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Abstract
In addition to being in contact with friends, online social networks are commonly used 
as a source of information, suggestions and recommendations from members of the com-
munity. Whenever we accept a suggestion or perform any action because it was recom-
mended by a “friend”, we are being influenced by him/her. For this reason, it is useful for 
users seeking for interesting information to identify and connect to this kind of influential 
users. In this context, we propose an approach to predict links to influential users. Com-
pared to approaches that identify general influential users in a network, our approach seeks 
to identify users who might have some kind of influence to individual (target) users. To 
carry out this goal, we adapted an influence maximization algorithm to find new influential 
users from the set of current influential users of the target user. Moreover, we compared the 
results obtained with different metrics for link prediction and analyzed in which context 
these metrics obtained better results.

Keywords  Link prediction · Social influence · Social networks

1  Introduction

In recent years, predicting the future formation of links in a network has become a hot 
topic. For this reason, the task known as Link Prediction has arisen as an important 
research area in social network analysis. Several approaches have been proposed to tackle 
this problem. These approaches can be roughly grouped in content-based, topology-based, 
and learning-based approaches. However, most of these approaches focus on predicting 
links without taking into account the fact that there exist different kinds of nodes in a social 
network, for example, information sources, information seekers, idea starters, commenta-
tors, viewers, and influential, among others.

Influential nodes represent users that exert social influence on other users of the social net-
work. Social influence occurs when one’s actions are affected by others. For example, user A 
exerts influence on user B when B watches a movie because A recommended it previously. 
Thus, influential users can be seen as effective recommendation sources. Many applications 
exploit the concept of social influence. In the field of data mining, some applications include 

 *	 Marcelo G. Armentano 
	 marcelo.armentano@isistan.unicen.edu.ar

1	 ISISTAN (CONICET/UNICEN), Tandil, Argentina

http://orcid.org/0000-0002-9172-9061
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-018-9335-0&domain=pdf


33Information Retrieval Journal (2019) 22:32–54	

1 3

viral marketing (Wortman 2008; Monteserin and Armentano 2018), recommender systems 
(Ye et  al. 2012), analysis of information diffusion in Facebook and Twitter (Bakshy et  al. 
2011), expert finding (Liu et  al. 2013), decision support systems (Monteserin and Amandi 
2015), analysis of scientist collaboration (Jiang et al. 2017) and ranking of feeds (Ienco et al. 
2010), among others.

In this work, we propose an approach for influential links prediction (ILP): given a target 
user, our approach predicts links to users that could exert social influence on her/him. To do 
this, an influence maximization algorithm is used to determine a set of possible influential 
users from the set of current influential users of the target. This kind of algorithm tries to solve 
a key problem in the area of social networks analysis: the influence maximization problem. 
The influence maximization problem involves finding a set of users in a social network such 
that by targeting this set, the expected spread of influence in the network is maximized (Goyal 
et al. 2011; Kempe et al. 2003). In particular, we apply a data-based approach to social influ-
ence maximization, named Credit Distribution (CD) model (Goyal et  al. 2011) that learns 
how influence flows in a network by directly leveraging available propagation traces. In this 
context, we claim that the set of nodes that also influence the nodes influenced by the set of 
current influential users of the target are potential new influential nodes that can be suggested 
as new connections to the target user. Thus, ILP searches for these nodes by using an adapted 
version of the CD model.

We claim that our approach is particularly useful for link prediction in scenarios with low 
homophily, where content-based approaches fail to capture similarities between nodes. Homo-
phily is the tendency of individuals to associate and bond with similar others (Bonchi 2011). 
Homophily is usually taken into account by several Link Prediction approaches (for example, 
content-based algorithms, see Sect. 2.1). However, social influence is not the same as homo-
phily (Aral et al. 2009; La Fond and Neville 2010). If social influence effects are present in a 
social network, nodes are likely to change their attributes to conform to their neighbors values. 
In contrast, if homophily effects are present in the network, individuals (nodes) are likely to 
link to other individuals with similar attribute values (Aral et al. 2009).

To validate our approach, we carried out a set of experiments in the movies domain (Flix-
ster) and microblogging domain (Twitter). We compared the precision, recall, nDCG and 
AUC of ILP with respect to the main topological metrics studied in the literature for link 
prediction (common neighbors, Jaccard, Sørensen, and Adamic–Adar, among others Wang 
et al. 2015) and with respect to a learning-based approach. This comparison showed that our 
approach performed better that existent approaches. Moreover, we carried out a comparison 
of the performance of the topological metrics in two different configurations set up by varying 
the set of neighbors observed: only influential neighbors and all neighbors. This comparison 
showed that the best predictions were obtained when the topological metrics only observe the 
set of influential neighbors.

The article is organized as follows. Section 2 introduces some concepts related to link pre-
diction and social influence maximization. Section 3 presents the approach to predict links to 
influential users. Section 4 shows the results obtained from the experiments. Finally, Sect. 5 
presents our conclusions and future works.
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2 � Background

In this section, we describe two relevant fields, namely, Link Prediction and Social Influ-
ence Maximization. In the next section, we define the problem of link prediction and some 
of the main approaches to the problem. Next, we introduce the main concepts on social 
influence maximization, propagation models and algorithms.

2.1 � Link prediction

Link prediction for social networks was formalized by Liben-Nowell and Kleinberg as the 
problem of predicting the edges that will be added to a given snapshot of a social net-
work during the time period determined from time t to a future time t’ (Liben-Nowell and 
Kleinberg 2003). Formally, given a snapshot of a network at time t, Gt(V ,E) where V is 
the set of nodes and E is the set of links, we seek to find the set of edges E′ from all the 
(|V| ⋅ (|V| − 1)) − |E| possible links among nodes in V that will appear in the network at 
time t′ , Gt� (V ,E

�) . It is worth noticing that the edges in the network can represent both con-
nection and interactions between nodes.

Link prediction methods can be roughly grouped into three categories: content-based, 
topology-based, and learning-based.

Content-based algorithms assign to each pair of nodes x and y a similarity score 
sim(x, y) that is computed using the attributes of the nodes, such as the user profiles (Bhat-
tacharyya et al. 2010), user-generated content (Armentano et al. 2013), documents infor-
mation (Perlich et al. 2009), user interests (Anderson et al. 2012), etc. The similarity score 
for all pairs of non-connected nodes is computed and the edges with top N scores or, alter-
natively, with a score over a certain threshold, are predicted. These methods work under 
the assumption that users tend to relate with people who are similar to them in certain way. 
In other words, content-based algorithms assume that users in the network follow the prin-
ciple of homophily.

Topology-based methods can be applied to any network, even if there is no informa-
tion available about the nodes. These methods compute different metrics between pairs of 
nodes that are then used to rank the possible connections to be predicted, similarly to con-
tent-based methods. Metrics used by these methods can be divided into local (or neighbor-
based) metrics, path-based metrics and random walk metrics. Liben-Nowell and Kleinberg 
2003 presented different methods for link prediction based on node neighborhoods and on 
the ensemble of all paths. The simplest neighbor-based metric considers the number of 
common neighbors between two nodes (CN). Many metrics are based on CN and intend 
to normalize this metric with different criteria. For example, Jaccard Coefficient, use the 
total number of neighbors between the two nodes; Sørensen–Dice Index considers that 
lower degrees of nodes would have higher link likelihood, Hub promoted considers that 
the topological overlap is determined by the lower degree of nodes, while Hub Depressed 
determines the value by the higher degrees of nodes. Other approaches combine some of 
these topological metrics and their weighted versions (Armentano et al. 2012; Güneş et al. 
2016). Among the path-based metrics, Local Path (Lü et al. 2009), Katz metric (Katz 1953) 
and Relation Strength Similarity (Chen et al. 2012) are commonly used for link prediction. 
Finally, random walk metrics use transition probabilities from a node to its neighbors to 
denote the destination of a random walker that departs from the current node. The random 
walk information can be used to measure the distance between any pair of nodes. Nodes 
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are then sorted by shortest distance to select which edges to predict. Classical algorithms 
in this category are Hitting Time (Fouss et al. 2007), PageRank (Page et al. 1999) and it 
variants.

Finally, learning based methods approach link prediction as a binary classification prob-
lem. Each pair of nodes x and y is considered an instance that is described by a set of fea-
tures (which are usually built from the metrics described previously) and a class label ( + if 
there exist an edge connecting x and y or − otherwise). Any classifier can then be used to 
predict the class for non-existent edges, such as decision trees (Scellato et al. 2011), naïve 
Bayes (Scellato et al. 2011), support vector machines (Li and Chen 2013), logistic regres-
sion (Chiang et al. 2011), frequent graph pattern mining (Pobiedina and Ichise 2016), and 
matrix alignment (Scripps et al. 2008). The main problem that has to be addressed when 
considering link prediction as a classification task is that the classes are inherently unbal-
anced for most networks, since the number of links that may appear represent a very small 
subset of the possible links that can be established in the network between any pair of 
nodes.

Recently, research in link prediction has also focused on dynamic networks (Rahman 
and Hasan 2016; Choudhury and Uddin 2017, 2018). This line of research considers that 
the behavior and characteristics of the nodes and the links among them change temporally. 
For these kind of networks, new set of metrics needs to be defined in order to measure the 
similarity between each pair of actors.

In this article, we focused on the topology structure of the network to locally find a set 
of candidate influential nodes of the target node. User actions on the network are used to 
determine the influence exerted on other users.

2.2 � Social influence

Social influence occurs when a person’s actions are affected by others. This effect can be 
seen in conformity, socialization, peer pressure, obedience, leadership, persuasion, sales, 
and marketing (Goyal 2013). Social influence is defined as the change in an individual’s 
thoughts, feelings, attitudes, or behaviors that results from the interaction with another 
individual or a group (Rashotte 2006). Many applications exploit the social influence and 
the propagation of influence that users of a social network exert on other users has been 
widely studied in recent years.

A key problem in this area is the identification of influential users (Goyal et al. 2011). 
Kempe et al. (2003) formalized this problem as the influence maximization problem: given 
a directed graph G = (V ,E, p) , where nodes are users and edges are labeled with influence 
probabilities among users, the influence maximization problem looks for a set of seeds 
(users) that maximizes the expected spread of influence in the social network under a given 
propagation model. A propagation model indicates how influence propagates through the 
network. Two propagation models were proposed by Kempe et al.: the Independent Cas-
cade (IC) and the Linear Threshold (LT) models. In both models, each node can be either 
active or inactive at a given moment. Moreover, the tendency of each node to become 
active increases monotonically as more of its neighbors become active.

Given a propagation model m (for example, IC or LT) and an initial seed set S ⊆ V  , 
the expected number of active nodes at the end of the process is the expected (influence) 
spread, denoted by �m(S) (Goyal et  al. 2011). Then, the influence maximization prob-
lem is defined as follows: given a directed and edge-weighted social graph G = (V ,E, p) 
(where nodes are users and edges are labeled with influence probabilities among users), a 
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propagation model m, and a number k ≤ |V|, find a set S ⊆ V ,  |S| = k, such that �m(S) is 
maximum. Several approaches have been developed to solve this problem. Despite the fact 
that this problem is NP-hard under both the IC and LT propagation models, some charac-
teristics of the function �m(S) (monotonicity and submodularity, see Kempe et al. 2003 for 
further details) made it possible to develop a greedy algorithm to solve the problem.

One of the limitations of the IC and LT propagation models is that the edge-weighted 
social graph is assumed as input to the problem, without addressing the question of how 
the probabilities are obtained (Goyal et al. 2010). For this reason, Goyal et al. (2011) pro-
posed the Credit Distribution (CD) model, which directly estimates influence spread by 
exploiting historical data. In this context, the influence maximization problem to be solved 
under the CD model is reformulated as follows: given a directed social graph G = (V ,E)

, an action log �, and a integer k ≤ |V|, find a set S ⊆ V , |S| = k, such that �cd(S) is maxi-
mum. Under the CD model, �cd(S) is defined as �cd(S) =

∑
u∈V �S,u , where �S,u represents 

the total credit given to S for influencing u for all actions. To solve this problem, Goyal 
et al. developed an algorithm for influence maximization under the CD model. This algo-
rithm initially scans the action log � to learn the influence probabilities in the social net-
work, computing the influenceability scores for the users. An action log is a set of triples 
(u, a, t) which say user u performed action a at time t. Then, the seed set is selected under 
the CD model by using a greedy algorithm with CELF optimization (Goyal et al. 2011). 
It is worth noticing that if the timestamp in which an edge was created is available, the 
algorithm considers this information to find the seed set. This allows our approach to work 
with both static and dynamic networks. See Goyal et al. (2011) for further details on the 
algorithm implementation.

3 � Link prediction of influential nodes

In this section, we present ILP, our approach to predict links to influential nodes. ILP is 
based on the social influence exerted among users in a social network. In this context, we 
claim that it is possible to predict links to influential nodes by observing which users also 
influence the set of users influenced by the current influential users of the target. Here, the 
target is the user to which the approach will recommend influential users (new links).

Figure 1 shows the 4 steps of the proposed approach. First, our approach searches for 
nodes that influence the target user (Fig. 1, Step 1). To do this, we reformulate the influence 
maximization problem under the CD model by adding the parameter T to the definition 
problem. Then, the influence maximization problem is defined as follows: given a directed 
social graph G = (V ,E), a subset T ⊆ V , an action log �, and a integer k ≤ |V|, find a set 
S ⊆ V , |S| = k, such that �T

cd
(S) =

∑
t∈T �S,t is maximum. In other words, we modify the 

problem definition to obtain a seed set by taking into account only the influence exerted on 
the nodes t ∈ T  . Notice that when T = V  the problem becomes the traditional one. Thus, 
the first step of ILP is carried out by running the CD model with T = {Target} . The result 
of this step is the set ITarget , composed of the nodes that influence the target. Moreover, it is 
worth noticing that the greedy algorithm always returns a seed set S with k elements. How-
ever, it is possible that the last elements added to the seed set do not actually exert influ-
ence on T. This occurs whenever T is influenced only by l nodes and l < k . For this rea-
son, we include a threshold mininf, and only keep in ITarget the nodes whose marginal gain 
exceed mininf, where the marginal gain of a node w is computed as �m(S ∪ {w}) − �m(S) 
(Goyal et al. 2011).
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Secondly, ILP searches for nodes influenced by the set ITarget (Fig. 1, Step 2) and stores 
these nodes in the set NIITarget . Although this step is not defined as an influence maximiza-
tion problem, ILP uses the concept of credit distribution to search for these nodes. Thus, 
we define NIITarget = {ni ∈ V ∣ ni ≠ Target ∧

∑
i∈ITarget

𝜅i,ni > 0} . In other words, NIITarget is 

composed of the nodes that gives credits to at least one node included in ITarget (excluding 
the target).

The third step consists in searching for a new set of nodes ( NewNI ) that also influence 
NIITarget (Fig. 1, Step 3). To do this, we use the same influence maximization problem defini-
tion explained in Step 1 with T = NIITarget . In contrast with Step 1, NewNI must be filtered 
since the nodes of ITarget might have been also included in the seed set. Finally, in Step 4, 
ILP uses the set NewNI to recommend new influential links for target (Fig. 1, Step 4).

To illustrate our proposal, Fig. 2a shows an example of a simple directed social graph. This 
graph is composed of 9 nodes and 13 directed edges. The direction of the edge between a node 
A and a node B indicates that A follows B. Notice that influence flows contrary to the direction 
indicated by the edges. Table 1 shows the actions log used to learn the influence probabilities. 
This log has 3 columns: the id of the node that perform the action, the id of the action and the 
time when the action was performed. Following the steps presented above, with Target = 1 , 
the first step results in a set ITarget = {3, 4} . Then, the second step of our approach searches for 
other nodes that are also influenced by nodes 3 and 4. Consequently, NIITarget = {5, 6} . Next, 
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Fig. 1   Steps of the ILP approach
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ILP looks for nodes that exert influence on nodes 5 and 6. Thus, the third step returns the 
nodes 9, 3 and 4 ( NewNI = {9, 3, 4} ). However, since nodes 3 and 4 are included in ITarget , 
the final NewNI is 9. Finally, node 9 becomes a potential link to be recommended to node 1. 
Figure 2b shows the derived influence graph when the target is node 1. This graph shows the 
influence relationships among the nodes from the point of view of the target.

Fig. 2   Example of social and derived influence graph with node 1 as target 

Table 1   Example of actions log Node Action Time

3 1 1
1 1 2
5 1 2
4 2 3
1 2 4
5 2 5
3 3 6
1 3 7
4 4 7
1 4 8
6 4 8
9 5 9
5 5 10
6 5 10
7 5 11
9 6 12
5 6 13
6 6 13



39Information Retrieval Journal (2019) 22:32–54	

1 3

4 � Experimental evaluation

4.1 � Experimental settings

To evaluate our approach, we ran experiments comparing the performance of ILP with dif-
ferent well-known topological metrics for link prediction. We experimented on two well-
known real-world dataset extracted from Flixster (Jamali and Ester 2010) and Twitter (De 
Domenico et al. 2013).

The Flixster dataset1 is composed of 786,936 nodes; 7,058,819 directed edges; and 
8,196,077 logged actions. Since Flixster2 is one of the main players in the social movie rat-
ing businesses, each action represents a user rating a movie. Thus, if user v rates “Frozen”, 
and later v’s friend u does the same, we consider that the action of rating “Frozen” propa-
gated from v to u (Goyal et al. 2011). Flixster dataset was chosen because it is a real-world 
dataset in which the similarity between linked users is low. To check this fact, we com-
puted the average Pearson similarity ( 

∑
∀u→v simPearson(u,v)

�u→v� = 0.008 ) and the average Grou-

pLens similarity ( 
∑

∀u→v simGroupLens(u,v)

�u→v� = 0.001 ) by using Eqs. 1 and 2, respectively.

Both similarity metrics measure the difference between the rating given by user u and 
user v to a given item i. Since different users may use different scales while rating items, 
the equation considers the difference between the actual rating of the user to the item and 
the average rating of the user to all items �u . The equation is then normalized so that the 
metric takes values between − 1 (users rating items in an opposite manner) and 1 (users rat-
ing items in the same manner). Both metrics will be 0 for totally different users. The main 
difference between simPearson(u,v) and simGroupLens(u,v) is the set of items used to 
measure the similarity. Pearson correlation consider all items that were rated by both users 
( Iu

⋂
Iv ). This causes that users with few rated items in common will have high similari-

ties. If two users have rated many items and have only one item in common with the same 
rating, the metric will be 1, indicating that the users are similar while this might not be the 
case. For this reason, simGroupLens considers all the items rated by both users ( Iu ∪ Iv ), 
with the normalized rating rui − �u = 0 whenever u has not rated i. With this modification 
to the equation, if both users have rated exactly the same items, it remains the Pearson cor-
relation. However, if one user has rated items that the other has not, those ratings drop out 
of the numerator (since they are multiplied by 0) but still contribute to the denominator.

It is important to consider this fact because a low similarity indicates low homophily, 
making unfavorable the application of content-based algorithms as we explain in Sect. 2.1.

(1)simPearson(u, v) =

∑
i∈Iu∩Iv

(rui−�u)(rvi−�v)
�∑

i∈Iu∩Iv
(rui−�u)

2

�∑
i∈Iu∩Iv

(rvi−�v)
2

(2)simGroupLens(u, v) =

∑
i∈Iu∪Iv

(rui−�u)(rvi−�v)
�∑

i∈Iu∪Iv
(rui−�u)

2

�∑
i∈Iu∪Iv

(rvi−�v)
2

1  https​://goo.gl/CxuBD​a.
2  http://www.flixs​ter.com.

https://goo.gl/CxuBDa
http://www.flixster.com
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On the other hand, the dataset extracted from Twitter3 was built after monitoring the 
spreading processes on Twitter before, during and after the announcement of the discov-
ery of the Higgs boson. For this reason, we will refer to this dataset as Higgs dataset. The 
dataset is composed of the messages posted in Twitter about this discovery between 1st and 
7th July 2012. To build the action log, we considered the tweets and retweets as actions. 
Thus, if a user v posts a tweet t, and later on a user u retweets this tweet, we consider t as 
an action propagated from v to u. Higgs dataset is composed of 456,626 nodes, 14,855,842, 
and 396,356 logged actions.

4.2 � Procedure

We ran experiments by randomly selecting 1400 target users from each network. Then, 
for each target, we applied the first step of ILP and obtained the set ITarget with k = 20 and 
mininf = 1.01 (these values were also used to configure step 3 of ILP).4 In Flixster, the 
average k of each ITarget processed was 7.2. For this reason, we applied a cross-validation 
technique with 4 folds. We decided to uses 4 folds since for a k-folds cross-validation we 
need that each user has at least k influential nodes to become a valid target, and the average 
amount of influential nodes of all nodes in the Flixster graph was 3.2. Thus, we discarded 
those users with less than 4 influential nodes during the target selection process. The same 
configuration was used for the Higgs dataset.

The cross-validation process consisted in picking a target, hiding each fold Fi , one at 
a time, and running the rest of the steps of ILP on the remaining 3 folds (i.e. ITarget − Fi ). 
Notice that the cross-validation process was carried out by considering ITarget , which is the 
set of influential nodes, since our goal is to recommend links to influential users. Finally, 
we compared the results obtained, NewNI , with the hidden fold and computed precision and 
recall measures using Eqs. 3 and 4 with New = NewNI , respectively. Moreover, we com-
puted the Normalized Discounted Cumulative Gain (nDCG) measure (Wang et al. 2013) 
using Eq. 5. In Eq. 5, DCG is computed using Eq. 6, where reli = 1 if the link in the posi-
tion i of New was in the hidden fold and reli = 0 if not. In addition, IDCG (ideal DCG) rep-
resents the DCG measure for the perfect ranking. NDCG is a normalized measure of rank-
ing quality. The premise of nDCG is that relevant links appearing lower in a result ranking 
should be penalized as the graded relevance value is reduced logarithmically proportional 
to the position of the result.

(3)precisionNew =

|||
{
x | x ∈ Fi ∧ x ∈ New

}|||
|New|

(4)recallNew

|||
{
x | x ∈ Fi ∧ x ∈ New

}|||
||Fi

||

(5)nDCGNew =
DCGNew

IDCG

3  https​://snap.stanf​ord.edu/data/higgs​-twitt​er.html
4  Notice that if some element added to the seed set does not influence T, its marginal gain will be 1.00.

https://snap.stanford.edu/data/higgs-twitter.html
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Furthermore, we ran predictions by using the following state-of-the art topological metrics 
for link prediction (Wang et al. 2015), where � (x) is the set of neighbors of node x, and 
|� (x)| is the number of neighbors of nodes x.

–	 Common Neighbor (CN) this metric is one of the most widespread measurement used 
in link prediction due to its simplicity. CN is defined as the number of nodes that two 
nodes, x and y, have a direct interaction with (Eq. 7). 

–	 Jaccard Coefficient (JC) this coefficient normalizes the size of common neighbors with 
the total number of neighbor that x and y have (Eq. 8). 

–	 Sørensen Index (SI) besides taking into account the size of the common neighbors, it 
also points out that lower degrees of nodes would have higher link likelihood (Eq. 9). 

–	 Salton Cosine Similarity (SC) this metric is a common cosine metric for measuring the 
similarity between two nodes (Eq. 10). 

–	 Hub Promoted (HP) it defines the topological overlap of nodes x and y. The HP value is 
determined by the lower degree of nodes (Eq. 11). 

–	 Hub Depressed) (HD) this metric is similar to HP, but the value is determined by the 
higher degrees of nodes (Eq. 12) 

–	 Leicht–Holme–Nerman (LHN) this metric assigns high similarity to node pairs that have 
many common neighbors compared not to the possible maximum, but to the expected 
number of such neighbors (Eq. 13). 

(6)DCGNew =

|New|∑

i=1

2reli − 1

log2(i + 1)

(7)CN(x, y) = |� (x) ∩ � (y)|

(8)JC(x, y) =
|� (x) ∩ � (y)|
|� (x) ∪ � (y)|

(9)SI(x, y) =
|� (x) ∩ � (y)|
|� (x)| + |� (y)|

(10)SC(x, y) =
�� (x) ∩ � (y)�

√
�� (x)� ⋅ �� (y)�

(11)HP(x, y) =
|� (x) ∩ � (y)|

min(|� (x)|, |� (y)|)

(12)HD(x, y) =
|� (x) ∩ � (y)|

max(|� (x)|, |� (y)|)

(13)LHN(x, y) =
|� (x) ∩ � (y)|
|� (x)| ⋅ |� (y)|
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–	 Adamic–Adar Coefficient (AA) this coefficient was initially proposed for computing 
similarity between two web pages. In this metric, common neighbors that have fewer 
neighbors are weighted more heavily (Eq. 14) 

–	 Preferential Attachment (PA) it indicates that new links will be more likely to connect 
higher-degree nodes than lower ones (Eq. 15). 

–	 Resource Allocation (RA) RA metric is similar to AA. Both metrics suppress the con-
tribution of the high degree common neighbors. However, RA metric punishes the high 
degree common neighbors more heavily than AA (Eq. 16). 

Additionally, we ran predictions using a learning-based approach (LB). This approach 
consisted in a Logistic Regression-based classifier (using Weka5 framework). For each 
target T and fold i, we trained a classifier whose input consisted in instances of the form 
{CN(T , y), JC(T , y), SI(T , y), SC(T , y), HP(T , y), HD(T , y), LHN(T , y), AA(T , y), PA(T , y),

RA(T , y), class} where y ∈ ((𝛤 (T) − Fi) ∪ NLtraining ⊂ {nl ∣ nl ∉ 𝛤 (T)}) ( NL was ran-
domly selected), ||� (T) − Fi

|| = |NL| (to keep the training set balanced), and class was 
LINK if y ∈ (� (T) − Fi) or NO-LINK if y ∈ NL . Once the classifier was trained, we tested 
it by using a set of instances for which y ∈ Fi ∪ ({nl ∣ nl ∉ � (T)} − NLtraining). Due to time 
execution limitations, we reduced the number of no-links in the testing set to 20,000 (ran-
domly selected). Notice that this reduction benefited the performance of the learning-based 
approach.

Moreover, for each baseline b ∈ {CN, JC, SI, SC, HP, HD, LHN, AA, PA, RA, LB} , 
we built two rankings, according to the value of the metric or the likelihood associated to 
each testing instance of belonging to the LINK class in a descendant order:

–	 Ranking Newb
I
 with � (x) = ITarget − Fi , that is, using the same set of nodes used by our 

approach.
–	 Ranking Newb

All
 with � (x) = � (Target) − Fi , that is, using all the neighbors of Target 

without the hidden nodes.

From each ranking, we took the 20 top ranked nodes as recommendations to the target 
users. Finally, we also computed precision, recall and nDCG for each ranking using Eqs. 3, 
4 and 5 with New = Newb

I
 and New = Newb

All
.

In addition, we compute the area under the receiver operating characteristic curve 
(AUC), since this is a standard metric used to quantify the accuracy of different link pre-
diction methods (Ding et al. 2016; Lü and Zhou 2011; Dai et al. 2017). This metric can 
be interpreted as the probability that a randomly chosen missing link is given a higher 
score than a randomly chosen nonexistent link (Lü and Zhou 2011). Among n independ-
ent comparisons, if there are n′ occurrences of missing links having a higher score and n′′ 

(14)AA(x, y) =
∑

z∈� (x)∩� (y)

1

log|� (z)|

(15)PA(x, y) = |� (x)| ⋅ |� (y)|

(16)RA(x, y) =
∑

z∈� (x)∩� (y)

1

|� (z)|

5  https​://www.cs.waika​to.ac.nz/ml/weka/.

https://www.cs.waikato.ac.nz/ml/weka/
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occurrences of missing links and nonexistent link having the same score, we define the 
accuracy as: AUC = (n� + 0.5n��)∕n . Then, if all the scores are generated from an inde-
pendent and identical distribution, the accuracy should be about 0.5. Therefore, the degree 
to which the accuracy exceeds 0.5 indicates how much better the algorithm performs than 
pure chance (Lü and Zhou 2011).

4.3 � Results

4.3.1 � Flixster dataset

Table 2 shows the evolution of precision, recall, nDCG and AUC measures as the number 
of predictions increases (from 5 to 20). As we can see, ILP improved the classic meas-
ures in all the scenarios. The best precision was obtained by ILP with 5 predictions (3.2%) 
whereas the best recall was obtained with 20 predictions (15.5%). We found a significant 
improvement of the precision and recall of ILP with respect to the best topological metrics 
(CN, JC and AA): 28 and 20.15%, respectively ( p < 0.05 ). The learning-based approach 
did not improve the metrics obtained for ILP, even though the number of no-links in the 
testing set was reduced.

On the other hand, we can observe that the topological metrics obtained better results 
generating NewI than NewAll . For example, the best precision for NewI was obtained using 
CN, JC and AA metrics (2.5%). In contrast, for NewAll , the best precision was 1.7%. This 
represents a significant difference of 47.06% between NewI and NewAll ( p < 0.05 ). Some-
thing similar occurred with the recall: for NewI , the best value was 12.9% using AA with 
20 predictions, whereas the best value for NewAll was 11.7% using also AA (difference of 
10.25% with p < 0.05).

Regarding nDCG, ILP obtained a value of 0.097 in contrast to 0.084 obtained by 
LB. Moreover, the best nDCG value for the topological metrics was 0.082 and was also 
obtained for NewI using CN, whereas the best value for NewAll was 0.06 but using AA 
(a significant difference of 36%). It is worth noticing that contrary to what happens with 
the topological metrics, the learning-based approach presented a worse performance using 
NewLB

I
 than NewLB

All
 . This is because the training set is reduced, since |ITarget| < |𝛤 (Target)| , 

negatively affecting the performance of the classifier.
Figure 3 shows a comparison of the AUC measure obtained by ILP and the AUC meas-

ures obtained by the baselines building NewI . The X-axis represents the number of rec-
ommendations (links predicted) and Y-axis represents the AUC measure. As we can see, 
ILP obtained a better AUC measure when the number of recommendation is less than or 
equal to 100. With more than 100 recommendations, the AUC obtained with ILP increased 
slightly and was overcome by some of the topological metrics (CN, JC, AA and RA). This 
happens because the total number of recommendations of ILP is less than the total number 
of recommendation that the topological metrics are able to recommend. In fact, only an 
average of 40.63 new connections found with ILP have a marginal gain higher than 1.01. 
However, we think that this is not a limitation of ILP due to the fact that when recommend-
ing new connections for users of a social network, recommendations lists tend to be short 
(frequently less than 20) in order to help users to focus on the most relevant results.

Figure 4 compares the AUC measure obtained by ILP with state of the art topological 
metrics and the learning-based approach generating NewAll . As occurred with NewI , ILP 
showed a better AUC value when the number of links predicted was lower than 20. In this 
case, the AUC measure of AA and RA metrics mildly overcome ILP when n = 100 . In 
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Fig. 3   Comparison of AUC measure between ILP and baselines generating NewI (Flixster dataset)

Fig. 4   Comparison of AUC measure between ILP and baselines generating NewAll (Flixster dataset)
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contrast, the learning-based approach overcame ILP results for more than 20 predictions. 
However, it is important to remark that due to execution time limitation the testing set used 
to test LB was significantly reduced. This reduction clearly improved the performance of 
the LB approach. For this reason, we think that the AUC will be worse with the full testing 
set.

Finally, Fig.  5 shows a comparison between topological metrics building NewI and 
NewAll . As we can see, the approach using NewI obtained better results than using NewAll 
for metrics CN, JC, HP, AA and RA when n ≤ 20 . However, when n > 20 , the AUC meas-
ure obtained using NewAll outperformed the AUC measure obtained using NewI . As with 
ILP, this happens because the maximum number of link predictions that the metrics can 
recommend for NewI is less than for NewAll. In turn, this is because ITarget − Fi (used to 
generate NewI ) is less than � (Target) − Fi (used to generate NewAll ). Nevertheless, NewI 
for HP metric was not affected since the HP value is determined by the lower degree of 

Fig. 5   Comparison of AUC measure between topological metrics using NewI and NewAll (Flixster dataset)
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nodes (Wang et al. 2015). In contrast, HD obtained better results using NewAll , since HD 
value is determined by the higher degrees of nodes. The rest of the metrics showed a worse 
performance generating NewI.

4.3.2 � Higgs dataset

The results obtained with the Higgs dataset were more promising than those obtained with 
Flixster. Table 3 shows precision, recall, nDCG and AUC measures for 5, 10, 15 and 20 
predictions. Similar to Flixster dataset, ILP obtained the best performance. The best preci-
sion was 6.9% obtained with ILP in 5 predictions (an improvement of 97.14% compared 
to the result obtained by NewLB

I
 also in 5 predictions), while the best recall was 35.8% 

obtained with ILP in 20 predictions (an improvement of 47.93% compared to the result 
obtained by NewLB

I
 also in 20 predictions).

Comparing the results obtained by the topological metrics with NewI and NewAll , 
we observed the same patterns that using Flixster. That is, the best results was obtained 
with NewI . However, contrary to what happens with Flixster dataset, the learning-based 
approach presented better performance also generating NewI than NewAll . We think that 
this is also related to the best results obtained by ILP with Higgs dataset.

Figures  6 and 7 compare the AUC measure obtained by ILP with the baseline 
approaches generating NewI and NewAll , respectively. These figures also show that the best 
results were obtained with ILP, particularly, when the number of predictions was lower 
than 150. As with the experiments with Flixster, the AUC obtained by ILP grew rapidly 
with few predictions, but then slowed its growth.

Finally, Fig. 8 also shows a comparison of AUC metric obtained by topological met-
rics generating NewI and NewAll . These results were similar to those obtained with Flixster 
dataset. However, we can observe a more significant difference between the AUCs when 
the curve generated with NewI overcame the curve generated with NewAll , such is the case 
of CN, JC, AA and RA.

5 � Conclusions and future work

In short, we highlight two main contributions of this work. First, we presented a new 
approach to predict links to influential users. Additionally, we presented an experimental 
analysis that shows that topological metrics have a better performance predicting links to 
influential users when they are applied over the set of current influential users of the target. 
We found that with ILP we can improve the link prediction performance with respect to 
classical topological metrics and learning-based approaches. On the other hand, one of the 
limitations of our approach is that the target must have influential users in his/her current 
neighborhood to be able to receive recommendations of other influential links. Moreover, 
as shown by the AUC metric, ILP predicts a limited number of new links. For this reason, 
our approach showed a better performance than topological metrics when the number of 
recommendations is lower than ∼ 100 recommendations, but when this number increases 
our approach is overcome by classical approaches. We also observed some differences 
between the datasets used for the experimentation. We think that these differences are 
related to the role that social influence plays in each social network. Thus, if the social 
influence is high among users in the social network, our approach will obtain better results.
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Fig. 6   Comparison of AUC measure between ILP and baselines generating NewI (Higgs dataset)

Fig. 7   Comparison of AUC measure between ILP and baselines generating NewAll (Higgs dataset)
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Future work will focus on enriching ILP with content-based information in order to rec-
ommend links to influential users in specific topics or domains.

Acknowledgements  This research was partially supported by ANPCyT through PICT Project No. 
2014-2750.

Fig. 8   Comparison of AUC measure between topological metrics using NewI and NewAll (Higgs dataset)
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