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Abstract Relevance feedback is an effective technique for improving search accuracy in

interactive information retrieval. In this paper, we study an interesting optimization

problem in interactive feedback that aims at optimizing the tradeoff between presenting

search results with the highest immediate utility to a user (but not necessarily most useful

for collecting feedback information) and presenting search results with the best potential

for collecting useful feedback information (but not necessarily the most useful documents

from a user’s perspective). Optimizing such an exploration–exploitation tradeoff is key to

the optimization of the overall utility of relevance feedback to a user in the entire session of

relevance feedback. We formally frame this tradeoff as a problem of optimizing the

diversification of search results since relevance judgments on more diversified results have

been shown to be more useful for relevance feedback. We propose a machine learning

approach to adaptively optimizing the diversification of search results for each query so as

to optimize the overall utility in an entire session. Experiment results on three represen-

tative retrieval test collections show that the proposed learning approach can effectively

optimize the exploration–exploitation tradeoff and outperforms the traditional relevance

feedback approach which only does exploitation without exploration.

Keywords Interactive retrieval models � Feedback � Diversification � User modeling

1 Introduction

Relevance feedback has proven to be very effective for improving retrieval performance

[25, 42, 55, 56, 58, 79]. The idea is to have a user to provide relevance judgments on some

initial search results shown to the user, a retrieval system can then use the collected
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relevance judgments as feedback information to better infer the user’s information need

and improve the ranking of the unseen results for the user. For example, a user may view

the first page of search results and make judgments, and the system can then leverage the

feedback information to improve the ranking of the results on the next few pages for the

user.

A lot of research has been done on relevance feedback. However, most existing work is

focused on developing and improving relevance feedback methods (e.g., [56, 58, 65, 79]),

where the goal is to optimize the ranking of results based on a given set of relevance

judgments. Typically, the relevance judgments are assumed to be collected on some top-

ranked documents that would be shown to a user as initial results. Although this strategy of

relevance feedback is very natural as a user can judge documents while viewing search

results in a normal way, the judgments collected in this way (i.e., judgments on the top-

ranked documents) may not necessarily be the most useful judgments for relevance

feedback. As an extreme case, if the top documents all have very similar contents, the

judgments on all these documents would be clearly redundant, and would not be so useful

for relevance feedback as if we collect the same number of judgments on a more diversified

set of documents. Clearly, in such an extreme case, the benefit brought by relevance

feedback to the user in the next iteration of the interactive retrieval process would be

relatively small, at least not as much as the user would have if the judgments were

collected on a more diverse set of documents. This shows a deficiency of the traditional

(standard) relevance feedback strategy: it does not attempt to obtain the most useful
judgments.

This observation has motivated some researchers to study active feedback methods [61,

73, 74], where the goal is to choose documents for relevance feedback so that the system

can learn most from the feedback information. The idea of these methods is usually to

choose a set of diverse documents for judgments since judgments on diverse documents

can be expected to be more informative and thus helpful for the system to learn the user’s

information need. For example, in [61], the top-ranked documents are first clustered and

only one document is selected from each cluster to form a diverse set of documents to

present to the user. However, presenting diverse documents to users means that we gen-

erally do not present the search results in the order of relevance. Thus, the utility of the

presented documents to the user is generally lower than that of presenting the top-ranked

documents. This shows that active feedback has a different deficiency: it does not attempt
to optimize the utility of the presented documents to the user.

These observations illustrate an interesting dilemma in interactive relevance feedback:

On the one hand, we want to present the top-ranked documents to a user so that the

presented documents would be most useful for the user in this interaction cycle as in

standard relevance feedback. However, such a strategy does not generate the most useful

judgments for feedback. On the other hand, if we diversify the results in order to obtain

more useful judgments, which would bring more utility to the user in the next interaction

cycle, we would risk on decreasing the utility to the user in the current interaction cycle.

We refer to this dilemma as exploration–exploitation tradeoff [40, 66].

Intuitively, if we present top ranked results to the user, it is very useful for the user since

there is no discount compromise of the utility, which can be regarded as emphasizing

exploitation of all the existing information about the user’s information need, but it does

not help the system to explore the space of all the potentially relevant documents to the

user. On the other hand, if we show diversified results (i.e., emphasizing exploration), there

is a concern of decreasing the utility from the user perspective, thus possibly compromising

exploitation.
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Clearly, in an interactive retrieval system, what matters to a user is the overall utility of

relevance feedback, which means that we need to optimize this exploration–exploration

tradeoff so as to optimize the overall utility over an interaction session1 which includes

both the current interaction cycle and the next interaction cycle after feedback. To the best

of our knowledge, no existing work has addressed the problem of optimizing the explo-

ration–exploitation tradeoff for relevance feedback. Indeed, the standard relevance feed-

back work is focused on exploitation without considering exploration, while the active

feedback work does the opposite—focused on exploration without considering exploita-

tion; each can be regarded as optimizing feedback for just one interaction cycle. This

tradeoff problem touches a more general issue of how to optimize the utility of a retrieval

system over an interaction session for a user [21].

In this paper, we study how to optimize the exploration–exploitation tradeoff in rele-

vance feedback based on the following interactive process: A user is assumed to have a

high-recall information need. After issuing a query, the user is assumed to sequentially

view results up to N top-ranked results. We further assume that in this process, the user

would need to fetch unseen results at least twice due to the limited number of results that

can be displayed on one screen, resulting in two natural time points when a system can

learn from the feedback information collected so far to optimize the unseen results. One

instance of this scenario is that a user views three pages of search results; in such a case,

the system can learn from the feedback information collected from the first page of results

to optimize the results shown on the second page right before the user navigates into the

second page, and can also do the same for the third page when the user reaches it. While

most users of a Web search engine do not go this far when viewing results, we would

expect them to do so when the search results are displayed on a much smaller screen such

as on a smartphone. Also, a user often needs to scroll down on the first page to view all the

results; in such case, we may also view the ‘‘scrolling’’ as to fetch more unseen results, thus

a point when the system can re-rank the unseen results. For convenience of discussion, we

will refer to the very first batch of results seen by the user as the results on the first

‘‘page’’(or segment), the results seen by the user through either scrolling or clicking on a

next-page button as the results on the second ‘‘page’’ (or segment) and so on so forth.

Since more diversified results would mean more exploration and thus less exploitation,

while less diversified would mean more exploitation and less exploration, we essentially

convert this tradeoff problem to one of optimizing this diversity parameter. We propose

and study two methods to optimize this diversity parameter. The first one assumes a fixed

optimal value for all the queries (fixed-coefficient diversification), and the second learns a

query-specific optimal value for each query (i.e., adaptive diversification). We evaluate our

proposed methods on three representative TREC data sets. The experimental results

demonstrate that both of our proposed methods can effectively optimize exploration–

exploitation tradeoff and achieve higher utility for the session than both traditional rele-

vance feedback which ignores exploration and pure active feedback which ignores

exploitation. Moreover, the adaptive diversification method is better than the fixed-coef-

ficient diversification method due to its optimization of the tradeoff at a per-query basis.

The rest of the paper is organized as follows: We discuss related work in Sect. 2. The

problem formulation is given in Sect. 3. We then present our work on learning to optimize

diversification in Sect. 5. We discuss experiment design and experiment results in Sects. 6

and 7, respectively. Finally, we conclude in Sect. 8.

1 We define session as viewing multiple search results for the same user query through interacting with the
system (e.g., clicking on buttons).
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2 Related work

Relevance feedback has been shown to be effective with different kinds of retrieval models

(e.g., [42, 56, 58, 55, 79]). In vector space model, feedback is done with Rocchio algo-

rithm. In language modeling, relevance feedback can be implemented through estimating a

query language model [65, 79] or relevance model [42]. These methods only consider

‘‘exploitation’’, and our study is orthogonal to optimization of these relevance feedback

algorithms. We used a mixture model feedback method [79], but our idea is general and

can potentially work for other feedback methods too.

Active feedback is essentially an application of active learning which has been exten-

sively studied in machine learning (e.g. [15, 57]). Active learning has been applied to text

categorization (e.g. [44, 46, 67]) and information filtering [82] where the authors con-

sidered the value of longer-term exploration along with the immediate reward of delivering

a document when setting decision boundaries. Our work is related to this work as we

maximize the tradeoff between exploration and exploitation, however their application

scenario is different than ours where the decision to be optimized is whether to deliver a

document to a user whereas in our problem, the decision to be optimized is how much

diversification we should impose. Recently, it has also been applied to ad hoc retrieval [33]

and relevance feedback [61, 73, 74]. All these active feedback methods emphasize on

‘‘exploration’’ only, and are also orthogonal to our study. We adopted the diversification

strategy for active feedback, but the proposed methods are also potentially applicable to

other methods for active feedback.

Multi-arm bandit models an agent that simultaneously attempts to acquire new

knowledge and to optimize its decisions based on existing knowledge. Multi-arm bandit

methods that seek to find the optimal tradeoff between exploration and exploitation have

been studied extensively (e.g., [49, 54, 77, 48]). Existing solutions to the standard bandit

problem assume a fixed set of arms with no delayed feedback. However, recently, the work

in [2] has considered such a tradeoff to maximize total clicks on a web content. Also,

reinforcement learning has been used for solving sequential decision making problems,

which assumes there exists an agent interacting with the environment with the goal of

maximizing the total reward. There have been extensive applications adopting reinforce-

ment learning (e.g. [1, 43, 62, 36, 81]). Our work is similar to these works in that we also

maximize the total utility by optimizing the tradeoff between exploration and exploitation,

but we explore a new application in optimizing interactive relevance feedback.

Our work is also related to previous work in diversifying search results. Goffman [24]

recognized that the relevance of a document must be determined w.r.t documents

appearing before it. Several researchers have been working on methods to eliminate the

redundancy in the result sets (e.g. [4, 8, 12, 78, 84]) by sequentially selecting documents

that are relevant to the query but dissimilar to documents ranked above them or by

introducing an evaluation framework that rewards novelty and diversity and penalizes

redundancy [13]. Some other approaches [10, 76] maximize diversity (topic coverage)

among a set of documents without regard for redundancy [10] or by learning the impor-

tance of individual words and then selecting the optimal set of results that cover the largest

number of words [76]. Some other work on diversification make use of taxonomy for

classifying queries and documents and create a diverse set of results according to this

taxonomy [3, 68, 85]. Generating related queries and taking the results from each of them

for re-ranking purposes [52] is another way for diversification. In addition, some other

work, consider diversity in the area of spatial information retrieval [64] or in image

retrieval [50, 59] or for query diversification [14]. All these studies consider diversity in
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terms of providing a complete picture of different aspects of the query. However, we

consider diversity in terms of providing more information for optimizing the utility of

relevance feedback over an interactive retrieval session. We used the method in [78]

however, our approach can be applied to any diversification method where there is a

novelty parameter.

Learning to rank has recently attracted much attention (e.g. [6, 7, 31, 35, 53]). Most of

the work in this line has not considered diversity. In [54] an online learning algorithm that

directly learns a diverse ranking of documents based on user’s clicking behavior to min-

imize abandonment (maximizing clickthrough) for a single query is proposed. While

abandonment is minimized, their approach cannot generalize to new queries. The differ-

ence between our work and theirs is that they optimize the tradeoff for multiple users and a

single query, while we optimize such a tradeoff for a single user over multiple interaction

cycles (i.e., over multiple pages). Logistic regression [27] is widely used to learn a retrieval

function to rank documents directly [11, 17, 22, 74, 83, 23]. Our work uses logistic

regression to learn the diversity parameter.

The study of difficult queries has attracted much attention recently especially with the

launch of ROBUST track in TREC conference which aims at studying the robustness of

retrieval models [69, 70]. However, the most effective retrieval models that are developed

by ROBUST participants relied on external resources (mostly Web) to perform query

expansion which has bypassed the difficulty of the problem in reality. Because there are

often no such external resources to exploit and indeed the web resources would not help

improve the search accuracy for difficult queries on the Web itself. There has been some

work on understanding why a query is difficult [5, 9, 26] or identifying difficult queries

[70] or on predicating query performance [18, 28, 30, 34, 60, 75]. The work in [38, 71] are

the first studies of negative relevance feedback that exploit the top non-relevant documents

to improve the ranking of documents for difficult queries. Our work can also considered as

a work to predict query difficult but we go beyond just predicting query difficulty by

optimizing the way a system responds to a difficult query, i.e., optimizing the diversifi-

cation so as to maximize the utility over the entire session.

Interactive search is another related line to our work [21, 43]. The author in [21] has

proposed the holistic model to determine what is the best next action the system should

perform when considering past interactions. However, none of these works has provided a

technique to optimize the exploration–exploitation tradeoff.

The basic idea of our work has been published in a short paper of CIKM [37]. The

extensions to this short paper made in the current paper include: detailed experiment results

with more findings, review of all the technical methods used in the paper and compre-

hensive study of related work.

3 Problem formulation

Given a query Q and a document collection C; we consider an interactive retrieval system

where we assume a user would ‘‘progressively’’ view three segments of results through

either scrolling or clicking on next-page button. The number of results in each segment is

not necessary equal. For example, S1 can be the top 5 results seen by a user in the

beginning (the screen size does not allow the user to see all the 10 results), S2 can be the

bottom 5 results on the first page, and S3 can be the next 10 results on the second page. The

system first uses the query to retrieve k documents S1 = (d11, …, d1k) and present them on

the first segment S1. The user is then assumed to click on any relevant documents on this
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segment, leading to a set of relevance judgments on the first segment, J1. We assume that

the user would continue viewing the second segment of search results, and at least some

results on the third segment. We will focus on studying relevance feedback that happens

after the user finishes viewing all the results on the second segment.

Our goal is to study how to use all the information collected after the user views the first

segment (i.e., judgments J1) to optimally interact with a user on the second segment so as

to optimize the overall utility over the session of the user interacting with all the three

segments. Specifically, we would like to optimize the diversification of the results on the

second segment S2 = (d21, …, d2m) so that the relevance feedback that happens just before

the user views the results on the third segment would deliver the maximum overall utility

on both the second segment and the third segment. (The utility on the first segment has

already been fixed in this setup, thus it is irrelevant for the optimization.) As discussed

before, more diversification leads to more exploration and less exploitation, thus opti-

mizing the diversification is a way to optimize exploration–exploitation tradeoff.

A common way to generate diversified results is a greedy algorithm called MMR [8]

which models both topical relevance and redundancy of documents. With this strategy,

after we have already selected documents d21; . . .; d2;i�1 for the second segment, document

d2i would be selected to maximize the following score:

sðd2i; d21; . . .; d2;i�1Þ ¼ ð1� kÞSRðd2i;QÞ þ kSnoveltyðd2i; d21; . . .; d2;i�1Þ

where Q is the query, SR(d2i,Q) is a relevance-based scoring function (i.e., regular

retrieval function). Snovelty is the novelty value of d2i w.r.t. d21; . . .; d2;i�1

� �
; and k 2 ½0; 1�

is the diversification parameter that controls the degree of diversification, or equivalently,

the amount of exploration.

The results on the third segment S3 = (d31, …, d3p) would be generated using relevance

feedback on the judgments collected on the second segment. Clearly, the utility of this

third segment would be affected by the usefulness of the collected judgments J2 which

further depend on the diversification on the second segment. Our goal is to optimize the

diversification coefficient, i.e., k, to maximize the overall utility of the results on the

second segment and the third segment, i.e., to optimize the exploration–exploitation

tradeoff. Formally, we assume that there is a function A that can map a query Q and its

corresponding relevance judgments J1 on the first segment to the optimal diversification

coefficient, i.e., k = A(Q, J1). Later, we will propose two different ways to compute A(Q,

J1). One way is simply to search for an optimal k over a set of training queries and take this

fixed coefficient as the optimal value for all the unseen test queries. The other way is to use

a machine learning method to learn a potentially different optimal k for each query.

Since our main goal is to study different methods for optimizing the diversification

coefficient, in our experiments, we assume |S1| = |S2| = |S3| = 10 to simulate a scenario

when the user views the first three pages of results and we refer to S1 as first-page result, to

S2 as second-page result and S3 as third-page result. The proposed method does not depend

on this configuration, though, and can be applied to other scenarios as well.

In the next section, we describe the methods used throughout the paper in more details.

4 Background

We now present all the components, i.e., Basic Retrieval Model, Feedback Methods and

Novelty Method in this problem setup (Sect. 3) in more detail.
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4.1 Basic retrieval model

We use the Kullback-Leibler divergence retrieval model [41] as our basic retrieval model

for ranking documents on all the three pages (on the second page, it is used together with a

novelty measure function to diversify results). This model is a generalization of the query

likelihood retrieval model [51] and would score a document D w.r.t query Q based on the

negative Kullback-Leibler divergence between the query language model hQ and the

document language model hD:

SRðD;QÞ ¼ �DðhQjjhDÞ ¼ �
X

w2V

pðwjhQÞ log
pðwjhQÞ
pðwjhDÞ

where V is the words in the vocabulary. The document language model is usually smoothed

using Dirichlet prior smoothing which is an effective smoothing method [80]. The query

language model, is often estimated (in case of no feedback) based on pðwjhQÞ ¼ cðw;QÞ
jQj ;

where c(w, Q) is the count of word w in query Q and |Q| is the total number of words in the

query. When there is feedback information, the information would be used to improve our

estimate of query language model, hQ.

4.2 Feedback model

Since a query model described above is usually short, the simple estimation method

explained before is not discriminative. Several methods have been proposed to improve the

estimation of hQ by exploiting documents terms, i.e., documents that are used for either

relevance or pseudo-relevance feedback [41, 42, 79]. In [79], authors have defined a two-

component mixture model (i.e., a fixed background language model, pðwjCÞ; estimated

using the whole collection and unknown topic language model to be estimated) and

assumed that the feedback documents are generated using such a mixture model. Formally,

let hT be the unknown topic model and F be a set of feedback documents. The log-

likelihood2 function of the mixture model is:

LðFjhTÞ ¼
X

D2F

X

w2V

cðw;DÞ log½ð1� aÞpðwjhTÞ þ apðwjCÞ�

where a 2 ½0; 1Þ is a mixture noise parameter (which is set to 0.9 in our experiments) which

controls the weight of the background model. Expectation-Maximization (EM) algorithm

[19] can be used to estimate p(w|hT) which is then interpolated with the original query

model p(w|Q) to obtain an improved estimation of the query model:

pðwjhQÞ ¼ ð1� cÞpðwjQÞ þ cpðwjhTÞ

where c is the feedback coefficient to be set manually (it is set to 0.8 in our experiments).

The basic idea in relevance feedback is to extract useful terms from positive documents

and use them to expand the original query. When a query is difficult, it is often impossible

to obtain positive (or relevant) documents for feedback. Therefore, the best way would be

to exploit the negative documents to perform negative feedback [71]. The idea of negative

feedback is to identify distracting non-relevant documents and penalize unseen documents

containing such information.

2 Please note that all the logs are taken to base-e (natural logarithm), unless we explicitly mention the base
that the logarithm is taken.
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Formally, let hQ be the estimated query model, hD be the estimated document model,

and hN be a negative topic model estimated based on the negative feedback documents

N ¼ L1; . . .; Lf

� �
: In MultiNeg strategy [71] which is the best performing method, the

original relevance score is adjusted with multiple negative models as:

SðQ;DÞ ¼ SRðQ;DÞ � b� SðQneg;DÞ

¼ SRðQ;DÞ � b�max
[f

i¼1

S Qi
neg;D

� �n o !

¼ �DðhQjjhDÞ þ b�min
[f

i¼1

DðhijjhDÞf g
 !

:

Where Qneg means negative query representation, i.e., the query which is formed by using

the language model of negative (non-relevant) documents, Qneg
i is the negative query

representation formed from the i-th non-relevant document and Q means the original

query. hi is a negative model for each individual negative document Li in N. Expectation-

Maximization algorithm is used to estimate a negative model hi. In particular, all non-

relevant documents are assumed to be generated from a mixture model of a unigram

language model hN and a background language model. Thus, the log-likelihood of the

sample N is:

LðNjhNÞ ¼
X

D2N

X

w2D

log½ð1� dÞpðwjhNÞ þ dpðwjCÞ�

where d is a mixture parameter which controls the weight of the background model and

non-relevant model (it is set to 0.9 in our experiments). The result of the Expectation-

Maximization algorithm gives a discriminative negative model hN which eliminates

background noise. b is set to 0.1 in our experiments.

To perform relevance feedback after the user views the second page, we perform the

two-component mixture model proposed in [79] (and described above) for positive feed-

back and and the MultiNeg Strategy proposed in [71] (and described above) for negative

feedback; both have been shown to be effective for the respective feedback task.

4.3 Novelty method

To compute the novelty score Snovelty described in this section, we use a method proposed

in [78]. The best performing novelty measure they reported is MixAvg. The novelty

measure is based on a two-component generative mixture model in which one component

is the old reference topic h0 estimated based on d21; . . .; d2;i�1

� �
described in Sect. 3 and

the other is the background language model (e.g., general English model). Specifically, let

hB be a background language model with a mixing weight of l, the log-likelihood of a new

document d ¼ w1; . . .;wnf g is:

Lðljd; h0Þ ¼
Xn

i¼1

log½ð1� lÞpðwijh0Þ þ lpðwijhBÞ�

And the estimated novelty score is obtained by:

l� ¼ arg max
l
Lðljd; h0Þ
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The EM algorithm can be used to find the unique l� that maximizes the score. We call this

method MixAvg-MMR in our experiments.

One should note that our focus is studying the parameter k (novelty parameter)

described in Sect. 3 and the parameters that disscussed in this section, will be fixed to their

optimal or default values as suggested in the literature.

5 Learning to optimize diversification

We consider two ways to optimize the diversification parameter k. The first is simply to

vary this parameter on a training data set and select the best performing value, and set this

parameter to such a fixed optimal value across all the test queries. We call this approach

fixed-coefficient diversification.

Intuitively, the right amount of diversification may depend on queries (e.g., a query with

more subtopics may benefit from more diversification). Thus for our second method, we

propose a learning method to ‘‘learn when to diversify the results’’ by adaptively learning

this coefficient for each query, which we present it in details in the next section.

5.1 Features for diversification

In this section, we describe a learning approach that adaptively learns the k parameter for

each query.

We first identify some features that are correlated to the diversification parameter, i.e. k.

These features are computed based on only the first-page results and the judgments on it,

J1. Because at the time of optimizing the diversification on the second page, we only have

this much information. In the next subsection, we will discuss how we combine these

features to learn the function A(Q, J1) (which can be used to compute an optimal value for

k for each query) using the past queries as training data. The learned function A(Q, J1) can

then be used for future queries to predict new k. Note that since we do not learn a fixed k
value, but a function for computing an optimal value of k, this allows us to obtain a

potentially different optimal value of k for each query.

The following notations will be used in the definition of features. Frel and FnonRel are the

set of relevant and non-relevant documents in J1, respectively. c(w, Q) is the count of term

w in query Q. jQj ¼
P

w2Q cðw;QÞ is the total number of words in query Q. pðwjhQÞ ¼
cðw;QÞ
jQj is the query language model. pðwjCÞ is the collection language model. pðwjhFrel

Þ and

pðwjhFnonRel
Þ are the language models of relevant documents and non-relevant documents on

the first-page results, respectively.

The followings are the features extracted from the first-page results. Please note that the

reason for showing the first-page results to the user is to get some limited information

about relevant documents and as a result extract the following features which are needed

for our learning algorithm.

5.1.1 Query length

As mentioned in [29], query length affects retrieval performance and is defined as:

jQj ¼
X

w2Q

cðw;QÞ:
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5.1.2 Query distribution

Each term is associated with an inverse document frequency which describes the infor-

mative amount that a term in the query carries. It is defined as follows [29]:

QDist ¼ idfmax

idfmin

where idfmax and idfmin are the maximum and minimum idfs among the terms w in query

Q, respectively.

5.1.3 Query clarity

Query clarity has been shown to predict query difficulty [18]. When a query is difficult, it

might mean that it has different interpretations, so in order to complete the picture of all

aspects of the query, we need to provide a diverse set of documents to make sure that all

aspects of the query are covered.

1. According to definition [18], the clarity of a query is the Kullback-Leibler divergence

of the query model from the collection model. For our case, the query model is estimated

from the relevant documents in Frel which is defined as follows:

QClar1 ¼
X

w2Frel

pðwjhFrel
Þlog2

pðwjhFrel
Þ

pðwjCÞ

where pðwjhFrel
Þ is estimated as

cðw;FrelÞP
w02Frel

cðw0;FrelÞ
; where c(w, Frel) is the number of word w

in Frel (i.e., relevant documents).

2. To avoid the expensive computation of query clarity, authors in [29] proposed a

simplified clarity score as a comparable pre-retrieval performance predictor. It is

calculated as follows:

QClar2 ¼
X

w2Q

pðwjhQÞlog2

pðwjhQÞ
pðwjCÞ :

5.1.4 Query entropy [16, 63]

If query entropy is high, it means that the query covers broad topics, as a result, we do not

need to diversify the results. We define two query entropies as follows:

1.

QEnt1 ¼
X

w2Q

�pðwjhQÞlog2pðwjhQÞ:

2. Since a query is often short, we compute another query entropy score based on the

relevant documents in Frel as follows:
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QEnt2 ¼
X

w2Frel

�pðwjhFrel
Þlog2pðwjhFrel

Þ

where pðwjhFrel
Þis estimated as

cðw;FrelÞP
w02Frel

cðw0;FrelÞ
:

5.1.5 Number of relevant documents

If the query has high initial precision, i.e., the fraction of retrieved relevant documents on

the first-page results are high, we do not need to diversify the results; as a result we

consider the number of relevant documents in the first-page results as a feature:

num ¼ Frelj j:

5.1.6 Virtual average precision

Another feature to capture high initial precision is to calculate Average precision for the

first-page results as in [45]:

VirAP ¼
X

d2Frel

precðrdÞ
10

where rd is the rank of document d and prec(rd) is the precision of top rd documents.

5.1.7 Separation of relevant and non-relevant documents

If the query is clear enough (relevant and non-relevant documents are separated) we do not

need to diversify the results. Thus we introduce the following two features to measure the

separation between relevant documents in slightly different ways.

1. Jensen-Shannon Divergence (JSD)

JSD ¼ 1

2
½DðhFrel

jjhFnonRel
Þ þ DðhFnonRel

jjhFrel
Þ�

where D is the Kullback-Leibler divergence between the two models.

2. Cosine Similarity: We denote the Term Frequency vectors of Frel and FnonRel as VFrel

and VFnonRel
; respectively. The Cosine Similarity is then defined as:

CosSim ¼ VFrel
� VFnonRel

jjVFrel
jj � jjVFnonRel

jj :

5.1.8 Diversification (Div)

Intuitively, if the baseline results are already diversified, we do not need to do more

diversification; one measure to capture that is as follows: We cluster the top 30 results from

Kullback-Leibler divergence retrieval to 5 clusters using K-Means algorithm [20]. We then

consider the ratio of the size of the first largest cluster to the second largest cluster. If this

ratio is small, it means that we have already formed multiple clusters and the results are

already diversified, so we do not need to diversify more.
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5.1.9 Analysis of computational efficiency of the features

The features discussed above can be categorized into query-based features and document-

based features. Query-based features are those that are calculated based on the query.

Examples of these kinds of features are: query length |Q|, query distribution QDist, query

entropy QEnt1 and etc. Document-based features are those that are calculated based on

relevant and non-relevant documents on the first-page results. Examples are: query clarity

QClar1, query entropy QEnt2 and etc. Since we only have 10 documents on the first-page

results, the calculation of language models based on both relevant and non-relevant doc-

uments can be computed efficiently for online prediction. Also, the query-based features

can be computed efficiently for online prediction.

5.2 Learning algorithm

We would like to use a learning technique to combine the features to predict the novelty

parameter for diversification. In this paper, we use logistic regression3 since it can take any

input value and outputs a value between zero and one which is what we want. The logistic

regression model is of the form: f ðzÞ ¼ 1
1þexpð�zÞ ; where z is a set of features and f(z) is the

probability of an outcome. f(z) is used to predict the novelty coefficient, i.e., k. z is of the form

z ¼ �w�x where �x is a vector of the features and �w is the learned weight (based on our training

data) associated with each feature. When a weight is positive, it means that the corresponding

feature increases the probability of outcome while a negative coefficient means the opposite.

Once these weights are learned based on our training data (i.e., past queries and their optimal

k values as determined by some utility function to be defined in the next section), we can use

the model (features along with their weights) to predict the diversity coefficient parameter (k)

for test queries. Statistical package R4 is used to train the model.

5.3 Evaluation metric

Our goal is to optimize the utility to a user over all the three pages P1, P2, and P3. We thus

need to define how we measure the utility over all these pages. Such a measure is needed to

evaluate the effectiveness of any method for optimizing exploration–exploitation tradeoff

and also needed to set a criterion for selecting the optimal k values for training in learning

an adaptive diversification coefficient.

Since the first-page results is the same for all the methods, we only consider the utility

on the second and third-page results. The user is assumed to see all the results on the

second page, thus we define the utility on the second page as the number of relevant

documents on the second page, denoted as U(P2) = REL(P2).

For the third page, since the user is only assumed to see some results, the utility is defined

as the expected number of relevant documents that the user would see on the third page:

UðP3Þ ¼
X10

j¼1

sj

Xj

i¼1

dðiÞ ð1Þ

where sj denotes the probability that the user would stop reading after seeing the top j
documents and d(i) is 1 if the i-th document is relevant and is zero otherwise.

3 Since logistic regression has a global optimum, the choice of the learning algorithm is of little importance.
4 http://www.r-project.org/.
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If we assume the uniform stopping probability, i.e., sj is uniform (i.e. sj ¼ 1
10

since we

have 10 documents per result page), we would model the impatient user [47] and the utility

on the third page with some algebraic transformation is reduced to:

UðP3Þ ¼
X10

n¼1

ð11� nÞ
10

� dðnÞ ð2Þ

where n is the ranking of the document. For example, if a document is ranked first on the

third page, the expected utility for that document would be one since n = 1, similarly, if

the document is ranked at 10-th, the expected utility from that document would be 1
10
:

This measure is reasonable for a user who is ‘‘impatient’’ who might indeed stop at any

of the positions equally likely. However, if the user is more ‘‘patient’’ with a high prob-

ability of viewing all the results on the third page, we would like to put more weight on the

utility from the third page. One way to account for that is to parameterize the weights on

the third page so that we can examine this effect as follows:

UðP3Þ ¼
X10

n¼1

½ððk � 1Þ
9
Þ � ðn� 1Þ � dðnÞ þ 1� ð3Þ

where k 2 0; 1½ �: When k = 0.1, we gain Eq. (2).

The total utility on both the second page and the third page is thus U(P2) ? U(P3).

6 Experiment design

We used three standard TREC data sets in our study5: TREC2004 robust track, WT2G and

AP88-90 which represent different genre of text collections. The robust track is a standard

ad hoc retrieval with an emphasis on the overall reliability of IR systems which contains

difficult queries and is a heterogeneous data set. There were 249 queries6 in this data set.

WT2G is a web data set with 50 queries while AP88-90 is a homogeneous data set with

149 queries7. We used Porter stemming and did stop word removal on all these collections.

Since we do not have a real system for interactive search, we simulated user-clicked

documents (user feedback) as follows: We used Lemur toolkit8 to index document col-

lections and retrieved a document list for each query using Kullback-Leibler divergence

retrieval model [41] to return 10 result documents (this is to simulate the first-page results).

The reason for showing this page to the user is to get some limited information about

relevant documents and extract features that we need for our learning algorithm. Also, the

reason for returning only 10 documents for each page is to resemble the Web Search

Engine that shows 10 results per page, so we also simulate to have 10 results per page. We

then extract features from the first-page results to decide if we need to diversify the results

on the second page and then feedback is used to improve the ranking of documents on the

third page. (We assume that the user would click on a relevant document.)

We compare our proposed methods (i.e., FixedDivFB and AdaptDivFB) with baseline

methods, i.e., NoFeedback and RegularRelFB by measuring the total utility over all three

5 All experiments measured according to Eq. (2) unless otherwise stated.
6 One query was dropped because the evaluators did not provide any relevant documents for it.
7 One query was dropped because the evaluators did not provide any relevant documents for it.
8 http://www.lemurproject.org/.
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pages. Since the first page is the same for all the methods, we actually only computed the

utility over the second and third pages. While the first-page results are similar for all these

four methods, the second-page results for different methods are different. For NoFeedback

and RegularRelFB, we return 10 results using Kullback–Leibler divergence retrieval model

[41]. For FixedDivFB, we use MixAvg-MMR [78] with a learned fixed novelty parameter

(using training queries) for all test queries and for AdaptDivFB, we use adaptive novelty

coefficient (by learning it with training data) for each individual query. Then for the third

page, we use language model feedback [71, 79] to return 10 documents as the third-page

results. Figure 1 shows these methods clearly.

To train our proposed methods, we need to obtain training data first. In our study, we

used fivefold cross validation to split our queries for testing and training purposes for each

data set and get the average across all folds. Since we are restricted to vary the parameters

in testing stage, we set the parameters to their optimal values gained from training data in

the testing stage, i.e., we set the Dirichlet prior smoothing to its optimal value for each

training data using NoFeedback method, and set the feedback coefficient to its optimal

value using RegularRelFB. We fixed feedback term count to 100 and mixture noise

parameter [79] to 0.9 and b in negative feedback [71] to 0.1. We did not vary these

parameters because this is not our purpose of study. For FixedDivFB, we choose an

optimal fixed coefficient novelty, i.e., k for all queries learned based on training data. We

then use the optimal parameters gained from training data to measure the performance of

test queries. The needed training data for AdaptDivFB is of the form of a set of feature

vectors computed based on different queries and retrieval results along with the corre-

sponding optimal novelty parameter. The learning task is to learn from such a training data

set to predict the optimal novelty parameter for a new test query based on its corresponding

feature values. To get the optimal novelty parameter for training queries for AdaptDivFB,

we try different novelty coefficient k 2 0; 0:1; 0:2; . . .; 1f g using MixAvg-MMR [78] on

training data sets and we choose the best k for each training query to form our training data

set. As a result, the main difference between the FixedDivFB and AdaptDivFB methods

lies in what they can learn from the training data: the FixedDivFB learns a fixed novelty

coefficient, k, that leads to the best utility (described in Sect. 5.3) on the training data set,

while the AdaptDivFB method learns a prediction model that best fits the training data set.

Fig. 1 Visualization of different methods. KL means Kullback-Leibler divergence retrieval model [41],
MMR Fixed means MixAvg-MMR using fixed novelty coefficient for all queries, MMR Adapt means
MixAvg-MMR using adaptive novelty coefficient for each query and FB means language model feedback
[71, 79]
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7 Experiment results

Our main hypothesis is that optimizing the exploration–exploitation tradeoff over a session

is effective and we need to optimize such a tradeoff for each individual query. In order to

test these hypotheses, we conduct a set of experiments. In Sect. 7.1, we empirically

examine the exploration–exploitation tradeoff. Next, in Sect. 7.2, we examine the effec-

tiveness of optimizing the total user utility over a session. In Sect. 7.3, we go further to see

the effect of optimizing either exploration or exploitation and compare the results when we

optimize based on the combination. Then, in Sect. 7.4, we examine what kind of queries

would benefit from optimizing the exploration–exploitation tradeoff. Next, we consider the

effect of optimizing the exploration–exploitation and evaluate this effect on user patience.

Since there are so many methods for diversification, in Sect. 7.6 we consider a different

diversification method and evaluate the effect of the diversification method on our main

hypothesis. Finally, we analyze our features for optimizing the novelty coefficient.

7.1 Is optimal exploration–exploitation tradeoff query dependent?

Diversification methods are usually controlled by an interpolation novelty coefficient k to

control the balance between relevance and redundancy. According to the description in

Sect. 3, when k = 1, the emphasize is on novelty whereas for k = 0, the emphasize is on

relevancy. To show the sensitivity of k to the utility function described on Sect. 5.3, we

plot the utility of several randomly selected topics from each category, i.e., easy9, diffi-

cult10 and others (351, 421, 425) by varying k from 0 to 1. The results are shown in Fig. 2.

These patterns show that the optimal exploration–exploitation tradeoff is query dependent

and it is important to dynamically optimize the novelty coefficient in a per-query basis.

7.2 Effectiveness of optimizing the total user utility over a session

Our hypothesis is that in order to achieve optimal retrieval performance and outperform

relevance feedback, we need to optimize based on the total user utility. In order to test our

hypothesis, we compare our proposed methods (i.e., FixedDivFB and AdaptDivFB) with

baselines (i.e., NoFeedback and RegularRelFB) which are optimized based on the whole

utility, i.e., utilities on the second and third pages. Table 1 shows the comparison of our

methods with baselines across different TREC data sets (we show the utilities based on the

second, third and total (second ? third) pages.). The results indicate that method Regu-

larRelFB is better than NoFeedback as we expected since feedback outperforms the basic

retrieval model using Kullback-Leibler divergence. Method FixedDivFB outperforms

RegularRelFB and AdaptDivFB outperforms both FixedDivFB and RegularRelFB meth-

ods since it uses different novelty coefficient for each query. Statistical Significant tests

using Wilcoxon singed-rank test [72] indeed indicate that our proposed methods are sta-

tistically significant over method RegularRelFB11. The table also shows percentage

9 We define a query as easy when its Precision@10 is 0.9 or 1, given a retrieval model.
10 We define a query as difficult when its Precision@10 is no larger than 0.1, given a retrieval model.
11 The reason why AdaptDivFB is not statistically significant over FixedDivFB for WT2G data set is
because we only have 50 queries and since we do fivefold cross validation, we have only 40 training queries
in each fold which presumably is not sufficient for learning.
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improvement, e.g., FixedDivFB/RegularRelFB means the percentage improvement for

FixedDivFB over RegularRelFB. Thus, by optimizing exploration–exploitation tradeoff,

both FixedDivFB and AdaptDivFB outperform the regular relevance feedback method, i.e.,

RegularRelFB which ignores exploration. And indeed AdaptDivFB outperforms Fixed-

DivFB method which indicates that the optimal exploration–exploitation tradeoff is query

dependent.

Please note that while it appears that AdaptDivFB is simply more effective than Reg-

ularRelFB even for the second page (where we would expect RegularRelFB to have some

advantage), a decomposed analysis in Table 3 shows that the improvement on the second

page comes from difficult queries, and AdaptDivFB does not perform as well as Regu-

larRelFB for easy queries on the second page.

7.3 Detailed analysis of exploration–exploitation tradeoff

Our hypothesis is that to achieve optimal overall utility on a session, we should train with a

‘‘similar‘‘ objective function (i.e., a similar utility measure on the training data). Thus, we

expect training to optimize utility on both second and third page should lead to better

performance than training to optimize either one alone. In particular, optimizing the sec-

ond-page only would lead to over-exploitation (ending up with lower third-page utility),

while optimizing third-page only would be the opposite.

In order to see if this hypothesis is true, we conduct two experiments: (1) optimizing the

second-page utility only (exploitation), (2) optimizing the third-page utility only (explo-

ration). The results are shown in Table 2 (we only show the results for AdaptDivFB

method, similar patterns can also be seen for FixedDivFB method.). From the table, we see

that across all data sets, the second-page utility once optimized on the second-page only is

higher than when it is trained based on both pages. And indeed the third-page utility is

lowered. The opposite trend could be explained when optimizing on the third-page only.

The table also shows the percentage improvements, e.g., AdaptDivFB (2nd ? 3rd/2nd)

indicates the percentage improvement when optimized on both pages versus optimized on

the second page only.

The other interesting observation is that the overall utility is degraded and this indeed

indicates that optimizing the total utility, i.e. both second and third-page utility, is nec-

essary to lead to the optimal retrieval performance.

These observations indeed confirm our hypothesis that in order to have the optimal

retrieval performance, the exploration–exploitation tradeoff needs to be optimized.
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Fig. 2 Exploration–exploitation tradeoff patterns. Optimal exploration–exploitation tradeoff is query
dependent
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7.4 What kind of queries most benefit from optimizing exploration–exploitation

tradeoff?

Our hypothesis is that if a query is more difficult, it would benefit more from optimizing the

exploration–exploitation tradeoff. Indeed, the results in Table 3 (these results are based on

their counterpart results in Table 1 for Robust 2004 data set.) confirm this hypothesis. We

separate the results in Table 1 into easy and difficult queries and measure their

performance.

As we see from these results, it is clear that optimizing the exploration–exploitation

tradeoff helps difficult queries more than easy queries, i.e., both methods FixedDivFB and

AdaptDivFB outperform baseline results for difficult queries but the improvement for easy

queries is negligible.

Another observation from this table is that increasing diversity helps difficult queries

due to the implied (desirable) negative feedback however, hurts easy queries because of the

implied (incorrect) negative feedback.

7.5 Exploration–exploitation tradeoff and user patience

Since the standard relevance feedback does not do exploration, in ‘‘certain situations’’, i.e.,

when a user is more patient, exploration would have more benefit. When a user is more

Table 1 Comparison of differ-
ent methods on different TREC
data sets

* and § mean significant over
RegularRelFB and FixedDivFB,
respectively

Methods Second Third Total

Robust 2004

NoFeedback 2.8593 1.2171 4.0764

RegularRelFB 2.8593 2.2749 5.1342

FixedDivFB 2.8513 2.3207 5.172*

FixedDivFB/RegularRelFB -0.27 % 2.01 % 0.74 %

AdaptDivFB 2.919 2.3511 5.2701*,§

AdaptDivFB/RegularRelFB 2.08 % 3.34 % 2.65 %

AdaptDivFB/FixedDivFB 2.37 % 1.31 % 1.9 %

WT2G

NoFeedback 2.7 1.276 3.976

RegularRelFB 2.7 1.632 4.332

FixedDivFB 2.8 1.722 4.522*

FixedDivFB/RegularRelFB 3.7 % 5.51 % 4.385 %

AdaptDivFB 2.84 1.7 4.58*

AdaptDivFB/RegularRelFB 5.18 % 6.61 % 5.72 %

AdaptDivFB/FixedDivFB 1.43 % 1.045 % 1.28 %

AP88-90

NoFeedback 2.5154 1.3149 3.8303

RegularRelFB 2.5154 2.4153 4.9307

FixedDivFB 2.558 2.4267 4.9847*

FixedDivFB/RegularRelFB 1.69 % 0.47 % 1.09 %

AdaptDivFB 2.6633 2.4446 5.1079*,§

AdaptDivFB/RegularRelFB 5.88 % 1.21 % 3.59 %

AdaptDivFB/FixedDivFB 4.12 % 0.73 % 2.47 %
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patient, there is a high probability of viewing all the results on the third page, as a result,

putting more weight on the utility from the third page would be more beneficial for such a

user. As we discussed in Sect. 5.3, we model user patience with k (Eq. 2), so we now have a

different utility measure which is parameterized with k. Our hypothesis is that for patient

users, exploration is more useful.

In Fig. 3, we vary k and measure the performance for RegularRelFB and FixedDivFB12.

Figure 3 (left) shows the difference between these two methods; as k gets larger, the

difference (i.e., FixedDivFB-RegularRelFB) between these methods is larger which

Table 2 Comparison of opti-
mizing based on second-page
utility, third-page utility and
second ? third utility for
AdaptDivFB

* and § mean significant over
AdaptDivFB (2nd) and
AdaptDivFB (3rd), respectively

AdaptDivFB

Methods Second Third Total

Robust 2004

AdaptDivFB (2nd) 2.976 2.1905 5.1665

AdaptDivFB (3rd) 2.5249 2.4427 4.9676

AdaptDivFB (2nd ? 3rd) 2.919 2.3511 5.2701*,§

AdaptDivFB (2nd ? 3rd/2nd) -1.91 % 7.33 % 2.005 %

AdaptDivFB (2nd ? 3rd/3rd) 15.60 % -3.75 % 6.09 %

WT2G

AdaptDivFB (2nd) 2.9 1.57 4.47

AdaptDivFB (3rd) 2.38 1.962 4.342

AdaptDivFB (2nd ? 3rd) 2.84 1.74 4.58*,§

AdaptDivFB (2nd ? 3rd/2nd) -2.07 % 10.82 % 2.46 %

AdaptDivFB (2nd ? 3rd/3rd) 19.32 % -11.31 % 5.48 %

AP88-90

AdaptDivFB (2nd) 2.728 2.226 4.954

AdaptDivFB (3rd) 2.482 2.516 4.998

AdaptDivFB (2nd ? 3rd) 2.6633 2.4446 5.1079*,§

AdaptDivFB (2nd ? 3rd/2nd) -2.37 % 9.82 % 3.11 %

AdaptDivFB (2nd ? 3rd/3rd) 7.3 % -2.83 % 2.19 %

Table 3 Comparison of meth-
ods for difficult and easy queries
on Robust 2004 data set, 51 dif-
ficult queries and 21 easy queries

* and § mean significant over
RegularRelFB and FixedDivFB,
respectively

Methods Second Third Total

Difficult queries

NoFeedback 0.7129 0.5208 1.2337

RegularRelFB 0.7129 1.4738 2.1867

FixedDivFB 0.8256 1.497 2.3226*

AdaptDivFB 0.9197 1.5091 2.4288*,§

Easy queries

NoFeedback 6.7 2.6223 9.3223

RegularFB 6.7 3.901 10.601

FixedDivFB 6.45 4.02 10.47

AdaptDivFB 6.5333 4.068 10.6013§

12 Similar trends can be seen for AdaptDivFB.
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indicates that the benefit from exploration is more amplified as k increases. Also, Fig. 3

(right) shows their performance on the third page (to show the exploration benefit) for both

methods, it also indicates that as k gets larger, the difference between these two methods is

more amplified. (The linear trend curves are expected given the form of our utility

function.)

7.6 Sensitivity to diversification methods

We also want to know how our findings chang if we use a different diversification method,

i.e., MMR-PLSA proposed in [39]. In this method, both the documents and the query

would be mapped to a low-dimensional space representation through Probabilistic Latent

Semantic Indexing (PLSA) model [32], and then a similar greedy algorithm to MMR [8] is

used to select a diverse set of documents.

The results for this method are shown in Table 4. These results also support our main
finding, i.e., optimizing exploration–exploitation tradeoff outperforms traditional relevance

feedback, and adaptive optimization (AdaptDivFB) is better than fixed-coefficient opti-

mization (FixedDivFB).

7.7 Analysis of features for optimizing novelty coefficient

In this section, we discuss about the feature distributions and how they are linked to the

novelty coefficient. As discussed, we do fivefold cross validation, and for each fold we

have a different model according to our training data. So, in total, we have 15 models for

method AdaptDivFB in Table 1 (3 data sets and fivefold). For each model, we use AIC

(Akaike Information Criterion) [27] to include only statistical significant features. In order

to understand the correlations of features to the novelty parameter, in Table 5, we show the

distributions across all 15 models. Negative means there is a negative correlation between

that feature and novelty parameter whereas Positive means the opposite. As shown in the

table, features QEnt1, QClar2, VirAP and Div are the most frequently used features by

these 15 models.

The coefficients in this table are consistent with what we discussed in Sect. 5.1, i.e., if a

query is long (|Q|), or the similarity between relevant and non-relevant documents is high

(CosSim), or when the results are not sufficiently diversified (Div), we need diversification.

In other cases, i.e., when a query is clear enough (QClar2) or relevant documents contain

broad topics (QEnt1), we do not need diversification. The contradictory effect of negative
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coefficient of QClar1 and positive coefficient of exp(QClar1) could be explained as follows:

in most models these two features co-occur with each other and the coefficients are such that

when a query is clear enough, i.e., QClar1 is relatively large, the overall effect would be

negative suggesting that we should use a smaller novelty coefficient. However, when a query

is not clear enough, the overall effect is positive which suggests we need to use a larger

diversity coefficient. The interesting observation of negative influence of VirAP indeed

confirms our hypothesis that for difficult queries, we need more diversification.

8 Conclusions

In this paper, we studied how to optimize relevance feedback to maximize the total utility

over an entire interaction session. Our work is a first step toward the general goal of

Table 4 Comparing different
methods and using MMR-PLSA
as a diversification method

* and § mean significant over
RegularRelFB and FixedDivFB,
respectively

Methods Second Third Total

Robust 2004

NoFeedback 2.8593 1.2117 4.0764

RegularRelFB 2.8593 2.2749 5.1342

FixedDivFB 2.8511 2.3597 5.2108*

AdaptDivFB 2.911 2.4007 5.3117*,§

WT2G

NoFeedback 2.7 1.276 3.976

RegularRelFB 2.7 1.632 4.332

FixedDivFB 2.86 1.732 4.92*

AdaptDivFB 3 1.776 4.776*,§

AP88-90

NoFeedback 2.5154 1.3149 3.8303

RegularRelFB 2.5154 2.4153 4.9307

FixedDivFB 2.604 2.401 5.005*

AdaptDivFB 2.6377 2.4059 5.0436*

Table 5 Feature distributions
Negative (%) Positive (%)

|Q| – 20

QDist 33.3 –

QEnt1 53.3 –

QEnt2 26.6 –

QClar1 20 –

QClar2 40 –

num 33.3 –

JSD 26.6 –

CosSim – 33.3

Div – 40

VirAP 53.3 –

exp(QClar1) – 26.6
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optimizing the utility in the whole interaction session in relevance feedback. In particular,

we studied the issue of exploration–exploitation tradeoff in interactive feedback, which is

the tradeoff between presenting search results with the highest immediate utility to a user

and presenting search results with the best potentials for collecting feedback information.

We framed this tradeoff as a problem of optimizing the diversification of search results.

We proposed two methods that optimize the exploration–exploitation tradeoff. The first

method is to fix a novelty coefficient for diversification and the other one is to adaptively

optimizing the diversification of search results for each query. We also defined utility from

user perspective and defined how we can model both patient and impatient user. Experi-

ment results on three representative TREC data sets indicate that our proposed methods are

effective for optimizing the tradeoff between exploration and exploitation and outperform

the traditional relevance feedback which only does exploitation without exploration. In

summary, our findings are as follows:

• Optimal exploration–exploitation tradeoff is query dependent and it is important to

dynamically optimize the novelty coefficient in a per-query basis.

• In order to achieve optimal retrieval performance and outperform relevance feedback,

we need to optimize based on the total user utility. In other words, in order to have the

optimal retrieval performance, the exploration–exploitation tradeoff needs to be

optimized.

• When a user is more patient, exploration would have more benefit because there is a

high probability of viewing all the results on later pages.

• If a query is more difficult, it would benefit more from optimizing the exploration–

exploitation tradeoff.

One limitation of our study is that most users of a current Web search engine do not

view so many pages, even though in the case of a high-recall search task or when a user

uses a small-screen device (e.g., a smartphone), we can expect a user to often view more

than two pages of results. Thus it would be interesting to consider more realistic

assumptions such as considering fewer results per page to simulate the smartphone sce-

nario. Also, it would be interesting to evaluate the methods using the actual click-through

data from query logs. Ideally, building a real-system that involves real users in interaction

would be interesting.

Another limitation of our work is that in our current formulation, we assumed the

availability of some limited feedback information from the first-page result to make the

problem more tractable; an interesting future direction would be to just get information

about the query which would also increase the applicability of our method, but the problem

would be that the only information we have available is information regarding the query

and we do not yet know anything about the relevant/non-relevant documents, so it would

also be harder to solve the problem of optimizing the diversity parameter.

In the current problem formulation, we only consider the second-page when measuring

the novelty and we only use the feedback information from the second page to re-rank

results on the third page, so the diversity on the second page is what matters in terms of

optimizing the exploration–exploitation tradeoff. For future, it is interesting to explore

optimizing the diversity in the combined set of first and second page.
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