the disjoint union {χ0}∪ Ĝ0 ∪ ĜN .
We now show that the set ĜN is nonempty.

Lemma 2.2 ([21, Lemma 3.1 (d)]) Suppose {D1, D2, . . . , Dm} is a nontrivial
(v,m, k, λ)-SEDF in a group G, and let D = ⋃m

i=1 Di . Then |ĜN | > 0.
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Proof Suppose, for a contradiction, that χ(D) = 0 for each nonprincipal χ ∈ Ĝ.
Write D = ∑

g∈G cgg in Z[G] and use Proposition 2.1 to show that for each g ∈ G
we have

cg = 1

v
χ0(D)χ0(g) = km

v
.

By Lemma 1.5 we have v > km, giving the contradiction 0 < cg < 1. ��

For each χ ∈ ĜN , set α j,χ to be the real number
|χ(Dj )|2

|χ(Dj )|2−λ
. Then conjugate (2.1),

multiply both sides by χ(Dj ), and rearrange to give

χ(Dj ) = α j,χ χ(D) for χ ∈ ĜN . (2.4)

Substitute for χ(Dj ) from (2.4) into (2.1) to obtain a quadratic equation in α j,χ :

α2
j,χ − α j,χ − λ

|χ(D)|2 = 0 for χ ∈ ĜN . (2.5)

The solutions of this equation are

α+
χ = 1

2

(
1 +

√
1 + 4λ

|χ(D)|2
)
, α−

χ = 1

2

(
1 −

√
1 + 4λ

|χ(D)|2
)

for χ ∈ ĜN . (2.6)

For each χ ∈ ĜN , let �+
χ and �−

χ be the number of times α j,χ takes the value α+
χ and

α−
χ , respectively, as j ranges over 1 ≤ j ≤ m. Using χ(D) = ∑m

j=1 χ(Dj ), we find
from (2.4) that

�+
χ α+

χ + �−
χ α−

χ = 1.

Combine with the counting condition �+
χ + �−

χ = m to determine �+
χ and �−

χ as

�+
χ = m

2
− m − 2

2
√
1 + 4λ

|χ(D)|2
, �−

χ = m

2
+ m − 2

2
√
1 + 4λ

|χ(D)|2
for χ ∈ ĜN . (2.7)

In particular, �+
χ ≥ m

2 − m−2
2 = 1 and �−

χ ≥ 1, so the values α+
χ and α−

χ both occur
as j ranges over {1, 2, . . . ,m}. Therefore from (2.4) we have

{χ(Dj ) | 1 ≤ j ≤ m} = {α+
χ χ(D), α−

χ χ(D)} for χ ∈ ĜN . (2.8)

The expressions (2.7) illustrate a fundamental difference between the cases m = 2
andm > 2.Whenm = 2, these expressions reduce to �+

χ = �−
χ = 1. But whenm > 2,

we require
√
1 + 4λ

|χ(D)|2 ∈ Q for each χ ∈ ĜN in order for �+
χ and �−

χ to be integers.

We shall see in Sect. 5 that this yields strong restrictions on the character values of
χ(D) and χ(Dj ) for SEDFs when m > 2, which do not apply when m = 2.

We conclude this section with a result required in Sect. 3.
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Lemma 2.3 Suppose {D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-SEDF in a
group G, where 1 /∈ ⋃m

i=1 Di . Then, for each j , neither D j ∪ {1} nor G \ Dj is
a subgroup of G.

Proof Suppose, for a contradiction, that Dj ∪ {1} is a subgroup of G. Since m ≥ 2,
there exists a nonprincipal character χ of G which is principal on Dj ∪{1}. Then (2.1)
gives k(χ(D) − k) = −λ, so that χ(D) = k − λ

k is a rational number. Since χ(D)

is also an algebraic integer, λ/k is an integer and therefore λ ≥ k. This contradicts
Proposition 1.4 (6).

Suppose, for a contradiction, that G \ Dj is a subgroup of G. Then (v − k) | v, and
since k > 1 we have k ≥ v

2 . But v > km and m ≥ 2 gives the contradiction k < v
2 . ��

3 Near-complete SEDFs

Let D be a k-subset of a groupG of order v, where 1 /∈ D. The subset D is a (v, k, λ, μ)

partial difference set (PDS) in G if

DD(−1) = (k − μ) · 1 + λD + μ(G − D) in Z[G]. (3.1)

(A slightly different definition, which we will not require, applies when 1 ∈ D.) The
PDS D is regular if D = D(−1), and is trivial if either D ∪ {1} or G \ D is a subgroup
of G. In this section we prove the following result, which characterizes the parameters
of a nontrivial near-complete (v,m, k, λ)-SEDF and provides the first known example
of a nontrivial (v,m, k, λ)-SEDF having m > 2.

Theorem 3.1 Let D1, D2, . . . , Dm partition the nonidentity elements of an abelian
groupG of orderv = km+1 intom subsets eachof size k > 1. Then {D1, D2, . . . , Dm}
is a nontrivial near-complete (v,m, k, λ)-SEDF in G if and only if either

(1) (v,m, k, λ) = (v, 2, v−1
2 , v−1

4 ) and v ≡ 1 (mod 4) and D1 is a nontrivial regular

(v, v−1
2 , v−5

4 , v−1
4 )-PDS in G, or

(2) (v,m, k, λ) = (243, 11, 22, 20) and each D j is a nontrivial regular (243, 22, 1,
2)-PDS in G for 1 ≤ j ≤ 11.

Furthermore, a (243, 11, 22, 20)-SEDF exists in Z
5
3.

The restriction of Theorem 3.1 to the casem = 2 is due to Huczynska and Paterson
[15, Theorem 4.6], and also to Ding [12, Proposition 2.1] from the viewpoint of
difference families. One direction of the case m = 2, namely the construction of
an SEDF from a PDS, was also proved in [11, Section 3]. Necessary and sufficient
conditions for the existence of a PDS with the parameters specified in (1) and (2) of
Theorem 3.1 are not known. However, sufficient conditions for the existence of a PDS
with the parameters specified in (1) of Theorem 3.1 (known as a Paley-type PDS) are
known to include: G is elementary abelian and v is a prime power congruent to 1
modulo 4 [24]; G = Z

2
pr for an odd prime p [17]; and G = Z

2
3 ×Z

4r
p for an odd prime

p [26]. Necessary conditions for the existence of a PDS in an abelian group G with
the parameters specified in (2) of Theorem 3.1 are that G = Z

5
3, Z

3
3 × Z9, or Z3 × Z

2
9

[20, Theorem 6.9]; existence is known for G = Z
5
3 [4], [6, Section 10].
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In order to establish Theorem 3.1, we make the following connection between a
nontrivial near-complete SEDF and a collection of nontrivial regular PDSs.

Lemma 3.2 Let D1, D2, . . . , Dm partition the nonidentity elements of an abelian
groupG of orderv = km+1 intom subsets eachof size k > 1. Then {D1, D2, . . . , Dm}
is a nontrivial near-complete (v,m, k, λ)-SEDF in G if and only if each D j is a
nontrivial regular (v, k, k − λ − 1, k − λ)-PDS in G for 1 ≤ j ≤ m.

Proof Since D1, D2, . . . , Dm is a partition of the nonidentity elements of G, for each
j satisfying 1 ≤ j ≤ m we have 1 /∈ Dj and

∑

1≤i≤m
i �= j

Di = G − Dj − 1,

and therefore

Dj

∑

1≤i≤m
i �= j

D(−1)
i = Dj (G − D(−1)

j − 1) = kG − Dj D
(−1)
j − Dj .

It follows that {D1, D2, . . . , Dm} is a nontrivial near-complete (v,m, k, λ)-SEDF in
G if and only if, for each j ,

λ(G − 1) = kG − Dj D
(−1)
j − Dj ,

which rearranges to

Dj D
(−1)
j = λ · 1 + (k − λ − 1)Dj + (k − λ)(G − Dj ). (3.2)

Equivalently, each Dj is a (v, k, k − λ − 1, k − λ)-PDS in G.
To complete the proof, we require that if {D1, D2, . . . , Dm} is a nontrivial near-

complete (v,m, k, λ)-SEDF in G, then each PDS Dj is nontrivial and regular.
Nontriviality of each Dj is given by Lemma 2.3, and regularity by [20, Proposition
1.2]. ��

The parameters of the nontrivial regular PDSs specified in Lemma 3.2 take the
form (v, k, μ−1, μ). The following result characterizes all such parameters when the
group is abelian.

Theorem 3.3 [2]; see also [20, Theorem 13.1]) Suppose there exists a nontrivial
regular (v, k, μ − 1, μ)-PDS in an abelian group. Then either

(1) (v, k, μ − 1, μ) = (v, v−1
2 , v−5

4 , v−1
4 ) and v ≡ 1 (mod 4), or

(2) (v, k, μ − 1, μ) = (243, 22, 1, 2) or (243, 220, 199, 220).

We can now give the structure of the proof of Theorem 3.1.
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Proof of Theorem 3.1 ByLemma3.2, {D1, D2, . . . , Dm} is a nontrivial near-complete
(v,m, k, λ)-SEDF in G if and only if each Dj is a nontrivial regular (v, k, k − λ −
1, k − λ)-PDS in G for 1 ≤ j ≤ m. Since m = (v − 1)/k, by Theorem 3.3 this holds
if and only if either

(1) (v,m, k, λ) = (v, 2, v−1
2 , v−1

4 ) and v ≡ 1 (mod 4) and each of D1, D2 is a
nontrivial regular (v, v−1

2 , v−5
4 , v−1

4 )-PDS in G, or
(2) (v,m, k, λ) = (243, 11, 22, 20) and eachDj is a nontrivial regular (243, 22, 1, 2)-

PDS in G for 1 ≤ j ≤ 11.

For case (1), the desired result follows from the observation that if D1 is a regular
(v, v−1

2 , v−5
4 , v−1

4 )-PDS in G that does not contain the identity, then so is D2 =
G \ (D1 ∪ {1}) [15, Lemma 4.3].

It remains to construct a (243, 11, 22, 20)-SEDF in Z
5
3, which is carried out below.��

In the rest of this section we shall construct a (243, 11, 22, 20)-SEDF in Z
5
3,

regarded as the additive group of F
5
3. By Lemma 3.2, this is equivalent to partition-

ing the nonzero elements of F
5
3 into 11 subsets, each of which is a nontrivial regular

(243, 22, 1, 2)-PDS in the additive group of F
5
3.

We firstly review the construction of a single nontrivial regular (243, 22, 1, 2)-PDS
in the additive group of F

5
3. This PDS was originally constructed from the perfect

ternary Golay code [4]; we shall use the following alternative description involving a
group of collineations of projective space having exactly two point-orbits [6, Section

10]. The 35−1
3−1 = 121 points of the projective space PG(4, 3) are the 1-dimensional

subspaces of the vector space F
5
3 over F3. Each such point has the form 〈x〉 for some

nonzero x ∈ F
5
3, and corresponds to the vectors x and 2x of F

5
3. The general linear

group GL(5, 3) is the group of 5 × 5 invertible matrices over F3, and its center is
Z = {I, 2I }where I is the 5×5 identitymatrix. The projective linear group PGL(5, 3)
is the quotient group GL(5, 3)/Z . The action of an element A ∈ PGL(5, 3) on a point
〈x〉 ∈ PG(4, 3) is given by

A : 〈x〉 �→ 〈x A〉,

where x A is the usual vector-matrix product, and this action is transitive on the points
of PG(4, 3) [13, p. 57]. Now PGL(5, 3) contains a subgroup of order 7920 which is
a representation of the Mathieu group M11. The group M11 has exactly two point-
orbits on PG(4, 3): one of size 11 and the other of size 110 [6, Example RT6]. The
22 vectors of F

5
3 corresponding to the point-orbit of size 11 form a nontrivial regular

(243, 22, 1, 2)-PDS in the additive group of F
5
3 [6, Theorem 3.2 and Figure 2b].

Define the elements of PGL(5, 3):

X =

⎡

⎢
⎢
⎢
⎢
⎣

0 2 1 0 0
2 1 1 2 2
0 1 1 2 2
1 0 2 2 1
1 2 2 2 0

⎤

⎥
⎥
⎥
⎥
⎦

and Y =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 2 0 2
1 1 2 2 0
2 2 2 2 2
1 2 1 1 0
2 2 0 2 1

⎤

⎥
⎥
⎥
⎥
⎦

,
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which satisfy X2 = Y 4 = (XY )11 = I . The group M11 may be represented explicitly
[1] as

M11 = 〈X,Y 〉.

The software packageMagma gives the point-orbit of size 11 under the action of M11
on PG(4, 3) as

O1 = {〈(1, 0, 0, 0, 0)〉, 〈(1, 1, 0, 0, 2)〉, 〈(2, 2, 1, 0, 1)〉,
〈(1, 0, 2, 1, 0)〉, 〈(0, 0, 2, 1, 2)〉, 〈(0, 1, 2, 0, 0)〉,
〈(0, 0, 1, 0, 1)〉, 〈(2, 0, 0, 2, 1)〉, 〈(2, 2, 1, 2, 0)〉,
〈(0, 1, 0, 1, 2)〉, 〈(0, 2, 0, 2, 0)〉}, (3.3)

and the corresponding nontrivial regular (243, 22, 1, 2)-PDS is

B1 = {x | 〈x〉 ∈ O1} ∪ {2x | 〈x〉 ∈ O1}
= {(1, 0, 0, 0, 0), (1, 1, 0, 0, 2), (2, 2, 1, 0, 1),

(1, 0, 2, 1, 0), (0, 0, 2, 1, 2), (0, 1, 2, 0, 0),

(0, 0, 1, 0, 1), (2, 0, 0, 2, 1), (2, 2, 1, 2, 0),

(0, 1, 0, 1, 2), (0, 2, 0, 2, 0), (2, 0, 0, 0, 0),

(2, 2, 0, 0, 1), (1, 1, 2, 0, 2), (2, 0, 1, 2, 0),

(0, 0, 1, 2, 1), (0, 2, 1, 0, 0), (0, 0, 2, 0, 2),

(1, 0, 0, 1, 2), (1, 1, 2, 1, 0), (0, 2, 0, 2, 1), (0, 1, 0, 1, 0)} (3.4)

in the additive group of F
5
3.

It is convenient to write

W = XY =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 2
0 2 1 1 2
0 2 0 1 1
2 1 2 2 1
2 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

,

giving the alternative representation

M11 = 〈W,Y 〉.

Now the cyclic group 〈W 〉 is an order 11 subgroup of M11. The orbit of 〈(1, 0, 0, 0, 0)〉
under the actionof 〈W 〉has size 1or 11; since 〈W 〉does not fix thepoint 〈(1, 0, 0, 0, 0)〉,
this orbit is the whole of O1:

O1 = {〈(1, 0, 0, 0, 0)A〉 | A ∈ 〈W 〉}. (3.5)
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Recall that the group M11 has exactly two point-orbits on PG(4, 3): one of size 11 (the
set O1), and the other of size 110. We will show that the action of the cyclic subgroup
〈W 〉 of M11 on the points of PG(4, 3) breaks the point-orbit of size 110 (under the
action of M11) into 10 point-orbits of size 11, each of which also corresponds to a
nontrivial regular (243, 22, 1, 2)-PDS in the additive group of F

5
3. This will give the

partition of the nonzero elements of F
5
3 into 11 subsets required under Lemma 3.2.

The centralizer of W in PGL(5, 3) is the group C(W ) = {B ∈ PGL(5, 3) : BW =
WB}.Magma gives C(W ) to be a cyclic group of order 121, one of whose generators
is

S =

⎡

⎢
⎢
⎢
⎢
⎣

1 2 2 1 2
1 2 0 1 2
0 2 2 1 2
0 0 0 0 2
1 1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎦

,

which satisfies W = S11. Define subsets O2, O3, . . . , O11 of PG(4, 3) by

Oj = {〈xS j−1〉 | 〈x〉 ∈ O1} for 2 ≤ j ≤ 11. (3.6)

Then for 1 ≤ j ≤ 11 we find from (3.5) that

Oj = {〈(1, 0, 0, 0, 0)AS j−1〉 | A ∈ 〈W 〉}
= {〈(1, 0, 0, 0, 0)S j−1A〉 | A ∈ 〈W 〉}

because S ∈ C(W ), and therefore the subset Oj is the size 11 orbit of the point
〈(1, 0, 0, 0, 0)S j−1〉 under the action of 〈W 〉. Furthermore, using W = S11 we may
write

Oj = {〈(1, 0, 0, 0, 0)S11i+ j−1〉 | 0 ≤ i ≤ 10} for 1 ≤ j ≤ 11, (3.7)

so that
11⋃

j=1

Oj = {〈(1, 0, 0, 0, 0)S�〉 | 0 ≤ � ≤ 120}. (3.8)

We claim that the subsets O1, O2, . . . , O11 form a partition of the 121 points of
PG(4, 3). Suppose, for a contradiction, that there is an integer n satisfying 1 ≤ n ≤ 120
such that

〈(1, 0, 0, 0, 0)Sn〉 = 〈(1, 0, 0, 0, 0)〉. (3.9)

Since 〈S〉 = C(W ) has order 121, the matrix Sn has order 11 or 121. But Sn cannot
have order 121, otherwise S would fix the point 〈(1, 0, 0, 0, 0)〉 and then from (3.8)
we would have

⋃11
j=1 Oj = {〈(1, 0, 0, 0, 0)〉}, contradicting (3.3). Therefore Sn has

order 11, so Sn = S11i for some i satisfying 1 ≤ i ≤ 10. But from (3.7) the 11 points
{〈(1, 0, 0, 0, 0)S11i 〉 | 0 ≤ i ≤ 10} comprise the orbit O1, and from (3.3) these 11
points are all distinct. This contradicts (3.9) and establishes the claim.

123



J Algebr Comb (2019) 49:21–48 31

Finally, define subsets B2, B3, . . . , B11 of the nonzero elements of F
5
3 by setting

Bj = {x | 〈x〉 ∈ Oj } ∪ {2x | 〈x〉 ∈ Oj } for 2 ≤ j ≤ 11.

The subsets B1, B2, . . . , B11 partition the 242 nonzero elements of F
5
3, and from (3.4)

and (3.6) we have

Bj = {xS j−1 | x ∈ B1} for 1 ≤ j ≤ 11. (3.10)

Moreover, B1 is a nontrivial regular (243, 22, 1, 2)-PDS in the additive group ofF
5
3, so

from the definition (3.1) themultiset {x−y | x, y ∈ B1} contains the element 0 exactly
22 times, each element of B1 exactly once, and each other element of F

5
3 exactly twice.

Since S is invertible, it follows from (3.10) that each Bj is also a nontrivial regular
(243, 22, 1, 2)-PDS in the additive group of F

5
3 for 2 ≤ j ≤ 11. By Lemma 3.2,

{B1, B2, . . . , B11} is therefore a (243, 11, 22, 20) near-complete SEDF in the additive
group of F

5
3.

Explicitly, we have

B2 = {(1, 2, 2, 1, 2), (1, 0, 1, 2, 0), (2, 2, 1, 2, 2),
(1, 0, 0, 0, 2), (2, 0, 0, 2, 2), (1, 0, 1, 0, 0),

(1, 0, 0, 1, 0), (0, 2, 2, 2, 0), (1, 1, 0, 2, 2),

(0, 1, 2, 1, 0), (2, 1, 0, 2, 2), (2, 1, 1, 2, 1),

(2, 0, 2, 1, 0), (1, 1, 2, 1, 1), (2, 0, 0, 0, 1),

(1, 0, 0, 1, 1), (2, 0, 2, 0, 0), (2, 0, 0, 2, 0),

(0, 1, 1, 1, 0), (2, 2, 0, 1, 1), (0, 2, 1, 2, 0), (1, 2, 0, 1, 1)},
B3 = {(2, 0, 2, 2, 2), (1, 1, 1, 2, 2), (0, 0, 2, 2, 1),

(0, 1, 1, 1, 1), (1, 0, 0, 2, 1), (1, 1, 1, 2, 1),

(1, 2, 2, 1, 1), (2, 2, 1, 1, 0), (1, 0, 1, 2, 1),

(1, 0, 1, 0, 2), (2, 2, 0, 0, 0), (1, 0, 1, 1, 1),

(2, 2, 2, 1, 1), (0, 0, 1, 1, 2), (0, 2, 2, 2, 2),

(2, 0, 0, 1, 2), (2, 2, 2, 1, 2), (2, 1, 1, 2, 2),

(1, 1, 2, 2, 0), (2, 0, 2, 1, 2), (2, 0, 2, 0, 1), (1, 1, 0, 0, 0)},
B4 = {(1, 1, 1, 1, 2), (1, 2, 0, 0, 0), (1, 2, 2, 2, 0),

(2, 2, 0, 2, 1), (2, 0, 0, 1, 1), (0, 1, 2, 0, 2),

(1, 2, 1, 2, 1), (1, 1, 0, 2, 0), (2, 2, 2, 2, 0),

(0, 0, 0, 2, 0), (1, 2, 1, 1, 2), (2, 2, 2, 2, 1),

(2, 1, 0, 0, 0), (2, 1, 1, 1, 0), (1, 1, 0, 1, 2),

(1, 0, 0, 2, 2), (0, 2, 1, 0, 1), (2, 1, 2, 1, 2),

(2, 2, 0, 1, 0), (1, 1, 1, 1, 0), (0, 0, 0, 1, 0), (2, 1, 2, 2, 1)},
B5 = {(1, 2, 0, 0, 1), (0, 0, 2, 0, 0), (0, 1, 0, 2, 2),

(2, 0, 2, 1, 1), (0, 2, 2, 2, 1), (0, 2, 0, 0, 2),
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(1, 0, 2, 1, 1), (2, 1, 2, 2, 2), (1, 0, 2, 0, 1),

(0, 0, 0, 0, 1), (2, 1, 0, 1, 0), (2, 1, 0, 0, 2),

(0, 0, 1, 0, 0), (0, 2, 0, 1, 1), (1, 0, 1, 2, 2),

(0, 1, 1, 1, 2), (0, 1, 0, 0, 1), (2, 0, 1, 2, 2),

(1, 2, 1, 1, 1), (2, 0, 1, 0, 2), (0, 0, 0, 0, 2), (1, 2, 0, 2, 0)},
B6 = {(1, 1, 0, 0, 1), (0, 1, 1, 2, 1), (0, 1, 2, 1, 2),

(0, 0, 0, 1, 2), (0, 0, 2, 1, 1), (1, 0, 2, 2, 0),

(2, 1, 1, 0, 0), (2, 0, 1, 2, 1), (2, 1, 1, 0, 1),

(1, 1, 1, 0, 1), (0, 0, 1, 0, 2), (2, 2, 0, 0, 2),

(0, 2, 2, 1, 2), (0, 2, 1, 2, 1), (0, 0, 0, 2, 1),

(0, 0, 1, 2, 2), (2, 0, 1, 1, 0), (1, 2, 2, 0, 0),

(1, 0, 2, 1, 2), (1, 2, 2, 0, 2), (2, 2, 2, 0, 2), (0, 0, 2, 0, 1)},
B7 = {(0, 2, 0, 2, 2), (2, 2, 0, 2, 0), (0, 2, 0, 0, 1),

(2, 2, 2, 0, 1), (1, 2, 2, 2, 1), (1, 0, 0, 0, 1),

(0, 2, 0, 1, 2), (0, 1, 1, 0, 2), (1, 0, 1, 1, 0),

(0, 1, 2, 0, 1), (2, 1, 1, 1, 1), (0, 1, 0, 1, 1),

(1, 1, 0, 1, 0), (0, 1, 0, 0, 2), (1, 1, 1, 0, 2),

(2, 1, 1, 1, 2), (2, 0, 0, 0, 2), (0, 1, 0, 2, 1),

(0, 2, 2, 0, 1), (2, 0, 2, 2, 0), (0, 2, 1, 0, 2), (1, 2, 2, 2, 2)},
B8 = {(1, 0, 2, 2, 1), (1, 2, 1, 1, 0), (0, 2, 1, 2, 2),

(2, 1, 0, 0, 1), (1, 2, 1, 2, 0), (2, 0, 0, 1, 0),

(1, 0, 2, 2, 2), (0, 0, 1, 2, 0), (1, 1, 1, 2, 0),

(2, 1, 2, 0, 1), (1, 0, 1, 1, 2), (2, 0, 1, 1, 2),

(2, 1, 2, 2, 0), (0, 1, 2, 1, 1), (1, 2, 0, 0, 2),

(2, 1, 2, 1, 0), (1, 0, 0, 2, 0), (2, 0, 1, 1, 1),

(0, 0, 2, 1, 0), (2, 2, 2, 1, 0), (1, 2, 1, 0, 2), (2, 0, 2, 2, 1)},
B9 = {(2, 1, 1, 0, 2), (0, 2, 1, 1, 1), (1, 2, 1, 0, 0),

(1, 1, 2, 0, 1), (0, 2, 1, 1, 0), (2, 1, 1, 2, 0),

(0, 2, 2, 0, 0), (0, 2, 2, 1, 0), (2, 0, 1, 0, 1),

(1, 2, 0, 2, 2), (0, 0, 0, 2, 2), (1, 2, 2, 0, 1),

(0, 1, 2, 2, 2), (2, 1, 2, 0, 0), (2, 2, 1, 0, 2),

(0, 1, 2, 2, 0), (1, 2, 2, 1, 0), (0, 1, 1, 0, 0),

(0, 1, 1, 2, 0), (1, 0, 2, 0, 2), (2, 1, 0, 1, 1), (0, 0, 0, 1, 1)},
B10 = {(2, 1, 2, 1, 1), (0, 1, 0, 0, 0), (0, 2, 1, 1, 2),

(0, 0, 1, 1, 0), (2, 0, 2, 0, 2), (0, 2, 0, 1, 0),

(2, 2, 1, 1, 2), (2, 2, 1, 1, 1), (0, 1, 1, 0, 1),

(2, 2, 1, 0, 0), (2, 2, 2, 0, 0), (1, 2, 1, 2, 2),
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(0, 2, 0, 0, 0), (0, 1, 2, 2, 1), (0, 0, 2, 2, 0),

(1, 0, 1, 0, 1), (0, 1, 0, 2, 0), (1, 1, 2, 2, 1),

(1, 1, 2, 2, 2), (0, 2, 2, 0, 2), (1, 1, 2, 0, 0), (1, 1, 1, 0, 0)},
B11 = {(1, 2, 0, 2, 1), (1, 2, 0, 1, 2), (1, 2, 1, 0, 1),

(0, 2, 2, 1, 1), (1, 1, 1, 1, 1), (2, 1, 0, 2, 0),

(0, 0, 2, 2, 2), (2, 2, 1, 2, 1), (2, 2, 0, 2, 2),

(1, 1, 0, 2, 1), (1, 0, 2, 0, 0), (2, 1, 0, 1, 2),

(2, 1, 0, 2, 1), (2, 1, 2, 0, 2), (0, 1, 1, 2, 2),

(2, 2, 2, 2, 2), (1, 2, 0, 1, 0), (0, 0, 1, 1, 1),

(1, 1, 2, 1, 2), (1, 1, 0, 1, 1), (2, 2, 0, 1, 2), (2, 0, 1, 0, 0)}.

4 An exponent bound and its application

In this section, we present an exponent bound on a group G containing a (v,m, k, λ)-
SEDF, and use it to prove nonexistence results for the case m = 2.

Let G = H × L be an abelian group. Each element of G can be expressed uniquely
as h� for h ∈ H and � ∈ L , and the natural projection ρ from G to H is defined by
ρ(h�) = h. Each χ̃ ∈ Ĥ induces a lifting character χ ∈ Ĝ satisfyingχ(g) = χ̃ (ρ(g))
for every g ∈ G. From now on, we shall use Gp to denote the Sylow p-subgroup of
the group G, where p is a prime. For a positive integer n, we use ζn to denote the
primitive n-th complex root of unity e2π i/n .

A prime p is a primitive rootmodulo n if p is a generator of themultiplicative group
of integers modulo n. A prime p is self-conjugatemodulo n if there is an integer j for
which p j ≡ −1 (mod n p), where n p is the largest divisor of n that is not divisible
by p. If a prime p is a primitive root modulo n, then p is self-conjugate modulo n.
For X ∈ Z[ζn], we use (X) to denote the principal idea generated by X in Z[ζn]. We
begin with a preparatory lemma.

Lemma 4.1 Let p and q be primes, let q be a primitive root modulo pe, and let
q f || u for some positive integer f . Suppose that X, X ′ ∈ Z[ζpe ] satisfy X X ′ = u.
Then either X ≡ 0 (mod q� f/2�) or X ′ ≡ 0 (mod q� f/2�). Furthermore, if X = X ′,
then f is even.

Proof Since XX ′ = u and q f || u, we have XX ′ ≡ 0 (mod q f ). Now q is a primitive
root modulo pe, so (q) is a prime ideal in Z[ζpe ] [16, Chapter 13, Theorem 2], which
we denote by Q. Hence

XX ′ ≡ 0 (mod Q f )

and so

Q f | (X)(X ′).
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Therefore eitherQ� f/2� | (X) orQ� f/2� | (X ′), and so either X ≡ 0 (mod q� f/2�) or
X ′ ≡ 0 (mod q� f/2�).

Now suppose X = X ′, so thatQ� f/2� | (X). Since q is a primitive root modulo pe,
we have that q is self-conjugate modulo pe. This implies Q is invariant under com-
plex conjugation [5, Chapter VI, Corollary 15.5], so that Q� f/2� | (X) and therefore
Q2� f/2� | (X)(X). But q f || u, so Q f || (X)(X). Therefore f is even. ��

We now prove the following exponent bound.

Theorem 4.2 Suppose there exists a (v,m, k, λ)-SEDF in a group G. Let p and q be
primes such that pd || v and q f || λ for some positive integers d and f , and suppose
that q is a primitive root modulo pd . Let G p be the Sylow p-subgroup of G. Then

exp(Gp) ≤ v/q� f/2�.

Proof Let {D1, D2, . . . , Dm} be the SEDF, and let D = ⋃m
i=1 Di . Let exp(Gp) = pe,

let H be a cyclic p-subgroup of G of order pe occurring as a direct factor of G, and
let ρ be the natural projection from G to H . Let χ̃ be a generator of Ĥ , and let χ be
the associated lifting character on G. Then

χ̃ (ρ(D1))χ̃(ρ(D − D1)) = χ(D1)χ(D − D1) = −λ (4.1)

by (2.1). Now q is a primitive root modulo pd , so q is also a primitive root modulo
pe [16, Chapter 4, Lemma 3]. Apply Lemma 4.1 with X = χ̃ (ρ(D1)) and X ′ =
χ̃(ρ(D − D1)) and u = −λ to show that there is a subset D′ of G (either D1 or
D \ D1) for which χ̃ (ρ(D′)) ≡ 0 (mod q� f/2�). Write

χ̃(ρ(D′)) =
pe−1−1∑

i=0

diζ
i
pe , (4.2)

where di = ∑p−1
j=0 ci, jζ

j
p and each ci, j ∈ Z. We have shown that q� f/2� |

∑pe−1−1
i=0 diζ ipe . Since {1, ζpe , ζ 2

pe , . . . , ζ
pe−1−1
pe } is a linearly independent set over

Q[ζp], this implies that

q� f/2� | di for each i.

Note that di = ∑p−1
j=0 ci, jζ

j
p = ∑p−2

j=0 (ci, j−ci,p−1)ζ
j
p . Because {1, ζp, ζ 2

p, . . . , ζ
p−2
p }

is an integral basis of Z[ζp], we then obtain

q� f/2� | (ci, j − ci,p−1) for each i and j. (4.3)

Since ρ is the natural projection from G to H , and |H | = pe, we have 0 ≤ ci, j ≤ v
pe

for each i and j , and therefore− v
pe ≤ ci, j−ci,p−1 ≤ v

pe for each i and j . Furthermore,
from (4.1) and (4.2), d ′

i �= 0 for some i ′ and therefore ci ′, j ′ − ci ′,p−1 �= 0 for some
j ′. It follows from (4.3) that q� f/2� ≤ v/pe, or equivalently pe ≤ v/q� f/2�. ��
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Very few nonexistence results for a nontrivial (v,m, k, λ)-SEDF with m = 2 are
known. We now illustrate the use of Theorem 4.2 by ruling out several families of
such parameter sets. When m = 2 and k is prime, the existence question is already
answered: we must have λ = 1 [15, Lemma 3.4], and then by Proposition 1.3 the
parameters have the form (k2+1, 2, k, 1). We therefore considerm = 2 and k = p1 p2
in Theorem 4.3, where p1, p2 are distinct primes and p1 < p2. The case λ = 1 is dealt
with in Proposition 1.3, and the cases λ ≥ p1 p2 are ruled out by Proposition 1.4 (6).
In view of the counting relation p21 p

2
2 = λ(v − 1) given by (1.3), the remaining cases

are λ ∈ {p1, p2, p21}.
Theorem 4.3 Let p1 and p2 be distinct primes with p1 < p2.

(1) Let p be a prime such that pd || p1 p22 + 1 for some positive integer d. If p1 is a
primitive root modulo pd and p22 + 1 ≤ p, then a (p1 p22 + 1, 2, p1 p2, p1)-SEDF
does not exist.

(2) Let p be a prime such that pd || p21 p2 + 1 for some positive integer d. If p2 is a
primitive root modulo pd and p21 + 1 ≤ p, then a (p21 p2 + 1, 2, p1 p2, p2)-SEDF
does not exist.

(3) Let p be a prime such that pd || p22 + 1 for some positive integer d. If p1 is a
primitive root modulo pd and p22 + 1 < p1 p, or if p1 is a primitive root modulo
p and p22 + 1 = p1 p, then a (p22 + 1, 2, p1 p2, p21)-SEDF does not exist.

Proof Parts (1), (2) and the first part of (3) are each direct applications of Theorem 4.2,
whereas the second part of (3) requires additional arguments; we give the proof for
both parts of (3). Suppose, for a contradiction, that {D1, D2} is a (p22+1, 2, p1 p2, p21)-
SEDF in a group G of order p22 + 1.

If p1 is a primitive root modulo pd and p22 + 1 < p1 p, then by Theorem 4.2 we

have exp(Gp) ≤ p22+1
p1

< p. This contradicts that p is a prime divisor of |G| = p22+1.

If p1 is a primitive root modulo p and p22 + 1 = p1 p, then G = Zp1 × Zp. Let ρ
be the natural projection from G to Zp. Let χ̃ be a generator of Ẑp. Then

χ̃(ρ(D1))χ̃(ρ(D2)) = −p21

by (2.1), so by Lemma 4.1 we may choose D′ to be one of D1 and D2 so that
χ̃(ρ(D′)) ≡ 0 (mod p1). Since χ̃ is a generator of Ẑp, there is a generator h of

Zp for which χ̃(h) = ζp. Write ρ(D′) = ∑p−1
i=0 di hi , where 0 ≤ di ≤ p1 for each i ,

and then

χ̃ (ρ(D′)) =
p−1∑

i=0

diζ
i
p =

p−2∑

i=0

(di − dp−1)ζ
i
p.

Since χ̃ (ρ(D′)) ≡ 0 (mod p1), we have p1 | di −dp−1 for each i . Using 0 ≤ di ≤ p1
for each i , we distinguish two cases:

Case 1: di ∈ {0, p1} for each i satisfying 0 ≤ i ≤ p − 1. This gives ρ(D′) =
p1

∑
i∈I hi for some subset I of {0, 1, . . . , p−1}, which implies that D′ is a
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union of cosets of Zp1 . But then for a character χ ∈ Ĝ which is nonprincipal
on Zp1 we have χ(D′) = 0, contradicting (2.1) because D′ = D1 or D2.

Case 2: d0 = d1 = · · · = dp−1. Then p divides |D′| = p1 p2, so either p = p1 or
p = p2. Both of these contradict the given conditions on p, p1, p2. ��

Remark 4.4 For example, Theorem 4.3 rules out the existence of a (v,m, k, λ)-SEDF
for

(v,m, k, λ) ∈ {(19, 2, 6, 2), (26, 2, 10, 4), (46, 2, 15, 5),
(118, 2, 39, 13), (122, 2, 22, 4),

(154, 2, 51, 17), (172, 2, 57, 19)}.

Theorem 4.2 rules out further parameter sets not excluded by Theorem 4.3 (for which
k is not the product of two distinct primes), including

(v,m, k, λ) ∈ {(37, 2, 12, 4), (101, 2, 20, 4), (101, 2, 30, 9),
(101, 2, 40, 16), (122, 2, 44, 16),

(127, 2, 42, 14), (129, 2, 48, 18), (163, 2, 18, 2),

(163, 2, 36, 8), (163, 2, 54, 18),

(163, 2, 72, 32), (177, 2, 44, 11), (181, 2, 60, 20),

(197, 2, 28, 4), (197, 2, 42, 9),

(197, 2, 56, 16), (197, 2, 70, 25), (197, 2, 84, 36)}.

All known examples of a nontrivial (v, 2, k, λ)-SEDF have v a prime, except for those
specified in Proposition 1.1 (1) and (2). The only cases for a (v, 2, k, λ)-SEDF with
v ≤ 50 that remain open are

(v,m, k, λ) ∈ {(28, 2, 9, 3), (33, 2, 8, 2), (49, 2, 12, 3), (50, 2, 14, 4), (50, 2, 21, 9)}.

The parameter set (45, 2, 22, 11) does not appear on this list, even though the existence
of an SEDF with these parameters in Z

2
3 × Z5 is not ruled out by Theorems 4.2 and

4.3: by Theorem 3.1, the existence of an SEDF with these parameters would imply
the existence of a nontrivial regular (45, 22, 10, 11)-PDS, which is excluded by [20,
Corollary 6.3].

5 SEDFs with m > 2

Throughout this section,we suppose that {D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-
SEDF in a group G with m > 2, and write D = ⋃m

i=1 Di . From (2.7), in order for �+
χ

and �−
χ to be integers we must have

√
1 + 4λ

|χ(D)|2 = bχ

aχ

for each χ ∈ ĜN , where aχ , bχ ∈ Z

and bχ > aχ > 0 and gcd(aχ , bχ ) = 1. (5.1)
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Then (2.7) becomes

�+
χ = m

2
− aχ (m − 2)

2bχ

, �−
χ = m

2
+ aχ (m − 2)

2bχ

for each χ ∈ ĜN . (5.2)

It is shown in [3, Lemma 3.3] and [21, Lemma 3.5] that (�+
χ , �−

χ ) /∈ {(0,m), (1,m −
1), (m2 , m

2 )} form > 2; this is an immediate consequence of (5.2). Rewrite the expres-
sions (2.6) for α+

χ and α−
χ using (5.1), and then substitute into (2.8) to obtain

{χ(Dj ) | 1 ≤ j ≤ m} =
{aχ + bχ

2aχ

χ(D),
aχ − bχ

2aχ

χ(D)
}

for each χ ∈ ĜN .

(5.3)
Rearrange (5.1) as

|χ(D)|2 = 4a2χλ

b2χ − a2χ
for each χ ∈ ĜN ,

and then combine with (5.3) to give

{(|χ(D)|2, |χ(Dj )|2
) | 1 ≤ j ≤ m

}

=
{(

4a2χλ

b2χ − a2χ
,

(bχ + aχ )λ

bχ − aχ

)

,

(
4a2χλ

b2χ − a2χ
,

(bχ − aχ )λ

bχ + aχ

)}

for each χ ∈ ĜN .

(5.4)

We now derive some divisibility conditions on the values of aχ and bχ , which
restrict the possible values of |χ(D)|2 and |χ(Dj )|2 via (5.4).
Lemma 5.1 Let aχ , bχ be defined as in (5.1) (with reference to the set D = ⋃m

i=1 Di

associated with a nontrivial (v,m, k, λ)-SEDF {D1, D2, . . . , Dm} in a group G with
m > 2). Then

(1) 2bχ | bχm − aχ (m − 2), and bχ | m − 2
(2) (bχ − aχ ) | (bχ + aχ )λ, and (bχ + aχ ) | (bχ − aχ )λ

(3) (b2χ − a2χ ) | 4λ, and if bχ + aχ is odd then (b2χ − a2χ ) | λ.

Proof (1) Since �+
χ is an integer, by (5.2) we have 2bχ | bχm−aχ (m−2). Therefore

bχ | aχ (m − 2), and since gcd(aχ , bχ ) = 1 we have bχ | m − 2.
(2) |χ(Dj )|2 is an algebraic integer, and by (5.4) also takes both rational values

(bχ+aχ )λ

bχ−aχ
and (bχ−aχ )λ

bχ+aχ
as j ranges over {1, 2, . . . ,m}. Therefore (bχ+aχ )λ

bχ−aχ
and

(bχ−aχ )λ

bχ+aχ
are both integers.

(3) |χ(D)|2 is an algebraic integer, and by (5.4) is also the rational number
4a2χλ

b2χ−a2χ
.

Therefore
4a2χλ

b2χ−a2χ
is an integer, which implies (b2χ − a2χ ) | 4λ. If bχ + aχ is odd,

then gcd(bχ − aχ , bχ + aχ ) = gcd(2bχ , bχ + aχ ) = gcd(bχ , bχ + aχ ) = 1
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so that from part (2) we obtain (bχ − aχ ) | λ and (bχ + aχ ) | λ and therefore
(b2χ − a2χ ) | λ. ��

Using Lemma 5.1, we recover the result of Proposition 1.4 (1) as Corollary 5.2,
and obtain new restrictions for m ∈ {5, 6} as Corollary 5.3.

Corollary 5.2 A nontrivial (v,m, k, λ)-SEDF does not exist for m ∈ {3, 4}.
Corollary 5.3 Let aχ , bχ be defined as in (5.1).

(1) If there exists a nontrivial (v, 5, k, λ)-SEDF in a group G, then (aχ , bχ ) = (1, 3)
and 2 | λ for each χ ∈ ĜN .

(2) If there exists a nontrivial (v, 6, k, λ)-SEDF in a group G, then (aχ , bχ ) = (1, 2)
and 3 | λ for each χ ∈ ĜN .

Motivated by Corollary 5.3, we say that a nontrivial (v,m, k, λ)-SEDF withm > 2
forwhich (aχ , bχ ) takes a constant value (a, b) for allχ ∈ ĜN has the simple character
value propertywith respect to (a, b). In the following subsectionwe obtain restrictions
on SEDFs having this property. In particular, for m = 5 and for m = 6 we obtain
asymptotic nonexistence results for a family of SEDFs, each of which must have this
property with respect to a fixed (a, b) by Corollary 5.3.

5.1 The simple character value property

As above, suppose that {D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-SEDF in a group
G with m > 2, and write D = ⋃m

i=1 Di . Suppose further that {D1, D2, . . . , Dm} has
the simple character value property with respect to (a, b). Then by (5.3), we may
partition ĜN (with respect to D1) into the disjoint union of the sets

Ĝ+ = {χ ∈ ĜN | χ(D1) = a + b

2a
χ(D)}, (5.5)

Ĝ− = {χ ∈ ĜN | χ(D1) = a − b

2a
χ(D)}, (5.6)

and from the definition (2.3), Ĝ is the disjoint union {χ0} ∪ Ĝ0 ∪ Ĝ+ ∪ Ĝ−. By (2.2)
and (5.4), we then obtain the character values in Table 1.

We now determine the size of the sets Ĝ0, Ĝ+, Ĝ−.

Table 1 Character sums for an
SEDF with m > 2, having the
simple character value property
with respect to (a, b)

χ ∈ Ĝ |χ(D)|2 χ(D1) |χ(D1)|2

χ = χ0 k2m2 k k2

χ ∈ Ĝ0 0 λ

χ ∈ Ĝ+ 4a2λ

b2 − a2
a + b

2a
χ(D)

(b + a)λ

b − a

χ ∈ Ĝ− 4a2λ

b2 − a2
a − b

2a
χ(D)

(b − a)λ

b + a
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Theorem 5.4 Suppose {D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-SEDF in a
group G with m > 2, having the simple character value property with respect to
(a, b). Then the sizes of the sets Ĝ0, Ĝ+, Ĝ− (defined as in (2.3), (5.5), (5.6) with
reference to the sets D1 and D = ⋃m

i=1 Di ) are

|Ĝ0| = (v − 1)

(

1 − (b2 − a2)(v − km)m

4a2k(m − 1)

)

, (5.7)

|Ĝ+| = (v − 1)(v − km)(b2 − a2)((b − a)m + 2a)

8a2bk(m − 1)
,

|Ĝ−| = (v − 1)(v − km)(b2 − a2)((b + a)m − 2a)

8a2bk(m − 1)
,

and each of |Ĝ0|, |Ĝ+|, |Ĝ−| is a nonnegative integer and |Ĝ+| + |Ĝ−| > 0.

Proof Each of |Ĝ0|, |Ĝ+|, |Ĝ−| is a nonnegative integer by definition, and |Ĝ+| +
|Ĝ−| = |ĜN | > 0 by Lemma 2.2. Write DD(−1) = ∑

g∈G cgg ∈ Z[G]. From
Proposition 2.1,

c1 = 1

v

∑

χ∈Ĝ
|χ(D)|2.

The left side c1 = |D| = km is the coefficient of the identity in the expression DD(−1),
and the right side can be evaluated using Table 1 to give

km = 1

v

(

k2m2 + (
v − 1 − |Ĝ0|) 4a2λ

b2 − a2

)

.

Substitute for λ from the counting relation (1.3) to obtain the required expression
for |Ĝ0|.

Similarly,write D1D
(−1)
1 = ∑

g∈G dgg ∈ Z[G] and useProposition 2.1 andTable 1
to give

k = 1

v

(
k2 + |Ĝ0| λ + |Ĝ+| (b + a)λ

b − a
+ |Ĝ−| (b − a)λ

b + a

)
.

Wenowobtain the required expressions for |Ĝ+| and |Ĝ−| using (5.7) and the counting
condition |Ĝ0| + |Ĝ+| + |Ĝ−| = v − 1. ��

We obtain the following asymptotic nonexistence result from Theorem 5.4.

Theorem 5.5 Let m, λ, a, b be fixed positive integers, where m > 2 and b > a
and gcd(a, b) = 1. Then for all sufficiently large k, there does not exist a nontrivial
(v,m, k, λ)-SEDF having the simple character value property with respect to (a, b).
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Proof Apply the condition |Ĝ0| ≥ 0 to (5.7), and rearrange to give the inequality

v

k
≤ m + 4a2(m − 1)

m(b2 − a2)
.

Since m and λ are fixed, the counting relation (1.3) shows that v grows like k2 as k
increases. Therefore for all sufficiently large k, the inequality in v/k does not hold. ��

As a consequence of Corollary 5.3 and Theorem 5.5, we obtain the following
asymptotic nonexistence result for m ∈ {5, 6}.
Corollary 5.6 Let λ be a fixed positive integer. Then for all sufficiently large k, there
does not exist a nontrivial (v, 5, k, λ)-SEDF and there does not exist a nontrivial
(v, 6, k, λ)-SEDF.

We can obtain results similar to Corollary 5.6 for values of m greater than 6. For
example, suppose there exists a nontrivial (v, 7, k, λ)-SEDF. FromLemma 5.1 we find
thatλ mod 12 ∈ {0, 4, 6, 8}, and that the SEDFhas the simple character value property
with respect to (1, 5) if λ mod 12 = 6 and with respect to (3, 5) if λ mod 12 ∈ {4, 8}.
Therefore for fixed λ for which λ mod 12 �= 0, for all sufficiently large k there does
not exist a nontrivial (v, 7, k, λ)-SEDF. Likewise, for fixed λ for which λ mod 10 �= 0,
for all sufficiently large k there does not exist a nontrivial (v, 8, k, λ)-SEDF.

We derive further divisibility conditions on the SEDF parameters in Theorem 5.9.
We first require two number-theoretic lemmas.

Lemma 5.7 [14, Lemma 2.3] Let p be a prime and let e be a positive integer. Let
σ = ∑pe−1

i=0 ciζ ipe , where each ci ∈ Z. Then σ = 0 if and only if ci = c j for all i and

j satisfying i ≡ j (mod pe−1).

Lemma 5.8 Let p be a prime and H be a p-group. Let E = ∑
h∈H chh ∈ Z[H ],

where each ch ≥ 0 and
∑

h∈H ch = u. Suppose there is an integer � and a character
χ ∈ Ĥ for which |χ(E)|2 = �. Then u2 + (p − 1)� = pr for some integer r ≥ u.

Proof Let pe = exp(H). Then

� = |χ(E)|2
=

∑

h, j∈H
chc jχ(h)χ( j)

=
pe−1∑

i=0

diζ
i
pe , (5.8)

where di = ∑
h, j∈H :χ(h)χ( j)=ζ ipe

chc j . Each di is a nonnegative integer, and

pe−1∑

i=0

di =
∑

h, j∈H
chc j

= u2. (5.9)
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Subtract � from both sides of (5.8), and deduce from Lemma 5.7 that

d0 − � = dpe−1 = d2pe−1 = · · · = d(p−1)pe−1

and

d j = dpe−1+ j = d2pe−1+ j = · · · = d(p−1)pe−1+ j

for each j satisfying 1 ≤ j ≤ pe−1 − 1.

Substitute into (5.9) to obtain

p
pe−1−1∑

i=0

di − (p − 1)� = u2,

so that u2 + (p − 1)� = pr where r is an integer satisfying

r =
pe−1−1∑

i=0

di ≥ d0 =
∑

h, j∈H :χ(h)=χ( j)

chc j ≥
∑

h∈H
c2h ≥

∑

h∈H
ch = u.

��
Theorem 5.9 Suppose {D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-SEDF in a
group G with m > 2, having the simple character value property with respect to
(a, b), and let p be a prime divisor of v. Then either the following both hold:

(1a) |Gp| divides km,
(1b) k2 + (|Gp| − 1)λ = |Gp|r1 for some integer r1 ≥ k.

or the following all hold:

(2a) k2m2 + (p − 1) 4a2λ
b2−a2

= pr2 for some integer r2 ≥ km,

(2b) k2 + (p − 1) (b−a)λ
b+a = pr3 for some integer r3 ≥ k,

(2c) k2 + (p − 1) (b+a)λ
b−a = pr4 for some integer r4.

Proof Let ρ be the natural projection from G to Gp, and let D = ⋃m
i=1 Di . For each

nonprincipal character χ̃ ∈ Ĝ p and its associated lifting character χ ∈ Ĝ, Table 1
gives

(|χ̃ (ρ(D))|2, |χ̃ (ρ(D1))|2
)

= (|χ(D)|2, |χ(D1)|2
)

=
⎧
⎨

⎩

(
4a2λ

b2 − a2
,

(b + a)λ

b − a

)

or

(
4a2λ

b2 − a2
,

(b − a)λ

b + a

)

for χ ∈ ĜN ,

(0, λ) for χ ∈ Ĝ0.

(5.10)
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Case 1: χ̃(ρ(D)) = 0 for every nonprincipal character χ̃ ∈ Ĝ p. Apply Propo-
sition 2.1 with A = ρ(D) to obtain ρ(D) = km

|Gp |Gp, giving (1a). By

(5.10), we have |χ̃(ρ(D1))|2 = λ for every nonprincipal character χ̃ ∈ Ĝ p.
Apply Proposition 2.1 with A = ρ(D1)ρ(D1)

(−1) = ∑
g∈Ĝ p

cgg to obtain

c1 = 1
|Gp |

(
k2 + (|Gp| − 1)λ

)
and note that c1 ≥ |D1| = k, giving (1b).

Case 2: χ̃(ρ(D)) �= 0 for some nonprincipal character χ̃ ∈ Ĝ p. By (5.10), this χ̃

satisfies |χ̃ (ρ(D))|2 = 4a2λ
b2−a2

, which is an integer by Lemma 5.1 (3). Apply
Lemma 5.8 with (H, E) = (Gp, ρ(D)) and u = |D| = km to give (2a). By
(5.10), this χ̃ also satisfies |χ̃(ρ(D1))|2 = (b+a)λ

b−a or (b−a)λ
b+a . Then by (5.4)

there is some j �= 1 for which

{|χ̃(ρ(D1))|2, |χ̃ (ρ(Dj ))|2
} =

{
(b + a)λ

b − a
,
(b − a)λ

b + a

}

,

and both values are integers by Lemma 5.1 (2). Apply Lemma 5.8 with
(H, E) = (Gp, ρ(D1)) and with (H, E) = (Gp, ρ(Dj )) to give (2b)
and (2c). ��

By Proposition 1.4 (2), we know that a nontrivial (v,m, k, λ)-SEDF does not exist
when v is prime and m > 2. We now prove a nonexistence result when v is a prime
power and m > 2.

Theorem 5.10 Let G be a group of order v = ps where p is an odd prime, and
suppose that 2 is self-conjugate modulo exp(G). Suppose {D1, D2, . . . , Dm} is a
nontrivial (v,m, k, λ)-SEDF in G with m > 2, having the simple character value
property with respect to (a, b). Then a and b are both odd.

Proof Suppose, for a contradiction, that a and b are not both odd. Since gcd(a, b) = 1,
we therefore have b + a odd and so (b2 − a2) | λ by Lemma 5.1 (3). We shall show
that this implies km and v − km are both even, contradicting that v = ps for odd p.

Write D = ⋃m
i=1 Di and use Table 1 to give

|χ(D)|2 = 4a2λ

b2 − a2
for all nonprincipal χ ∈ ĜN . (5.11)

Since (b2 − a2) | λ, this gives

χ(D)χ(D) ≡ 0 (mod 22) for all nonprincipal χ ∈ ĜN .

Since 2 is self-conjugate modulo exp(G), by [5, Chapter VI, Lemma 13.2], we have

χ(D) ≡ 0 (mod 2) for all nonprincipal χ ∈ ĜN . (5.12)

By taking a translate of D if necessary, we may assume that 1 /∈ D. Write D =∑
g∈G dgg ∈ Z[G]. From Proposition 2.1,
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0 = vd1 =
∑

χ∈Ĝ
χ(D) = km +

∑

χ∈ĜN

χ(D). (5.13)

Combining (5.12) and (5.13), we find that km is even.
To show that v − km is even, repeat the above analysis with D replaced by G \ D,

noting that |χ(G − D)|2 = |χ(D)|2 for each nonprincipal χ ∈ Ĝ. ��
We now illustrate the use of Theorem 5.10 to rule out the existence of an

(81, 6, 12, 9)-SEDF and a (6561, 6, 984, 738)-SEDF.

Example 5.11 Suppose, for a contradiction, that there exists an (81, 6, 12, 9)-SEDF
or there exists a (6561, 6, 984, 738)-SEDF. By Corollary 5.3 (2), these SEDFs have
the simple character value property with respect to (1, 2). Since 2 is self-conjugate
modulo 81 and modulo 6561, Theorem 5.10 then gives the contradiction that 2 is odd.

5.2 Further nonexistence results

In this subsection, we extend the analysis of Sect. 5.1 to the case of an SEDF for
which the simple character value property does not necessarily hold. Suppose that
{D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-SEDF in a group G withm > 2, and let
D = ⋃m

i=1 Di . Suppose that (aχ , bχ ) as defined in (5.1) takes exactly t ≥ 1 distinct
values as χ ranges over ĜN , so that

{√
1 + 4λ

|χ(D)|2 | χ ∈ ĜN
}

=
{bi
ai

| 1 ≤ i ≤ t
}
,

where ai , bi ∈ Z and bi > ai > 0 and gcd(ai , bi ) = 1. Define

S+ =
{( 4a2i λ

b2i − a2i
,

(bi + ai )λ

bi − ai

)
| 1 ≤ i ≤ t

}

,

S− =
{( 4a2i λ

b2i − a2i
,

(bi − ai )λ

bi + ai

)
| 1 ≤ i ≤ t

}

.

Then from (2.2), (2.3) and (5.4) we have

{(|χ(D)|2, |χ(D1)|2
) ∈ S+ ∪ S− for χ ∈ ĜN ,

(|χ(D)|2, |χ(D1)|2
) = (0, λ) for χ ∈ Ĝ0.

(5.14)

The following result generalizes Theorem 5.9. The proof, which is omitted, uses
(5.14) in a similar manner to the use of (5.10) in the proof of Theorem 5.9.

Theorem 5.12 Suppose {D1, D2, . . . , Dm} is a nontrivial (v,m, k, λ)-SEDF in a
group G with m > 2, let p be a prime divisor of v. Suppose that (aχ , bχ ) as defined
in (5.1) takes values in the set {(ai , bi ) | 1 ≤ i ≤ t} as χ ranges over ĜN (defined
with reference to the set D = ⋃m

i=1 Di ). Then either the following both hold:
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(1a) |Gp| divides km,
(1b) k2 + (|Gp| − 1)λ = |Gp|r1 for some integer r1 ≥ k.

or, for some i satisfying 1 ≤ i ≤ t , the following all hold:

(2a) k2m2 + (p − 1)
4a2i λ

b2i −a2i
= pr2,i for some integer r2,i ≥ km,

(2b) k2 + (p − 1) (bi−ai )λ
bi+ai

= pr3,i for some integer r3,i ≥ k,

(2c) k2 + (p − 1) (bi+ai )λ
bi−ai

= pr4,i for some integer r4,i .

We now illustrate the use of Theorem 5.12 to rule out the existence of a
(676,26,18,12)-SEDF and a (2401,37,60,54)-SEDF.

Example 5.13 Suppose, for a contradiction, that there exists a (676, 26, 18, 12)-SEDF.
By Lemma 5.1,

(aχ , bχ ) ∈ {(1, 2), (1, 3)} for all χ ∈ ĜN .

For each of these possible values of (aχ , bχ ), both (1a) and (2a) of Theorem 5.12 fail
with p = 13, giving the required contradiction.

Example 5.14 Suppose, for a contradiction, that there exists a (2401, 37, 60, 54)-
SEDF. By Lemma 5.1,

(aχ , bχ ) ∈ {(1, 5), (5, 7)} for all χ ∈ ĜN .

We cannot have (aχ , bχ ) = (1, 5) for χ ∈ ĜN , otherwise both (1a) and (2a) of
Theorem 5.12 fail with p = 7. Therefore (aχ , bχ ) = (5, 7) for all χ ∈ ĜN , and so the
SEDF satisfies the simple character value property with respect to (5, 7). Theorem 5.4
then gives |Ĝ0| = 9212

15 , which contradicts that |Ĝ0| is an integer.

We now extend the nonexistence result of Theorem 5.10 for v a prime power and
m > 2.

Theorem 5.15 Let v = ps for a prime p, and let aχ , bχ be defined as in (5.1) with
reference to the set D = ⋃m

i=1 Di associated with a nontrivial (v,m, k, λ)-SEDF
{D1, D2, . . . , Dm} in a group G with m > 2. Let

Tχ =
{

4a2χλ

b2χ − a2χ
,

(bχ + aχ )λ

bχ − aχ

,
(bχ − aχ )λ

bχ + aχ

}

and Uχ =
{
Tχ if |Ĝ0| = 0,

Tχ ∪ {λ} if |Ĝ0| > 0.
(5.15)

For each u ∈ Uχ , if q is a prime divisor of u and q is a primitive root modulo ps , then
q f || u for some even f .

Proof For each u ∈ Uχ , by (2.2), (2.3) and (5.4) there is a subset Eχ of G for which
|χ(Eχ )|2 = u. Since |G| = ps , we have exp(G) = pe for some integer e ≤ s and so
χ(Eχ ) ∈ Z[ζpe ]. Now if q is a primitive root modulo ps , then q is a primitive root
modulo pe. Apply Lemma 4.1 with X = χ(Eχ ). ��
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We now illustrate the use of Theorem 5.15 to rule out the existence of a
(6561, 42, 120, 90)-SEDF.

Example 5.16 Suppose, for a contradiction, that there exists a (6561, 42, 120, 90)-
SEDF. By Lemma 5.1,

(aχ , bχ ) ∈ {(1, 2), (1, 4), (1, 5), (4, 5)} for all χ ∈ ĜN .

Since 5 is a primitive root modulo 6561, by Theorem 5.15 we cannot have (aχ , bχ ) ∈
{(1, 2), (1, 5), (4, 5)} otherwise the set Tχ defined in (5.15) contains an element u for
which 5 || u. Therefore (aχ , bχ ) = (1, 4) for all χ ∈ ĜN , and so the SEDF satisfies
the simple character value property with respect to (1, 4). Since 2 is self-conjugate
modulo 6561, Theorem 5.10 then gives the contradiction that 4 is odd.

Remark 5.17 Combination of the nonexistence results of Proposition 1.4 (4), Lem-
mas 1.5, 5.1, and Theorems 4.2, 5.4, 5.9, 5.10, 5.12, 5.15, shows that there is no
nontrivial (v,m, k, λ)-SEDF for v ≤ 105 and m ∈ {5, 6}; and that for v ≤ 104 and
m > 2 there are only 70 possible parameter sets for a nontrivial (v,m, k, λ)-SEDF
that is not near-complete, namely:

v m k λ v m k λ v m k λ

540 12 42 36 3381 23 130 110 5832 8 714 612
784 30 18 12 3888 24 156 144 5832 18 147 63
1089 35 24 18 3888 47 52 32 5832 18 294 252
1540 77 18 16 3888 47 78 72 5832 35 98 56
1701 35 30 18 3969 32 112 98 5832 86 49 35
1701 35 40 32 4096 8 390 260 5888 92 58 52
2058 86 22 20 4096 14 105 35 6400 80 54 36
2376 11 190 152 4096 14 210 140 6656 26 121 55
2401 7 280 196 4225 67 48 36 6656 26 242 220
2401 9 60 12 4375 7 162 36 6860 20 266 196
2401 9 120 48 4375 7 324 144 6860 58 95 75
2401 9 180 108 4375 7 486 324 6976 218 30 28
2401 9 240 192 4375 7 540 400 8281 93 60 40
2401 16 120 90 4375 9 405 300 8625 23 140 50
2401 37 40 24 4375 16 270 250 8625 23 280 200
2401 65 30 24 4375 37 108 96 8960 7 1054 744
2500 18 105 75 4375 37 54 24 8960 32 238 196
2500 35 42 24 4375 37 81 54 9801 13 420 216
2500 52 42 36 4564 163 26 24 9801 26 308 242
2601 53 40 32 4625 37 68 36 9801 57 140 112
2625 42 48 36 5376 44 75 45 9801 101 70 50
2646 16 138 108 5376 44 100 80 9801 101 84 72
2784 116 22 20 5776 78 60 48
3025 57 36 24 5832 8 595 425

In Sect. 4 we proved the exponent bound of Theorem 4.2 using only information
about the SEDF parameters (v,m, k, λ), and applied it to the case m = 2. We now
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derive a different exponent bound that uses information about the possible values of
|χ(D)|2 and |χ(D1)|2, and apply it to two of the open cases with m > 2 given in
Remark 5.17.

Theorem 5.18 Suppose {D1, D2, . . . , Dm} is a (v,m, k, λ)-SEDF in a group G, let
D = ⋃m

i=1 Di , and let p be a prime dividing v. Suppose U is a subgroup of G for
which U ∩ Gp = {1} and p is self-conjugate modulo exp(G/U ).

(1) If |χ(D)|2 ≡ 0 (mod p2d) for every nonprincipal χ ∈ Ĝ, then exp(Gp) ≤
max

{ |U |
pd

|Gp|, p |Ĝ0| · |U |
(p − 1)v

|Gp|
}

.

(2) If |χ(D1)|2 ≡ 0 (mod p2d) for every nonprincipal χ ∈ Ĝ, then exp(Gp) ≤
|U |
pd

|Gp|.

Proof The proof is analogous to that of [5, Chapter VI, Theorem 15.11]. We prove
only (1); the proof of (2) is similar.

LetW be a subgroup of Gp for which Gp/W is cyclic of order exp(Gp). It follows
from U ∩ Gp = {1} that U ∩ W = {1}, and so we may write H = U × W .
Since exp(Gp/W ) = exp(Gp), we then have exp(G/H) = exp(G/U ). Let ρ be the
canonical epimorphism ρ : G → G/H . Then by assumption,

|χ̃(ρ(D))|2 ≡ 0 (mod p2d) for every nonprincipal χ̃ ∈ Ĝ/H .

Since p is self-conjugate modulo exp(G/H), this implies [5, Chapter VI, Lemma
13.2]

χ̃ (ρ(D)) ≡ 0 (mod pd) for every nonprincipal χ̃ ∈ Ĝ/H ,

and then by Ma’s Lemma [19] we have

ρ(D) = pd X0 + PX1,

where X0, X1 ∈ Z[G/H ] have nonnegative coefficients and P is the unique subgroup
of G/H of order p.

In the case X0 �= 0, we have pd ≤ |H | = |U | · |W | = |U | · |Gp |
exp(Gp)

, which

rearranges to exp(Gp) ≤ |U |
pd

|Gp|.
Otherwise, in the case X0 = 0, we have ρ(D) = PX1. Now consider the |G|

|H | (1− 1
p )

characters χ̃ ∈ Ĝ/H which are nonprincipal on P . Each such character satisfies
χ̃(ρ(D)) = 0, and its associated lifting characterχ ∈ Ĝ satisfiesχ(D) = 0. Therefore
by the definition (2.3) of Ĝ0, we have |Ĝ0| ≥ |G|

|H | (1 − 1
p ), which implies exp(Gp) ≤

p |Ĝ0|·|U |
(p−1)v |Gp|. ��
We now illustrate the use of Theorem 5.18 to obtain an exponent bound on a group

containing a (2401, 7, 280, 196)-SEDF and a group containing a (5832, 8, 595, 425)-
SEDF.
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Example 5.19 Suppose there exists a (2401, 7, 280, 196)-SEDF in a group G. Note
that 196 = 22 · 72 and that neither 2 nor 7 is a primitive root modulo 74 = 2401, so
Theorem 4.2 does not apply. However, by Lemma 5.1 the SEDF satisfies the simple
character value property with respect to (a, b) = (3, 5), and so from Table 1 we have
|χ(D1)|2 ∈ {72, 4·72, 16·72} for every nonprincipal χ ∈ Ĝ. Since 7 is self-conjugate
modulo 2401, we may apply Theorem 5.18 (2) with (p, d) = (7, 1) and U = {1} to
show that exp(G) ≤ 73.

Example 5.20 Suppose there exists a (5832, 8, 595, 425)-SEDF in G. Note that
5832 = 23 · 36 and 425 = 52 · 17. Theorem 4.2 does not give any constraint on the
structure of G (even though it may be applied with (p, q) = (3, 5)). By Lemma 5.1,
the SEDF satisfies the simple character value property with respect to (2, 3), and so
from Table 1 we have |χ(D)|2 ∈ {0, 24 ·5 ·17} and |χ(D1)|2 ∈ {5 ·17, 52 ·17, 53 ·17}
for every nonprincipal χ ∈ Ĝ, and |Ĝ0| = 2079 from Theorem 5.4. In this case Theo-
rem 5.18 (2) does not apply. However, because 2 is self-conjugate modulo 23 · 36,
we may apply Theorem 5.18 (1) with (p, d) = (2, 2) and U = {1} to obtain
exp(G2) ≤ max {2, 154

27 } < 23. Therefore exp(G2) ≤ 22.

6 Concluding remarks

We have presented a comprehensive treatment of SEDFs, using character theory
and algebraic number theory to derive many nonexistence results. We have char-
acterized the parameters of a nontrivial near-complete SEDF, and constructed a
(243, 11, 22, 20)-SEDF in Z

5
3 from a detailed analysis of the action of the Math-

ieu group M11 on the points of the projective geometry PG(4, 3). This is the first
known nontrivial example of SEDF with m > 2.

Aswewere finalizing our paper,Wen,Yang andFeng posted a preprint [27] inwhich
they independently constructed a (243, 11, 22, 20)-SEDF in Z

5
3 using cyclotomic

classes over F35 . Their method, which was also used to construct some generalizations
of SEDFs [28], is very different from ours.

In closing, we note that until now SEDFs have been considered only in abelian
groups. We ask: are there examples of nontrivial SEDFs in nonabelian groups?
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