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Abstract
In earlier work, we defined a domain-specific language (DSL) with the aim to pro-
vide an easy-to-use approach for programming multi-core and multi-GPU clusters. 
The DSL incorporates the idea of utilizing algorithmic skeletons, which are well-
known patterns for parallel programming, such as map and reduce. Based on the 
chosen skeleton, a user-defined function can be applied to a data structure in paral-
lel with the main advantage that the user does not have to worry about implemen-
tation details. So far, we had only implemented a generator for multi-core clusters 
and in this paper we present and evaluate two prototypes of generators for multi-
GPU clusters, which are based on OpenACC and CUDA. We have evaluated the 
approach with four benchmark applications. The results show that the generation 
approach leads to execution times, which are on par with an alternative library 
implementation.

Keywords  Algorithmic skeletons · Parallel programming · High-performance 
computing · Model-driven development · Domain-specific language

1  Introduction

Programming for multi-GPU clusters poses many challenges especially for inexpe-
rienced programmers. Data has to be distributed between multiple computing nodes 
and compute regions have to be offloaded to the accelerators, and data has to be dis-
tributed once again to utilize multiple GPUs.
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There are several approaches to make programming for GPU systems more acces-
sible. For example, Thrust [1] provides containers for easier data transfers between 
devices and host, and OpenACC  [2] standardizes a set of compiler directives and 
library routines for a non-invasive way to parallelize applications on GPUs. How-
ever, most of these approaches do not support both, distributed systems with multi-
ple GPUs per node.

One approach to overcome these shortcomings are Algorithmic Skeletons. Algo-
rithmic skeletons have first been proposed by Cole [3] and are reoccurring parallel 
patterns known from functional programming. These comprise data-parallel skele-
tons such as map, fold/reduce, and zip as well as task-parallel skeletons, such 
as pipeline and farm, and communication skeletons, such as broadcast.

There are multiple ways how to implement algorithmic skeletons. For instance, 
the Muenster Skeleton Library (Muesli), which has been introduced in 2002 [4], is 
a C++ library, which implements distributed data structures and algorithmic skele-
tons, which are implemented as member functions of these data structures. The skel-
etons support parallel execution on multi-core and multi-GPU clusters [5].

Another newer approach is the Muenster Skeleton Tool (Musket). It generates 
code based on an input model, which is expressed in a domain-specific language 
(DSL). This language has built-in support for distributed data structures and algo-
rithmic skeletons. Since we look at the code generation process from the perspective 
of model-driven software development, we use the terminology of a DSL, model 
and generator, rather than programming language, program and compiler. From our 
perspective, there are two main advantages of using a model-driven development 
approach in the context of parallel programming with algorithmic skeletons. First, 
as known from the literature, a DSL can simplify and speedup the development 
process, since the language only focusses on necessary core features   [6, 7]. For 
instance in our case, the musket DSL does not require to explicitely handle low-level 
details such as data transports between host and GPUs or between different GPUs. 
Consequently, the DSL code is much more concise than equivalent C++ code using 
e.g. CUDA. Second, it provides a good way for performing transformations on the 
model  [6, 7]. In particular, the available model-driven development tools, such as 
xtext and xtend [8, 9], directly provide the abstract syntax tree (AST) of a model. 
Moreover this AST is rather small and easy to handle because of the concise syntax 
of the DSL. Thus, it is relatively easy to perform optimizations such as map fusion 
or fusing map and fold into a single mapreduce skeleton.

As the main contribution of the present paper, we describe the implementation 
of two new generators for Musket, which now offer support for multi-GPU clusters. 
Moreover, we evaluate the code produced by these generators experimentally based 
on four benchmarks. Up to now, there has only been a generator for sequential code 
and for clusters of multi-core systems (internally based on MPI and OpenMP). The 
new generators are based on the OpenACC standard [2] for programming GPUs and 
on CUDA [10]. While the most mature implementation of the OpenACC standard is 
currently provided by the PGI compiler for Nvidia GPUs, GCC includes most of the 
OpenACC standard version 2.5 in version 9. Therefore, we have decided to evaluate, 
whether OpenACC is a suitable tool for a portable back-end implementation and how 
the execution times compare to the CUDA implementation. In order to implement the 
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new generators, we had to refactor the existing generator. In particular, we have split it 
into a general part, which can be reused in the new generators and a specific part, which 
needs to be replaced for each new generator and its corresponding destination platform.

Our paper is structured as follows: we begin with a brief introduction to Mus-
ket, followed by the description of the implementation and changes to the language. 
Afterwards, we evaluate the performance of the generated code. After the discussion 
of related work and topics, we will give an outlook on future work and conclude the 
paper.

2 � Muenster Skeleton Tool

The Muenster Skeleton Tool (Musket)  [11, 12] has been developed as an alterna-
tive to the library Muesli. There were two major points, which we aimed for with 
the approach. The first one is the usability. By defining a dedicated language the 
overall complexity can be reduced due to appropriate abstractions, which leads to 
shorter implementation times with less redundant code, better reusability, and better 
readability of models [6, 7]. The second point is the performance of generated code. 
While there are other alternatives as mentioned in Sect. 5, the generation approaches 
allows for optimizations such as rearranging the sequence of skeleton calls [13].

Excerpts from models expressed in the Musket DSL can be found in Listings 1, 3, 
5, 7, and 8 in Sects. 3 and 4. After a general configuration, which is required to set 
the used generator and to provide information about the target architecture, the lan-
guage is structured in three sections. First, all distributed data structures are defined. 
Information such as the name, size and distribution mode (copied or distributed 
among all processes) are required. At the moment, the data structures are the distrib-
uted array and the distributed matrix. Second, the user functions are implemented. 
These functions can be passed as an argument to a skeleton invocation. Third, the 
logic of the program is defined. This comprises the sequence of skeleton calls.

Skeleton calls include data-parallel operations, such as map and fold, as well as 
communication skeletons. The skeletons are invoked on data structures and the syn-
tax follows the call of a member function in C++: result = data_struc-
ture.skeleton(user_function()). Arguments, such as the current ele-
ment or the index of the element, are automatically passed to the user function. 
Moreover, the language includes built-in functions, such as mkt::rand to gener-
ate random numbers. These functions are for instance necessary, because the expres-
sion in the model has to be translated into more complex code in the generated C++ 
code. For the mkt::rand this might for example be the instantiation of random 
engines.

3 � Implementation

In this section we will outline the generation process and the implementation of 
the GPU generators. We will also introduce aspects of the language and required 
changes for the GPU support.
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The generation process is depicted in Fig.  1. The definition of the language 
is the basis, which is required to express the input model as well as to perform 
preprocessing and the generation. The transformations such as map-fusion are 
implemented as model-to-model transformation, which are performed by the pre-
processor. Afterwards, the preprocessed model is passed to the generator, which 
generates the C++ code and additional project files, such as a CMakeLists.txt and 
build scripts.

3.1 � Domain‑Specific Language

The language is implemented with the Xtext framework [8]. Xtext’s grammar lan-
guage allows for defining a DSL in an EBNF-like style. From a language gram-
mar, Xtext infers an EMF Ecore model, which is the meta-model of the language. 
While parsing textual input models, the Xtext parser automatically creates an in-
memory object graph, which is the abstract syntax tree (AST). This object graph 
is the input for further steps, such as validation, preprocessing, and generation.

Xtext offers additional features to increase the usability of a DSL. For instance, 
it is possible to implement a custom syntax highlighting for a language. Addi-
tionally, validators can be implemented to signal warnings and errors to the user 
while developing a model. For example, the Musket DSL contains checks for 
the correct number of arguments for skeleton calls. These errors are already dis-
played during the modeling process in the IDE.

3.1.1 � Configuration

The Musket DSL provides certain configuration switches, which are used by the 
generator. These are defined in the beginning of each model and guide the genera-
tion process. 

Model

Generator Application Code

DSL

Preprocessor

Fig. 1   Generation process
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The platform variable determines which generators are triggered. Thus, in 
this example both the generators for multi-Core and for multi-GPU systems gen-
erate independent programs for each architecture. While the processes vari-
able is used by both generators, other switches are ignored if they are irrelevant. 
Consequently, the CPU generator would ignore the value for available GPUs.

This example highlights the flexibility of the approach. If a new generator is 
implemented, as in this case the GPU generator, it is only necessary to specify 
the new platform and possibly newly required configuration variables, such as 
the number of GPUs. The remaining model can very likely remain without any 
changes. There have been two changes to the language, which will be discussed 
later. But even with those changes, original models were still working for the 
CPU generator.

3.1.2 � Data Distribution

As mentioned above, Musket works with a two step data distribution approach, as 
it has also been the case for Muesli [14]. First, data is distributed among the com-
pute nodes, and on each node the data is distributed among the available GPUs. The 
data distribution is implemented with two distributed data structures, the distributed 
array and the distributed matrix. Currently, there are two distribution modes called 
dist and copy. Dist means that the data is distributed, be it between nodes or 
GPUs and copy means that the data is available on each node or on each GPU. 

Listing  2 shows an excerpt from the definition of the data structures in the 
DSL implementation. The language defines the array and matrix as two distrib-
uted container types, which take the obligatory distributionMode and the 
optional gpuDistributionMode arguments. Consequently, Listing  3 shows 
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a possible definition of an array in a model, which is distributed among the pro-
cesses, but the data is copied on each GPU of that node. 

The second parameter for the GPU distribution becomes only necessary with 
the new generators and this is also the reason why it is optional. To ensure that the 
parameter is set during modelling it is possible to implement a validator, which 
checks the defined data structures based on the chosen platform configuration.

3.1.3 � Reduction Skeleton

With the new generators, we also included a shortcut for defining reductions. There 
has been a fold skeleton, which can take an arbitrary function and also requires the 
identity of the reduction operation as an argument. However, there are certain opera-
tions, which are commonly used to reduce elements, which are plus, multiply, mini-
mum, maximum and logical operations. We decided to name the skeleton differently 
to have a clearer distinction. The definitions are rather similar as shown in Listing 4. 
Additional validation ensures that a reduction operation is only passed as an argu-
ment to the reduction skeleton. It is considered a best practice to keep the grammar 
concise and to use additional validation  [15]. By using validators it is possible to 
provide better error messages and quickfixes. 
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3.2 � Generator

The generator is implemented with Xtend, a Java dialect that offers additional fea-
tures such as template expressions, which are especially useful for code genera-
tion [9]. The structure of the generator is similar to the CPU generator. In contrast to 
the first version of the CPU generator, which generated the complete code base, we 
decided to make use of a platform library for the GPU generators. For example, the 
distributed data structures are implemented as regular C++ templates and included 
in the generated project. In the same way, the CUDA kernels are implemented. This 
redesign facilitates a leaner implementation of the generators and allows for better 
maintenance of the C++ code in the library. 

We want to give one more detailed example of how elements from the model 
are translated into C++ in the CUDA generator. The user functions from the model 
are generated as C++ functors. If another data structure is used within a user func-
tion, the GPU pointer is automatically passed to the function object. For example, 
in the N-body simulation model in Listing 5, the calc_force() user function is 
invoked on the P data structure but references values from the oldP array. The gen-
erated code is shown in Listing 6. 
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Before the functor is generated, the body of the user function is filtered for 
accesses to data of other data structures. For each data structure a member of 
type DeviceArray is generated, which contains the pointers, number of ele-
ments and size of the data on the GPU. The DeviceArray is also a part of the 
static platform library. The init function is called within the skeleton function, 
so that the correct pointers are used in a multi-GPU scenario.

4 � Evaluation

First, we describe the benchmark applications and explain the used models. Sec-
ond, we discuss the results. The discussion begins with the evaluation of the 
OpenACC back-end, first, with automated parallelization and second, with an 
optimized back-end implementation. Further, we compare the results with an 
alternative back-end implementation, which uses CUDA. Since, the CUDA back-
end leads to the best results, we compare the results of the benchmarks with 
an implementation with Muesli in order to determine whether the generation 
approach can compete with the library implementation in terms of performance.
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4.1 � Benchmarks

So far, we have evaluated the approach with four benchmark applications: (1) the 
simple calculation of the Frobenius norm of a matrix, (2) matrix multiplication, 
(3) N-body simulation, and (4) all-pairs of shortest paths in a graph. The first three 
benchmarks have been executed on a cluster where each node is equipped with up 
to four Nvidia K80 GPUs. As software we have used the PGI compiler in version 
18.04, the Nvidia CUDA Toolkit 10.0, and gcc 7.3.0 as host compiler for CUDA. 
Moreover, we have used OpenMPI 2.1.2 for the benchmarks with OpenACC and 
OpenMPI 3.1.1 for the benchmarks with CUDA. The different OpenMPI versions 
have been necessary because of the dependency configurations of the cluster. Com-
piler optimizations have been enabled. We used the O3 flag for nvcc and gcc, and O4 
flag for pgi. Moreover, we have specified the architecture using the arch and code 
(nvcc), march (gcc), and tp and ta (pgi) flags. Pinned memory has been used 
with PGI and CUDA in order to speedup data transfers between host and device. 
All benchmarks have been executed ten times and the mean average is presented. 
The execution times include all operations, such as creating data structures, data 
transfers, communication between nodes etc. Benchmark 4 has been run on a single 
Nvidia Titan Xp GPU. A drawback of this machine is that it is not equipped with the 
PGI compiler and we could hence not run the OpenACC back-end. Consequently, 
we could only compare the CUDA back-end and Muesli on this machine. This is not 
too bad, since the CUDA back-end turned out to be more efficient anyway.

The Frobenius benchmark uses one mapReduce skeleton. An excerpt of the 
model is shown in Listing  7. Within the mapReduce skeleton all values of the 
matrix as are squared and summed up. The plus argument of the mapReduce 
skeleton specifies the operation for the reduction step. In this case it is a shortcut for 
the plus operation. Afterwards, the square root of the sum is calculated to obtain the 
result. The functions mkt::roi_start() and mkt::roi_end() are trans-
lated into timer functions, which measure the execution time of the region of inter-
est. We have used a 16384 × 16384 matrix with double precision values. 

The Matrix multiplication benchmark is an implementation of Cannon’s algo-
rithm with algorithmic skeletons. The algorithm is described in detail in [14]. For 
this benchmark we have used two 16384 × 16384 matrices with single precision val-
ues. The model is shown in Listing 8. The shiftPartitions skeletons move 
the data of the input matrices as and bs between processes. The cs matrix contains 
the result, which is calculated with the mapLocalIndexInPlace skeleton in 
line 5. The additional LocalIndex specifies that the user function dotproduct 
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also takes the local indices of each element as an argument. The specifier InPlace 
means that the result of the map operation is written to the matrix on which the skel-
eton is invoked. 

The third benchmark is an N-body simulation performed on 500,000 particles 
over five time steps. This benchmark also uses single precision values and the model 
has been shown in Listing 5. The array P contains the particles and oldP contains 
the particles from the last iteration. The first distribution specifier dist and copy 
in lines 2 and 3 determine, whether the data is split between processes or whether 
the data is available on all processes. The second distribution specifier determines 
whether the data is split between the available GPUs per node or whether the data is 
available on all GPUs. After the particle system is updated in line 8, the data is cop-
ied from array P to oldP. Since this is a copy step from a distributed array to a copy 
distributed array, the gather skeleton is used.

The 4th benchmark computes all pairs of shortest paths in a randomly generated 
graph of 8192 nodes. The graph is represented by its distance matrix with integer 
distances. The implementation repeatedly uses a variant of Cannon’s algorithm.

4.2 � Results

Our first implementation has used OpenACC for programming GPUs. The rationale 
behind this choice has been that we wanted to focus on optimizations on the higher 
level of skeletons, such as skeleton fusion, rather than on low-level optimizations. 
Consequently, Musket performs transformations on the input model and generates 
C++ code, which is then compiled by an additional compiler such as nvcc, pgc++, 
or g++. In earlier work, we have found this to lead to better results than already 
incorporating techniques such as inlining into the generator, since these optimiza-
tions are performed anyway by the compiler later on. Thus, we include required files 
to build the generated project, such as a generated build script and CMake files. We 
wanted to analyze the performance of the generated code, letting the PGI compiler 
analyze the generated program and decide on the best way of parallelization. In the-
ory, this would lead to a portable back-end implementation, which would support 
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all platforms with a compiler that implements the OpenACC standard. However, the 
results, which are presented in Table 1: OpenACC (automated parallelization), have 
been rather unsatisfying.

While the execution times scale well, the absolute times are rather slow. For 
example, our generated code of a matrix multiplication for multi-core cluster 
with 4 nodes and 24 cores from another experiment takes 164.2069s for the exe-
cution  [11], which is comparable with the utilization of 4 nodes with 4 GPUs. 
The reason is that the matrix multiplication is implemented with a map skele-
ton, which operates on the result matrix, and takes a user function that calcu-
lates the dot product. The PGI compiler decides to parallelize the outer loop on 
the gang level and the inner loop for the dot product calculation on the vector 
level, while it is the better decision to parallelize the outer loop and let the inner 

Table 1   Overview of Musket’s execution times with OpenACC back-ends (all measures in seconds)

Benchmark Processes GPUs OpenACC (automated 
parallelization)

OpenACC 
(optimized)

Frobenius norm 1 1 1.2098 1.2257
1 2 1.2526 1.2767
1 4 1.4674 1.4992
4 1 0.3486 0.3578
4 2 0.4154 0.4115
4 4 0.5837 0.5815
16 1 0.5355 0.5225
16 2 0.6065 0.6213
16 4 0.8136 0.8174

Matrix multiplication 1 1 2252.5643 109.1062
1 2 1133.3208 54.8244
1 4 668.3012 28.4107
4 1 556.8913 28.3133
4 2 279.2927 17.1349
4 4 164.3258 9.4570
16 1 135.2462 8.1357
16 2 66.9933 4.8964
16 4 33.3739 3.2511

N-Body simulation 1 1 597.7319 109.0646
1 2 302.4134 56.4951
1 4 149.8264 30.1430
4 1 150.8527 29.9718
4 2 76.0810 16.8154
4 4 38.3946 8.6539
16 1 37.9842 8.4249
16 2 19.2801 3.9035
16 4 10.0177 4.0600
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loop run sequentially. With the change to only parallelize the skeleton and not 
the user function, significant speed-ups can be achieved as presented in Table 1: 
OpenACC (optimized).

In order to determine the difference between CUDA and OpenACC, we decided 
to implement an additional alternative back-end. Since the back-end relies on CUDA 
for the acceleration with GPUs, the generated code is only usable on clusters with 
Nvidia GPUs. The results are presented in Table 2: Musket.

By using CUDA for the back-end implementation the execution times can even 
be further reduced compared to the OpenACC back-end implementation. One dif-
ference for instance is the selection of threads per block. For the benchmark, the 
PGI compiler chooses to use 128 threads per block, while the generated code used 

Table 2   Overview of Musket’s 
and Muesli’s execution times 
with their CUDA back-ends (all 
measures in seconds)

Benchmark Processes GPUs Musket Muesli

Frobenius norm 1 1 1.4848 1.7364
1 2 1.4625 1.7209
1 4 1.4519 1.6517
4 1 0.4096 0.4778
4 2 0.3872 0.4509
4 4 0.3860 0.4269

16 1 0.1074 0.1229
16 2 0.1087 0.1160
16 4 0.1237 0.1126

Matrix multiplication 1 1 52.0596 92.1485
1 2 27.2736 48.0039
1 4 14.9162 25.8381
4 1 16.1760 24.9867
4 2 10.0826 14.0779
4 4 6.7614 8.5701

16 1 4.4089 6.6124
16 2 2.8685 3.9030
16 4 2.0349 2.5534

N-Body simulation 1 1 45.3422 52.5339
1 2 23.6784 28.6561
1 4 11.6596 14.5347
4 1 11.6300 14.1635
4 2 6.9905 8.4848
4 4 4.7615 5.6140

16 1 4.7204 5.5778
16 2 2.4854 2.8402
16 4 2.2952 2.8144

All pairs of shortest paths 1 1 59.5139 89.2008
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1024 threads per block, what seemed to be the more efficient setting. However, these 
results might not hold true for other benchmarks and architectures.

Next, we want to compare the execution times to benchmark implementa-
tions with Muesli. The results are included in Table  2: Muesli. Muesli is a skel-
eton library, which has been the reference for this approach. Consequently, both 
approaches incorporate very similar concepts, such as the distributed data structures. 
As already stated above, the instantiation of data structures, the execution of the 
skeletons as well as all data transfers and communication, such as the gather skel-
eton in the N-body simulation benchmark, are included in both execution times. 
The only difference in the execution is that Muesli uses 512 threads per block and 
Musket 1024 threads per block as mentioned above. While the results are not fully 
comparable in that regard, Musket certainly leads to good results compared to the 
original library implementation Muesli.

A graphical summary of the benchmark results is depicted in Fig.  2. The dia-
grams show the speedup of the Musket implementations with the different GPU 
back-ends and the Muesli implementation relative to the execution times of Musket 
with the unoptimized OpenACC back-end.
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Fig. 2   Speedups relative to Musket with the unoptimized OpenACC back-end
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5 � Related Work

In the following, we will mainly focus on related work in the domain of parallel 
programming with algorithmic skeletons or parallel patterns. The discussion incor-
porates other skeleton libraries, DSLs, and transformations of skeletons.

There have been various implementations of skeleton libraries and first, we 
want to mention selected examples. All the mentioned instances are libraries for 
C++, which is the first main difference compared to the generation approach fol-
lowed by Musket.

FastFlow  [16] is a skeleton library, which mainly focuses on task-parallel 
patterns and stream parallelism, but also provides support for data-parallel con-
structs, such as a parallel for-loop. It has also been extended for distributed sys-
tems and for offloading computations on accelerators  [17, 18]. The main dif-
ference to our implementation is the focus on stream parallelism. For example 
the extension for distributed systems works in two tiers. The lower tier provides 
skeleton impelementations for a shared-memory architecture and the upper tier 
orchestrates the skeletons from the lower tier in the distributed architecture sce-
nario. In contrast, we provide distributed data structures on which the skeletons 
operate.

SkeTo targets distributed memory architectures and by utilizing C++ template 
metaprogramming, transformations of skeletons, such as skeleton fusion, are accom-
plished  [19]. Skeleton fusion is for example the fusion of two map skeletons into 
one, or of a map and a reduce skeleton into a single mapReduce skeleton instance. 
By applying those transformations, the number of skeleton calls and amount of data 
movements can be reduced. Instead of relying on template metaprogramming, Mus-
ket implements transformations on the skeleton level as model-to-model transforma-
tions based on the input model.

The last library we want to mention is SkePu [20]. In version 2, SkePu incorpo-
rates a pre-compilation step, which utilizes C++ annotations to generate required 
code, such as __device__ for CUDA GPU functions. The implementation of the 
pre-compilation is based on Clang and LLVM. This follows a very similar concept 
as the model-driven approach by Musket with the difference that SkePu has standard 
C++ with annotations as input, while we defined a custom language.

In the following we want to touch upon the differences between internal DSLs, 
external DSLs, and general purpose languages. As mentioned in Sect.  2, the use 
of a DSL, in contrast to a general purpose language, can lead to multiple advan-
tages. A DSL increases the level of abstraction and consequently reduces complex-
ity and redundant code. This in turn leads to better readability of models, reduces 
the development time and increases software quality [6, 7]. For instance, the C++ 
standard includes parallel algorithms  [21] and other concepts such as futures and 
possibly soon executors. However, it might still be worthwhile to implement a DSL 
to reduce complexity. In this scenario the Musket DSL provides a higher abstraction 
and focuses on necessary core features for parallel programming.

The difference between an internal and external DSL is that an internal DSL is 
embedded into another language. In a broad sense, even OpenMP and OpenACC 
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could be interpreted as an internal DSL. The main advantage of internal DSLs is 
that they can be non-invasive. By using OpenMP or OpenACC pragmas, it might 
not be necessary to restructure the original code. Thus, if the pragmas are ignored, 
the program still contains valid sequential code. In the context of algorithmic skele-
tons, SPar [22] is an internal DSL for annotating a sequential program, which is then 
transformed into a FastFlow application. In contrast, Musket provides an external 
DSL. This reduces the complexity, since there is no need for annotations or pragmas 
to be embedded within another language.

Finally, we want to mention an approach for generating OpenCL kernels for 
GPUs. Steuwer et al. [23] proposed a DSL, which incorporates concepts from func-
tional programming. The main aspect of the approach is a set of rewrite rules for 
algorithmic skeletons. By rewriting high-level expressions in a systematic way using 
these rewrite rules, it becomes possible to transform the high-level expressions into 
device-specific low-level implementations. From our perspective this approach 
follows a different objective. While its focus is on the low-level transformation of 
expressions for GPUs, we consider Musket being on a higher level with a general 
focus on usability for parallel programming on different architectures.

6 � Conclusion and Future Work

In this paper we have introduced two new generators for the parallel-programming 
DSL Musket. The first implementation has used OpenACC, while the second imple-
mentation has used CUDA. We have described the implementation of the generators 
and evaluated the generated programs with four benchmark applications. The exe-
cution times have shown that our CUDA implementation outperforms OpenACC. 
Consequently, while it might be worthwhile to maintain a flexible generator based 
on OpenACC, the focus for Nvidia GPUs should be on a lower-level CUDA 
implementation.

There are many optimizations, which are not yet included in the CUDA genera-
tor, which should be explored in future work. For instance, direct communication 
between GPUs has not been considered. At the moment, all communication happens 
through the host main memory. With the increasing bandwidth offered by NVLink, 
it might be worthwhile to consider alternatives to the current 2-step-approach for 
distributing data between nodes and GPUs.
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