Skip to main content
Log in

Dynamics of Correlations in the Presences of Intrinsic Decoherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of a mixed spin system governed by XXZ model in additional to an intrinsic decoherence is investigated. The behavior of quantum correlation and the degree of entanglement between the two subsystems is quantified by using measurement-induced disturbance and the negativity, respectively. It is shown that, the phenomena of long-lived entanglement appears for larger values of intrinsic decoherence parameters. The degree of entanglement and quantum correlation depend on the dimensions of subsystems which are pass through the external field and the initial states setting. We show that the negativity for some initial classes is more robust than the measurement-induced disturbance, while for some other initial classes the quantum correlations are more robust than entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vedral, V.: Introduction to Quantum Information Science. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  2. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  3. Metwally, N.: Entangled network and quantum communication. Phys. Lett. A 375, 4268 (2011)

    Article  ADS  MATH  Google Scholar 

  4. Giraud, O., Georgeot, B., Shepelynasky, D.L.: Quantum computing of delocalization in small-world networks. Phys. Rev. E 72, 036303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Metwally, N.: Entanglement routers via a wireless quantum network based on arbitrary two qubit systems. Phys. Scr. 89, 125103 (2014)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Metwally, N.: More efficient purification protocol. Phys. Rev. A 66, 054302 (2002)

    Article  ADS  Google Scholar 

  9. Metwally, N., Obada, A.-S.F.: More efficient Purifying scheme via Controlled-Controlled NOT gate. Phys. Lett. A 352, 45 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Huang, P., Zhu, J., He, G., Zeng, G.: Study on the security of discrete-variable quantum key distribution over non-Markovian channels. J. Phys. B: At. Mol. Opt. Phys. 45, 135501 (2012)

    Article  ADS  Google Scholar 

  11. Hussain, M.I., Ikram, M.: Entanglement engineering of a close bipartite atomic system in a dissipative environment. J. Phys. B: At. Mol. Opt. Phys. 45, 115503 (2012)

    Article  ADS  Google Scholar 

  12. Metwally, N.: Information loss in local dissipation environments. Int. J. Theor. Phys. 49, 1571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu, T., Eberly, J.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  14. Yu, T., Eberly, J.: Sudden death of entanglement: Classical noise effects. Opt. Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  15. Metwally, N.: Quantum dense coding and dynamics of information over Bloch channels. J. Phys. A: Math. Theor. 44, 055305 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Abdel-Aty, M., Yu, T.: Entanglement sudden birth in two three–level trapped ions interacting with a time-dependent laser field. J. Phys. B: At. Mol. Opt. Phys. 41, 235503 (2008)

    Article  ADS  Google Scholar 

  17. Ban, M., Kitajima, A., Shibata, F.: Decoherence of entanglement in the Bloch channel. J. Phys. A: Math. Gen. 38, 4235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ban, M., Kitajima, A.-S., Shibata, F.: Decoherence of quantum information in the non-Markovian qubit channel. J. Phys. A: Math. Gen. 38, 7161 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Metwally, N.: Abrupt decay of entanglement and quantum communication through noise channels. Quantum Inf. Process 9, 429 (2010)

  20. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hu, M.L., Li Lian, H.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711 (2009)

    Article  ADS  Google Scholar 

  22. Ju´arez-Amaro, R., Escudero-Jim´enez, J.L., Moya-Cessa, H.: Intrinsic decoherence in the interaction of two fields with a two-level atom. Annalen der Physik 18, 454 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Zhong, Y.P., Wang, Z. L., Wang, H., John, M., Martinis, M., Cleland, A.N.: Reducing the impact of intrinsic dissipation in a superconducting circuit by quantum error detection. Nat. Commun. 5, 3135 (2014)

    ADS  Google Scholar 

  24. Guo, J.-L., H.-S. Song: Effects of inhomogeneous magnetic field on entanglement and teleportation in a two-qubit Heisenberg XXZ chain with intrinsic decoherence. Phys. Scr. 78, 045002 (2008)

    Article  ADS  MATH  Google Scholar 

  25. Zidan, N.: Quantum teleportation via two-qubit Heisenberg XYZ chain. Can. J. Phys. 92, 406 (2014)

    Article  ADS  Google Scholar 

  26. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  28. Yang, G.-H., Zhou, L.: Entanglement properties of a two-qubit, mixed-spin, Heisenberg chain under a nonuniform magnetic field. Phys. Scr. 78, 025703 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Song, L., Yang, G.-H.: Entanglement and measurement-induced disturbance about two-qubit Heisenberg XYZ model. Int. J. Theor. Phys. 53, 1985 (2014)

    Article  MATH  Google Scholar 

  31. Shadman, Z., Kampermann, H., Macchiavello, C., Bruss, D.: Optimal super dense coding over noisy quantum channels. New J. Phys. 12, 073042 (2010)

    Article  ADS  Google Scholar 

  32. Metwally, N.: Single and double changes of entanglement. J. Opt. Soc. Am. B 31, 691 (2014)

    Article  ADS  Google Scholar 

  33. Zhang, J., Chen, L., Abdel-Aty, M., Chen, A.: Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime. Eur. Phys. J. D 66, 1 (2012)

    Article  ADS  Google Scholar 

  34. Liang, Q.: Quantum correlation in a two-qubit Heisenberg XX model under intrinsic decoherence. Commun. Theor. Phys. 60, 391 (2013)

    Article  Google Scholar 

  35. Xu, X.-B., Liu, J.M., Yu, P.-F.: Entanglement of a two-qubit anisotropic Heisenberg XYZ chain in nonuniform magnetic fields with intrinsic decoherence. Chin. Phys. B 17, 456 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Zidan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidan, N. Dynamics of Correlations in the Presences of Intrinsic Decoherence. Int J Theor Phys 55, 1274–1284 (2016). https://doi.org/10.1007/s10773-015-2768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2768-y

Keywords

Navigation