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Abstract
A mathematical model based on a generalized Maxwell–Stefan equation has been developed to describe multicomponent 
ion and water transport inside a cation-exchange membrane. This model has been validated using experimental data and 
has been used to predict concentration profiles, membrane potential drop, and transport numbers of ions and water for the 
chlor-alkali process at increased current densities. Several improvements have been made to previously developed Maxwell–
Stefan models. In our model, the generalized Maxwell–Stefan equation is written in terms of concentration instead of mole 
fraction and the fixed group (membrane) concentration is assumed to be constant. We have adapted the Augmented matrix 
method using the built-in partial differential equation parabolic elliptic (pdepe) solver in Matlab®, and both the concentra-
tion and the electrical potential gradients have been solved simultaneously. The boundary conditions are determined with the 
Donnan equilibrium at the membrane–solution interface. We have also employed semi-empirical correlations to define the 
Maxwell–Stefan diffusivities inside the membrane. For the bulk diffusivities, we applied the correlations for the concentrated 
solution instead of the values at infinite dilution. With the diffusivities presented in this work, the model shows a better fit 
to the experimental data than with previously reported fitted diffusivities. Prediction of the sodium transport number and 
water transport number is generally good, whereas the deviations with regard to membrane potential might also be related to 
issues with the experimental data. The model predicts an increase in both sodium and water transport numbers at increased 
current density operation of chlor-alkali production.
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Lits of symbols

Latin symbols
a  Activity (–)
Ci  Concentration of species i (mol  m−3)
C  Concentration of the negative ion in Eq. (9) 

(mol  cm−3)
C0  Bulk concentration in Eq. (9) (mol  cm−3)
�

m
i, j

  Maxwell–Stefan diffusivities inside the 
membrane  (m2  s−1)

�
0
i, w

  Maxwell–Stefan diffusivities in the diluted 
bulk solution  (m2  s−1)

�
b
i, w

  Maxwell–Stefan diffusivities (interaction of 
ion–water) for concentrated bulk solution in 
Eqs. (5–8)  (cm2  s−1)

�b
+,−

  Maxwell–Stefan diffusivities (interaction of 
negative–positive ion) for concentrated bulk 
solution in Eq. (9)  (cm2  s−1)

EW  Equivalent weight (g  mol−1)
fe  Weight fraction of electrolyte in the ion clus-

ter (–)
fm  Weight fraction of fixed ionic groups in the 

ion cluster (–)
F  Faraday constant (C  mol−1)
G  Correction for idealized theory in Eq. (9) 

 (K3/2M−1/2)
I  Current density (A  m−2)
K  Donnan equilibrium constant (–)
K  Kelvin
l0
i
  Limiting equivalent conductivity  (cm2  Ohm−1 

 mol−1)
M  Mol  liter−1

Mw  Molecular weight (g  mol−1)
Ni  Molar flux of species i (mol  m−2  s−1)
P  Pressure (Pa)
q  Constant defined in Eq. (10) (–)
Q, R, S, T  Fitting constant for density correlations 

defined in Eqs. (21–30) (–)
R  Gas constant (J  mol−1  K−1)
t  Time (s)
ti  Ion transport number (–)
T  Temperature (K)
Tc  Temperature (°C)
W   Weight percentage (wt%)
Ww  Membrane water content (wt% dry polymer)
w  Water
X  Mole fraction (–)
�i  Valence number (–)
V̄i  Partial molar volume  (m3  mol−1)
�i  Activity coefficient (–)

zi  Ionic charge (–)
z  Dimensionless length (–)

Greek symbols
�  Membrane thickness (m)
�  Electrical potential (V)
�  Density (g  cm−3)
�  Chemical potential (J  mol−1)
�  Electrochemical potential (J  mol−1)
�void  Void fraction (–)
�  Tortuosity (–)

Superscript and subscript
A  Anolyte
c  Centigrade
C  Catholyte
e  Electrolyte
exp.  Experiment
i  Species
int  Interface
l  Left
m  Membrane
neg  Negative
pos  Positive
r  Right
ref  Reference
s  Solution phase
tot  Total
w  Water

1 Introduction

Renewable energy sources are increasingly available as an 
alternative electricity source for large-scale electrolysis pro-
cesses, such as chlorine production and water electrolysis. 
Due to the intermittent nature of the renewables, it is crucial 
to develop new intensified electrolysis cells that can be oper-
ated with high flexibility. This can be achieved by increasing 
the maximum current density. For the chlor-alkali process, 
an ambitious target would be 30 kA  m−2 (currently the pro-
cess is limited to 7 kA  m−2) [1].

A key aspect of operation at higher current densities is 
the membrane performance. Unfortunately, the information 
on membrane performance at high current densities remains 
scarce. Ion transport across a membrane under current load 
is not completely understood despite the fact that there 
have been several attempts to model the behavior by either 
using Maxwell–Stefan (MS) or Nernst–Planck (NP) models 
[2–8]. The Nernst–Planck approach assumes an ideal solu-
tion and neglects ion–ion interactions. This model is known 
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to be valid for dilute ionic systems [9, 10], but chlor-alkali 
electrolysis involves highly concentrated solutions, typi-
cally around 5 M sodium chloride (NaCl) and 10 M sodium 
hydroxide (NaOH) [11]. In this case, the Maxwell–Stefan 
is considered more reliable since the interactions of differ-
ent components and the non-ideal solutions are taken into 
account [9, 12–14]. Moreover, the Maxwell–Stefan approach 
includes the water transport via the solvent–ion interactions, 
whereas the Nernst–Planck model has to introduce a sepa-
rate equation (i.e., the Schlögl equation) to account for the 
water transport [10, 15].

The process intensification of the chlor-alkali process 
would benefit from a mathematical model that can predict 
the membrane performance. Up to this date, only Van der 
Stegen et al. [2] have developed a Maxwell–Stefan model 
for the chlor-alkali system. However, this model has some 
limitations. It was derived in mole fraction which assumed 
that the total concentration is known. The ionic fixed groups 
of the membrane were regarded as one of the mobile compo-
nents in the aqueous mixture to obtain convergence, whereas 
the fixed charge group concentration is generally considered 
to be constant inside the membrane. This model has also 
simplified the calculation of the membrane potential gradi-
ent by neglecting the concentration gradient and by using 
Ohm’s law to derive the potential gradient explicitly. The 
neutrality condition is broken by this simplification, which 
has been numerically proven during the investigation of the 
extended Nernst–Planck model [8].

The main drawback in applying the Maxwell–Stefan 
approach is the lack of reliable data on diffusivities at high 
concentrations. The Maxwell–Stefan diffusivities (�i, j) are 
required for the interaction between the components in a 
mixture. In a mixture with n components, the number of 
Maxwell–Stefan diffusivities should be 0.5 × n × (n − 1) 
based on the Onsager relations [16]. The chlor-alkali system 
contains at least five components  (Na+,  Cl−,  OH−,  H2O, and 
–SO3

−) and hence requires ten binary diffusivities.
Wesselingh et al. [17] proposed that the diffusivities 

inside the membrane can be related to the diffusivities in the 
bulk using the tortuosity factor (τ), (Eq. 1). �0

i, w
 is the dif-

fusion coefficient in infinitely diluted aqueous solution 
(Eq. 2). The values for �0

i, w
 at 25 °C and 90 °C are given in 

Table 1 for sodium, chloride, and hydroxide in water. Kraai-
jeveld et al. [4] proposed a correlation for the diffusivity of 
positive ions and sulfonate groups in the membrane (�m

+, SO−
3

) 
in Eq. (3). As can be seen from the equation, it is suggested 
that this diffusivity is related to the diffusivity of the same 
ion with water in the membrane. The diffusivity of negative 
ions and sulfonate groups in the membrane were fitted in the 
model based on the experimental data of dialysis.

(1)�
m
i,w

= �
0
i, w

�−1 = �1.5
void

�
0
i, w

According to Van der Stegen et al. [2], the low values of 
diffusivities from the correlations of Wesselingh et al. resulted 
in an unreasonably high membrane potential for the chlor-
alkali system. Instead they opted for estimating diffusivities 
using a sensitivity analysis based on four output parameters in 
the chlor-alkali process: current efficiency, cell potential, rela-
tive water transport number, and the chloride concentration in 
caustic (catholyte solution). They assumed that the membrane 
potential was about 15% of the total cell potential. The input 
parameters for the model were anolyte (NaCl) and catholyte 
(NaOH) concentration, membrane thickness, membrane equiv-
alent weight (EW), current density, temperature and initial 
values of diffusivities. They excluded four out of ten Max-
well–Stefan diffusivities by choosing high values (1 × 10−8  m2 
 s−1) to neglect the interaction between these components. They 
indicated that the values of the diffusivities are a function of 
current density (I) as given in Eq. (4), in which �m

i, jref, exp
 is the 

fitted Maxwell–Stefan diffusivity at 4 kA  m−2 listed in Table 1.

Other groups have looked at diffusivities in ion-exchange 
membranes for other systems than chlor-alkali. Visser et al. [3] 
encountered a similar problem with the low values of diffu-
sivities using the semi-empirical equations of Wesselingh et al. 
Unlike Van der Stegen et al., they investigated the interactions of 
different electrolytes: HCl,  H2SO4, NaCl, NaOH, and  Na2SO4. 
The diffusivities were fitted from several partial diffusion exper-
iments: diffusion dialysis (salt diffusion flux and osmotic water 
flux), electro-osmotic, membrane resistance, pressure driven 
volume flow, and electrodialysis. They performed in total 26 
experiments at 25 °C for a Nafion 450 membrane to define 
21 binary diffusivities. The experiments used current densities 
from 0 to 1 kA  m−2. The diffusivity values for NaCl and NaOH 
in the membrane are listed in Table 1. Despite their concern 
about low diffusivity issues from the semi-empirical equation, 
they applied Eq. (1) to estimate the chloride and hydroxide 
interaction with water inside the membrane (�m

OH−, w
, �m

Cl−, w
) . 

It is observed in Table 1 that the value of the binary diffusivities 
of sodium and hydroxide (�m

Na+, OH− = 100 × 10−10 m2 s−1) is 
remarkably different from the diffusivities of sodium and chlo-
ride (�m

Na+, Cl−
= 0.580 × 10−10 m2 s−1) , for which no explana-

tion was given. It is important to note that they have excluded 
the Donnan potential as the boundary condition because of 
the convergence issue in the model. The co-ion concentration 
inside the membrane was estimated based on the algebraic 

(2)�
0
i, w

= l0
i
(RT∕ziF

2)

(3)�
m
+, SO−

3

= 0.1 �1.5
void

�
0
i, w

.

(4)�
m
i, j

= (2.4423 × 10−4 I + 0.037) ×�
m
i, jref, exp

.
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relations as a function of the external composition instead of 
the Donnan potential.

Chapman et al. [18] investigated Maxwell–Stefan diffu-
sivities for concentrated electrolyte systems and made cor-
relations to relate the diffusivities for high concentrations to 
diffusivities at infinite dilution as given in Eqs. (5–8). The 
interaction of negative and positive ions increases substan-
tially with increasing concentration as shown in Eq. (9). 
The value of q in Eq. (9) is defined in Eq. (10). C is the 
concentration of the negative ion and Co represents the bulk 
concentration. G (in  K3/2M−1/2) is considered to be a cor-
rection for the idealized theory. It is strongly related to the 
concentration and the type of electrolyte. There was no sys-
tematic trend found for the effect of the temperature. Sodium 
chloride of 5 M at 50 °C has a G value of 979  K3/2M−1/2. The 
concentration of sodium hydroxide investigated is limited to 
1.5 M with the temperature at 25 °C, which has the value of 
2606 K3/2M−1/2. For the high concentration above 3 M, the 
average value for uni-univalent electrolyte is reported to be 
3000 ± 1000  K3/2M−1/2.

(5)

�
b

Na+, w (NaCl)
= �

0

Na+, w
− 1.798 × 10−7 × C

1∕2

NaCl
− 1.159 × 10−6

× CNaCl − 6.288 × 10−7 × C
3∕2

NaCl
+ 2.415 × 10−7

× C
2

NaCl

(6)

�
b

Cl
−
, w (NaCl)

= �
0

Na+, w
+ 3.022 × 10−6 × C

1∕2

NaCl
− 3.064 × 10−6

× CNaCl − 6.230 × 10−7 × C
3∕2

NaCl
+ 2.508 × 10−7

× C
2

NaCl

This work aims to improve the Maxwell–Stefan modeling 
for the chlor-alkali process and to increase its applicability 
to higher current densities. In contrast with the work of Van 
der Stegen, the ionic fixed group (membrane) concentra-
tion is defined based on the known membrane properties. As 
proposed by Krishna [19], both the concentration (chemical 
potential) gradient and the electrical potential gradient can 
be calculated simultaneously using an augmented matrix 
method. By adopting this method, no further assumption 
about the potential gradient is needed.

This paper also investigates the influence of the Max-
well–Stefan diffusivities on the membrane performance in 

(7)

�
b

Na+ , w (NaOH)
= �

0

Na+ , w
+ 2.599 × 10−6 × C

1∕2

NaOH
− 2.114 × 10−5

× CNaOH + 2.558 × 10−5 × C
3∕2

NaOH
− 1.033 × 10−5

× C
2

NaOH

(8)

�
b

OH− , w (NaOH)
= �

0

Na+ , w
+ 3.747 × 10−6 × C

1∕2

NaOH
+ 7.090 × 10−5

× CNaOH + 1.708 × 10−4 × C
3∕2

NaOH
+ 9.499 × 10−5

× C
2

NaOH

(9)

�
b
+,−

=
C0.5(z+�+, w − z−�−, w)(1 + q0.5)T3∕2(z+�+)

0.5

GC0(z+ − z−)
0.5z2+z

2
−
q

(10)q =
−z+z−

z+ − z−

l0
+

+ l0
−

z+l
0
+ − z−l

0
−

.

Table 1  Fitted values of 
Maxwell–Stefan diffusivities in 
 10−10  (m2  s−1) and the values 
of the diffusion coefficients 
at infinite dilution in the bulk 
using Eq. (2)

a Calculated from Eq. (1)
b Effectively no friction between the components

Component pair Van der Stegen et al. [2] 
Chlor-alkali electrolysis 
at 4 kA  m−2 
Nafion (sulfonate part); 
EW = 1015
Model fitted

Visser et al. [3] 
Electrodialysis up to 1 kA 
 m−2 
Nafion 450; EW = 1100
Model fitted

Infinite dilution in the bulk 
�

0
i, w

(10−10 m2 s−1)

T = 90 °C T = 25 °C 25 °C 90 °C

�
m
Na+ , w

11 5.14 13.3 43.6
�

m
Cl− , w

100b 6.23a 20.3 63.0
�

m
OH− , w

10 16.2a 53.0 135
�

m
SO−

3
, w

10 7.92
�

m
Na+ , SO−

3

3 2.26
�

m
Cl− , SO−

3

0.1 0.169
�

m
OH− , SO−

3

100b 1.58
�

m
Na+ , Cl−

100b 0.580
�

m
Na+ , OH− 10 100

�
m
OH− , Cl−

100b Not available
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terms of membrane permselectivity (sodium transport num-
ber), membrane potential, and relative water transport num-
ber. It compares the fitted values of diffusivities with the more 
general correlations which are applicable for different operat-
ing conditions such as concentration, temperature, and current 
density. The model is then validated with the experimental data 
reported in the literature for the chlor-alkali system at 2 and 
3 kA  m−2 [20–23]. Lastly, the model predicts the membrane 
performance in terms of membrane permselectivity and mem-
brane potential for high current densities up to 30 kA  m−2.

2  Mathematical model approach

2.1  Maxwell–Stefan equation

Maxwell–Stefan theory is a steady-state force balance 
between driving forces and friction forces acting on a cer-
tain component in the mixture. Equation (11) presents the 
relation between the driving force on a component i in the 
mixture and the sum of the friction forces between i and the 
other component j in terms of mole fraction [9].

The derivation of the driving forces of the generalized 
Maxwell–Stefan is based on irreversible thermodynamics 
[9, 24]. If the system contains ions, the partial molar Gibbs 
free energy depends not only on the chemical potential (µi), 
but also on the electrical potential (ϕ). The combination of 
these potentials is called the electrochemical potential (ηi) 
as given in Eq. (12) [25].

where   is the Faraday constant, V̄i is the partial molar 
volume of the solvent, P is the pressure, R is the universal 
gas constant, T is the temperature, and zi is ionic charge of 
component i. The activity of component i (ai) is defined by 
Eq. (13) using the activity coefficient �i to account for the 
non-ideal solution.

The contribution of the pressure gradient is negligible 
in electrochemical cells when compared to the concentra-
tion and the electrical potential gradients [2, 9, 26]. For 
an ideal system, the generalized Maxwell–Stefan equation 
from Eq. (11) can be written in terms of the concentration 
(Eq. 14). The relation between the ionic fluxes and the cur-
rent density is shown in Eq. (15). Hence, the electroneutral-
ity condition needs to be met according to Eq. (16).

(11)

CtotXi

(
RT

d ln ai

dx
+ ziF

d�

dx

)
=

n∑
j≠i

RT

�i, j

(
XiNj − XjNi

)
.

(12)d𝜂i = d𝜇i + ziFd𝜑 = V̄idP + RTd ln ai + ziFd𝜑,

(13)ai = �i
Ci

C0
i

.

2.2  Input parameters and boundary conditions

2.2.1  Input parameters

The input parameters used in the model are presented in 
Table  2. The generalized Maxwell–Stefan equation in 
Eq. (14) is derived for an ideal solution with constant pres-
sure and temperature. The concentration of the stationary 
fixed charges per void fraction in the membrane is calculated 
by Eq. (17) [8, 11, 27]. The EW is defined as the dry weight 
of polymer in gram per mole of sulfonic acid groups. The 
ratio of weight fraction of fixed ionic groups and electrolyte 
in the ion cluster (fm∕fe) is around 0.4–1.32 depending on 
the membrane properties and electrolyte concentration [11]. 
The density of the sodium hydroxide solution in equilibrium 
with the membrane is used to represent the density of the 
electrolyte adsorbed in the membrane (ρe).

The water uptake (Ww) in the membrane depends on the 
EW and it is a function of the sodium hydroxide concentra-
tion. The water content decreases with increasing EW. The 
correlations for the water uptake in weight percentage of dry 
polymer as a function of sodium hydroxide up to 10 M are 
given in Eqs. (18, 19), for sulfonate EW1100 and sulfonate 
EW1200 [11].

The concentration of water in the anolyte and the catho-
lyte is calculated based on the density correlations and 

(14)
dCi

dx
+

ziCiF

RT

d�

dx
=

n∑
j≠i

1

Ctot�i, j

(
CiNj − CjNi

)

(15)I = F

n∑
i=1

ziNi

(16)
n∑
i=1

ziCi + zmCm = 0.

(17)Cm =
1000 × �e

EW ×Ww

(
fm

fe

)
.

(18)

Ww, sulfonate EW=1100 = −0.0052 ×
(
0.001CNaOH

)3
+ 0.1655

×
(
0.001CNaOH

)2
− 2.7085

×
(
0.001CNaOH

)
+ 36.682

(19)

Ww, sulfonate EW=1200 = −0.0022 ×
(
0.001CNaOH

)3
+ 0.1212

×
(
0.001CNaOH

)2
− 1.975

×
(
0.001CNaOH

)
+ 27.165.
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weight fraction of NaCl and NaOH as a function of the tem-
perature as given in Eqs. (20–30) [11].

(20)Cw, anolyte = 103 × (1 −WNaCl∕100) × �NaCl∕Mw

(21)�NaCl = QNaCl + RNaCl ×WNaCl + SNaCl ×W2
NaCl

(22)

QNaCl = 1.0004075 − 0.71687895 × 10−5

× Tc − 0.51792075 × 10−5 × T
2

c

+ 0.1054032 × 10−7 × T
3

c

(23)

RNaCl = 0.0074569085 − 0.2960572 × 10−4

× Tc + 0.30564225 × 10−6

× T
2

c
− 0.934493315 × 10−9 × T

3

c

(24)

SNaCl = 0.18372605 × 10−4 + 0.42360185 × 10−6

× Tc − 0.51483125 × 10−8 × T
2

c

+ 0.1794537 × 10−10 × T
3

c

(25)Cw, catholyte = 103 × (1 −WNaOH∕100) × �NaOH∕Mw

(26)
�NaOH = QNaOH + RNaOH ×WNaOH + SNaOH ×W

2

NaOH

+ TNaOH ×W
3

NaOH

(27)
QNaOH = 1.00224925 − 0.116831975 × 10−3

× Tc − 0.3210971 × 10−5 × T
2

c

(28)
RNaOH = 0.01148599 − 0.319841025 × 10−4 × Tc

+ 0.21510285 × 10−6 × T
2

c

2.2.2  Boundary conditions

In this paper, we focus on the investigation of the mass 
transfer behavior inside the membrane. Therefore, the mass 
transfer resistance is only considered inside the membrane 
by assuming that a high mass transfer takes place in the 
bulk solution. The Donnan equilibrium theory is applied to 
define the concentration of ions at the interface (Table 3). 
The Donnan equilibrium for all ions at the membrane sur-
faces is expressed in Eq. (31) using the same distribution 
ratio (K) shown in Eq. (32) [8, 27, 29]. Figure 1 depicts the 
concentration jump of the ionic species at the solution and 
the membrane interface for both anolyte and catholyte sides. 
The ion concentration at the solution interface is assumed to 
be the same as that of the bulk concentration.

The concentration of water is calculated using the density 
correlations given in Eqs. (20–30). The density correlation 
is available for the mixed electrolyte of sodium hydroxide 
and sodium chloride but not for the sulfonate group of the 
membrane. Considering the simplification of the model, the 
total sodium ion, calculated from the Donnan equilibrium 
at the left boundary, is used to define the weight percentage 

(29)

SNaOH = 0.19658565 × 10−5 + 0.761527825 × 10−6 × Tc

− 0.61560685 × 10−8 × T
2

c

(30)

TNaOH = −0.334691125 × 10−6 + 0.7552771 × 10−8 × Tc

+ 0.661632323 × 10−10 × T
2

c
.

(31)C
int, s

i
= Cm

i

1

Kzi

(32)K =

����
∑nion

i=1
Cm
i, pos∑nion

i=1
Cm
i, neg

.

Table 2  Input parameters used 
in the model

Input parameter Value References

Temperature (°C) 25–90
Current density (kA  m−2) 2–30
Sodium hydroxide (wt%) as catholyte 10–35
Sodium chloride (wt%) as anolyte 18 and 25
Wet membrane thickness (mm) 0.1 and 0.27
EW (g  mol−1) 1100, 1150 and 1200
Void fraction  (m3

void  m−3
m) 0.27 [8]

Membrane water content (wt% dry polymer) Equations (18, 19)
Fixed ionic groups concentration (mol m−3

void) Equation (17)
fm/fe (–) 1
pKw 12.60 at 80 (°C) [28]
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of sodium chloride as presented in Eq. (33). Similarly, the 
total sodium ion at the right boundary determines the weight 
percentage of sodium hydroxide shown in Eq. (34).

2.3  Augmented matrix

The Maxwell–Stefan equation given in Eq. (14) forms a sys-
tem of non-linear differential algebraic equations (DAEs). 
The built-in pdepe solver in Matlab® can solve DAEs using 
the ordinary differential equations (ODE15s) solver, only 
applicable for DAE index 1 or index 0. The index of DAEs is 
defined from the number of differentiations needed to reduce 
DAEs to ODEs. Equation (14) consists of both concentration 

(33)

WNaCl, l = (−1.094 × 10−6 × T
2

c
− 1.22 × 10−4 × Tc − 0.01488)

×
(
C
m

Na+, l
× 10

−3
)2

+ (1.375 × 10−5 × T
2

c

+ 1.844 × 10−3 × Tc + 5.652) × C
m

Na+, l
× 10−3

(34)

WNaOH, r =
(
−3.656 × 10

−7 × T
2

c
− 4.351 × 10

−5 × Tc − 6.097 × 10
−2
)

×
(
C
m

Na+ , r
× 10

−3
)2

+
(
7.937 × 10

−6 × T
2

c
+ 1.083 × 10

−3 × Tc + 3.631
)

× C
m

Na+ , r
× 10−3.

and potential gradients (DAE index 2), which cannot be 
solved by the built-in pdepe solver in Matlab. The DAE 
index 2 is reduced to index 1 by applying the augmented 
matrix method as proposed by Krishna et al. [19] shown in 
Eq. (35).

The non-linear flux equations need to be arranged in a 
matrix format (Eqs. 36–40). The derivation of augmented 
formulation is explained in Appendix. The concentration 
gradient (dCi∕dz) as driving force in (bi) is a linear combi-
nation of both flux (Ni) and the potential gradient (d�∕dz).

(35)bi ≡
dCi

dx
=

n∑
j≠i

1

Ctot�i, j

(
CiNj − CjNi

)
−

CiziF

RT

d�

dx
.

(36)(J) = −[B]−1(b)

(37)

⎛⎜⎜⎜⎜⎜⎝

Ji
Ji+1
…

Jn−1
Jn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

Ni

Ni+1

…

Nn−1
d�

dx

⎞⎟⎟⎟⎟⎟⎠

(38)[B] =

[
�m[A] Cizi

F

RT

zi 0

]

(39)

[A] = Ai, j =
Ci

Ctot�i, j

; i ≠ j = 1, 2,… , n − 1 and

Ai, i = −

n∑
k=1
i≠k

Ck

Ctot�i, k

; i = 1, 2,… , n − 1

(40)

⎛⎜⎜⎜⎜⎜⎝

bi
bi+1
…

bn−1
bn

⎞⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

dC1

dz
dC2

dz

…
dCn−1

dz
I



⎞
⎟⎟⎟⎟⎟⎟⎠

.

Table 3  Boundary conditions at 
the anolyte–membrane interface 
(z = 0) and at the catholyte–
membrane interface (z = 1)

z = 0 z = 1

C
int,A

Na+ , l
= C

bulk,A

Na+ , l
=

Cm

Na+ , l

Kl

C
int,C

Na+ , r
= C

bulk,C

Na+ , r
=

Cm

Na+ , r

Kr

C
int,A

OH− , l
= C

bulk,A

OH− , l
= Cm

OH− , l
× Kl C

int,A

OH− , r
= Cm

OH− , r
= Cm

OH− , r
× Kr

C
int,A

Cl− , l
= Cm

Cl− , l
= −

1

zCl−

(
n

∫
i, i≠Cl−

ziC
m
i, l

)
C
int,C

Cl− , r
= C

bulk,C

Cl− , r
= −

1

zCl−

(
n

∫
i, i≠Cl−

ziC
m
i, r

)

Cm
H2O, l

= NaCl density correlation (Eqs. 20, 33) Cm
H2O, r

= NaOH density correlation (Eqs. 25, 34)

Fig. 1  Schematic drawing of the concentration jump of sodium ion 
between the solution and the membrane interface using the Donnan 
equilibrium potential. The sodium concentration at the solution inter-
face is assumed to be equal to the bulk concentration
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2.4  Model summary

The ion concentration profiles are calculated with the built-in 
pdepe solver in Matlab by solving the flux equations (Eq. 35) 
based on the continuity equation shown in Eq. (41), except 
for the chloride ion concentration which follows from the 
electroneutrality condition. The initial sodium ion concen-
tration is the sum of the concentration of all negative ions 
including the fixed charged group of the membrane. The ini-
tial concentration of water and other negative ions are arbi-
trary and are not of influence on the steady-state solution. We 
use the default setting of Matlab of 1 × 10−3 and 1 × 10−6 for 
the relative and the absolute error tolerance, respectively. The 
fluxes are constant at steady-state condition. From the fluxes, 
the membrane permselectivity in terms of sodium transport 
number for each given current density can be calculated using 
Eq. (42). The relative water transport number is the ratio of 
the flux of water and flux of sodium ions (Eq. 43). The pH 
inside the membrane can also be estimated from the hydrox-
ide concentration as given in Eq. (44).

2.5  Maxwell–Stefan diffusivities

Table 4 presents the correlations for Maxwell–Stefan dif-
fusivities used in this model. The Chapman correlation for 
bulk diffusivities for concentrated solution is substituted in 
Eq. (1) from Wesselingh et al. to estimate the diffusivities 
in the membrane. Water self-diffusivity as a function of the 
temperature is given in Eq. (45) [30]:

We apply Eq.  (3) not only for the positive ion–fixed 
charge groups (�m

Na+, SO−
3

) but also for the negative ion–fixed 
charge groups (�m

OH−, SO−
3

, �m
Cl−, SO−

3

) and the negative 
ion–positive ion interactions inside the membrane 
(�m

Na+, Cl−
, �m

Na+, OH−) . For the bulk concentration (C0) inside 
the membrane in Eq.  (9), the fixed charge groups are 
included. The value of G = 1000  K3/2M−1/2 is used for 
sodium chloride and the average value of G = 2000  K3/2M−1/2 
is given for sodium hydroxide throughout the simulation. No 

(41)�m
�Ci

�t
=

�Ni

�z

(42)ti =
ziFNi

I
;

nions∑
i=1

ti = 1

(43)TH2O
= NH2O

∕NNa+

(44)pH = pKw − pOH.

(45)
�w = �

0

w
(T∕TS − 1)� ; �

0

w
= 1.635 × 10−8 m2 s−1;

Ts = 215.05 K; � = 2.063.

correlation is available for the diffusion coefficient of nega-
tive ion–negative ion (�m

OH−, Cl−
) and a base case value of 

1.0 × 10−10  m2  s−1 is used in this model. The calculated val-
ues for three different temperatures are listed in Table 5. 
Table 5 contains four sets of Maxwell–Stefan diffusivities 
used in the model simulation. It should be noted that the 
fitted values of diffusivities obtained by Visser et al. were 
used at 25 °C and a sodium concentration up to 4 M. There-
fore, this set of diffusivities is less applicable for the chlor-
alkali system. However, due to very limited availability of 
data for Maxwell–Stefan diffusivities, these values are used 
in the simulation for comparison.

3  Results and discussion

3.1  Concentration, potential gradient, and pH 
profiles

Figure  2 depicts the concentration profiles of sodium, 
hydroxide, chloride, and water inside the membrane at 2 kA 
 m−2 using different values of Maxwell–Stefan diffusivities 
as listed in Table 5. The conditions are 80 °C, EW = 1150, 
membrane thickness = 0.25 mm, 25 wt% NaCl as anolyte, 
and 32 wt% NaOH as catholyte similar to the experimental 
work by Yeager [20, 21]. All sets of Maxwell–Stefan diffu-
sivities generate non-linear concentration profiles for each 
component. The concentration profiles of the ions using dif-
fusivities from Visser, Van der Stegen, and this work show 
similar trends, but clearly differ from the base case. The 
water concentration profile is similar for the diffusivities 
from Visser and this work, but is clearly different for the 
base case and van der Stegen. The profiles of the potential 
gradient in Fig. 3a also show a non-linear behavior and are 
depending on the values of diffusivities. This confirms the 

Table 4  Correlations for Maxwell–Stefan diffusivities used in this 
model

a Base case value

Component pair Correlations

�
m
Na+ , w �

b
Na+ , w

�1.5
void

 using 
NaCl

�
m
Cl− , w �

b
Cl− , w

�1.5
void

�
m
OH− , w �

b
OH− , w

�1.5
void

�
m
SO−

3
, w �w �1.5

void

�
m
Na+ , SO−

3

0.1�m
Na+ , w

�
m
Cl− , SO−

3

0.1�m
Cl− , w

�
m
OH− , SO−

3

0.1�m
OH− , w

�
m
Na+ , Cl− 0.1�b

+,−
 using NaCl

�
m
Na+ , OH− 0.1�b

+,−
 using NaOH

�
m
OH− , Cl−

1.0 × 10−10  m2 s−1a
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strong influence of the values of the Maxwell–Stefan diffu-
sivities on the concentration and potential gradient profiles.

Despite the clearly different concentration profiles for 
the different sets of diffusivities, all models predict similar 
pH profiles inside the membrane due to the fact that pH is 

logarithmic (Fig. 3b). This demonstrates that the hydrox-
ide ion concentration is relatively high, which results in 
a pH above 12 throughout the membrane. Similar results 
have been reported in the previously developed models 

Table 5  Four sets of Maxwell–
Stefan diffusivities in  10−10  m2 
 s−1 used in the model for the 
anolyte concentration (NaCl) 
of 5 M and the catholyte 
concentration (NaOH) of 10 M

a Calculated from Eq. (1)
b Effectively no friction between the components
c Base case value

Component pair Van der Stegen [2] 
Chlor-alkali elec-
trolysis at 4 kA  m−2 
Nafion (sulfonate 
part); EW = 1015 
(–)
Model fitted

Visser [3] 
Electrodialysis 
up to 1 kA  m−2 
Nafion 450; 
EW = 1100 (–)
Model fitted

This work 
Chlor-alkali electrolysis up to 
30 kA  m−2 
Nafion 1110; EW = 1100 (–) 
εvoid = 0.27 (–)
Correlation for concentrated solu-
tion (Table 4)

Basecase

T = 90 °C T = 25 °C T = 25 °C T = 80 °C T = 90 °C

�
m
Na+ , w

11 5.14 1.88 5.40 6.13 1.0
�

m
Cl− , w

100b 6.23a 2.88 7.85 8.86 1.0
�

m
OH− , w

10 16.2a 7.53 17.0 19.03 1.0
�

m
SO−

3
, w

10 7.92 3.23 9.20 10.63 1.0
�

m
Na+ , SO−

3

3 2.26 0.19 0.54 0.61 1.0
�

m
Cl− , SO−

3

0.1 0.169 0.29 0.79 0.89 1.0
�

m
OH− , SO−

3

100b 1.58 0.75 1.70 1.90 1.0
�

m
Na+ , Cl−

100b 0.580 0.27 0.99 1.17 1.0
�

m
Na+ , OH− 10 100 0.26 0.78 0.94 1.0

�
m
OH− , Cl−

100b 1.0c 1.0c 1.0c 1.0c 1.0

Fig. 2  Concentration profiles of sodium, hydroxide, chloride, and 
water as a function of position inside the membrane using different 
values of Maxwell–Stefan diffusivities as listed in Table 5 (see leg-

end) at 2 kA  m−2. EW = 1150, membrane thickness = 0.25 mm, tem-
perature = 80 °C, 25 wt% NaCl, and 32 wt% NaOH
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[7, 31]. It should be mentioned that in our model we use 
pKw = 12.60 at 80 °C [28] instead of the pKw = 14 at 25 °C.

3.2  Model validation for low current densities

The membrane permselectivity (sodium transport number) 
and the membrane potential are key performance criteria 
in the chlor-alkali process. To validate the models with the 
different diffusivity sets, the model was run with the same 
conditions as experiments by Yeager et al. and Berzins [20, 
23] in which the catholyte concentration was varied from 10 
to 35 wt% (≈ 2.5–12 M).

Figure 4a shows the sodium transport number as a func-
tion of the catholyte concentration at 2 kA  m−2 using a 
monolayer sulfonate membrane with EW = 1150, membrane 
thickness = 0.25 mm, and temperature = 80 °C. Similar pro-
files are also observed in Fig. 4b for a monolayer membrane 
with EW = 1100 and a membrane thickness of 0.1 mm at 
3 kA  m−2. It is observed that the influence of the diffusivities 
on the calculated sodium transport number is even more pro-
nounced than for the concentration profiles. The base case 
diffusivities overpredict the sodium transport number, while 
the opposite is observed for both the Visser and Van der Ste-
gen cases. The diffusivities based on the empirical correla-
tion used in our model show the best fit to the experimental 
work. Sensitivity analysis was performed for diffusion coef-
ficient of negative ion–negative ion (�m

OH−, Cl−
) for the range 

0.1 × 10−10 − 50 × 10−10  m2  s−1, and no significant impact 
was found on the ion transport number and the membrane 
potential for this system. It could be because the chloride 
ion flux through the membrane is negligible. Therefore, a 
base case value of 1.0 × 10−10  m2  s−1 is used throughout the 
simulation.

Water is also transported together with sodium to the 
catholyte site. The Maxwell–Stefan model includes the water 
transport via water–ion interactions. Therefore, a separate 
semi-empirical equation (i.e., the Schlögl equation) is no 
longer required. Figure 5 shows water transport calculated 
with the different models and compares these to experimen-
tal data. It can be seen that both Van der Stegen and Visser 
predict too low water transport, especially at high caustic 
concentrations, whereas the base case and our work show a 
good match. It is important to note that water concentration 
at the membrane interface is calculated based on the den-
sity correlations of sodium chloride and sodium hydroxide, 
which does not completely reflect reality since it does not 
take into account the density difference compared to sul-
fonate groups in the membrane.

The performance of the models can be explained by con-
sidering the diffusivities. Visser uses a very high binary dif-
fusivity of sodium ion–hydroxide ion inside the membrane 
(�m

Na+, OH− = 100 × 10−10 m2 s−1) , which results in a high 
hydroxide ion transport inside the membrane and a low 
sodium transport number. The diffusivity exceeds the value 
calculated using the correlation suggested by Chapman for 
10 M (≈ 32 wt%) NaOH ( �bulk

Na+, OH− = 7.5 × 10−10  m2  s−1 at 
25 °C). The diffusivity values suggested by Van der Stegen 
result in even lower sodium transport numbers and negative 
water transport numbers. In this case, it does not seem logi-
cal that the diffusivities of chloride inside the membrane are 
higher than the value for infinite dilution as listed in Table 1. 
The diffusivities presented in this work seem more realistic 
and this is reflected in both sodium and relative water trans-
port numbers.

The values of diffusivities also affect the membrane 
potential drop as shown in Fig. 6. The suggested values 

Fig. 3  Potential gradient profiles (a) and pH profiles (b) as a func-
tion of position in the membrane at 2 kA  m−2 using different values 
of Maxwell–Stefan diffusivities as listed in Table  5 (see legend). 

EW = 1150, membrane thickness = 0.25  mm, temperature = 80  °C, 
25 wt% NaCl, and 32 wt% NaOH
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of diffusivities by Van der Stegen as a function of current 
density as given in Eq. (4) show an unrealistic profile. The 
model was run with the operating conditions reported by 
Bergner et al. [32] with a typical thickness of 0.29 mm for 
Nafion N954 [33] and EW = 1100. Our model shows a rea-
sonable match with the experimental values of the mem-
brane potential at 80 °C around 0.51 V at 6 kA m−2 [34] and 
0.291 V at 3 kA  m−2 [11]. However, the linear correlations 
proposed by Bergner et al. for both their experimental data 
and the experimental data of Nidola [35] show higher val-
ues than the predicted model at lower current densities. The 

fact that they still show a significant membrane potential at 
zero current density is not easy to explain. Osmotic pressure 
differences between the anolyte and catholyte could play 
a role, but it might also be related to experimental issues. 
They mentioned that during the membrane potential meas-
urement, two Luggin capillaries could not be placed with 
sufficient accuracy (the zero gap configuration had a gap 
of 0.5–1 mm). Chandran et al. [36] also reported similar 
experimental difficulties, resulting in large measured mem-
brane potentials.

Fig. 4  Modeled and experimental data (Yeager et  al. [20, 21] and 
Berzins [23]) of the sodium transport number as a function of catho-
lyte concentration. For the models, the different values of Max-
well–Stefan diffusivities as listed in Table  5 are used. a Current 

density = 2  kA  m−2, EW = 1150, membrane thickness = 0.25  mm, 
25  wt% NaCl, and temperature = 80  °C. b Current density = 3  kA 
 m−2, EW = 1100, membrane thickness = 0.1 mm, 25 wt% NaCl, and 
temperature = 80 °C

Fig. 5  Modeled and experimental data (Yeager et al. [20, 21]) of the 
relative water transport number as a function of catholyte concentra-
tion using different values of Maxwell–Stefan diffusivities as listed 
in Table  5 (see legend) at 2  kA  m−2. EW = 1150, membrane thick-
ness = 0.25 mm, temperature = 80 °C and 25 wt% NaCl

Fig. 6  Membrane potential drop as a function of current density 
using different values of Maxwell–Stefan diffusivities as listed in 
Table 5. The experimental data of Bergner et al. [32]: NaCl = 18 wt%, 
NaOH = 33 wt%, temperature = 90  °C, EW = 1100, membrane thick-
ness = 0.29 mm (properties of Nafion N954 [33]). The typical values 
of membrane potential at 80 °C for current densities of 3.5 kA  m−2 
and 6 kA  m−2 are 0.291 V [11] and 0.51 V [34], respectively
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All in all one can conclude that the model with the dif-
fusivities presented in this work shows the best fit compared 
to experimental data. Prediction of the sodium transport 
number and water transport number is good, whereas the 
deviations with regard to membrane potential might also 
be related to issues with the experimental data. Given this 
good performance, we can now consider using the model 
to predict membrane performance at conditions for which 
experimental data are not yet available such as high current 
densities.

3.3  Model prediction for high current densities

The Maxwell–Stefan diffusivities suggested in this work 
are applied for further simulation. The model uses the 
operating conditions of the chlor-alkali process: 25 wt% 
NaCl as anolyte, 32 wt% NaOH as catholyte, and a Nafion 
single-layer membrane, N-1110 (EW = 1100 and thick-
ness = 0.27 mm) [8, 33]. Figure 7 presents the transport 
number of sodium, hydroxide, water, and membrane poten-
tial drop as a function of current density from 2 to 30 kA 
 m−2 for low and high temperature (25 °C and 90 °C). The 
sodium transport number shows an increasing trend with 
increasing current density, which is also experimentally 
observed in chlor-alkali [11]. This can be explained by the 
fact that at low current densities, diffusion is still important 
compared to migration. This leads to a higher back diffusion 
of sodium from catholyte (around 10 M NaOH) to anolyte 

(around 5 M NaCl). At higher current densities, the contri-
bution of diffusion diminishes compared to the increasing 
migration term. Increased temperature results in decreased 
membrane permselectivity, which can be explained by the 
fact that higher temperature leads to higher mobility of ions 
and enhances ion diffusion. The model also predicts that 
the chloride ion transport is negligible for both high current 
density and temperature.

As shown in Fig. 7, the membrane potential is signifi-
cantly lower for higher temperature. This is related to the 
increased conductivity of the membrane. In the model, the 
conductivity is not explicitly present as a variable but it is 
taken into account in the diffusivities as shown in Eq. (2). 
The infinite dilution of diffusivities is related to the limit-
ing ionic conductivity. The ionic conductivity increases with 
increasing temperature which results in a lower resistance, 
thus lower membrane potential drop.

Figure 8 illustrates the effects of the fixed ionic group 
concentration and the current densities on the membrane 
permselectivity and the membrane potential. The model 
predicts a higher sodium transport number with higher 
fixed ionic group concentration and current densities. The 
latter is in line with the results shown in Fig. 7. Higher sul-
fonate groups in the membrane prevents the transport of 
the hydroxide ion as co-ion based on the Donnan exclusion 
and enhances the sodium ion transport as counter-ion. The 
water concentration decreases with increasing sulfonate 
groups concentration, and the model predicts a lower water 

Fig. 7  The transport number of sodium, hydroxide, water, and mem-
brane potential as a function of current density using the Maxwell–
Stefan diffusivities based on this work for two different temperatures 

(see legend). The model simulation used the Nafion 1110 with prop-
erties: EW = 1100, membrane thickness = 0.27 mm, 25 wt% NaCl as 
anolyte, and 32 wt% NaOH as catholyte
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transport for higher fixed ionic group concentration. A slight 
increase is observed in the membrane potential and this can 
be related to the decreased water concentration for higher 
membrane concentration.

4  Conclusion

A Maxwell–Stefan model has been developed to investigate 
the non-linear behavior of multicomponent ion and water 
transport inside a cation-exchange membrane. The non-linear 
concentration profiles, the membrane potential drop, and the 
transport number of ions and water strongly depend on the 
values of the Maxwell–Stefan diffusivities. To conclude, the 
combined correlations proposed by Wesselingh et al., Kraai-
jveld et al., and Chapman et al. show a good agreement with 
the available experimental data of chlor-alkali for sodium 
transport number and relative water transport number. Thus, 
it is our considered opinion that the semi-empirical correla-
tions are suitable for defining the Maxwell–Stefan diffusivi-
ties and therefore are suitable for further simulations.

The improvement of our model compared to the previ-
ously developed models is the ability to calculate both fluxes 
and the membrane potential drop simultaneously by adopt-
ing the augmented matrix method. A typical expected mem-
brane potential for chlor-alkali process around 0.5 V at 6 kA 
 m−2 and 80 °C is well predicted by our model.

OpenAccess This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix: Augmented matrix formulation

The fixed charged groups of the cation-selective membrane 
are treated as a component in the aqueous electrolyte solu-
tion. The chlor-alkali process contains in total 5 components 
including the fixed charged groups (n = 5). The flux of fixed 
charged groups of the membrane is zero. This results in a 
matrix of (n − 1) fluxes. In addition, the concentration of the 
fixed charged groups is constant. The fixed charged group is 
therefore set as the nth (5th) component.

Every component is defined a number:

The concentration of fixed charged group is known from 
the membrane property. The total concentration is the sum 
of the concentration of every component:

(46)Na+ = 1, OH− = 2, H2O = 3, Cl− = 4, SO−
3
= 5.

(47)
Ctot =

n∑
i=1

Ci = C1 + C2 + C3 + C4 + C5.

Fig. 8  The transport number of sodium, hydroxide, water, and mem-
brane potential as a function of ionic fixed group concentration using 
the Maxwell–Stefan diffusivities suggested in this work for three dif-

ferent current densities (see legend). Membrane thickness = 0.27 mm, 
temperature = 90 °C, NaCl as anolyte = 25 wt%, and NaOH as catho-
lyte = 32 wt%

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Based on the literature written by Krishna (1987), the 
DAE index 2 can be reduced to index 1 by applying the 
augmented matrix method [19].

Except in the region close the electrode surface, where 
there occurs charge separation due to double-layer phenom-
ena, the electroneutrality condition needs to be met. This 
means that there is no net electrical body force acting on the 
mixture as a whole:

Since the water does not carry either positive or nega-
tive charge (z3 = 0) , one concentration variable can be 
eliminated:

The concentration of the fourth component can therefore 
be calculated:

Both the flux and the driving force of the fixed charge 
groups are zero. This leads to (n − 1) equations:

(48)bi ≡
dCi

dx
=

n∑
j≠i

1

Ctot�i, j

(CiNj − CjNi) −
CiziF

RT

d�

dx
.

(49)

n∑
i=1

ziCi = 0;

(50)
n∑
i=1

ziCi = 0 = z1C1 + z2C2 + z4C4 + z5C5.

(51)C4 = −

(
z1C1 + z2C2 + z5C5

z4

)
.

b1 ≡
dC1

dx
= −

1

Ctot

(
C2

�1, 2

+
C3

�1, 3

+
C4

�1, 4

+
C5

�1, 5

)
N1

+
C1

Ctot�1, 2

N2 +
C2

Ctot�1, 3

N3 +
C4

Ctot�1, 4

N4

−
C1z1F

RT

d�

dx

b2 ≡
dC2

dx
=

C1

Ctot�2, 1

N1 −
1

Ctot

(
C1

�2, 1

+
C3

�2, 3

+
C4

�2, 4

+
C5

�2, 5

)
N2

+
C3

Ctot�2, 3

N3 +
C4

Ctot�2, 4

N4 −
C2z2F

RT

d�

dx

b3 ≡
dC3

dx
=

C1

Ctot�3, 1

N1 +
C2

Ctot�3, 2

N2

−
1

Ctot

(
C1

�3, 1

+
C2

�3, 2

+
C4

�3, 4

+
C5

�3, 5

)
N3

+
C4

Ctot�3, 4

N4 −
C3z3F

RT

d�

dx

There are in total four equations with five unknowns 
(N1, N2, N3, N4 and d�∕dx).

The current density can be defined in terms of flux:

The fixed charged groups of the cation-exchange mem-
brane contain zero flux (N5 = NSO−

3
= 0) because these ions 

are not transported (kept in place).

Using the Eq. (53), there are now in total five equations 
with five unknowns:

b4 ≡
dC4

dx
=

C1

Ctot�4,1

N1 +
C2

Ctot�4,2

N2 +
C3

Ctot�4,3

N3

−
1

Ctot

(
C1

�4,1

+
C2

�4,2

+
C3

�4,3

+
C5

�4,5

)
N4

−
C4z4F

RT

d�

dx
.

(52)I = 

n∑
i=1

ziNi.

(53)
I


= z1N1 + z2N2 + z3N2 + z4N4 + 0.

b1 ≡
dC1

dx
= −

1

Ctot

(
C2

�1, 2

+
C3

�1, 3

+
C4

�1, 4

+
C5

�1, 5

)
N1

+
C2

Ctot�1, 2

N2 +
C3

Ctot�1, 3

N3 +
C4

Ctot�1, 4

N4

−
C1z1F

RT

d�

dx

b2 ≡
dC2

dx
=

C1

Ctot�2, 1

N1

−
1

Ctot

(
C1

�2, 1

+
C3

�2, 3

+
C4

�2, 4

+
C5

�2, 5

)
N2

+
C3

Ctot�2, 3

N3 +
C4

Ctot�2, 4

N4 −
C2z2F

RT

d�

dx

b3 ≡
dC3

dx
=

C1

Ctot�3, 1

N1 +
C2

Ctot�3, 2

N2

−
1

Ctot

(
C1

�3, 1

+
C2

�3, 2

+
C4

�3, 4

+
C5

�3, 5

)
N3

+
C4

Ctot�3, 4

N4 −
C3z3F

RT

d�

dx

b4 ≡
dC4

dx
=

C1

Ctot�4, 1

N1 +
C2

Ctot�4, 2

N2 +
C3

Ctot�4, 3

N3

−
1

Ctot

(
C1

�4, 1

+
C2

�4, 2

+
C3

�4, 3

+
C5

�4, 5

)
N4

−
C4z4F

RT

d�

dx
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This can be written in equivalent form:

Both Eqs. 55 and 56 are defined in matrix [A]. The known 
variables in the last term of Eq. 57 can be added to matrix 
[A] using augmented matrix [B]:

The augmented vector of the driving forces:

The augmented vector of the unknown variables:

The fluxes and the electro potential gradient can be there-
fore calculated:

The negative sign is added for the physical meaning of 
the fluxes to be a positive value (driving forces (b) are posi-
tive, while the diagonal matrix [B] contains negative values).

b5 ≡
I


= z1N1 + z2N2 + z3N3 + z4N4 + 0.

(54)

bi(n−1) ≡
dCi

dx
=

n−1∑
j=1

Ai, jNi − Cizi
F

RT

d�

dx
; i = 1, 2,… , n − 1

(55)Ai, j =
Ci

Ctot�i, j

; i ≠ j = 1, 2,… , n − 1

(56)Ai, i = −

n∑
k=1
i≠k

Ck

Ctot�i, k

; i = 1, 2,… , n − 1

(57)bn ≡
I


=

n−1∑
j=1

ziNi.

(58)[B] =

[
[A] Cizi

F

RT

zi 0

]
.

(59)

⎛⎜⎜⎜⎜⎜⎝

b1
b2
…

bn−1
bn

⎞⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

dC1

dx
dC2

dx

…
dCn−1

dx
I



⎞
⎟⎟⎟⎟⎟⎟⎠

.

(60)

⎛⎜⎜⎜⎜⎜⎝

J1
J2
…

Jn−1
Jn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

N1

N2

N3

N4
d�

dx

⎞
⎟⎟⎟⎟⎟⎠

.

(61)(J) = −[B]−1(b).
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