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Abstract In this paper, we introduce five type nodes for lumping the Web matrix, and

give a unified presentation of some popular lumping methods for PageRank. We show that

the PageRank problem can be reduced to solving the PageRank corresponding to the

strongly non-dangling and referenced nodes, and the full PageRank vector can be easily

derived by some recursion formulations. Our new lumping strategy can reduce the original

PageRank problem to a much smaller one, and it is much cheaper than the recursively

reordering scheme. Furthermore, we discuss sensitivity of the PageRank vector, and

present a lumping algorithm for computing its first order derivative. Numerical experi-

ments show that the new algorithms are favorable when the matrix is large and the

damping factor is high.
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1 Introduction

With the booming development of the Internet, Web search engines have become one of

the most important tools to Web information retrieval. A query to a Web search engine

often produces a very long list of answer because of the enormous number of pages. These

pages have to be listed starting from the most relevant ones (Brin et al. 1998). One

important measure of a page is PageRank which plays an important role in Google’s search

engine. Google’s key idea is that a page is considered to be important if many other

important pages are pointing to it (Brin and Page 1998; Page et al. 1998).

Let us introduce the mathematical background of the PageRank problem, for more

details, refer to (Langville and Meyer 2006b). The hyper-link structure of the Web can be

represented as a directed graph, whose nodes are Web pages and the edges are links. The

graph can be expressed as a nonnegative matrix P̂ whose (i, j)-th element is nonzero if

page i contains a link to page j. However, if page i has no out-links, then the i-th row of the

matrix will be zero, and the page is called a dangling node (Ipsen and Selee 2007). For

instance, it can be any page whose links have not yet been crawled. So as to transform the

Web matrix P̂ into a stochastic matrix, one can add artificial links to the dangling nodes.

Then we obtain a row stochastic matrix eP ¼ P̂þ dŵT , where ŵ is a non-negative vector

satisfying eT ŵ ¼ 1; e is the vector of all ones, and d ¼ e� P̂e is the dangling page

indicator.

However, the surfer can still be trapped by a cyclic path in the Web graph. So another

adjustment is required, which yields the Google matrix

G ¼ a eP þ ð1� aÞev̂T : ð1:1Þ

Here v̂ is the personalization vector which is a non-negative vector satisfying eT v̂ ¼ 1; and

a (0 \ a\ 1) is called the damping factor. A popular choice for v̂ and ŵ is v̂ ¼ ŵ ¼ e=n
(Ipsen and Selee 2007).

The PageRank vector x̂ is the stationary distribution of G, i.e.,

x̂T G ¼ x̂T ; x̂T e ¼ 1; x̂>O: ð1:2Þ

A standard way to compute PageRank is the classical power method (Golub and Van

1996). Unfortunately, when the largest eigenvalue of the Google matrix is not separated

well from the second one, the convergence rate of the power method will be very slow

(Golub and Van 1996). Many technologies have been proposed to speed up the compu-

tation, such as the Monte Carlo methods (Avrachenkov et al. 2007), the inner-outer method

(Gleich et al. 2010), the extrapolation methods (Brezinski et al. 2005; Haveliwala et al.

2003; Kamvar et al. 2003a), the adaptive method (Kamvar et al. 2004), and the Krylov

subspace methods (Gleich et al. 2005; Golub and Greif 2006; Wu and Wei 2007, 2010a, b),

etc.

The PageRank problem can be also viewed as a large sparse linear system (Gleich et al.

2005, 2010; Langville and Meyer 2006a; Wu and Wei 2010a). Indeed, if we set v̂ ¼ ŵ; by

(1.1) and (1.2), the PageRank problem can be rewritten as the following linear system

(Gleich et al. 2005; Langville and Meyer 2006a)

x̂TðI � aP̂Þ ¼ v̂T : ð1:3Þ

It can be solved by the classical Jacobi iteration (or more precisely, the Richardson iter-

ation) (Arasu 2002; Saad 2003)
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xT
ðiterÞ ¼ a � xT

ðiter�1ÞP̂þ v̂T ; iter ¼ 1; 2; . . .; ð1:4Þ

where xT
ðiterÞ stands for the approximation obtained from the iter-th iteration. This algorithm

is equivalent to the power method, however, Gleich et al. (2005) demonstrated that iter-

ations of linear system may converge faster than the simple power method, and are less

sensitive to the changes in teleportation.

The World Wide Web exhibits a well-defined structure, characterized by several

interesting properties. For instance, this structure was clearly revealed by Broder et al.

(2000) who presented the evocative bow-tie picture of the Web. Donato et al. 2008 pre-

sented a series of measurements on the Web, which offer a better understanding of the

individual components of the bow-tie. Therefore, it is interesting to investigate efficient

algorithms that rely on the structure of the Web. Lumping Google’s PageRank via reor-

dering the Web matrix have been investigated in (Arasu 2002; Del et al. 2004; Eiron et al.

2004; Ipsen and Selee 2007; Kamvar et al. 2003b; Langville and Meyer 2006a; Lee et al.

2007; Lin et al. 2009). In essence, lumping is a special permutation of the hyperlink matrix

underlying the PageRank problem. So it can be viewed as a unitary similarity transfor-

mation to the Google matrix. This permutation induces a special structure on the solution,

which follows from the block form of the permuted hyperlink matrix. From this structure,

computing a PageRank vector involves solving a core problem on a smaller matrix, and

then filling in the rest of the details.

One advantage of the lumping algorithms is that they are often easier to compute than

a strongly connected decomposition of a matrix. There are at least two advantages in

reducing the matrix dimension: faster computation and smaller round-off error (Wills and

Ipsen 2009). For instance, in (2002), Arasu proposed a strong component decomposition.

Del Corso et al. (2004) explored permutations to actually make iterative computations

faster. Lee et al. (2007) presented a fast two-stage algorithm for computing the PageRank

vector. The algorithm exploits the observation that the homogeneous discrete-time

Markov chain associated with PageRank is lumpable, with the lumpable subset of nodes

being the dangling nodes. Motivated by Lee’s strategy, Langville and Meyer (2006a)

gave a recursively reordering algorithm for computing PageRank. In the recursively

reordering process, locating zero rows can be repeated recursively on smaller and smaller

sub-matrices of the Web matrix P̂; continuing until a sub-matrix is created that has no

zero rows. As a result, the recursively reordering algorithm reduces the computation of

the PageRank vector to that of solving a much smaller linear system, and then using

forward substitution to obtain the full solution vector. Unfortunately, this algorithm may

suffer from the overhead of the recursively reordering procedure itself. Ipsen and Selee

(2007) expressed lumping as a similar transformation of the Google matrix, and showed

that the PageRank of the non-dangling nodes can be computed separately from that of the

dangling nodes. Lin et al. (2009) extended the results of (Ipsen and Selee 2007), and

proved that the reduced matrix obtained by lumping the dangling nodes can be further

reduced by lumping weakly non-dangling nodes to another single node, and the further

reduced matrix is also stochastic with the same nonzero eigenvalues as the Google

matrix. In essence, all the results in (Ipsen and Selee 2007; Lin et al. 2009) considered

the PageRank problem from a large scale eigenvalue problem point of view, and the

algorithms are based on the power method. These algorithms are efficient for the com-

putation of PageRank, especially when the number of dangling nodes exceed that of non-

dangling nodes. However, when the number of the dangling nodes is not overwhelming,

they may be unsatisfactory in practice.
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To our best knowledge, none of the above-mentioned lumping algorithms explores the

effect of the unreferenced pages, i.e., the pages without inlinks, to the PageRank com-

putation. We refer to the nodes corresponding to the unreferenced pages as the unrefer-
enced nodes, and referenced nodes otherwise. Therefore, a node is either referenced or

unreferenced. Notice that the columns of the Web matrix associated with the unreferenced

nodes are zero. In this paper, we lump the Web matrix with respect to five type nodes. We

show that the size of the PageRank problem can be further reduced to solve PageRank

linear system corresponding to the strongly non-dangling & referenced nodes, and the full

PageRank can be obtained by some recursion formulations. Compared with the lumping

strategies due to Lee et al. (2007) and Lin et al. (2009), our new lumping strategy can

reduce the original PageRank problem to a (much) smaller one, and the overhead of the

three reordering schemes is comparable. Furthermore, the new lumping strategy is much

cheaper than the recursively reordering strategy due to Langville and Meyer (2006).

Numerical experiments show that the new algorithm is favorable when the matrix is large

and the damping factor is high.

This paper is organized as follows. In Sect. 2, we briefly review some known lumping

strategies for the Web matrices. In Sect. 3, we propose a new strategy that is based on

lumping five type nodes for computing PageRank, and apply it to compute the first order

derivative of the PageRank vector. Sensitivity of the PageRank problem is also discussed.

In Sect. 4, we make numerical experiments on some real-world problems, which illustrate

numerical behavior of our new algorithms. Concluding remarks are given in Sect. 5.

2 Some lumping algorithms for the PageRank problem

In this section, we briefly introduce the ideas behind lumping the Web matrix with respect

to two and three type nodes (Ipsen and Selee 2007; Lee et al. 2007; Lin et al. 2009), as

well as the recursively reordering algorithm due to Langville and Meyer (2006a, b).

2.1 Lumping the Web matrix with respect to two and three type nodes

The nodes in the Web can be classified into two classes, i.e., the non-dangling nodes (ND)

and the dangling nodes (D) (Langville and Meyer 2006b). It is interesting to exclude the

dangling nodes with their artificial links from the PageRank computation (Ipsen and Selee

2007; Langville and Meyer 2006a, b; Lee et al. 2007; Lin et al. 2009). This can be done by

lumping all the dangling nodes into a single node, and the PageRank of the non-dangling

nodes can be computed separately from that of the dangling nodes (Lee et al. 2007).

Consequently, a large amount of operations may be saved.

If the rows and columns of P̂ are permuted (i.e., the indices are reordered), so that the

rows corresponding to dangling nodes are at the bottom of the hyper-link matrix, i.e.,

P ¼ QP̂QT ¼ ND
D

ND D
P11 P12

O O

� �

;
ð2:1Þ

where Q is a permutation matrix with each row and column has exactly one 1 and all other

entries are 0. Note that P11 represents the links among the non-dangling nodes, and P12

represents the links from non-dangling to dangling nodes, and the zero rows in P are

associated with the dangling nodes.
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It follows from (1.3) and (2.1) that

x̂T QT � QðI � aP̂ÞQT ¼ v̂T QT ;

that is,

xTðI � aPÞ ¼ vT ; ð2:2Þ

where xT ¼ x̂T QT ; and vT ¼ v̂T QT ; and the PageRank vector is

x̂T ¼ xT Q: ð2:3Þ
Partition consistently with (2.1) that x = [x1

T, x2
T]T, and v = [v1

T, v2
T]T, we have

xT
1 ¼ vT

1 ðI � aP11Þ�1; ð2:4Þ

xT
2 ¼ axT

1 P12 þ vT
2 : ð2:5Þ

Therefore, if we divide the nodes into non-dangling and dangling nodes, then it is sufficient

to apply the Jacobi iteration on a smaller matrix P11 to compute the PageRank vector.

Indeed, this algorithm is mathematically equivalent to the specialized iterative algorithm

proposed by Lee et al. (2007).

Algorithm 1 (Langville and Meyer 2006) A lumping algorithm with respect to two type nodes (Lump 2)

1. Reorder the hyper-link matrix (as well as the personality vector v̂) so that the reordered matrix has the
structure of (2.1).

2. Start: Given a prescribed tolerance tol, and the damping factor a.

3. Solve x1
T(I - aP11) = v1

T, say, by using the Jacobi iteration.

4. Compute x2
T = ax1

TP12 ? v2
T.

5. Set x = [x1
T, x2

T]T, compute the PageRank vector xT := xTQ, and normalize xT :¼ xT= xTk k1:

Motivated by the idea proposed in (Lee et al. 2007; Lin et al. (2009) further classified the

non-dangling nodes into two classes. Consider the nodes that are not dangling, but only pointing

to the dangling nodes. They refer to these non-dangling nodes as the weakly non-dangling nodes
[notice that these nodes are called the weakly dangling nodes in (Lee et al. 2007)]. The other

non-dangling nodes are called the strongly non-dangling nodes. Thus, a node is either dangling

(D), weakly non-dangling (W), or strongly non-dangling (S). Moreover, Lin et al. (2009)

showed that one of two classes of non-dangling nodes can also be lumped to a single node, and

the PageRank of the other class of non-dangling nodes can be computed separately.

Therefore, if the rows and columns of P̂ are permuted (i.e., the indices are reordered), so

that the rows corresponding to dangling nodes are at the bottom of the hyper-link matrix,

and the rows corresponding to strongly non-dangling nodes are at the top of the hyper-link

matrix, i.e.,

P ¼ QP̂QT ¼ S
W
D

S W D
P11 P12 P13

O O P23

O O O

2

4

3

5

; ð2:6Þ

where Q is a permutation matrix. Then P11 represents the links among strongly non-

dangling nodes, P12 denotes the links from strongly non-dangling to weakly non-dangling

nodes, P13 stands for the links from strongly non-dangling to dangling nodes, and P23

represents the links from weakly non-dangling to dangling nodes.
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Partition consistently with (2.6) that x = [x1
T, x2

T, x3
T]T, and v = [v1

T, v2
T, v3

T]T. It is easy to

verify that

xT
1 ðI � aP11Þ ¼ vT

1 ; ð2:7Þ

and

xT
2 ¼ axT

1 P12 þ vT
2 ; ð2:8Þ

xT
3 ¼ axT

1 P13 þ axT
2 P23 þ vT

3 : ð2:9Þ

We can present the following algorithm with respect to three types of nodes for com-

puting PageRank. This algorithm is simpler and cleaner than, but is mathematically

equivalent to, the iterative method proposed by Lin et al. (2009, Algorithm 2.1).

Algorithm 2 A lumping algorithm with respect to three type nodes (Lump 3)

1. Reorder the hyper-link matrix (as well as the personality vector v̂) so that the reordered matrix has the
structure of (2.6).

2. Start: Given a prescribed tolerance tol, and the damping factor a.

3. Solve the linear system x1
T(I - aP11) = v1

T, say, by using the Jacobi iteration.

4. Compute x2
T = ax1

TP12 ? v2
T, and x3

T = ax1
TP13 ? ax2

TP23 ? v3
T.

5. Set x = [x1
T, x2

T, x3
T]T, compute xT := xTQ, and normalize xT :¼ xT= xTk k1:

2.2 The recursively reordering algorithm for PageRank

In (2006a), Langville and Meyer proposed a recursively reordering PageRank algorithm,

which is a more general version of the dangling node method due to Lee et al. (2007). The

key idea is that the process of locating zeros rows can be repeated recursively on smaller

and smaller sub-matrices of P̂; continuing until a sub-matrix is created that has no zero

rows. In general, after this symmetric reordering, the hyper-link matrix has the following

structure (Langville and Meyer 2006)

P ¼ QP̂QT ¼

P11 P12 P13 � � � P1p

O P23 � � � P2p

O � � � P3p

. .
. ..

.

O

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; ð2:10Þ

where Q is a permutation matrix, and p (C2) is the number of square diagonal blocks in

the reordered matrix. The steps of the recursively reordering PageRank algorithm are

enumerated as follows.

Algorithm 3 (Langville and Meyer 2006) The recursively reordering algorithm for PageRank (Recursive)

1. Reorder the Web matrix (as well as the personality vector v̂) according to the recursive dangling node
idea.

2. Start: Choose a prescribed tolerance tol, and the damping factor a.

3. Solve for x1
T in x1

T(I - aP11) = v1
T.

4. For i ¼ 2; 3; . . .; p; form xT
i ¼ a

P

i�1

j¼1

xT
j Pji þ vT

i :

5. Set x ¼ ½xT
1 ; x

T
2 ; . . .; xT

p �
T ; compute xT := xTQ, and normalize xT :¼ xT= xTk k1:
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The recursively reordering algorithm reduces the computation of the PageRank vector

to that of solving a much smaller linear system, and then using forward substitution to get

the full solution vector. However, as is shown in Sect. 5, this algorithm may suffer from the

overhead of the recursively reordering procedure when p, the number of square diagonal

blocks in the reordered matrix, is relatively large.

3 Lumping five type nodes for computing PageRank and its derivative vector

We call the nodes corresponding to the unreferenced pages the unreferenced nodes, and

referenced nodes otherwise. Therefore, a node is either referenced or unreferenced. As an

aside, the proper way of looking at dangling node algorithms is in terms of cores in a graph

(Batagelj and Zaveršnik 2012). Dangling nodes are vertices with 0 out-core numbers, and

unreferenced nodes are vertices with 0 in-core numbers. In this section, we reorder the

Web matrix with respect to five type nodes, and consider the nodes that are strongly non-
dangling and referenced.

3.1 A lumping algorithm with respect to five type nodes for PageRank

In this paper, we point out that the Web matrix can be lumped according to five type nodes:

the strongly non-dangling & referenced nodes (S&R), the strongly non-dangling & unre-

ferenced nodes (S&UR), the weakly non-dangling nodes (W), the dangling & referenced

nodes (D&R), and the dangling & unreferenced nodes (D&UR). After such a reduction, we

will see that the computation time for PageRank mainly depends on the number of the

strongly non-dangling & referenced nodes, and the round-off error mainly depends on the

maximal number of inlinks to the strongly non-dangling & referenced nodes.

Figure 1 depicts a picture explaining connections between different components. It is

seen that node 1 is a strongly non-dangling & unreferenced node (S&UR), node 2 is a strongly

non-dangling & referenced node (S&R), node 3 is a dangling & referenced node (D&R), node

4 is a dangling & unreferenced node (D&UR), and node 5 is a weakly non-dangling node (W).

Assume that we have reordered the original Web matrix P̂ so that the unreferenced

nodes are numbered lastly, then the resulting matrix is of the form

P ¼ QP̂QT ¼

S&R
S&UR

W
D&R

D&UR

S&R S&UR W D&R D&UR
P11 O P13 P14 O
P21 O P23 P24 O
O O O P34 O
O O O O O
O O O O O

2

6

6

6

6

4

3

7

7

7

7

5

;
ð3:1Þ

Fig. 1 Directed graph
representing Web
of 5 pages
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where Q is a permutation matrix, and P11 represents the links among the strongly non-

dangling & referenced nodes (S&R). It is obvious to see that the size of P11 obtained from

our new lumping strategy is at least as small as those from (Lee et al. 2007; Lin et al.

2009). However, we stress that one can not tell which strategy, the recursively reordering

strategy or the Lumping 5 strategy, can reduce the original linear system to a smaller one,

and the answer is problem-dependent.

We see from (3.1) that the eigenvalues of P are union of the eigenvalues of P11 and some

zero. Thus, P11 and P share the same non-zero eigenvalues, and I - aP11 is nonsingular.

Indeed, all eigenvalues of the matrix aP11 are less than 1, and (I - aP11)
-1 can be repre-

sented as a infinite sum of positive matrices (Saad 2003). As a result, both (I - aP11)
-1 and

(I - aP11)
-1P13 are nonnegative matrices. If we define

jjzjjP1
� zTðI � aP11Þ�1e; jjzjjP3

� zTðI � aP11Þ�1P13e;

then jjzjjP1
and jjzjjP3

are vector norms for z C O (Ipsen and Selee 2007). The following

theorem provides an expression for xT. It also gives the weights of PageRanks corre-

sponding to the five type nodes.

Theorem 3.1 Partition consistently with (3.1) that x = [x1
T, x2

T, x3
T, x4

T, x5
T]T, and

v = [v1
T, v2

T, v3
T, v4

T, v5
T]T. Under the above notation, there hold

xT
1 ¼ ðvT

1 þ avT
2 P21ÞðI � aP11Þ�1;

xT
2 ¼ vT

2 ;

xT
3 ¼ aðxT

1 P13 þ xT
2 P23Þ þ vT

3 ;

xT
4 ¼ aðxT

1 P14 þ xT
2 P24 þ xT

3 P34Þ þ vT
4 ;

xT
5 ¼ vT

5 :

Moreover, we have

jjx1jj1 ¼ jjv1jjP1
þ ajjPT

21v2jjP1
;

jjx2jj1 ¼ jjv2jj1;
jjx3jj1 ¼ ajjv1jjP3

þ a2jjPT
21v2jjP3

þ ajjPT
23v2jj1 þ jjv3jj1;

jjx4jj1 ¼ 1� jjv1jjP1
� ajjPT

21v2jjP1
� ajjv1jjP3

� a2jjPT
21v2jjP3

� ajjPT
23v2jj1

� jjv3jj1 � jjv2jj1 � jjv5jj1;
jjx5jj1 ¼ jjv5jj1:

Proof Notice that

I � aP ¼

I � aP11 O �aP13 �aP14 O
�aP21 I �aP23 �aP24 O

O O I �aP34 O
O O O I O
O O O O I

2

6

6

6

6

4

3

7

7

7

7

5

:

Furthermore, it follows from xT(I - a P) = vT that
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½xT
1 ; x

T
2 ; x

T
3 ; x

T
4 ; x

T
5 �

I � aP11 O �aP13 �aP14 O
�aP21 I �aP23 �aP24 O

O O I �aP34 O
O O O I O
O O O O I

2

6

6

6

6

4

3

7

7

7

7

5

¼ ½vT
1 ; v

T
2 ; v

T
3 ; v

T
4 ; v

T
5 �:

That is,

xT
1 ðI � aP11Þ � axT

2 P21 ¼ vT
1 ;

xT
2 ¼ vT

2 ;

� axT
1 P13 � axT

2 P23 þ xT
3 ¼ vT

3 ;

� axT
1 P14 � axT

2 P24 � axT
3 P34 þ xT

4 ¼ vT
4 ;

xT
5 ¼ vT

5 :

Or equivalently,

xT
1 ¼ ðvT

1 þ avT
2 P21ÞðI � aP11Þ�1;

xT
2 ¼ vT

2 ;

xT
3 ¼ aðxT

1 P13 þ xT
2 P23Þ þ vT

3 ;

xT
4 ¼ aðxT

1 P14 þ xT
2 P24 þ xT

3 P34Þ þ vT
4 ;

xT
5 ¼ vT

5 :

Next we consider the weights of the PageRanks corresponding to the five types nodes.

Taking 1-norm of x1, x2, x3, x4 and x5 yields

jjx1jj1 ¼ xT
1 e ¼ ðvT

1 þ avT
2 P21ÞðI � aP11Þ�1e

¼ vT
1 ðI � aP11Þ�1eþ avT

2 P21ðI � aP11Þ�1e

¼ jjv1jjP1
þ ajjPT

21v2jjP1
;

and

jjx2jj1 ¼ xT
2 e ¼ vT

2 e ¼ jjv2jj1:

Moreover,

jjx3jj1 ¼ xT
3 e ¼ ½aðxT

1 P13 þ xT
2 P23Þ þ vT

3 �e
¼ axT

1 P13eþ axT
2 P23eþ vT

3 e

¼ aðvT
1 þ avT

2 P21ÞðI � aP11Þ�1P13eþ avT
2 P23eþ vT

3 e

¼ ajjv1jjP3
þ a2jjPT

21v2jjP3
þ ajjPT

23v2jj1 þ jjv3jj1;

and

jjx5jj1 ¼ xT
5 e ¼ vT

5 e ¼ jjv5jj1;
jjx4jj1 ¼ 1� jjx1jj1 � jjx2jj1 � jjx3jj1 � jjx5jj1

¼ 1� jjv1jjP1
� ajjPT

21v2jjP1
� ajjv1jjP3

� a2jjPT
21v2jjP3

� ajjPT
23v2jj1 � jjv3jj1 � jjv2jj1 � jjv5jj1:

h
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Theorem 3.1 indicates that, if the nodes can be divided into five types, then the main

overhead is to iteratively solve a (possibly much) smaller linear system on x1, i.e., the

PageRank of the strongly non-dangling & referenced nodes, while x3 and x4 can be easily

derived from the recursion formulations. In summary, the main algorithm of this paper is

outlined as follows.

Algorithm 4 A lumping algorithm with respect to five type nodes (Lump 5)

1. Reorder the hyper-link matrix (as well as the personality vector v̂) so that the reordered matrix has the
structure of (3.1).

2. Start: Given a prescribed tolerance tol, and the damping factor a.

3. Solve the linear system x1
T(I - aP11) = v1

T ? av2
TP21, say, by using the Jacobi iteration.

4. Compute x3
T = a(x1

TP13 ? x2
TP23) ? v3

T, and x4
T = a(x1

TP14 ? x2
TP24 ? x3

TP34) ? v4
T.

5. Set x = [x1
T, v2

T, x3
T, x4

T, v5
T]T, compute xT := xTQ, and normalize xT :¼ xT= xTk k1:

Remark 3.1 Since Q is a permutation matrix whose each row and column has exactly one

1 and all other entries are 0, we can use an n-dimensional vector to store it, and compute

xTQ in OðnÞ operations.

Finally, we point out that one can also take the referenced and unreferenced weakly-
dangling nodes into consideration. In this case, the reordered Web matrix is of the

following form

P ¼ QP̂QT ¼

S&R
S&UR
W&R

W&UR
D&R

D&UR

S&R S&UR W&R W&UR D&R D&UR
P11 O P13 O P15 O
P21 O P23 O P25 O
O O O O P35 O
O O O O P45 O
O O O O O O
O O O O O O

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:
ð3:2Þ

Based on this ‘‘Lumping 6’’ strategy, it is easy to check that the expression for x is a little

more complicated than the one from Lump 5, and the derivation of a lumping algorithm with

respect to six type nodes is straightforward. However, similar to the Lumping 5 strategy, the

computation time for PageRank still mainly depends on the number of the strongly non-
dangling & referenced nodes, and the round-off error still mainly depends on the maximal

number of inlinks to the strongly non-dangling & referenced nodes.

Example 3.1 In this example, we try to illustrate the reordering strategies in terms of two

types (Ipsen and Selee 2007), three types (Lee et al. 2007), five type nodes, as well as the

recursively reordering strategy (Langville and Meyer 2006a). To this end, we plot

the structure of the original and the reordered Web matrices. The test matrix is the

4772 9 4772 Epa Web matrix available from http://www.cs.cornell.edu/Courses/cs685/

2002fa. It contains 1,146 dangling nodes, and 1,474 unreferenced nodes. Figures 2 and 3

depict the structures of the original as well as the reordered adjacency matrices, respectively.

From this example, the advantage of lumping five type nodes is obvious. Indeed, one

has to solve a linear system of size 4772 9 4772 for the original Jacobi iteration, a linear

system of size 3626 9 3626 for Lump 2, and a 1363 9 1363 linear system for Lump 3.

There are 9 square diagonal blocks along the recursively reordered matrix, and the size of

the resulting iteration matrix is 590 9 590. As a comparison, we only need to solve a

390 9 390 linear system for Lump 5.
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3.2 Sensitivity of the PageRank vector and a lumping algorithm for computing

its first order derivative

In this subsection, we firstly consider the structured perturbation of the Google matrix.

That is, we focus on sensitivity of the PageRank vector when the Google matrix G is

perturbed by some perturbation F, while eG ¼ Gþ F is still a Google matrix. It is shown

that some results of (Ipsen and Wills 2006) are just special cases of our theorem. Secondly,

we propose an algorithm for computing the first order derivative of the PageRank vector

with respect to a, using the new lumping strategy proposed in Sect. 3.1.

0 2000 4000
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4000

nz = 8965

original

0 2000 4000
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1000

2000
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4000

nz = 8965

lump two

0 2000 4000
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4000
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lump three
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Fig. 2 Structures of the original
and the three reordered Epa Web
matrix, where the dots represent
nonzero elements, and white
stands for zero elements
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lump fiveFig. 3 Structure of the reordered
Epa Web matrix with respect to
lumping five type of nodes,
where the dots represent nonzero
elements, and white stands for
zero elements
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Theorem 3.2 Let G be a Google matrix and x̂ be the PageRank vector. Suppose that
eG ¼ Gþ F is the perturbed Google matrix and ~x is the associated PageRank vector, then

jj~x� x̂jj16
1

1� a
jjFjj1; ð3:3Þ

where jj � jj1 and jj � jj1 denote the 1-norm and1-norm of a matrix or vector, respectively.

Proof Notice that

x̂T G ¼ x̂T ; eT x̂ ¼ 1; x̂>O;

and

~xT
eG ¼ ~xT ; eT ~x ¼ 1; ~x>O:

Therefore,

~xT � x̂T ¼ ~xT
eG � x̂T G ¼ ð~xT � x̂TÞGþ ~xT F

¼ ð~xT � x̂TÞ½a eP þ ð1� aÞevT � þ ~xT F

¼ að~xT � xTÞ eP þ ~xT F;

where we use the fact that ~xT e ¼ x̂T e ¼ 1: Thus,

ð~xT � x̂TÞðI � a ePÞ ¼ ~xT F:

Recall that I � a eP is nonsingular in that qða ePÞ6 jja ePjj1 ¼ a\1; and ðI � a ePÞe ¼
ð1� aÞe: So we obtain

ðI � a ePÞ�1e ¼ 1

1� a
e:

Since ðI � a ePÞ�1
>O (Langville and Meyer 2006), we have

jjðI � a ePÞ�1jj1 ¼
1

1� a
e

�

�

�

�

�

�

�

�

1
¼ 1

1� a
:

Consequently,

jj~x� x̂jj1 ¼ jj~xT � x̂T jj1 ¼ jj~xT FðI � a ePÞ�1jj16 jj~xT jj1jjFjj1jjðI � a ePÞ�1jj1
¼ 1

1� a
jjFjj1;

which completes the proof. h

Remark 3.2 We mention that some results of (Ipsen and Wills 2006) are special cases of

Theorem 3.2, and our result is more general.

• If we choose F = aE, then (3.3) reduces to (Ipsen and Wills 2006)

jj~x� xjj16
1

1� a
jjFjj1 ¼

a
1� a

jjEjj1:
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• If we select F ¼ lð eP � evTÞ; then (3.3) becomes (Ipsen and Wills 2006)

jj~x� xjj16
1

1� a
jjFjj16

1

1� a
jlj jj ePjj1 þ jjevT jj1
� �

¼ 2

1� a
jlj:

• If we take F = (1 - a)efT, then (3.3) turns out to be (Ipsen and Wills 2006)

jj~x� xjj16
1

1� a
jjFjj16

1� a
1� a

jjef T jj16 jjf jj1:

It is necessary to consider how the ordering of the PageRank vector changes related to the

damping factor. One way is to compute the first order derivative of the PageRank vector with

respect to a (Boldi et al. 2009; Gleich et al. 2007). In (2009), Boldi et al. presented two

formulations for computing derivatives of PageRank, and Gleich et al. (2007) considered

how to compute the first order derivative vector via solving PageRank problems.

Next we show that a combination of the Lumping 5 scheme with Gleich et al.’s strategy

can be used to compute the first order derivative of the PageRank vector efficiently. Since

the PageRank vector is a function on a, we rewrite x̂T as x̂TðaÞ if there is no ambiguity. The

following theorem due to Boldi et al. established a relationship between the k-th derivative

x̂TðaÞ½ �ðkÞ and the (k ? 1)-th derivative x̂TðaÞ½ �ðkþ1Þ
:

Theorem 3.3 (Boldi et al. 2009) The following identities hold

1: x̂TðaÞ½ �0ðI � a ePÞ ¼ x̂TðaÞ eP � v̂T ;

2: x̂TðaÞ½ �ðkþ1ÞðI � a ePÞ ¼ ðk þ 1Þ x̂TðaÞ½ �ðkÞ eP; for any k [ 0:
ð3:4Þ

In terms of Theorem 3.3, we can present the following algorithm for computing the

first order derivative of the PageRank vector. Indeed, it is the Jacobi iteration applies to

(3.4). We see that the algorithm converges unconditionally, since the spectrum radius

qða ~PÞ� a\1:

Algorithm 5 An iterative algorithm for computing the first order derivative of PageRank (Dev-Boldi)

1. Start: Choose the initial vector y(0) = O, the value of a, the personality vector v̂; and a prescribed
tolerance tol, set iter = 1 and r = 1.

2. Iterate: Compute x̂ðaÞ as the solution to the original PageRank problem (1.3).

3. Set b ¼ 1
a x̂T ðaÞ � v̂Tð Þ; refer to (3.7).

4. Iterate:

while r [ tol

yT
ðiterÞ ¼ a yT

ðiter�1ÞP̂þ yT
ðiter�1Þd

� �

v̂T
h i

þ b;

r ¼ yðiterÞ � yðiter�1Þ
�

�

�

�

1
;

iter = iter ? 1;

end

Now we briefly introduce Gleich et al.’s strategy (2007) for computing the first order

derivative of the PageRank vector. Notice that eT x̂ðaÞ½ �0¼ 0; which follows directly from

the fact that eT x̂ðaÞ ¼ 1: We can rewrite (3.4) as
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x̂TðaÞ
� �0ðI � a ePÞ ¼ 1

að1� aÞ ð1� aÞx̂TðaÞ � ð1� aÞv̂T
� �

: ð3:5Þ

Indeed, it follows from (1.1) and (1.2) that

x̂TðaÞðI � a ePÞ ¼ ð1� aÞv̂T ; ð3:6Þ

where we use x̂ðaÞT e ¼ 1: Therefore,

x̂TðaÞ eP � v̂T ¼ 1

a
x̂TðaÞ � v̂T
	 


; ð3:7Þ

and (3.5) follows from (3.4) and (3.7). Let y(a) satisfy yTðaÞðI � a ePÞ ¼ ð1� aÞx̂TðaÞ;
then

x̂TðaÞ
� �0ðI � a ePÞ ¼ 1

að1� aÞ yTðaÞðI � a ePÞ � x̂TðaÞðI � a ePÞ
� �

;

that is,

x̂TðaÞ
� �0¼ 1

að1� aÞ yTðaÞ � x̂TðaÞ
	 


:

In summary, this strategy reduces the computation of the derivative vector to solving

two PageRank problems. We can present the following algorithm for computing the first

order derivative of PageRank.

Algorithm 6 An iterative algorithm for computing the first order derivative of PageRank (Dev-Gleich)

1. Start: Given a prescribed tolerance tol, choose the damping factor a and the personality vector v̂:

2. Iterate: Compute x̂ðaÞ as the solution to the original PageRank problem (1.3).

3. Iterate: Compute y(a) as the solution to the PageRank problem yT ðaÞðI � a ePÞ ¼ ð1� aÞx̂T ðaÞ:
4. Form x̂ðaÞ½ �0¼ 1

að1�aÞ yðaÞ � x̂ðaÞð Þ:

Remark 3.3 We mention that the cost of Algorithm 5 is a little higher than that of

Algorithm 6 per iteration. Indeed, the former needs to perform one matrix-vector product,

one dot product for computing yT
ðiter�1Þd, in addition to OðnÞ flops for the addition of three

n-dimensional vectors. As a comparison, the latter only requires one matrix-vector product,

as well as OðnÞ flops for the addition of two n-dimensional vectors, refer to (1.4).

Indeed, the Lumping 5 strategy can be utilized in conjunction with Gleich et al.’s

strategy to compute the first order derivative of PageRank. The resulting algorithm

inherits from some attractive numerical properties of its two parents. In contrast to

Algorithm 5, the new algorithm only needs to solve PageRank problems for PageRank’s

derivative. On the other hand, in contrast to Algorithm 6, one can apply the Jacobi

iteration on a (possibly much) smaller linear system to the lumped matrix P11, which

may reduce the round-off error and CPU time significantly. This new algorithm is

described as follows.
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4 Numerical experiments

In this section, we report numerical experiments on some real-world problems, and show

numerical behavior of our new algorithms. For every Web matrix, we set the diagonal

elements to be zero, and transform it into a (row) sub-stochastic matrix. The numerical

experiments were run on a Dell Workstation with four core Intel(R) Pentium(R) processor

with CPU 3.2 GHz and RAM 16 GB, under the Windows XP 64 bit operating system. All

the experimental results were obtained from using a MATLAB 7.7 implementation with

machine precision � � 2:22� 10�16:
Similar to what was done in (Langville and Meyer 2006a), we choose the Jacobi

iteration to solve the linear systems in this paper. Indeed, other efficient linear solvers, such

as the Gauss-Sediel method (Arasu 2002; Golub and Van 1996), or the GMRES method

(Gleich et al. 2005; Saad 2003), can also be applied. The difference is that all of the

comparisons are made on a Gauss-Sediel or GMRES-based algorithm for computing the

reduced PageRank problems. A numerical comparison of these methods are beyond

the scope of this paper, but deserves further investigation.

Table 1 lists summary of the algorithms used in this section. To show efficiency of

Algorithm 4 (denoted by ‘‘Lump 5’’), we compare it with the Jacobi iteration on the

original linear system (1.3) [denoted by ‘‘Original’’ in the tables below, which is mathe-

matically equivalent to the original PageRank algorithm (Langville and Meyer 2006b)],

Algorithm 1 (denoted by ‘‘Lump 2’’), Algorithm 2 (denoted by ‘‘Lump 3’’), as well as the

recursively reordering algorithm due to Langville and Meyer (2006a) (denoted by

Algorithm 7 A lumping algorithm with respect to five type nodes for computing the first order derivative
of PageRank (Dev-Lump 5)

1. Reorder the Web matrix (as well as the personality vector v̂) so that the reordered matrix has the
structure of (3.1).

2. Start: Given a prescribed tolerance tol, and the damping factor a.

3. Iterate: Apply Lump 5 to compute the PageRank vector x̂ðaÞ; using (the reordered) v̂ as the

teleportation distribution, set x̂ðaÞT :¼ x̂ðaÞT Q; and normalize x̂ðaÞT :¼ x̂ðaÞT= x̂ðaÞT
�

�

�

�

1
:

4. Iterate: Apply Lump 5 to compute y(a) with the teleportation distribution x̂ðaÞ; let

y(a)T := y(a)TQ, and normalize yðaÞT :¼ yðaÞT= yðaÞT
�

�

�

�

1
:

5. Form x̂ðaÞ½ �0¼ 1
að1�aÞ yðaÞ � x̂ðaÞð Þ:

Table 1 Summary of the algorithms in the numerical experiments

Abbreviation Algorithm

Original The Jacobi iteration (1.4) without lumping strategy

Lump 2 The lumping algorithm with respect to 2 type nodes (Lee et al. 2007)

Lump 3 The lumping algorithm with respect to 3 type nodes (Lin et al. 2009)

Recursive The recursively reordering algorithm for PageRank (Langville and Meyer 2006a)

Lump 5 The lumping algorithm with respect to 5 type nodes

Dev-Boldi Boldi et al.’s strategy for computing the first order derivative (Boldi et al. 2009)

Dev-Gleich Gleich et al.’s strategy for computing the first order derivative (Gleich et al. 2007)

Dev-Lump 5 Using Lumping 5 strategy for computing the first order derivative
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‘‘Recursive’’). For the computation of the first order derivative of the PageRank vector, we

compare Algorithm 7 (denoted by ‘‘Dev-Lump 5’’) with Algorithm 5 due to Boldi et al.’s

strategy (2009) (denoted by ‘‘Dev-Boldi’’), and Algorithm 6 due to Gleich et al.’s strategy

(denoted by ‘‘Dev-Gleich’’) (2007).

In Tables 3, 4, 5, 6, 7, and 8, we denote by ‘‘mv’’ the number of matrix-vector products,

by ‘‘size’’ the size of the iteration matrix in question, by ‘‘Lumping’’ the CPU time used in

seconds for lumping (i.e., Step 1), by ‘‘Solving’’ the CPU time used in seconds for solving

the corresponding linear system (i.e., Steps 2–5), and by ‘‘Total’’ the total CPU time used

in seconds for PageRank computation. That is,

Total ¼ Lumping + Solving: ð4:1Þ

For the sake of simplicity, in all the algorithms we pick v̂ ¼ e=n; and choose the same

initial guess xð0Þ ¼ ½0; 0; . . .; 0�T : All of the final solutions satisfy

r ¼ jjxðiterÞ � xðiter�1Þjj16 tol;

where x(iter) represents the approximate solution obtained from the iter-th Jacobi iteration,

and tol is a user-prescribed tolerance. As was done in (Gleich et al. 2005; Golub and Greif

2006; Kamvar et al. 2003a, 2004), in all the numerical experiments the damping factor

a are set to be 0.85, 0.90, 0.95 and 0.99, respectively. The test matrices are summarized in

Table 2, where ‘‘order’’ denotes the size of the Web matrix, and ‘‘nnz’’ stands for ‘‘the

number of nonzero elements’’.

In (2009), Wills and Ipsen made a point of suggesting compensated summation for

PageRank algorithms, and mentioned that explicit normalization during iterations is nec-

essary. However, in this paper, we consider the PageRank problem from a linear system

rather than from an eigenvalue problem point of view, so our codes do not use this type of

summation.

Example 4.1 In this example, we compare Lump 5 with Lump 2 and Lump 3, and try to

show superiority of the Lumping 5 strategy over the other two. As a by-product, we also

list the numerical results obtained from running the Jacobi iteration on the original linear

system. There are two test matrices in this example, whose data files are available from

http://www.cise.ufl.edu/research/sparse/matrices/*Gleich/index.html. The first one is the

Wikipedia-20060925 Web matrix which contains 2,983,494 nodes and 37,251,231 links. It

contains 89,124 dangling nodes and 872,457 unreferenced nodes. The second one is the

Wikipedia-20070206 matrix, which contains 3,556,907 nodes and 45,013,315 links. It has

1,077,605 unreferenced nodes and 101,533 dangling nodes.

Figure 4 plots structures of the original and the reordered Wikipedia-20070206 Web

matrices, respectively. One observes that this matrix contains much more unreferenced

Table 2 Test matrices in the
numerical experiments

Name Order nnz avg nz
per row

Wikipedia-20060925 2,983,494 37,251,231 12.5

Wikipedia-20070206 3,566,907 45,013,315 12.6

indochina-2004 7,414,866 191,606,827 25.8

Wb-edu 9,845,725 55,311,626 5.62

uk-2002 18,520,486 292,243,663 15.8
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nodes than the dangling ones. The size of the original adjacency matrix is 3,566,907. That

is, the original PageRank algorithm has to solve a linear system of size 3,566,907 9

3,566,907. If the Web matrix is lumped into two type nodes according to Lee et al.’s

strategy (2007), one needs to solve a 3,465,374 9 3,465,374 linear system for PageRank,

while if the matrix is lumped into three type nodes according to Lin et al.’s strategy (2009),

one can compute PageRank via solving a linear system of size 3,461,584 9 3,461,584.

However, if the hyper-link matrix is lumped into five type nodes, we can compute

PageRank via solving a much smaller linear system whose size reduces to 2,435,819 9

2,435,819, a great reduction. Therefore, we expect Lump 5 can do a better job than the

other three algorithms. Tables 3 and 4 list the numerical results.

One observes from the numerical results that Lump 5 outperforms the other three

algorithms in terms of CPU time, especially when the damping factor is close to 1. So we

benefit from lumping five type nodes, and our new method will be an appropriate choice

for the PageRank problem with high damping factors. In this experiment, it is seen that the

numerical performance of Lump 2 and Lump 3 is comparable to that of the original

PageRank problem. The reason is that the number of dangling nodes are relatively small

compared with that of the non-dangling ones. We notice that for the same value of a, all

the algorithms use about the same number of matrix-vector products. This is due to the fact

that the spectral radius of the iteration matrix P11 is invariant under similar variant, which

is the asymptotic convergence rate of the Jacobi iteration (Golub and Van 1996).

Example 4.2 The aim of this example is two-fold. First, we show that the Lumping 5

strategy is feasible for large matrices. Second, we aim to compare Lump 5 with the recursive

reordering algorithm due to Langville and Meyer (2006a), and show superiority of our new

algorithm. There are two test matrices in this example. The first one is the 7,414,866 9

Fig. 4 Example 4.1: Structure
of the original and the reordered
Wikipedia-20070206 matrix,
where the stripe represents
nonzero elements, and white
stands for zero elements
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7,414,866 indochina-2004 Web matrix, and the second one is the 18,520,486 9 18,520,486

uk-2002 Web matrix. The data files are available from http://law.dsi.unimi.it/datasets.ph. We

run Lump 5 and Recursive on the two large problems with a = 0.85, 0.90, 0.95 and 0.99. As a

comparison, we also list the numerical results obtained from running the Jacobi iteration on

the original linear system. Tables 5 and 6 present the numerical results.

Firstly, we observe from Tables 5 and 6 that Lump 5 works much better than Recursive in

terms of CPU time. On the other hand, when the damping factor is medium, say, 0.85, the

numerical behavior of Lump 5 and that of the original PageRank algorithm is comparable.

Table 3 Example 4.1, tol = 10-8, Four algorithms on the Wikipedia-20060925 matrix, n = 2,983,494

Algorithm Original Lump 2 Lump 3 Lump 5

a Size 2,983,494 2,894,370 2,890,778 2,063,672

Lumping – 2.91 4.83 8.49

a = 0.85 mv 109 109 109 109

Solving 88.2 86.9 86.8 76.8

Total 88.2 89.8 91.6 85.3

a = 0.90 mv 165 165 165 165

Solving 133.9 131.2 131.1 114.8

Total 133.9 134.1 135.9 123.3

a = 0.95 mv 331 331 331 331

Solving 267.8 262.8 262.3 229.4

Total 267.8 265.7 267.1 237.9

a = 0.99 mv 1,678 1,678 1,678 1,677

Solving 1,362.2 1,331.5 1,330.3 1,158.3

Total 1,362.2 1,334.4 1,335.1 1,166.8

Table 4 Example 4.1, tol = 10-8, Four algorithms on the Wikipedia-20070206 matrix, n = 3,566,907

Algorithm Original Lump 2 Lump 3 Lump 5

a Size 3,566,907 3,465,374 3,461,584 2,435,819

Reordering – 3.53 5.88 10.4

a = 0.85 mv 109 108 108 108

Solving 109.4 106.3 106.2 93.2

Total 109.4 109.8 112.1 103.6

a = 0.90 mv 162 162 162 162

Solving 162.8 158.8 158.7 139.2

Total 162.8 162.3 164.6 149.6

a = 0.95 mv 306 306 306 305

Solving 308.6 299.5 299.4 261.1

Total 308.6 303.0 305.3 271.5

a = 0.99 mv 1,139 1,139 1,139 1,139

Solving 1,140.1 1,111.2 1,111.3 9,72.2

Total 1,140.1 1,114.7 1,117.2 982.6
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However, when the damping factor is close to 1, the new algorithm converges faster than the

original PageRank algorithm, so our algorithm is promising for PageRank problems with high

damping factors. Secondly, it is seen that the Lumping 5 reordering strategy is feasible for

large problems. Furthermore, one observes from Tables 5 and 6 that the new lumping strategy

can be of (much) less time-consuming than the recursively reordering strategy due to

Langville and Meyer (2006a, b). For instance, for the indochina-2004 Web matrix, the

recursively reordering strategy requires 2472.2 seconds, while the Lumping 5 strategy only

needs 13.6 s. For the uk-2002 Web matrix, it takes us 29.0 s to lump the original data matrix

with respect to five types nodes, while the recursively reordering strategy uses 898.0 seconds.

Thirdly, for this example, it seems that the size of the reduced matrix obtained from the

recursively reordering scheme is smaller than that from the Lumping 5 strategy, e.g.,

Table 5 Example 4.2,
tol = 10-8, Three algorithms on
the indochina-2004 matrix,
n = 7,414,866

Algorithm Original Recursive Lump 5

a Size 7,414,866 5,786,895 5,838,493

Reordering – 2,472.2 13.6

a = 0.85 mv 106 106 106

Solving 117.7 287.2 110.3

Total 117.1 2,759.4 123.9

a = 0.90 mv 162 162 162

Solving 180.0 344.6 167.2

Total 180.0 2816.8 180.8

a = 0.95 mv 328 328 328

Solving 367.6 513.2 335.5

Total 367.6 2,985.4 349.1

a = 0.99 mv 1,652 1,652 1,652

Solving 1,833.7 1,852.9 1,678.7

Total 1,833.7 4,325.1 1,692.3

Table 6 Example 4.2,
tol = 10-8, Three algorithms
on the uk-2002 Web matrix,
n = 18,520,486

Algorithm Original Recursive Lump 5

a Size 18,520,486 15,093,204 15,124,174

Reordering – 898.0 29.0

a = 0.85 mv 105 105 105

Solving 214.8 282.7 198.3

Total 214.8 1180.7 227.3

a = 0.90 mv 159 159 159

Solving 326.0 383.2 297.1

Total 326.0 1281.2 326.1

a = 0.95 mv 319 319 319

Solving 653.8 680.2 591.0

Total 653.8 1578.2 620.0

a = 0.99 mv 1,587 1,587 1,587

Solving 3,252.8 2,993.5 2,921.0

Total 3,252.8 3,891.5 2,950.0
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5,786,895 versus 5,838,493 for the indochina-2004 Web matrix, and 15,093,204 versus

15,124,174 for the uk-2002 Web matrix. Indeed, for the size of the reduced matrix with

respect to the two reordering strategies, one can not tell which one is definitely smaller than

the other, and the answer is problem-dependent, see Remark 3.1 and Table 7. Finally,

compared with Lump 5, Recursive may cost more CPU time to solve the reduced linear

system, even if they require the same number of matrix-vector products. Indeed, there are

477 and 95 square diagonal blocks along the diagonal of the recursively reordered indo-
china-2004 and uk-2002 Web matrices, respectively. Consequently, it will take Recursive

more CPU time to form the solutions explicitly.

Example 4.3 The aim of this example is to illustrate that Dev-Lump 5 is superior to Dev-

Boldi and Dev-Gleich for calculating the first order derivative vector of PageRank. The test

matrix is the Wb-edu Web matrix available from http://www.cise.ufl.edu/research/

sparse/matrices/*Gleich/index.html, which contains 9,845,725 pages and 55,311,626 links.

As is seen from Sect.3.2, the main overhead for the computation of the derivative vector

includes two parts: First, the computation of the ‘‘accurate’’ PageRank vector. As was

mentioned before, there are at least two advantages in reducing the matrix dimension:

faster computation and smaller round-off error (Wills and Ipsen 2009). To show these two

merits, we compare Lump 5 with Original, Lump 2, Lump 3, and Recursive, with a

relatively high accuracy tol1 = 10-12. Second, the computation of the derivative vector,

and the tolerance is set to be tol2 = 10-8. Therefore, the CPU time and the number of

matrix-vector products for Algorithms 5, 6 and 7 consist of those for the ‘‘accurate’’

PageRank vector as well as those for the derivative vector. In this example, the ‘‘accurate’’

PageRank vector is obtained from running the Jacobi iteration on the original linear system

(1.3) for Dev-Boldi and Dev-Gleich, and from running Lump 5 for Dev-Lump 5. Tables 7

and 8 list the numerical results.

So as to show superiority of Dev-Lump 5 over Dev-Boldi and Dev-Gleich for com-

puting the first order derivative vector, we define

Table 7 Example 4.3, tol1 = 10-12, Five algorithms on the Wb-edu Web matrix, n = 9,845,725

Algorithm Original Lump 2 Lump 3 Recursive Lump 5

a Size 9,845,725 6,761,730 6,406,264 6,275,495 6,077,965

Reordering – 3.81 6.75 391.3 10.2

a = 0.85 mv 160 160 160 160 160

Solving 96.0 76.5 73.4 150.2 70.3

Total 96.0 80.3 80.2 541.5 80.5

a = 0.90 mv 245 245 245 245 245

Solving 147.3 115.9 111.3 187.9 106.1

Total 147.3 119.7 118.1 579.2 116.3

a = 0.95 mv 501 501 501 501 501

Solving 300.6 234.2 224.8 300.7 214.0

Total 300.6 238.0 231.6 692.0 224.2

a = 0.99 mv 2,535 2,535 2,535 2,535 2,535

Solving 1,522.3 1,177.7 1,128.1 1,194.1 1,069.9

Total 1,522.3 1,181.5 1,134.9 1,585.4 1,080.1
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Speedup � CPUAlg:A � CPUDev�Lump5

CPUAlg:A
;

the wall-clock speedups of Dev-Lump 5 with respective to ‘‘Alg.A’’, where ‘‘Alg.A’’

stands for Dev-Boldi or Dev-Gleich. Here ‘‘CPU’’ is the total CPU time for computing the

‘‘accurate’’ PageRank vector and the derivative vector.

It is seen from Table 8 that Dev-Lump 5 is superior to Dev-Boldi and Dev-Gleich,

especially when a is close to 1. Indeed, we have to solve two linear systems of size

9,845,725 9 9,845,725 for Dev-Boldi and Dev-Gleich, while to solve two linear systems

with order 6,077,965 9 6,077,965 for Dev-Lump 5. This explains why Dev-Lump 5 uses

less CPU time than Dev-Gleich, even if they make use of the same number of matrix-

vector products. On the other hand, we see that Dev-Boldi may need more CPU time than

Dev-Gleich, even when the former uses fewer matrix-vector products than the latter. This

is due to the fact that the cost of Dev-Boldi is a little higher than that of Dev-Gleich per

iteration, refer to Remark 3.3.

On the other hand, we observe from Table 7 that the CPU time used for Lump 2, Lump

3 and Lump 5 are comparable. The reason is that the number of the unreferenced nodes is

much less than that of the non-dangling one, refer to Fig. 5. However, we see that Lump 5

is more efficient than the original PageRank algorithm and the recursively reordering

algorithm, especially when the damping factor is high. For instance, when a = 0.99,

Original uses 1,522.3 s, while Lump 5 requires 1,080.1 s to reach the desired accuracy of

10-12. In other words, the new algorithm saves about 29% CPU time for computing

PageRank relative to Original. Note that the recursively reordering algorithm needs 1,585.4

s to reach the same accuracy, which is no better than the original Jacobi iteration.

Indeed, Recursive suffers from the overhead of recursively reordering process, 391.3 s,

versus 10.2 s for our Lumping 5 strategy. Moreover, there are p = 163 square diagonal

blocks in the reordered matrix. This partially explains why Recursive often requires more

CPU time than the other reordering algorithms, even if they use the same number of

matrix-vector products for solving the linear systems, see also the numerical results given

in Example 4.2.

Table 8 Example 4.3,
tol2 = 10-8, Computing the first
derivative of the PageRank vec-
tor of the Wb-edu matrix

Algorithm Dev-Boldi Dev-Gleich Dev-Lump5

a = 0.85 mv 254 267 267

CPU 174.1 159.5 128.2

Speedup 26.3% 19.6% –

a = 0.90 mv 389 410 410

CPU 267.6 245.3 188.6

Speedup 29.5% 23.1% –

a = 0.95 mv 792 840 840

CPU 543.7 501.6 369.7

Speedup 32.0% 26.3% –

a = 0.99 mv 3,957 4,295 4,295

CPU 2,712.7 2,564.6 1,823.5

Speedup 32.8% 28.9% –
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5 Conclusions and future work

In this paper, we present two new algorithms for computing PageRank and its derivative

vector, respectively, based on lumping the Web matrix with respect to five type nodes.

Compared with the lumping strategies proposed in (Lee et al. 2007; Lin et al. 2009), the

new lumping strategy can reduce the original PageRank problem to a (much) smaller one,

while the overhead of the three reordering schemes is comparable. Moreover, the new

strategy is much cheaper than the recursively reordering strategy proposed by Langville

and Meyer (2006a). Numerical examples show that the new algorithms are favorable when

the matrix is large and the damping factor is high.

There are still lots of problems need to be further investigated. For instance, extending

the techniques proposed in this paper to a MapReduce infrastructure (Dean and Ghemawat

2008) would be a very interesting research. Given that PageRank can typically only be

computed in highly parallel environments, due to the scale of data involved, how to involve

parallel computation, and even compute a decomposition as in (3.1) seems non-trivial in a

parallel setting where a graph is already distributed across nodes. It would also require

extensive evaluation against all the existing algorithms. How do the techniques compare

against existing techniques on measures other than CPU time (e.g., I/O), especially in a

setting where computation cannot be performed entirely in memory, or even on one

computer? Another avenue would be to dive into the accuracy claims following (Wills and

Ipsen 2009). These are interesting topics and will be our future research topics.
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