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Abstract In this paper, the quantum tunneling of the non-stationary Kerr-Newman black
hole is investigated via Hamilton-Jacobi equation and two types of general tortoise coor-
dinate transformations. The tunneling rates, the Hawking temperatures and radiation spec-
trums are derived respectively. Our result shows that the new type of general tortoise coor-
dinate transformation is more reasonable.
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1 Introduction

In 1974, Hawking proved black holes can emit thermal radiation by the view of quan-
tum theory [1]. Subsequently, the thermodynamic property of the black holes has attracted
much interest. Apart from original derivation of Hawking radiation, there are several deriva-
tions [2–5]. In 2000, Parikh and Wilczek proposed a method to study quantum tunneling.
According to Palnevé coordinate transformations and WKB approach, the tunneling rate
of particles from inside to outside of horizon can be written as Γ ∝ exp(−2 Im I ) [6].
Along with this method, people have studied thermodynamic property of stationary black
holes [7–11]. After that, Padmanabhan and collaborators proposed Hamilton-Jacobi method
to study the tunneling radiation of scalar particles [12]. In 2007, Kerner and Mann proposed
a new method to study fermions tunneling radiation of static black holes and Kerr-Newman
black hole. With this method, fermions tunneling behavior of charged black holes, de Sit-
ter space-time and BTZ black holes have been investigated [13–15]. The case of higher-
dimensional space-time and Finsler black holes is referred in [16–18], which shows that the
quantum tunneling is a helpful method for us to understand the origin of Hawking radiation.
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In previous works, static and stationary black holes have been researched extensively.
However, the real black holes in the universe are dynamic. Therefore, the research on non-
stationary black holes has substantial significance. It is well known that the horizon of non-
stationary black holes varies with the time, so, there are some problems when studying
the Hawking radiation of non-stationary black holes. To solve these problems, people usu-
ally introduce the general tortoise coordinate transformation combining with the method
of Damour-Ruffini. Zhao and Yang et al. which has fruitful researched on several non-
stationary black holes. Recently, Yang has proposed a new type of general tortoise coordi-
nate transformation [19] which is considered with more physically significance and benefits
to study Hawking radiation.

In this article, the Hamilton-Jacobi equation was being derived from Klein-Gordon equa-
tion then the tunneling radiation of non-stationary Kerr-Newman black hole was studied via
the new type of general tortoise coordinate. Comparing to the results on the previous gen-
eral tortoise coordinate, it is find that the surface gravity, radiation spectrum and Hawking
temperature we got are more precise.

The rest is organized as follows. In Sect. 2, we review the non-stationary Kerr-Newman
black hole. In Sect. 3, we investigate the tunneling radiation of the non-stationary Kerr-
Newman black hole under the new type of general tortoise coordinate transformation. Con-
clusions and discussions are devoted to Sect. 4.

2 Non-stationary Kerr-Newman Black Hole

The line element of the non-stationary Kerr-Newman black hole in the advanced Eddington-
Finkelstein system can be written as [20–23]

ds2 = � − a2 sin2 θ

Σ
dv2 + 2

r2 + a2 − �

Σ
a sin2 θdvdφ − 2dvdr

+ 2a sin2 θdrdφ − Σdθ2 − [(r2 + a2)2 − �a2 sin2 θ ] sin2 θ

Σ
dφ2, (1)

with

Σ = r2 + a2 cos2 θ, � = r2 − 2Mr + a2 + Q2, (2)

where Q and M are the charge and mass of the black hole, they are functions depending on
coordinate ν. The gauge potential is

Aμ = Qr

Σ

(
dv − a sin2 θdφ

)
. (3)

The determinant and the component of inverse tensors are

g = −Σ2 sin2 θ, (4)

g01 = g10 = − r2 + a2

Σ
, g00 = −a2 sin2 θ

Σ
, g11 = − �

Σ
,

g22 = − 1

Σ
, g33 = − 1

Σ sin2 θ
, g03 = g30 = − a

Σ
,

g13 = g31 = − a

Σ
,

(5)
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Generally speaking, black holes exits three types of horizons, they are Apparent horizon
(AH), the Time-like surface and Event horizon (EH), for non-stationary black holes, the
three types of horizons are not coincide. As we know, the Hawking radiation must discuss
on the event horizon. The event horizon is satisfied with the null-hyper surface condition

gμν ∂F

∂xμ

∂F

∂xν
= 0, (6)

where F means the hyper-surface. The position of event horizon is written as

g00ṙ2
H − 2g01ṙH + g11 + g22r ′2

H = 0. (7)

where ṙH = ∂rH
∂ν

and r ′
H = ∂rH

∂θ
describe the change of event horizon with time ν and angle θ .

3 Quantum Tunneling of Scalar Particles Under the New Type of General Tortoise
Coordination Transformation

The dynamic behavior of charged scalar particles in curved space-time is described by Klein-
Gordon equation

1√−g

(
∂

∂xμ
− ieAμ

)[√−ggμν

(
∂

∂xν
− ieAν

)
Φ

]
− m2

�
Φ = 0, (8)

where m and e are the mass and charge of a scalar particle. The wave function Φ can been
express as

Φ = exp

(
i

�
S

)
, (9)

where S is the classical action. Substituting Eq. (9) into Eq. (8), the Hamilton-Jacobi equa-
tion is derived as [25]

gμν

(
∂S

∂xμ
− eAμ

)(
∂S

∂xν
− eAν

)
+ m2 = 0. (10)

Equation (10) is only satisfied the scalar particles with spin 0. Putting Eqs. (4) and (5) into
Eq. (10). It is get the concrete form of Hamilton-Jacobi equation

g00

(
∂S

∂ν

)2

+ g11

(
∂S

∂r

)2

+ g22

(
∂S

∂θ

)2

+ g33

(
∂S

∂φ

)2

− 2
(
eg00A1 + eg03A3

)∂S

∂ν

− 2
(
g33eA3 + g03eA1

) ∂S

∂φ
+ 2g01 ∂S

∂ν

∂S

∂r
+ 2g03e

∂S

∂ν

∂S

∂φ
+ 2g13 ∂S

∂r

∂S

∂φ

− 2g01eA1
∂S

∂r
+ g03e2A0A3 − 2g13eA3

∂S

∂r
+ g00e2A2

0 + 2g33e2A2
3

+ m2 = 0, (11)

For study the quantum tunneling of non-stationary black holes, the effective way is use
general tortoise coordinate transformation. Now, a new type of general tortoise coordinate
is defined as following [19]

r∗ = r + α ln
r − rH (ν, θ)

rH (ν, θ)
, (12)
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ν∗ = ν − ν0, (13)

θ∗ = θ − θ0, (14)

where α, ν0 and θ0 are constants. According to the new type of general tortoise coordinate
transformation, there are

∂

∂r
=

[
1 + α

(r − rH )

]
∂

∂r∗
, (15)

∂

∂ν
= ∂

∂ν∗
− αrṙH

(r − rH )rH

∂

∂r∗
, (16)

∂

∂θ
= ∂

∂θ∗
− αrr ′

H

(r − rH )rH

∂

∂r∗
. (17)

Combining Eqs. (11)–(17), the Hamilton-Jacobi equation can be transformed into

[αrṙH ]2a2 sin2 θ + �[α + (r − rH )]2r2
H + (αrr ′

H )2 − 2a[α + (r − rH )]αrH rṙH

rH (r − rH ){rH (r2 + a2)[α + (r − rH )] − αrṙH a2 sin2 θ}
(

∂S

∂r∗

)2

+
{

2
Qer

Σ

(
r2 + a2 − a2 sin2 θ

)[
α + (r − rH )

]
rH + 2a

[
αrH + rH (r − rH ) − αrṙH

]
j

}

× 1

rH (r2 + a2)[α + (r − rH )] − αrṙH a2 sin2 θ

∂S

∂r∗
+ 2

∂S

∂r∗
∂S

∂ν∗

− 2αrr ′
H

rH (r2 + a2)[α + (r − rH )] − αrṙHa2 sin2 θ

× Pθ

∂S

∂r∗
+

{
e2Q2r2 sin4 θ

Σ
+ 3

a2e2Q2r2 sin2 θ

Σ
+ Σm2 + a2 sin2 θ

(
∂S

∂ν∗

)2

+ j 2

sin2 θ

− 2
Qre

Σ

(
1

sin2 θ
− a2 sin2 θ

)
+ 2aj

∂S

∂ν∗
+ P 2

θ

}

× (r − rH )rH

rH (r2 + a2)[α + (r − rH )] − αrṙH a2 sin2 θ
= 0, (18)

where

Pθ = ∂S

∂θ∗
, (19)

Pφ = ∂S

∂φ
= j. (20)

In Eq. (20) j is a constant corresponding to the Killing vector (∂/∂φ)α and related to mag-
netic quantum number. Pθ is component of generalized momentum. Using the method which
referred in [19], when r approach the event horizon rH , the coefficient of the term (∂R/∂r∗)2

is 0/0 form. Therefore, the limit of the coefficient can be calculated via L’Hospital law, due
to the conformal flat requirement, we assume the limit of the coefficient term is equal to 1.
While α is selected as

α ∼ rH [(r2
H + a2)(2ṙH − 1) − ṙH a2 sin2 θ − 2�rH ]

rH (2rH − 2M − 4rH ṙH ) + 2[ṙH a2 sin2 θ − ṙH (r2
H + a2) + r ′2

H ] . (21)
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What’s worth noting is that, near the even event horizon, ν goes to ν0 and θ goes to
θ0 [26], this becomes

α = rH [(r2
H + a2)(2ṙH − 1) − ṙH a2 sin2 θ − 2�rH ]

rH (2rH − 2M − 4rH ṙH ) + 2[ṙH a2 sin2 θ − ṙH (r2
H + a2) + r ′2

H ]
∣∣
∣∣ν=ν0
θ=θ0

, (22)

both right-hand side and left-hand side in Eq. (22) are constants. From the above expression,
it is know that α is not a general constant but a special value corresponds on ν0 and θ0 , so,
α should be expressed as α(ν0, θ0). The physical significance of α(ν0, θ0) will be discussed
later. Near the event horizon Eq. (18) becomes to [24]

(
∂S

∂r∗

)2

+ A
∂S

∂r∗
+ 2

∂S

∂r∗
∂S

∂ν∗
+ BPθ

∂S

∂r∗
= 0, (23)

where the limit of A and B are

A|r→rH = Ã = 2[eQrH − a(1 − ṙH )j ]
(r2

H + a2) − ṙH a2 sin2 θ

∣
∣∣
∣ν=ν0
θ=θ0

, (24)

B|r→rH = B̃ = 2
r ′
H

(r2
H + a2) − ṙH a2 sin2 θ

∣∣
∣∣ν=ν0
θ=θ0

. (25)

Simplified the Eq. (23)
(

∂S

∂r∗

)2

+ 2
∂S

∂r∗

(
∂S

∂ν∗
+ ω0

)
= 0, (26)

Here, we let Ã + B̃Pθ0 = ω0, where ω0 is a term includes electric potential term. Following
the method in ref. [25], we need to prove a conclusion which defined as

∂S/∂ν∗ = −ω, (27)

where ω is the energy of particle, using the function ρ = Ce
iS
� and

∂2ρ

∂r2∗
+ 2

(
∂

∂ν∗
+ iω0

�

)
∂ρ

∂r∗
= 0, (28)

It is easy to find that under semi-classical theory both the Eq. (28) and Eq. (26) are equiva-
lent. The result of Eq. (27) gives

ρin = Ce− iων∗
� , (29)

ρout = Ce− iων∗−2i(ω+ω0)r∗
� . (30)

Now, the formula ∂S/∂ν∗ = −ω was proved to be true above. Obviously, it is always es-
tablished near the event horizon. Substituting Eq. (27) into Eq. (26), the Eq. (26) is reduced
to

∂S

∂r
=

[
1 + α

r − rH

]
∂S

∂r∗
= [(r − rH ) + α][(ω − ω0) ± (ω − ω0)]

(r − rH )
, (31)
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Here is a singular pole when r = rH , after integral around the singular pole, the result is

S =
∫ [(r − rH ) + α][(ω − ω0) ± (ω − ω0)]

r − rH

dr = iπα
[
(ω − ω0) ± (ω − ω0)

]
, (32)

where +(−) mean the out going (incoming) solutions. In order to obtains the final tunneling
rate, both going solution and incoming solution have be take into account. Therefore, the
contribution of imaginary of total action is [24, 25]

ImW = ImS = ImS+ − ImS− = 2απ(ω − ω0). (33)

So the final expression of tunneling rate is

Γ = Γemission/Γabsorption = e−2 ImW = e−4απ(ω−ω0), (34)

The physical significance of constant α(ν0, θ0) is being discussed. Contrast formula Γ =
exp(−βE) with Eq. (34), where β is inverse temperature on the horizon, and the E is the
energy of tunneling particle, it is clear to know that the Hawking temperature is depends
constant α(ν0, θ0). Meanwhile, the Hawking temperature is also depends on surface gravity
of black hole. This implies that α(ν0, θ0) under the new type of general tortoise coordination
transformation is related to the surface gravity. Furthermore, when let r ′

H = ṙH = a = Q = 0
and rH = 2M in Eq. (22) the formula becomes to α = 2M = 1

2κS
, where κS = 1

4M
is the

surface gravity of Schwarzschild black hole. In another word, the result reduce to the most
basic black hole. Know therefore, the relationship between α(ν0, θ0) and the surface gravity
of non-stationary Kerr-Newman is α(υ0, θ0) = 1

2κK−N , where the form of κK−N is given by

κK−N = rH (rH − M − 2rH ṙH ) + [ṙH a2 sin2 θ − ṙH (r2
H + a2) + r ′2

H ]
rH [(r2

H + a2)(2ṙH + 1) − ṙH a2 sin2 θ − 2�rH ]
∣
∣∣
∣ν=ν0
θ=θ0

. (35)

Similarly, employing to the expression of tunneling rate ΓS = e
− 2

κS
πω and Hawking temper-

ature of Schwarzschild black hole TH(S) = κS

2π
at the point ν = ν0, θ = θ0 Eq. (34) means the

tunneling rate of non-stationary Kerr-Newman black hole and the Hawking temperature of
non-stationary Kerr-Newman black hole is

TH(K−N) = κK−N

2π
= 1

4πα(ν0, θ0)

= rH (rH − M − 2rH ṙH ) + [ṙH a2 sin2 θ − ṙH (r2
H + a2) + r ′2

H ]
2πrH [(r2

H + a2)(2ṙH + 1) − ṙH a2 sin2 θ − 2�rH ]
∣∣
∣∣ν=ν0
θ=θ0

. (36)

According to the method of Sannan, the radiation spectrum of Schwarzschild black hole
is Nω(S) = 1

e
ω/KBTH(S)±1

. So, the radiation spectrum of non-stationary Kerr-Newman can be

written as

Nω(K−N) = 1

eω−ω0/KBT H(K−N) ± 1
, (37)

where KB is Boltzmann constant. The + symbol stands for fermion, − symbol means
bosons.
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4 Discussion and Conclusion

Here introducing the previous general tortoise coordination transformation as

r∗ = r + 1

2κ(ν0, θ0)
ln

[
r − rH (ν, θ)

]
, ν∗ = ν − ν0, θ∗ = θ − θ0. (38)

Performing Damour-Ruffini method, the surface gravity becomes

κ ′
K−N = rH (1 − 2ṙH ) − M

(r2
H + a2 − ṙH a2 sin2 θ0)(1 − 2ṙH ) + 2r ′2

H

, (39)

the tunneling rate as

Γ ′ = e−2 π
κ (ω−ω0), (40)

and the Hawking temperature as [26]

TH = rH (1 − 2ṙH ) − M

2π [(r2
H + a2 − ṙH a2 sin2 θ0)(1 − 2ṙH ) + 2r ′2

H ] , (41)

the radiation spectrum is

N ′
ω = 1

e(ω−ω0)/KBT ′ ± 1
. (42)

Now, we compare the results under the two types of general tortoise coordinate transfor-
mations. Firstly, to take notice of surface gravity κK−N in Eqs. (35) and κ ′

K−N in Eqs. (39),
it is clear that there is certain difference between κK−N and κ ′

K−N , which indicated the result
we got include more physics information. Furthermore, it is directly led the tunneling rates,
Hawking temperatures and radiation spectrums are different under the two types of general
tortoise coordinate transformations.

In this paper, the quantum tunneling of the non-stationary Kerr-Newman black hole are
obtained via a new type of general tortoise coordinate transformation. Using WKB approx-
imation, the Hamilton-Jacobi equation is derived from Klein-Gordon equation, then we ob-
tained the surface gravity, tunneling rate, Hawking temperature and radiation spectrum of
non-stationary Kerr-Newman black hole, when neglecting angular momentum a , charge Q ,
parameter r ′

H , ṙH and let rH = 2M , it is found that surface gravity is reduced to the situation
of Schwarzschild black hole which give full proof means our calculation is correct. Next,
by contrast, we found that tunneling rates, Hawking temperatures and radiation spectrums
are different under the two types of general tortoise coordinate transformations. According
to the dimensional analysis, it is more reasonable and more physically significant to employ
the new coordinate system. Therefore, the results we got were more accurate. Remarkably,
in the early part of this article we didn’t indicated the physical significance of α(ν0, θ0) as
previous work until it is be contrasted with the surface gravity of Schwarzschild black hole,
so we think it is more general and conforms with logical. In a word, Eq. (12) should express
as r∗ = r + α(ν0, θ0) ln[r − rH (ν, θ)/rH (ν, θ)].

It is noteworthy that for the axis symmetric black holes, when ν and θ under the general
tortoise coordination transformation are arbitrarily values r∗ = r +α(ν, θ) ln[ r−rH (ν,θ)

rH (ν,θ)
] .This

work will have a promising influence on the study of radiation property of black holes. The
research results will be reported in our further articles.
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