
Website replica detection with distant supervision

Cristiano Carvalho1 • Edleno Silva de Moura2 • Adriano Veloso1 •

Nivio Ziviani1,3

Received: 31 October 2016 / Accepted: 9 October 2017 / Published online: 29 November 2017
� Springer Science+Business Media, LLC 2017

Abstract Duplicate content on the Web occurs within the same website or across multiple

websites. The latter is mainly associated with the existence of website replicas—sites that

are perceptibly similar. Replication may be accidental, intentional or malicious, but no

matter the reason, search engines suffer greatly either from unnecessarily storing and

moving duplicate data, or from providing search results that do not offer real value to the

users. In this paper, we model the detection of website replicas as a pairwise classification

problem with distant supervision. That is, (heuristically) finding obvious replica and non-

replica cases is trivial, but learning effective classifiers requires a representative set of non-

obvious labeled examples, which are hard to obtain. We employ efficient Expectation-

Maximization (EM) algorithms in order to find non-obvious examples from obvious ones,

enlarging the training-set and improving the classifiers iteratively. Our classifiers employ

association rules, being thus incrementally updated as the EM process iterates, making our

algorithms time-efficient. Experiments show that: (1) replicas are fully eliminated at a

false-positive rate lower than 0.005, incurring in ? 19% reduction in the number of

duplicate URLs, (2) reduction increases to ? 21% by using our site-level algorithms in

conjunction with existing URL-level algorithms, and (3) our classifiers are more than two

orders of magnitude faster than semi-supervised alternative solutions.

& Adriano Veloso
adrianov@dcc.ufmg.br

Cristiano Carvalho
cristiano@dcc.ufmg.br

Edleno Silva de Moura
edleno@dcc.ufam.br

Nivio Ziviani
nivio@dcc.ufmg.br

1 Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

2 Department of Computer Science, Universidade Federal do Amazonas, Manaus, Brazil

3 Kunumi, Belo Horizonte, Brazil

123

Inf Retrieval J (2018) 21:253–272
https://doi.org/10.1007/s10791-017-9320-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9320-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9320-z&domain=pdf
https://doi.org/10.1007/s10791-017-9320-z

Keywords Replica detection � Distant Supervision � Expectation-Maximization

1 Introduction

Detecting and removing duplicate URLs is of paramount importance to search engines.

According to Fetterly et al. (2003), around 29% of the Web is estimated to be composed of

near-duplicate URLs1—documents having similar content but referenced by different

strings. By other estimates,2 as many as 30% of the pages on the Web are duplicates of

other pages. This stresses critical components of search engines, including crawling,

indexing, ranking, and presentation.

Duplicate (or near-duplicate) URLs can be divided into two categories, depending on

whether they occur within the same website and have the same hostname (intra-site duplicate

URLs), or across multiple websites (inter-site duplicate URLs). The inter-site duplicate

URLs requires site-level algorithms that process URLs across different websites, while the

intra-site duplicate URLs requires URL-level algorithms that process URLs within the same

website. While most of the existing algorithms consider the intra-site URL de-duplication

scenario (Bar-Yossef et al. 2009; Dasgupta et al. 2008; Koppula et al. 2010), it is clear that a

complete solution must also comprise algorithms for dealing with inter-site duplicate URLs.

In this paper, we deal with inter-site duplicate URLs by detecting and removing website

replicas. The existence of inter-site duplicate URLs is mainly associated with the emergence

of website replicas—different websites that are (perceptibly) similar in terms of content and

structure. They exist mainly because (1) websites are pre-built and sold to multiple people,

(2) websites move to another hosting company, (3) websites have both WWW and non-

WWW versions indexed, (4) websites are mirrored for the sake of load balancing, or (5)

multiple or similar copies of the website may increase chances of getting listed on search

engines. Once detected, replicas may get penalized or even removed from the search results.

With more than one billion active websites in the Internet,3 typical replica detection

algorithms are impracticable, since they perform a full comparison involving all pairs of

websites in the (possibly large) collection. Fortunately, clusters of URLs with similar

content (or simply dup-clusters Agarwal et al. 2009; Yang and Callan 2006) can be found

efficiently, revealing pairs of websites sharing some content and being therefore replica

candidates. The number of replica candidates narrows down to a scale for which it is

possible to apply more sophisticate detection approaches.

In here, we model the website replica detection task as a classification problem. In this case,

a training-set is used to produce a classifier that relates features associated with pairs of websites

to their likelihood of being replicas. The classifier is used to indicate which pairs are replicas in

a test-set. The main advantage of the classification approach is that it avoids having to precisely

define what is replica and what is not. Definitions of replica are based on the perceptual

meaning of the websites, being fuzzy by nature, in the sense that it is necessary to consider not

only the amount of duplicate content in order to characterize replication. In contrast, following

the classification approach, we need only to provide sufficient training examples and the

classifier automatically learns to differentiate pairs that are replicas from those that are not.

The main drawback of the classification approach is that it is based on training-sets with

labeled pairs of websites. The annotation process necessary to create labeled data may be

unfeasible due to the disproportionate number of negative examples. While it is hard to

1 The terms ‘‘duplicate’’ and ‘‘near-duplicate’’ are used interchangeably.
2 https://blog.seoprofiler.com/matt-cutts/.
3 According to an October 2014 survey from netcraft.com.

254 Inf Retrieval J (2018) 21:253–272

123

https://blog.seoprofiler.com/matt-cutts/
http://netcraft.com

separate a diversified and representative set of replica examples, finding obvious cases

might be trivial, such as cases including WWW and non-WWW versions, as well as small

segment variations in the hostname. This alternative to the manual labeling process is

called Distant Supervision, and results in a limited set of positive replica examples plus a

large amount of unlabeled data. We refer to this set of examples as PU data (i.e., positive þ
unlabeled data), and binary classifiers can be learned from PU data by simply considering

unlabeled data as negative examples. However, this strategy leads to classifiers with poor

performance due to a potentially large number of false-negative examples in PU data.

To overcome this problem we employ Expectation-Maximization (EM) algorithms4 that

refine the training-set iteratively (Dempster et al. 1977), by enlarging the set of positive

examples from an initial set of obvious cases. For this, we use a partial classifier to evaluate

the likelihood of an unlabeled example being positive or negative, and the process con-

tinues iteratively by changing the label of the ones that are likely to be positive—an

operation called label transition—so that after some iterations the combination of labels is

expected to converge to the one for which the observed data is most likely, and the final

training-set is obtained.

The counterpart strategy of learning classifiers from negative examples plus unlabeled

data (or simply, NU data) is also effective. That is, we can easily find obvious non-replica

cases, and use EM algorithms in order to improve the training-set with non-obvious

positive examples. We show that classifiers learned from PU and NU data lead to com-

plementary results in the sense that the errors associated with the classifiers are not cor-

related. Thus, we propose effective approaches to combine the predictions performed by

the two classifiers in order to further improve detection performance.

Contributions and findings The major contributions of this paper are:

• We propose algorithms to detect website replicas, which cause a significant number of

duplicate URLs in the collection crawled by web search engines. We combine

classifiers built from PU and NU data by exploiting a central concept of Economics—

Pareto Efficiency (Palda 2011)—which greatly reduces the number of duplicate URLs.

Our experiments reveal a 19% reduction in the number of duplicate URLs, after

removing all website replicas, with a false-positive rate of 0.005.5

• Given the large number of unlabeled examples in our learning scenarios, the EM

process may encompass millions of label-transition operations. Each transition

operation modifies the training-set and a new classifier must be built. In order to

keep execution times practical, we employ rule-based classifiers coupled with strategies

to maintain it up-to-date incrementally until the EM process converges to the final

training-set.

• A crucial issue of EM algorithms concerns the decision of whether or not performing

the label-transition operation. We make use of an entropy-minimization approach (-

Davis et al. 2012) to find the optimal threshold for each unlabeled example instead of

using a single threshold which is applied to all unlabeled examples indistinctly. We

extended this approach so that it is able to deal with both PU and NU data

simultaneously.

4 An Expectation-Maximization algorithm is a general approach to iterative computation of maximum-
likelihood estimates when the observations can be viewed as incomplete data.
5 These numbers were obtained by considering only replica candidates, and not all possible pairs of
websites in the collection.

Inf Retrieval J (2018) 21:253–272 255

123

• Our classifiers employ low-cost features that do not fetch page content, and are learned

on a demand-driven basis (i.e., a specific classifier is produced for each replica

candidate). As a result, learning a classifier for a given candidate takes no more than

0.1 s, enabling the classifiers to be used at crawling time.

• We collected a large dataset comprising ? 30 millions URLs associated with

? 170,000 replica candidates. We expended significant time, effort and resources to

obtain such dataset, which shall be made available at publication time.

• We evaluate the interplay between our algorithms which eliminate inter-site duplicate

URLs by removing website replicas, and existing algorithms that eliminate intra-site

duplicate URLs (Dasgupta et al. 2008). Specifically, applying these algorithms in

conjunction leads to a more complete solution, enabling a reduction of ? 21% in the

size of the collection.

2 Related work

Many studies focused on characterizing and alleviating the large amount of duplicate data

in the Web. Initial efforts have addressed the problem of detecting near duplicated doc-

uments, where the content of documents are compared, for example, by using shingles, that

is, sets of contiguous terms of the documents (Ye et al. 2008).

Although very efficient, the use of textual content to detect duplicates at crawling time

is very expensive. As a consequence, previous works have attempted to minimize the use

of page content during the duplicate detection. In particular, Bharat and Broder (1999)

presented a two-stage solution, where textual content is used only in the second phase.

Specifically, replica candidates are first selected by syntactically comparing the URLs

found in each server in order to determine if they are similar to some extent. In a second

phase, each candidate is tested to determine if the corresponding websites are indeed

replicas. This test consists on collecting samples of pages from each server to verify the

occurrence of pages in common.

Another alternative for eliminating duplicate content is to detect DUST (Different URLs

with Similar Text) pages. In this case, the problem is formulated as detecting duplicate

content by examining only URLs. The first algorithm to adopt this strategy was Dust-

Buster (Bar-Yossef et al. 2009), which removes DUST by finding rewrite rules able to

transform a given URL into another URL likely to have similar content. Rules consist of

sub-string substitutions learned from crawl logs or web logs. The work in Dasgupta et al.

(2008) present another formalization of URL rewrite rules which is able to capture all

previous rules found by DustBuster, and also more general patterns, such as the presence of

irrelevant sub-strings, complex URL token transpositions and session-id parameters.

Experiments showed a 60% reduction in the number of duplicate URLs.

Agarwal et al. (2009) extended the work in Dasgupta et al. (2008) to derive rules from

samples of URLs, thus reducing the cost to infer such rules. Further, they used decision

trees to learn a small number of higher precision rules to minimize the number of rules

deployed to the crawler. They evaluated their algorithm in a set of 8 million URLs,

achieving a 42% reduction using the top 9% most precise rules. Koppula et al. (2010)

implemented their algorithm using a distributed framework and extended the URL and rule

representations to include two additional patterns. They evaluated the method with 3

billion URLs.

256 Inf Retrieval J (2018) 21:253–272

123

Lei et al. (2010) proposed an algorithm in which a URL pattern tree is built from

clusters of duplicated URLs. The algorithm was evaluated in a collection with 70 million

URLs, achieving twice the reduction of DUST reported in Dasgupta et al. (2008), using

46% of the rules and consuming half of the learning time. Rodrigues et al. (2013) pre-

sented a multi-sequence alignment algorithm to derive rules to eliminate DUST. As with

the previous algorithm, sample URLs are clustered by comparing their content (i.e., dup-

clusters). They first align all the URLs in the dup-clusters obtaining a consensus pattern for

each dup-cluster. Rules are then derived from these patterns, leading to improvements up

to 54% in terms of reduction of duplicate URLs.

Bharat et al. (2000) introduced a new problem, the detection of near-duplicated web-

sites without using page content. The detection is performed by computing only features

extracted at crawl time, normally derived from the URL strings and linkage structure. In

particular, the authors present algorithms for replica detection based on evidence derived

from URL strings, IP addresses and link information.

Carvalho et al. (2007) extended Bharat et al. (2000) by taking advantage of the content

of Web pages in a very efficient way. In particular, they propose an algorithm for replica

detection called NormPaths, in which the norm of a page is used as a signature for its

content. Using the norm implies no additional computation cost since that value was

already calculated as a byproduct of the page indexing. As a consequence, NormPaths

provides gains up to 47% in terms of precision when compared with Bharat et al. (2000).

This algorithm is used as a baseline in this work and is described in Sect. 4.1.3.

Liu et al. (2003) study the problem of building text classifiers using positive and

unlabeled examples. They propose an approach to solving the problem based on a biased

formulation of SVM, and show experimentally that it is more accurate than the existing

techniques. This algorithm is also used as a baseline in this work and is described in

Sect. 4.1.3.

Cho et al. (2000) are concerned with a slightly different problem, which is to find

duplicated web collections instead of site replicas. Note that finding duplicated collections

includes finding replicated sites or fragments of replicated sites. Their approach first

clusters pages with similar content and then expands these clusters such that they represent

whole collections. The main disadvantage of this strategy is that it requires calculating the

similarity between pages based on their content, an expensive task.

In this work, we address the problem of detecting website replicas at crawl time without

using page content, as in Bharat et al. (2000), Carvalho et al. (2007), Dasgupta et al.

(2008). The main difference between this work and the aforementioned ones is the use of

classifiers to combine a diverse set of replication features. Expectation-Maximization

algorithms are used in order to learn classifiers avoiding any manual labeling effort.

3 Algorithms

In this section, we present classification algorithms for detecting replica cases from a set of

replica candidates. In this case, we are given as input a training-set (denoted as D) which

consists of examples of the form hp; ‘i, where p is a set of features associated with a pair of

websites and ‘ 2 f�;�g is a binary variable that specifies whether or not the corre-

sponding websites should be considered as replicas. The training-set is used to produce a

classifier that relates patterns in p to the value of ‘. The classifier is used to predict which

pairs of websites in the test-set (denoted as T) are replicas.

Inf Retrieval J (2018) 21:253–272 257

123

3.1 Features

In this section, we present the features needed to capture the similarity between websites,

which are used as evidence of possible replication:

• Edit Distance (ndist): Given a pair of websites A and B and the corresponding

hostnames uA and uB, the edit distance is given as the number of removal, insertion and

modification operations that are necessary to transform uA into uB.

• Hostname Matching (nmatch): Segments of the hostname are treated as terms, so that

each hostname is represented as a term vector. The weight of term t is given by:

wðtÞ ¼ logðlenðtÞÞ
1 þ logðdf ðtÞÞ � ð1Þ

where len(t) is the number of characters in t, and df(t) is the number of hostnames

containing t.

The similarity between a pair of websites A and B is given by cosða; bÞ, where a and

b are the term vectors associated with the corresponding hostnames.

• 4 Octets (ip4): Identical or highly similar IP addresses are indicative of two hosts on the

same server or subnet, which may imply replication. IP addresses are grouped

according to their octets, so that similar addresses are placed together in the same

group. Given a pair of websites A and B, the value of this feature is given by:

ipðA;BÞ ¼
1

jGj � 1
if A and B are in the same group G

0 otherwise

8
<

:
ð2Þ

• 3 Octets (ip3): Same as the above feature, but using only the first three octets of the IP

address.

• Full Path Matching (fullpath): URLs within a website are treated as terms, so that a

website is represented as a term vector. The weight of term t is given by:

wðtÞ ¼ 1 þ log

�
maxdf

df ðtÞ

�

ð3Þ

where maxdf is the maximum value of df(t) over all t.

Most of the above features were proposed in Bharat et al. (2000), but there may exist

many other features that we could exploit to build our classifiers. However, we restrict our

attention to the above features because: (1) the amount of computation needed to compute

them does not compromise the practicality of the search engine, mainly because the

necessary information is already stored in the index, and (2) they are not based on the

content of the pages, and thus can be used at crawling time. Feature values are first

discretized (Fayyad and Irani 1993) and then assigned to intervals.

3.2 Demand-driven classifiers

Our classifier is denoted as R and is composed of a set of classification rules that are

extracted from the training-set D. Rule-based classifiers were chosen because they can be

built efficiently (Agrawal et al. 1993; Veloso et al. 2006), and as will be discussed in

Sect. 3.3, classification rules can be updated incrementally in an efficient way. The

258 Inf Retrieval J (2018) 21:253–272

123

definitions presented in this section were first presented in Davis et al. (2012) in another

context and repeated here for completeness and reading understanding.

Definition 3.1 A classification rule has the form fX ! ‘g, where the antecedent X is a

set of features, and the consequent ‘ 2 f�;�g indicates if the prediction is positive or

negative. The cardinality of rule fX ! ‘g is given by the number of features in the

antecedent, that is jXj. The support of X is denoted as rðXÞ, and is the number of

examples in D having X as a subset. The confidence of rule fX ! ‘g is denoted as

hðX ! ‘Þ, and is the conditional probability of c given the features in X , that is,

hðX ! ‘Þ ¼ rðX [‘Þ
rðXÞ �

Specifically, our classifier R is represented as a pool of entries hkey; propertiesi, where

key ¼ fX ; ‘g and properties ¼ frðXÞ; rðX [‘Þ; hðX ! ‘Þg. Each entry in the pool cor-

responds to a rule, and the key is used to facilitate fast access to rule properties. Once the

classifier R is extracted from D, rules are collectively used to approximate the likelihood

of an arbitrary example being positive (�) or negative (�). Basically, R is interpreted as a

poll, in which each rule fX ! ‘g 2 R is a vote given by X for � or �. Given an example

x, a rule fX ! ‘g is only considered a valid vote if it is applicable to x.

Definition 3.2 A rule fX ! ‘g 2 R is said to be applicable to example x if X � x, that

is, if all features in X are in example x.

We denote as Rx the set of rules in R that are applicable to example x. Thus, only and

all the rules in Rx are considered as valid votes when classifying x. Further, we denote as

R‘
x the subset of Rx containing only rules predicting ‘. Votes in R‘

x have different weights,

depending on the confidence of the corresponding rules. Weighted votes for ‘ are averaged,

giving the score for ‘ with regard to x:

sðx; ‘Þ ¼ 1

jR‘
xj
XjR

‘
xj

i¼1

hðX ! ‘ÞðiÞ; with ‘ 2 f�;�g ð4Þ

where hðX ! ‘ÞðiÞ is the ith rule in R‘
x. Finally, the likelihood of x being a negative

example is given by the normalized score:

aðx;�Þ ¼ sðx;�Þ
sðx;�Þ þ sðx;�Þ ð5Þ

In order to avoid the huge search space for rules, our rule extraction approach projects

the training-set according to the example being processed (i.e., a pairs of websites). More

specifically, rule extraction is delayed until a candidate x is given for classification. Then,

features in x are used as a filter that configures the training-set D so that just rules that are

applicable to x can be extracted.

Table 1 illustrates this filter process, which produces a projected training-set, denoted as

Dx, containing only features that are present in x.

We now present Algorithm 1, which summarizes the main steps discussed in this

section. The algorithm receives as input the training-set D, and an arbitrary pair of websites

x (i.e., a replica candidate). The algorithm learns classifier Rx and returns aðx;�Þ.

Inf Retrieval J (2018) 21:253–272 259

123

Algorithm 1 Learning Classifiers.
Given:

D: the training set
x: an arbitrary pair of websites
1. project D according to x, resulting in Dx

2. extract rules {X → �} from Dx, resulting in Rx

3. calculate α(x,) according to Equation (5)

3.3 Expectation-Maximization (EM)

Learning classifiers is subject to a data acquisition bottleneck, since the creation of a

training-set requires human annotators to manually inspect pairs of websites. The cost

associated with this annotation process may render vast amounts of examples unfeasible. In

many cases, however, the acquisition of some labeled examples may be effortless.

Specifically, we may consider WWW and non-WWW versions, as well as .com and .net

variations as positive examples. Similarly, negative examples come from pairs of websites

that do not share any content or path. However, learning classifiers directly from such

examples would lead to poor replica detection performance, since there may be many

false-positives and false-negatives in the training-set. In here, we employ EM algo-

rithms (Davis et al. 2012) in order to enhance the classifiers. However, in contrast to Davis

et al. (2012) where only PU data are used, we assume two scenarios:

1. PU data: the training-set D is composed of a small set of positive examples plus a large

amount of unlabeled examples.

Table 1 Illustrative example.
Training-set D ¼ fy1; y2; . . .; y8g,
and instance x. Also, projected
training-set Dx

p ‘

ip4 ip3 ndist nmatch fullpath

y1 [0.1–0.3] [0.3–0.5] [8–10] [0.2–0.5] [0.3–0.5] �
y2 [0.1–0.3] [0.1–0.3] [10–14] [0.1–0.2] [0.1–0.3] �
y3 [0.5–0.8] [0.1–0.3] [8–10] [0.1–0.2] [0.1–0.3] �
y4 [0.1–0.3] [0.5–0.8] [8–10] [0.2–0.5] [0.3–0.5] �
y5 [0.3–0.5] [0.5–0.8] [5–8] [0.5–0.7] [0.3–0.5] �
y6 [0.1–0.3] [0.3–0.5] [8–10] [0.5–0.7] [0.3–0.5] �
y7 [0.1–0.3] [0.1–0.3] [10–14] [0.1–0.2] [0.3–0.5] �
y8 [0.3–0.5] [0.5–0.8] [5–8] [0.5–0.7] [0.3–0.5] �
x [0.1–0.3] [0.1–0.3] [8–10] [0.2–0.5] [0.1–0.3] ?

#
y1 [0.1–0.3] – [8–10] [0.2–0.5] – �
y2 [0.1–0.3] [0.1–0.3] – – [0.1–0.3] �
y3 – [0.1–0.3] [1–2] – [0.1–0.3] �
y4 [0.1–0.3] – – [0.2–0.5] – �
y5 – – – – – �
y6 [0.1–0.3] – – – – �
y7 [0.1–0.3] [0.1–0.3] – – – �
y8 – – – – – �

260 Inf Retrieval J (2018) 21:253–272

123

2. NU data: the training-set D is composed of a small set of negative examples plus a

large amount of unlabeled examples.

In both scenarios, unlabeled examples are initially treated either as negative or positive

ones, so that classifiers can be built from D. Therefore, D may contain false-negatives or

false-positives. EM algorithms employ a classifier R which assigns to each example x 2 D
a probability aðx;�Þ of being negative, as shown in Eq. (5). Then, label-transition oper-

ations x�!� (or x�!�) are performed, so that the training-set D becomes fðD � x�Þ [x�g
(or fðD � x�Þ [x�g). In the end of the EM process, it is expected that the assigned labels

converge to the combination for which the data is most likely.

Another difference from Davis et al. (2012) is that we allow only uni-directional

transitions, in order to ensure faster convergence. That is, in the PU scenario only oper-

ations x�!� are allowed, while in the NU scenario only operations x�!� are allowed. In

both cases, a crucial issue that affects the effectiveness of the EM algorithms concerns the

decision of whether or not performing the label-transition operation.

Best entropy cut The algorithm proposed in Davis et al. (2012) finds the threshold axmin
that provides the best entropy cut in the probability space induced by Dx. Specifically,

given examples fy1; y2; . . .; ykg in Dx and considering ‘yi 2 f�;�g to be the label asso-

ciated with example yi, the algorithm first calculates aðyi;�Þ for each yi 2 Dx, and then the

values for aðyi;�Þ are sorted in ascending order. Ideally, there is a cut axmin such that:

‘yi ¼
� if aðyi;�Þ� axmin
� otherwise

�

However, there are more difficult cases for which it is not possible to obtain a perfect

separation in the probability space. Thus, the algorithm finds the best cut (or separation).

The basic idea is that any value for axmin induces two partitions over the space of values for

aðyi;�Þ (i.e., one partition with values that are lower than axmin, and another partition with

values that are higher than axmin). The algorithm sets axmin to the value that minimizes the

entropy of these two partitions. Once axmin is calculated, it can be used to activate a label-

transition operation. Next we present the basic definitions in order to detail the algorithm.

Definition 3.3 Consider N�ðDxÞ the number of examples in Dx for which ‘y ¼ �.

Similarly, consider N�ðDxÞ the number of examples in Dx for which ‘y ¼ �. Consider

O ¼ f. . .; h‘yi ; aðyi;�Þi; . . .; h‘yj ; aðyj;�Þi, . . .g a list such that aðyi;�Þ� aðyj;�Þ. Also,

let f be a candidate value for axmin. In this case, Of ð� Þ is a sub-list of O, that is,

Of ð� Þ ¼ f. . .; h‘y; aðy;�Þi; . . .g, such that for all elements in Of ð� Þ, aðy;�Þ� f . Sim-

ilarly, Of ð[Þ ¼ f. . .;\‘y; aðy;�Þ[; . . .g, such that for all elements in Of ð[Þ,
aðy;�Þ[f . That is, Of ð� Þ and Of ð[Þ are partitions of O induced by f.

The algorithm works as follows. First, it calculates the entropy in O, as shown in

Eq. (6). Second, it calculates the sum of the entropies in each partition induced by f,

according to Eq. (7). Third, it sets axmin to the value of f that minimizes EðOÞ � EðOf Þ.

EðOÞ ¼ � N �ðOÞ
jOj � log

N �ðOÞ
jOj

� �

� N �ðOÞ
jOj � log

N �ðOÞ
jOj

� �

ð6Þ

EðOf Þ ¼
jOf ð� Þj

jOj � EðOf ð� ÞÞ þ jOf ð[Þj
jOj � EðOf ð[ÞÞ ð7Þ

Inf Retrieval J (2018) 21:253–272 261

123

Thus, instead of using a single threshold value, which would be applied to all examples

indistinctly, we use the best entropy cut, which is a specific axmin threshold for each example

x 2 D.

Incremental updates A particular challenge is the algorithm performs several label

transition operations during the EM process, and each transition operation modifies D and

invalidates parts of the current classifier R, which must be properly updated. Fortunately,

R can be maintained up-to-date incrementally, so that the updated classifier is exactly the

same one that would be obtained by re-constructing it from scratch. According to Davis

et al. (2012), all rules fX ! cg 2 R that have to be updated due to operation x�!� (or

x�!�) are those for which X � x. By definition, Rx contains only and all such rules.

Updating h values is straightforward. For operation x�!�, it suffices to iterate on Rx,

incrementing rðX [�Þ and decrementing rðX [�Þ. A similar procedure is necessary for

operation x�!�. The corresponding values for hðX ! �Þ and hðX ! �Þ are simply

obtained by computing
rðX [�Þ
rðXÞ and

rðX [�Þ
rðXÞ , respectively.

Algorithm 2 summarizes the main steps discussed in this section. The algorithm

receives as input an initial training-set which is updated iteratively. At the end of the EM

process, the algorithm returns the final training-set D. Non-obvious replica cases are found

from obvious replica or non-replica cases.

Algorithm 2 Expectation-Maximization.
Given:

D: initial training-set with obvious cases
1. for each x ∈ D
2. learn classifier Rx from D using Algorithm 1
3. calculate αx

min
Expectation step:

4. if (PU data)
perform operation x → if α(x,) ≤ αx

min
5. else if (NU data)

perform operation x → if α(x,) > αx
min

6. update D accordingly
Maximization step:

7. update Rx ⊆ R and α(x,)

Convergence Since we assume that label-transition operations are uni-directional, that

is, a specific training example x may fall into only one of the two label-transition opera-

tions (either, x�!� or x�!�), then at some point of the EM process the labels associated

with the training examples will not change anymore. Since the training examples did not

have their labels changed, the classifier remains unchanged, and therefore it will not

change the labels of other training examples in the next iteration. At this point, conver-

gence is clearly achieved.

3.4 Replica detection

Algorithm 3 obtains the replica candidates in descending order. Once the final training-set

D is obtained using our EM algorithm, it is used to build classifier R which is used to

detect website replicas in the test set. Let aðx;�Þ ¼ 1 � aðx;�Þ be the likelihood of x 2 T
being a replica. Replica candidates are sorted in descending order according to aðx;�Þ, so

262 Inf Retrieval J (2018) 21:253–272

123

that the final ranking is an ordered list fx1; x2; . . .; xkg such that there is no pair ðxi; xjÞ for

which aðxi;�Þ[aðxj;�Þ, given that i[j. Finally, the first n candidates are predicted as

being replicas.

Algorithm 3 Replica Detection.
Given:

D: the training-set
T : the test-set
n: the number of replicas
1. enhance D using Algorithm 2
2. for each x ∈ T
3. learn classifier Rx from D using Algorithm 1
4. calculate α(x,)
5. sort candidates in T in descending order according to α(x,),
and pick the first n candidates

3.5 Pareto-efficient aggregation

We may combine classifiers built from PU and NU data into a stronger one. Our aggre-

gation approach is based on a basic concept from Economics called Pareto Effi-

ciency (Palda 2011). Specifically, aggregation is said to be efficient if privileging the

predictions of a specific classifier would harm the predictions of the other. Pareto Effi-

ciency is related to the notion of dominance in the space induced by the predictions of both

classifiers.

Definition 3.4 Let aPðx;�Þ be the likelihood of x being replica according to the classifier

built from PU data. Also, let aNðx;�Þ be the likelihood of x being replica according to the

classifier built from NU data.

Each replica candidate x 2 T is placed in a bi-dimensional space, with coordinates

aPðx;�Þ and aNðx;�Þ. Candidate a is said to dominate candidate b iff both of the following

conditions are hold:

• aPða;�Þ	 aPðb;�Þ and aNða;�Þ	 aNðb;�Þ
• aPða;�Þ[aPðb;�Þ or aNða;�Þ[aNðb;�Þ
Thus, the dominance operator relates two candidates so that the result of the operation has

two possibilities: (1) one candidate dominates the other or (2) both candidates do not

dominate each other.

Definition 3.5 The Pareto frontier P is composed of all replica candidates that are not

dominated by any other candidate. Formally, the Pareto frontier is a list of k replica

candidates P ¼ fx1; x2; . . .; xkg such that there is no pair ðxi; xjÞ for which xi dominates xj.

Figure 1 illustrates the case candidate a dominates candidate b. The figure also illus-

trates the Pareto frontier for a set of replica candidates x 2 T with coordinates aPðx;�Þ and

aNðx;�Þ. The Pareto frontier contains either replica candidates that excel in one classifier,

or candidates with a proper balance between both classifiers. The final step involves sorting

these candidates according to the likelihood of being replica.

Definition 3.6 Let dom(x) return the number of candidates that are dominated by can-

didate x. The final ranking is an ordered list fx1; x2; . . .; xkg such that there is no pair ðxi; xjÞ
for which domðxiÞ[domðxjÞ, given that i[j. That is, most dominant candidates appear

first in the ranking.

Inf Retrieval J (2018) 21:253–272 263

123

Algorithm 4 presents the main steps discussed in this section It receives as input the

values of aPðx;�Þ and aNðx;�Þ for each replica candidate x 2 T , and it returns the n most

dominant candidates, which are predicted as being replicas.

Algorithm 4 Pareto-Efficient Aggregation.
Given:
The αP (x,) × αN (x,) space obtained using Algorithm 3
n: the number of replicas
1. find the Pareto frontier P = {x1, x2, . . . , xk}
2. for each xi ∈ P
3. calculate dom(xi)
4. sort candidates in P in descending order according to dom(x),
and pick the first n candidates (assuming k ≤ n)

4 Experimental evaluation

In this section, we assess the effectiveness of our proposed approach. In Sect. 4.1, we

describe the evaluation methodology, dataset, metrics, baselines and upper bound used in

our investigations. In Sect. 4.2, we present experimental results for the evaluation of the

proposed algorithms in terms of reduction ratio, true-positive and false-positive rates,

precision/recall, detection performance, and execution time.

4.1 Experimental setup

4.1.1 Evaluation methodology and dataset characterization

We crawled the Web from September to October, 2010, resulting in a large collection of

þ250 million URLs. Then, we randomly selected þ30 million URLs with no restrictions

regarding content duplication or quality. Thus, our collection is a reliable representation of

the actual Web. The resulting dataset has 583,411 websites, and thus the number of

possible pairs is huge (about 2 � 1011), precluding any manual or semi-automatic labeling.

Once we are interested in identifying replicas, we separate replica candidates and discarded

obvious cases of non-replicas, as discussed next.

Dup-clusters We produced fingerprints of the content of URLs, and then hashed URLs

with identical fingerprints into the same (dup-)cluster (Broder et al. 1997), as shown in

Fig. 1 Neither b or c dominates
each other, but a dominates
b. Not dominated points form the
Pareto frontier

264 Inf Retrieval J (2018) 21:253–272

123

Fig. 2. In the figure, each FP i is a content fingerprint, and each U j is a URL. Near-

duplicate URLs are those within the same dup-cluster (i.e., identical fingerprints). URLs in

a dup-cluster and within the same website are referred to as intra-site duplicate URLs (e.g,

U A and U B), while those within different websites are referred to as inter-site duplicate

URLs (e.g., U A and U C). Different websites within the same dup-cluster are treated as

replica candidates. Different websites not having any dup-cluster in common are discarded

as obvious non-replicas.

Specifically, there are 172,004 websites sharing at least one fingerprint with other

website. By summing the number of pairs of websites within each cluster, we obtained 111

million replica candidates. From this set of candidates we separate approximately 50,000

obvious replica cases to serve as positive examples (WWW and non-WWW versions, as

well as small segment variations in the hostname, such as .com, .org, .gov, .edu), and

800,000 pairs of websites not sharing any dup-clusters to serve as negative examples. The

size of a dup-cluster is given by the number of URLs in it. Figure 3 (left) shows the dup-

cluster size distribution. Clearly, many dup-clusters contain few URLs, and few dup-

clusters contain many thousands of URLs. Figure 3 (middle) shows the number of dup-

clusters in which the websites appear. Again, few websites appear in many clusters, and

many websites appear in few clusters. Figure 3 (right) shows the correlation between the

number of intra-site and inter-site duplicate URLs per website. The correlation curve

shows that a three-fold increase in the number of inter-site duplicate URLs gives a ten-fold

increase in the number of intra-site duplicate URLs.

It is hard to define replicas and non-replicas. Complicated cases include: (1) many

replicated websites have dynamic content, such that each time the crawler retrieves a

dynamic page, its content may be different, and (2) many websites may have pages with

the same or similar content even though they are not replicas (e.g., websites that are related

to each other, such as a central site and its affiliates). In order to produce labels that are

needed to evaluate our classifiers,6 we randomly selected a suitable sample of 1,600,000

website pairs from the 111 million possible replica candidates, and after manual inspection,

6853 pairs were labeled as replicas, and the remaining pairs as non-replicas.7 From the

6853 replicas, 354 are WWW and non-WWW versions or simple hostname variations (e.g.,

.com, .org, .gov, .edu), but the remaining 6499 replicas are non-obvious cases, involving

websites with completely different hostnames. There are 49,636 websites within the

1,600,000 pairs, and 3765 of them appear in at least one of the 6853 replica cases.

Figure 4 (left) shows the size distribution for replicated and non-replicated websites.

Replicated websites have an average of 224 URLs, while non-replicated websites have an

average of 135 URLs.

Fig. 2 Intra-site duplicate URLs
(e.g, UA and UB) and inter-site
duplicate URLs (e.g., UA and
UC)

6 These labels are only used to evaluate the classifiers, and are not used to learn them.
7 Due to the large number of candidates, we cannot assure the non-existence of false-negatives, but we
assure the non-existence of false-positives.

Inf Retrieval J (2018) 21:253–272 265

123

Figure 4 (middle) shows the fraction of websites appearing in at most x replica cases.

As can be seen, most of the 3765 replicated websites appear in few replica cases, but some

of them appear in more than 100 replica cases. Eliminating all 3765 replicated websites

would remove 12.1% of near-duplicate content (843,526 URLs would be removed, from a

total of 6,948,501 near-duplicate URLs). It is worth noting that we have considered all

URLs found within a same cluster as a near-duplicate URL, and thus the reported reduction

ratio is likely to be an overestimation.

Figure 4 (right) shows the similarity distribution (fraction of pairs having similarity

above x) and replica concentration (fraction of pairs having similarity above x that are

replicas). The similarity between websites A and B is given in terms of the number of dup-

clusters containing both websites. Specifically, let CA be the set of dup-clusters containing

website A. In this case, the similarity between A and B is given as the Jaccard Coefficient
CA \ CB

CA [CB

. While highly similar websites are likely to be replicas, similarity solely is not

enough to completely separate replicas from non-replicas. Some replicas involve websites

that are not highly similar.

4.1.2 Metrics

We conducted a five-fold cross validation in our experiments. The dataset with 1,600,000

candidates was arranged into five folds, including training and test In addition to the four

folds, the training-set also contains 50,000 positive examples (PU data), or 800,000 neg-

ative examples (NU data). It is worth noting that although we have the correct labels for all

examples in the training-set, the only labels we used for learning our classifiers are those

obtained from obvious replicas and non-replicas. The results reported are the average of the

five runs, and we used the Wilcoxon signed-rank test (Wilcoxon 1945) for determining if

the difference in performance was statistically meaningful. In all cases, we only drawn

conclusions from results that were significant in at least 5% level. All experiments were

run on a Linux-based dedicated PC with Core I7 and 4 GB RAM.

Performance is given in terms of the following metrics:

• Precision: given as the fraction of replicas that are correctly detected.

• Recall or True Positive Rate (TPR): given as the fraction of replicas that are removed

from the collection.

• False Positive Rate (FPR): given as the fraction of non-replicas that are removed from

the collection.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10K 100K

du

p-
cl

us
te

rs

Dup-cluster size

 1

 10

 100

 1000

 1 10 100 1000 10K 100K 1M

du

p-
cl

us
te

rs

Websites

 1

 10

 100

 1000

 1 10 100 1000

in

te
r-

si
te

 d
up

lic
at

e
U

R
Ls

intra-site duplicate URLs

Fig. 3 Left—dup-cluster size distribution. Middle—distribution of websites per dup-cluster. Right—
correlation between the number of intra-site and inter-site duplicate URLs per website

266 Inf Retrieval J (2018) 21:253–272

123

• Reduction Ratio (RR): let U be the set of duplicate URLs in the original collection.

Also, let U
 be the subset of U which is obtained after removing website replicas. The

reduction ratio is given as
jUj � jU
j

jUj �

• Replica Detection Rate (RDR); let I be a list of k þ 1 replica candidates, where exactly

one pair is known to be a replica and the remaining k pairs are randomly selected. Let i

be the position of the replica after sorting all k þ 1 pairs in descending order of aðx;�Þ.
This process is repeated n times, and the replica detection rate is given as 1

n

Pn 1
i
�

4.1.3 Baselines and upper bound

We considered two algorithms in order to provide baseline comparison:

• NormPaths algorithm (Carvalho et al. 2007): this algorithm is devised to detect and

remove website replicas. NormPaths computes website similarities by representing

pages using their paths (i.e., URL without access method and host name) and norms.

Specifically, it creates a tuple hpath; signaturei for each URL in the website, and for

each tuple it creates an inverted list L composed of all websites containing the tuple.

The similarity between a pair of websites A and B is given by Eq. (8), where |L| is the

number of websites in L, and S is the set of all lists L. Replica candidates are sorted in

descending order according to sim(A, B), and the first n candidates are considered as

being replicas.

simðA;BÞ ¼
X 1

jLj ; 8L 2 SjA 2 L and B 2 L ð8Þ

• Biased SVM (Liu et al. 2003) (or simply B-SVM): this algorithm is representative of

the state-of-the-art semi-supervised learning algorithms under PU data. B-SVM uses a

soft-margin SVM as the underlying classifier, which is re-constructed from scratch

after each EM iteration. It employs a single transition threshold for the entire unlabeled

dataset.

We considered as upper bound performance the result obtained using classifiers built

from the gold-standard training-set, that is, the training-set with the correct labels. The

corresponding replica detection rate will be contrasted against the detection rate obtained

using classifiers built from the training-set with labels produced by our EM algorithms.

 1

 10

 100

 1000

 10000

 10 100 1000

w

eb
si

te
s

Website size

3,765 replicated websites
Non-replicated websites

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.1 1 10 100 1000

Fr
ac

tio
n

of
 w

eb
si

te
s

replica cases

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1
Jaccard Coefficient

S
im

ila
rit

y
D

is
tri

bu
tio

n
(Y

)

R
ep

lic
a

C
on

ce
nt

ra
tio

n
(Y

2)

Y
Y2

Fig. 4 (Color online) Left—website size distribution for replicated and non-replicated websites. Middle—
fraction of websites appearing in at most x replica cases. Right—similarity distribution and replica
concentration

Inf Retrieval J (2018) 21:253–272 267

123

4.2 Experimental results

In this section, we assess the effectiveness of our algorithms proposed in Sect. 3. In

particular, we aim to answer the following research questions:

• Q1. How do existing website replica detection algorithms perform at crawl time?

• Q2. Can we improve the performance of existing website replica detection algorithms

using our EM approach?

• Q3. What is the impact of using classifiers to combine a diverse set of replication

features?

• Q4. What is the efficiency of our proposed EM strategy?

In the remainder of this section, Sect. 4.2.1 addresses questions Q1 and Q2. Questions Q3

and Q4 are addressed in Sects. 4.2.2 and 4.2.3, respectively.

4.2.1 Website replica detection

In order to answer questions Q1 and Q2, the first set of experiments concerns evaluating

the features proposed in Sect. 3.1. Since it would be prohibitive to conduct a study

involving all possible combinations of features, we analyze only some combinations of

them. First, we applied each feature in isolation in order to determine its individual

performance. Second, because some features may be more useful when not taken in

isolation, we studied the impact of each of them by removing it from the feature-set to be

used.

Table 2 shows the performance numbers, in terms of AUC (Area Under the Curve),

associated with each feature. We consider two scenarios: (1) the feature is used in isolation

to represent replica candidates, and (2) all features are used to represent replica candidates,

except the one we want to investigate. When taken in isolation, the best features are ndist

and fullpath. The worst features considering the PU data are ip3 and ip4, while nmatch

performs poorly with NU data.

In most of the cases, discarding only one feature results in virtually the same perfor-

mance as when using all available features. This suggests that some of the features are

redundant. In fact, such redundancy is clear for some sets of features, such as ip3 and ip4

(which refer to the IP address), and nmatch and ndist (which refer to the URL string).

Discarding the fullpath feature results in the highest performance decrease.

Figure 5 (left) shows the ROC analysis for the evaluation of our classifiers. The

NormPaths algorithm offers the worst trade-off between TPR and FPR, achieving a

Table 2 Performance of differ-
ent feature combinations

Features AUC (area under the TPR/FPR curve)

In isolation All except

PU NU PU NU

– 0.9908 0.9688 0.9908 0.9688

ip3 0.5132 0.5116 0.9706 0.9411

ip4 0.5288 0.5283 0.9701 0.9431

nmatch 0.6565 0.2312 0.9646 0.9391

ndist 0.7716 0.6528 0.9631 0.9272

fullpath 0.7187 0.6274 0.9550 0.9206

268 Inf Retrieval J (2018) 21:253–272

123

performance number of 0.9415 in terms of AUC. Classifiers built using PU and NU data

achieve performance numbers of 0.9908 and 0.9688, respectively. Combining both clas-

sifiers using the proposed Pareto-Efficient aggregation algorithm improves the perfor-

mance to 0.9950. The B-SVM algorithm shows competitive performance, providing

numbers as high as 0.9824 in terms of AUC. In summary, ROC analysis reveals that the

area under the curve is higher than 0.98, indicating that our algorithms quickly detect all

website replicas in the collection.

Figure 5 (middle) shows the precision/recall analysis for the evaluation of our classi-

fiers. Again, the NormPaths algorithm offers the worst numbers. Also, classifiers built

using PU data greatly outperform those built from NU data, as well as B-SVM. Combining

classifiers built from PU and NU data, using the proposed Pareto-Efficient aggregation

algorithm, shows a slightly superior performance.

Figure 5 (right) shows the trade-off between reduction ratio and false-positive rate. For

this analysis, it is important to consider the reduction ratio obtained at the cost of very low

FPR values. Thus, the figure shows the trade-off considering FPR values of at most 0.005.

At this scale, the performance of the competing algorithms differ greatly. Specifically,

NormPaths is the worst performer, providing a 14% reduction with a FPR of 0.005. At the

same precision level, classifiers learned from PU and NU data achieved a reduction of 17

and 18%, respectively. Combining the predictions of both classifiers leads to a reduction of

19%, which is extremely close to the upper bound performance. The gains over the

baseline are more impressive if we consider lower FPR scales. For instance, the best

performer (PU þ NU) achieved a reduction of 12% with FPR of 0.001, while NormPaths

achieved a reduction of only 7% at this precision scale.

Table 3 shows the best reduction ratio obtained by our site-level classifiers (PU þ NU),

with different FPR values. The table also shows the reduction ratio obtained by an URL-

level algorithm (Dasgupta et al. 2008). There are 6,948,501 duplicate URLs in the col-

lection: 5,416,003 intra-site duplicates and 843,526 inter-site duplicates. Further, 409,771

URLs occur as intra and inter-site duplicates simultaneously. We considered two config-

urations of the URL-level algorithm: (1) without rule-error (� ¼ 0:0) which eliminated

about 4% of duplicates, and (2) with a high rule-error (� ¼ 0:1) which eliminated ? 23%

of the duplicates. The reduction provided by our classifiers depends on the FPR allowed,

and varies from 7.9% (with no false-positives) to ? 19% (with FPR of 0.005). Finally,

combining both URL elimination strategies provides a reduction ratio greater than 21%

with � ¼ 0:0. The reduction ratio increases to 37% for � ¼ 0:1.

In summary, removing replicas reduces the size of the collection by 19% with a false-

positive rate of only 0.005. Our algorithms can be used in conjunction with URL-level

algorithms (Dasgupta et al. 2008), and in this case the reduction ratio increases to more

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05

TP
R

FPR

PU data
NU data

PU + NU
Norm Paths

Upper bound
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

PU data
NU data

PU + NU
Norm Paths

 0

 0.05

 0.1

 0.15

 0.2

 0 0.001 0.002 0.003 0.004 0.005

R
R

FPR

PU data
NU data

PU + NU
Norm Paths

Upper bound

Fig. 5 (Color online) Left—ROC analysis. Middle—precision/recall analysis. Right—reduction ratio and
false-positive rate

Inf Retrieval J (2018) 21:253–272 269

123

than 21%, by eliminating both intra-site and inter-site duplicate URLs. If errors as high as

10% are allowed during intra-site de-duplication, then the reduction ratio goes to ? 37%.

4.2.2 Replica detection rate

In order to answer question Q3, Table 4 shows detection rate numbers for the different

algorithms. The classifier built from PU data is very effective if we consider less than 1000

replica candidates, achieving detection rate numbers that are close to the upper bound. On

the other hand, the classifier built from NU data performed poorly, even if we consider less

than 10 replica candidates. However, its performance seems to remain almost constant as

the number of candidates increases, indicating that the detected replicas received very high

scores. NormPaths showed the same trend, and achieved similar numbers.

In summary, our algorithms are able to detect a replica case infiltrated in 1000 arbitrary

replica candidates, with probability greater than 99%.

4.2.3 Execution time and incremental updates

In order to answer question Q4, the EM process runs entirely offline, resulting in the final

training-set, which is then used to produce classifiers. Table 5 shows the time spent during

the EM process. Creating the training-set from PU data takes more than 2.5 h if partial

classifiers are built from scratch after each label transition operation. This time decreases to

112 s, if partial classifiers are incrementally updated. Creating the training-set from NU

data requires more iterations, and thus more time is spent. Finally, it takes less than 0.1 s to

build a classifier for an arbitrary replica candidate.

In summary, execution time is decreased by three orders of magnitude, by incrementally

updating the classifiers during the EM process. During crawling, the time spent to evaluate

a replica candidate is no greater than 0.1 s.

Table 3 Reduction ratio after
removing duplicate URLs

FPR

0.000 0.001 0.005

duplicate URLs 6,948,501 – – –

intra-site URLs 6,514,746 – – –

! � ¼ 0:0 293,374 – – –

! � ¼ 0:1 1,628,685 – – –

inter-site URLs 843,526 555,880 865,384 1,331,215

inter \ intra 409,771 286,485 446,182 758,927

! � ¼ 0:0 64,947 38,835 70,232 110,284

! � ¼ 0:1 151,683 98,377 170,827 388,022

RR intra 0.9376 – – –

! � ¼ 0:0 0.0422 – – –

! � ¼ 0:1 0.2344 – – –

RR inter 0.1213 0.0791 0.1245 0.1916

RR inter þ intra 1.0000 – – –

! � ¼ 0:0 0.1541 0.1166 0.1567 0.2179

! � ¼ 0:1 0.3340 0.3002 0.3343 0.3701

270 Inf Retrieval J (2018) 21:253–272

123

5 Conclusions

The presence of duplicate URLs adversely impacts both the efficiency and the effective-

ness of information retrieval systems. Duplicate URLs may be divided into intra-site

duplicates and inter-site duplicates, depending on whether they occur within the same

website or across multiple websites. While most of duplicate content falls into the intra-site

category, a complete solution must also deal with inter-site duplicates. The existence of

inter-site duplicate URLs is mainly associated with website replicas—pairs of websites that

either completely match or are appreciably similar in terms of content and structure.

In this paper we proposed algorithms for detecting website replicas, and evaluate the

impact of removing website replicas from the collection. Our algorithms employ binary

classifiers which are built either from obvious replica cases or from obvious non-replica

cases. Expectation-Maximization is used to enhance the classifiers iteratively, by finding

non-obvious examples from obvious ones, resulting in effective classifiers with no manual

labeling effort. Finally, classifiers built from replica cases are combined with classifiers

built from non-replica cases in a way that the errors associated with a classifier are

compensated by the other, improving replica detection performance.

Our experiments show a reduction of almost 8% in the number of duplicate URLs. If

false-positive rates as low as 0.005 are allowed, the reduction increases to 19%. Further-

more, our classifiers can be used in conjunction with URL-level algorithms, which elim-

inate intra-site duplicate URLs, and in this case the reduction in the number of duplicate

URLs goes to 21%.

Acknowledgements We thank the partial support given by the Brazilian National Institute of Science and
Technology for the Web (Grant MCT-CNPq 573871/2008-6), Project Models, Algorithms and Systems for
the Web (Grant FAPEMIG/PRONEX/MASWeb APQ-01400-14), and authors’ individual grants and
scholarships from CNPq.

Table 4 Replica detection rate
Algorithms Number of candidates

10 þ 1 100 þ 1 1000 þ 1 10,000 þ 1

PU data 0.9900 0.9891 0.9615 0.7656

NU data 0.6590 0.4429 0.4300 0.4287

PU þ NU 1.0000 1.0000 0.9905 0.8272

NormPaths 0.6619 0.4192 0.4105 0.4088

B-SVM 0.9805 0.9622 0.9349 0.7034

Upper bound 1.0000 0.9901 0.9586 0.7555

Table 5 Execution time in
seconds

Offline Online

EM process Time Learning classifiers Time

PU (from scratch) 8838.98 Rule extraction 0.0575

PU (incremental) 112.26 Prediction 0.0086

NU (from scratch) 9172.37 Aggregation 0.0232

NU (incremental) 131.11

Inf Retrieval J (2018) 21:253–272 271

123

References

Agarwal, A., Koppula, H. S., Leela, K. P., Chitrapura, K. P., Garg, S., Pavan Kumar, et al. (2009). URL
normalization for de-duplication of web pages. In Proceedings of the 18th ACM conference on
information and knowledge management (pp. 1987–1990).

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large
databases. SIGMOD Record, 22(2), 207–216.

Bar-Yossef, Z., Keidar, I., & Schonfeld, U. (2009). Do not crawl in the dust: Different URLs with similar
text. ACM Transactions on the Web, 3(1), 3:1–3:31.

Bharat, K., & Broder, A. (1999). Mirror, mirror on the web: A study of host pairs with replicated content.
Computer Networks, 31(11–16), 1579–1590.

Bharat, K., Broder, A., Dean, J., & Henzinger, M. R. (2000). A comparison of techniques to find mirrored
hosts on the www. Journal of the American Society for Information Science, 51(12), 1114–1122.

Broder, A. Z., Glassman, S. C., Manasse, M. S., & Zweig, G. (1997). Syntactic clustering of the web.
Computer Network ISDN System, 29(8–13), 1157–1166.

Carvalho, A Ld C., Moura, E. S. d, Silva, A. S. d, Berlt, K., & Bezerra, A. (2007). A cost-effective method
for detecting web site replicas on search engine databases. Data Knowledge Engineering, 62(3),
421–437.

Cho, J., Shivakumar, N., & Garcia-Molina, H. (2000). Finding replicated web collections. SIGMOD Record,
29, 355–366.

Dasgupta, A., Kumar, R., & Sasturkar, A. (2008). De-duping URLs via rewrite rules. In Proceedings of the
14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 186–194).

Davis, A., Veloso, A., Silva, A., Laender, A. H. F., & Meira-Jr., W. (2012). Named entity disambiguation in
streaming data. In Proceedings of he 50th annual meeting of the Association for Computational
Linguistics (pp. 815–824).

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38.

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for
classification learning. In Proceedings of the 13th international joint conference on artificial intelli-
gence (pp. 1022–1029).

Fetterly, D., Manasse, M., & Najork, M. (2003). On the evolution of clusters of near-duplicate web pages. In
Proceedings of the 1st conference on Latin American Web Congress (pp. 37–45).

Koppula, H. S., Leela, K. P., Agarwal, A., Chitrapura, K. P., Garg, S., & Sasturkar, A. (2010). Learning
URL patterns for webpage de-duplication. In Proceedings of the 3rd ACM international conference on
web search and data mining (pp. 381–390).

Lei, T., Cai, R., Yang, J.-M., Ke, Y., Fan, X., & Zhang, L. (2010). A pattern tree-based approach to learning
URL normalization rules. In Proceedings of the 19th international conference on world wide web (pp.
611–620).

Liu, B., Dai, Y., Li, X., Lee, W. S., & Yu, P. S. (2003). Building text classifiers using positive and unlabeled
examples. In Proceedings of the 3rd IEEE international conference on data mining (pp. 179–188).

Palda, F. (2011). Pareto’s republic and the new science of peace. Ottawa: Cooper-Wolfling.
Rodrigues, K. W. L., Cristo, M., de Moura, E. S., & da Silva, A. S. (2013). Learning URL normalization

rules using multiple alignment of sequences. In Proceedings of the 20th international symposium on
string processing and information retrieval (pp. 197–205).

Veloso, A., Meira, W., Jr., & Zaki, M. (2006). Lazy associative classification. In IEEE international
conference on data mining (pp. 645–654).

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–93.
Yang, H., & Callan, J. (2006). Near-duplicate detection by instance-level constrained clustering. In Pro-

ceedings of the 29th annual international ACM SIGIR conference on research and development in
information retrieval (pp. 421–428).

Ye, S., Wen, J.-R., & Ma, W.-Y. (2008). A systematic study on parameter correlations in large-scale
duplicate document detection. Knowledge and Information Systems, 14, 217–232.

272 Inf Retrieval J (2018) 21:253–272

123

	Website replica detection with distant supervision
	Abstract
	Introduction
	Related work
	Algorithms
	Features
	Demand-driven classifiers
	Expectation-Maximization (EM)
	Replica detection
	Pareto-efficient aggregation

	Experimental evaluation
	Experimental setup
	Evaluation methodology and dataset characterization
	Metrics
	Baselines and upper bound

	Experimental results
	Website replica detection
	Replica detection rate
	Execution time and incremental updates

	Conclusions
	Acknowledgements
	References

