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Abstract The growing complexity of the United States
Recommended Childhood Immunization Schedule has
resulted in as many as five required injections during a
single well-baby office visit. To reduce this number,
vaccine manufacturers have developed combination vac-
cines that immunize against several diseases in a single
injection. At the same time, a growing number of parents
are challenging the safety and effectiveness of vaccinating
children. They are also particularly concerned about the use
of combination vaccines, since they believe that injecting a
child with multiple antigens simultaneously may over-
whelm a child’s immune system. Moreover, combination
vaccines make it more likely that extraimmunization (i.e.,
administering more than the required amount of vaccine
antigens) occurs, resulting in greater concerns by parents
and vaccine wastage costs borne by an already strained
healthcare system. This paper formulates an integer
programming model that solves for the maximum number

of vaccines that can be administered without any extra-
immunization. An exact dynamic programming algorithm
and a randomized heuristic for the integer programming
model is formulated and the heuristic is shown to be a
randomized ξ-approximation algorithm. Computational
results are reported on three sets of test problems, based
on existing and future childhood immunization schedules,
to demonstrate their computational effectiveness and
limitations. Given that future childhood immunization
schedules may need to be solved for each child, on a
case-by-case basis, the results reported here may provide a
practical and valuable tool for the public health community.
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1 Introduction

Parental refusal to vaccinate their child has become a
growing concern for public health administrators and
pediatricians. For example, in a recent national survey of
pediatricians, 54% had encountered parents over a 12-month
period that refused to vaccinate their child, citing safety
concerns as their top reason [14]. In another survey, 70% of
pediatricians had encountered a parent in the 12 months
preceding the survey that refused at least one immunization
for their child [12]. As these studies indicate, the safety,
necessity, and effectiveness of vaccines are a concern for
many parents.

In the last decade, vaccine manufacturers have begun
developing a growing number of combination vaccines,
which protect against several diseases with a single
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injection [13, 18]. Such combination vaccines are an
important solution to alleviating vaccine injection over-
crowding and schedule complexity [8, 13, 31] within the
current United States Recommended Childhood Immuniza-
tion Schedule [4]. However, using combination vaccines
increases the risk of extraimmunization, which means that a
child receives vaccine antigens for a given disease beyond
what is prescribed in the United States Recommended
Childhood Immunization Schedule. For example, injecting a
child with a diphtheria, tetanus, pertussis, hepatitis B, and
polio combination vaccine at age 4 months would provide
extraimmunization for hepatitis B, since no dose of this
vaccine is required at that age (see Fig. 1). Such extraimmu-
nization poses biological safety risks and amplifies parental
concerns on vaccine safety and effectiveness. Biologically,
extraimmunization of some vaccines increases the risk of
adverse side effects; such is the case with diphtheria and
tetanus vaccines [8]. Furthermore, several people challenge
the safety and effectiveness of vaccinating children and
particularly object to the use of combination vaccines, since
they believe that injecting a child with multiple antigens
simultaneously overwhelms the infant immune system, and
hence, extraimmunization due to combination vaccines only
exacerbates these fears [10, 13]. Moreover, the economic toll
of extraimmunization is also significant. For example, the
annual societal cost burden of providing one extra dose of
vaccine for each child born in the United States is no less
than $28 million, which assumes a birth rate of 11,100 births
per day (see [26]) and a vaccine cost of $7, where the
vaccine cost estimates the Federal contract purchase price of
the least expensive pediatric vaccine (see [3]).

In addition to extraimmunization, combination vaccines
are creating a combinatorial explosion of vaccine alter-
natives and choices for the public health community,
especially as the Recommended Childhood Immunization
Schedule continues to evolve, with new diseases emerging

and/or new vaccines being developed. For example, four
time periods and five diseases (with Rotavirus and
Meningococcal added in 2007) have been added to the
Recommended Childhood Immunization Schedule since
1995 [5, 9, 11]. This combinatorial explosion of vaccine
alternatives and choices has motivated the use of operations
research techniques in addressing pediatric immunization
formulary design problems. Most of the research to date
addresses the economics of pediatric vaccine formulary
design, combination vaccine pricing, and vaccine wastage
[21, 23]. Weniger et al. [32] report the results of a pilot
study that uses operations research methods to assess the
economic value of vaccine formularies (i.e., the set of
vaccines inventoried by an immunization clinic or pediatri-
cian). In this pilot study, a portion of the Recommended
Childhood Immunization Schedule was modeled as an
integer program (IP). The objective of this IP was to aide
decision-makers in determining the vaccine formulary that
minimized the cost to fully immunize a child. Jacobson
et al. [26] present a more rigorous presentation of this pilot
study and demonstrate how the model selects different
vaccine formularies depending on the desired economic
criteria. Sewell et al. [30] embed the IP from the pilot study
into a bisection algorithm [2] to “reverse engineer” the
maximum inclusion prices (the maximum price at which a
vaccine remains part of the optimal vaccine formulary) of
four combination vaccines not yet (at that time) licensed in
the United States. Sewell and Jacobson [29] present a
rigorous description of this study, including the complete IP
model. This study shows how operations research can
provide beneficial economic analysis to the pharmaceutical
companies that develop and manufacture vaccines (see [20,
25] for additional applications of this bisection algorithm).
Jacobson and Sewell [22] extend the bisection/IP algorithm
approach by including it with Monte Carlo simulation,
thereby determining a probability distribution for the price

TIME PERIOD (Age of Child) 

DISEASE 1 
(Birth)

2 
(1 Mo)

3 
(2 Mos)

4 
(4 Mos)

5 
(6 Mos)

6 
(12 Mos)

7 
(15 Mos)

8 
(18 Mos)

9 
(24 Mos)

10 
(4-6 Yrs)

Hepatitis B D1 D2 D3
Diphtheria, Tetanus, Pertussis  D1 D2 D3 D4 D5
Haemophilus influenzae type b D1 D2 D3 D4
Polio D1 D2 D3 D4
Measles, Mumps, Rubella D1 D2
Varicella D1
Pneumococcus D1 D2 D3 D4
Influenza D1 (yearly)
Hepatitis A D1 D2

Fig. 1 United States 2006 recommended childhood immunization schedule through age 6 (excluding recommendations for selected populations)
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of the four potential combination vaccines. Lastly, Hall
et al. (submitted) formulate and analyze a general discrete
optimization model that determines the set of vaccines (i.e.,
a vaccine formulary) that should be used in a clinical
environment to satisfy any given childhood immunization
schedule at minimum cost, while Hall [16] formulates and
analyzes a general discrete optimization model that deter-
mines the set of vaccines that should be used in a clinical
environment to satisfy any given childhood immunization
schedule that minimizes the amount of extraimmunization.

This paper addresses the safety of combination vaccines
by further examining the issue of extraimmunization as an
extension of the results in Hall [16]. Specifically, this paper
presents a general model that maximizes the effectiveness
of a given pediatric vaccine formulary while also prohibit-
ing extraimmunization for any given childhood immuniza-
tion schedule. The paper is organized as follows. Section 2
presents the model terminology and the formulation of the
discrete optimization problem. Section 3 presents a descrip-
tion and analysis of an exact dynamic programming
algorithm and a randomized heuristic for solving the
discrete optimization problem. Section 4 presents a com-
putational comparison of this dynamic programming
algorithm and randomized heuristic with an integer
programming branch and bound algorithm, while Section 5
provides concluding comments and directions for future
research.

2 Model terminology and formulation

The model terminology and the formulation of a discrete
optimization problem used to maximize the effectiveness of
a given pediatric vaccine formulary while prohibiting
extraimmunization for any given childhood immunization
schedule is presented. Some extensions of the discrete
optimization problem are also described.

The discrete optimization model assumes a given
childhood immunization schedule and vaccine formulary.
To precisely describe a childhood immunization schedule,
several set and parameter definitions are needed. Let

– T={1,2,...,t} be the set of time periods for the child-
hood immunization schedule,

– D={1,2,...,δ} be the set of diseases requiring
immunization,

– DE ⊆ D, with DEj j ¼ dE be the set of diseases where
extraimmunization is permitted,

– DNE=D\DE, with DNEj j ¼ dNE be the set of diseases
where extraimmunization is not permitted,

– V={1,2,...,υ} be the vaccine formulary (i.e., set of
vaccines available to be administered to immunize
against the δ diseases),

– nd ∊ Z + be the number of doses of a vaccine that must
be administered for immunization against disease d∊D

– Ivd=1 if vaccine v ∊V immunizes against disease d∊D,
0 otherwise, which is a set of binary parameters that
indicate which vaccines immunize against which
diseases,

– Pdjt=1 if in time period t∊T, a vaccine may be
administered to satisfy the jth dose, j=1,2,...,nd,
requirement for disease d∊D, 0 otherwise, which is a
set of binary parameters that indicate the set of time
periods in which a particular dose of a vaccine may be
administered to immunize against a disease, and,
finally,

– Rdt=1 if in time period t∊T, no dose of a vaccine may
be administered to immunize against disease d∊DNE, 0
otherwise, which is a set of binary parameters that
indicate the set of time periods in which no dose of a
vaccine may be administered to immunize against a
disease where extraimmunization is not permitted.

These sets and parameters completely describe a
childhood immunization schedule along with the vaccine
formulary. For example, the United States Recommended
Childhood Immunization Schedule (see Fig. 1) outlines the
vaccinations required to protect a child against several
(currently thirteen) infectious diseases that pose a risk to
children living in the United States [4]. This schedule
includes the number of required doses of each vaccine and
the recommended age for each dose (D1=Dose 1, D2=
Dose 2, etc.). For example, the disease d=hepatitis B
requires three doses of vaccine (i.e., nd=3), where the
second dose (D2) may be administered at age 1 or 2 months.
Therefore, for disease d=hepatitis B, dose j=2, Pdjt=1(0)
for time periods t=2,3(1,4,5,6,7,8,9,10), and, assuming
hepatitis B∈DNE, Rdt=1(0) for time periods t=4,9,10
(1,2,3,5,6,7,8).

Unless otherwise stated, the phrase “childhood immuni-
zation schedule” refers to an arbitrary general immunization
schedule, whereas the phrase “Recommended Childhood
Immunization Schedule” refers to the immunization sched-
ule in Fig. 1. Assume that all diseases d∊D have
sequentially ordered and mutually exclusive doses (i.e., all
the time periods during which dose j can be administered
occur prior to all the time periods during which dose j+1
can be administered, j=1,2,...,nd−1). Furthermore, assume
that the time periods during which dose j can be
administered are consecutive. Define the valency, denoted
by Val(v), as the number of diseases covered by vaccine v∊
V, and hence, Val vð Þ ¼ Σd2DIvd . Combination vaccines are
often referred to as multivalent vaccines, or simply multi-
valents, because Val(v)≥2 when v∊V is a combination
vaccine. Furthermore, vaccine v∊V, where Val(v)=1, 2, 3, 4,
5, or 6 is often referred to as a monovalent, bivalent,
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trivalent, tetravalent, pentavalent, or hexavalent vaccine,
respectively. In practice, the dose parameters, nd, depend on
biological constraints and are determined by the recom-
mendations and guidelines set forth by the Centers for
Disease Control and Prevention [7]. Note that schedule
parameters Pdjt specify the time periods when vaccination is
“permitted” (or useful) for disease d∊D, while the schedule
parameters Rdt specify the time periods when vaccination is
“restricted” for disease d∊DNE. For example, assuming
disease d=hepatitis B∊DNE, Fig. 1 implies Pdjt=1(0) for
some dose j and time periods t=1,2,3,5,6,7,8(4,9,10) and
Rdt=1(0) for time periods t=4,9,10(1,2,3,5,6,7,8). The set
DNE is the set of diseases where extraimmunization is
restricted based on biological and/or philosophical con-
straints, and hence, may change for each child, on a case-
by-case basis. At present, diphtheria, tetanus, and pertussis
are the only diseases for which extraimmunization is
biologically prohibited [8]; however, for any parent/guard-
ian questioning the safety, necessity, and effectiveness of all
vaccines, it is reasonable to assume that extraimmunization
is prohibited for all diseases d∊D.

To present the discrete optimization model formulation,
define the binary decision variables:

– Xtv=1 if vaccine v∊V is administered in time period t∊
T, 0 otherwise,

– πdj=1 if the jth dose requirement for disease d∊D is
satisfied, 0 otherwise.

Therefore, for a given childhood immunization schedule,
the discrete optimization model that maximizes the effective-
ness of a given pediatric vaccine formulary while prohibiting
extraimmunization is the following integer program

IP

Maximize
X

d2D
Xnd

j¼1 pdj ðOÞ

Subject toP
t2T

P
v2V Pdjt Xtv Ivd � πdj for all d 2 DE; j ¼ 1; 2; . . . ; nd;

ð1Þ

P
t2T

P
v2V Pdjt Xtv Ivd ¼ πdj for all d 2 DNE; j ¼ 1; 2; . . . ; nd;

ð2Þ

P
t2T

P
v2V Rdt Xtv Ivd ¼ 0 for all d 2 DNE; ð3Þ

Xtv 2 0; 1f g for all t 2 T ; v 2 V ; ð4Þ

πdj 2 0; 1f g for all d 2 D; j ¼ 1; 2: . . . ; nd :

ð5Þ

Therefore, the jth dose requirement for disease d∊D is
satisfied if and only if

P
t2T

P
v2V PdjtXtvIvd � 1 for d∊DE,

j=1,2,...,nd and
P

t2T
P

v2V PdjtXtvIvd ¼ 1 for d∊DNE, j=
1,2,...,nd. Note that the objective function (O) of IP is
maximized when πdj=1 for all diseases d∊D and doses j=
1,2,...,nd, and hence, if the value of the optimal solution
equals Σd

d¼1nd , then the jth dose requirement for every
disease d∊D is satisfied and no extra vaccine doses were
administered for any disease d∊DNE. Therefore, IP max-
imizes the number of doses that may be administered while
prohibiting extraimmunization. Constraint (1) ensures that
for each disease d∊DE, if dose j=1,2,...,nd is satisfied, then
at least one vaccine that provides immunization for disease
d∊DE is administered in some time period when dose j=
1,2,...,nd may be administered. Constraint (2) ensures that
for each disease d∊DNE, if dose j=1,2,...,nd is satisfied,
then exactly one vaccine that provides immunization for
disease d∊DNE is administered in some time period when
dose j=1,2,...,nd may be administered. Constraint (3) is for
each disease d∊DNE and ensures that the number of doses
administered in time periods when vaccination is restricted
equals zero. Lastly, Constraints (4) and (5) are the binary
constraints on the respective decision variables. Note that
there are additional special restrictions unique to certain
vaccines and manufacturers that are not modeled by IP;
Hall [16] describes some of these restrictions (see [5]) and
how they may be modeled. Furthermore, note that in IP if,
for a given disease d∊D, dose j is satisfied without
satisfying vaccine dose j−1, then dose j effectively
becomes dose j−1. This is reasonable since, in practice, if
a child misses vaccine doses early in the Recommended
Childhood Immunization Schedule then the child continues
to receive vaccine doses as recommended. For example, if
doses 2 and 3 for Hepatitis B are satisfied in IP (i.e.,
pHepatitisB;2 ¼ pHepatitisB;3 ¼ 1), but not dose 1, then Hepatitis
B would effectively have two of the three dose series
satisfied.

Hall [16] formulates and analyzes a discrete optimization
model that determines the set of vaccines (i.e., a vaccine
formulary) that should be used in a clinical environment to
satisfy any given childhood immunization schedule that
minimizes the amount of extraimmunization. Therefore, the
discrete optimization model in Hall [16] emphasizes satisfy-
ing the childhood immunization schedule first while trying to
minimize extraimmunization whereas IP emphasizes prohib-
iting extraimmunization first while trying to satisfy the
childhood immunization schedule as much as possible.
Furthermore, the discrete optimization model in Hall [16] is
not a binary integer program (BIP); however, all the decision
variables in IP are binary, which offers theoretical advantages
(see [27]). For example, IP shares a similar structure to the
Max-Satisfiability Problem [17] or, when δNE=δ, to the Set-
Partitioning Problem [27], both of which have been well-

342 Health Care Manage Sci (2008) 11:339–352



studied. In fact, IP can be shown to be NP-hard using
Satisfiability or Set-Partitioning [15]. See Hall [16] for a
complete analysis of the computational complexity and for
special cases when IP is solvable in polynomial time.

Assigning weights to the objective function decision
variables in IP offers a useful practical extension. Each
vaccine has a known immunogenicity (the ability of the
vaccine to immunize against a disease). For example, the
immunogenicity of a Hepatitis B vaccine is >95%, which
means that at least 95% of those children receiving the three
dose series develop a protective antibody response against
the disease [6]. However, for some vaccines, the immuno-
genicity increases with each dose. For example, for a
Hepatitis B vaccine, the immunogenicity is 30–50% after
the first dose, 75% after the second, and >95% after the
third dose [6]. Therefore, if each objective function decision
variable πdj in IP is weighted by immunogenicity, then IP
maximizes the total immunogenicity of the vaccine formu-
lary while prohibiting extraimmunization. More specifical-
ly, define Immdj as the immunogenicity for disease d∊D
after dose j=1,2,...,nd is administered, and let wdj=1−Immdj

be the corresponding objective function coefficient for
decision variable πdj. These objective function coefficients
place more emphasis on the earlier vaccine dose require-
ments for each disease. For example, for disease d∊D,
suppose Immd1=.4 (after dose j=1), Immd2=.75 (after dose
j=2), and Immd3=0.95 (after dose j=3), and hence, wd1=.6,
wd2=.25, and wd3=0.05. Therefore, satisfying dose j=1 for
disease d∊D is much more attractive to the IP than
satisfying dose j=3 for disease d∊D, since IP is a
maximization problem. Furthermore, these objective func-
tion coefficients assume that the earlier doses in the
childhood immunization schedule are the most important
(i.e., it is more important that a child receives the first dose
of some vaccine that immunizes against disease d∊D (e.g.,
Hepatitis A) than to receive the fourth dose of some vaccine
that immunizes against some other disease d’∊D (e.g.,
Polio)). This extension of IP assumes equivalent immuno-
genicities for each vaccine v∊V that immunizes against
disease d∊D. Weighting the decision variables accordingly
would require the additional constraint pd1 � pd2 � . . . �
pdnd for all diseases d∊D in the formulation of IP, which
requires, for a given disease d∊D, that a vaccine for dose i
must be administered before a vaccine for dose j may be
administered for all doses i< j. The additional constraint
pd1 � pd2 � . . . � pdnd for all diseases d∊D is very
restrictive; however, maximizing immunogenicity in a less
restrictive manner will require that the constraints in the IP
model be modified.

An additional extension to the model IP is to define a lower
bound ld for each disease d∊D, where ld is a lower bound on
the number of doses for disease d∊D that must be satisfied.
Therefore, the additional constraint

Pnd
j¼1 pdj � ld for all

diseases d∊D would enforce a lower bound on effectiveness
while also prohibiting extraimmunization. Nevertheless, the
inclusion of these constraints would likely yield an infeasible
model for unreasonable values of ld. Theoretically, it is easy
to construct an instance of IP that is infeasible for any lower
bound greater than zero for a given disease d∊D (or subset
of diseases); however, for all practical instances of IP, the
given vaccine formulary will likely allow some doses to be
satisfied for all diseases d∊D, since combination vaccines
are designed to immunize against diseases that share
common dose requirements in the Recommended Childhood
Immunization Schedule (e.g., compare pneumococcus and
Haemophilus influenzae type b in Fig. 1).

3 A Dynamic programming algorithm and randomized
rounding heuristic

This section presents a dynamic programming (DP) al-
gorithm that finds an optimal solution for IP. The
randomized rounding heuristic for IP is also presented.
The randomized rounding heuristic is shown to be a
randomized approximation algorithm, which by definition,
executes in polynomial time and provides an approximation
bound on the expected value of the heuristic solution [17].

3.1 Dynamic programming algorithm

The stages of the DP correspond to the time periods in T. A
state, say St, in stage t∊T is a vector of length δ, where Std is
the number of doses desired to be given for disease d∊D
through stage t∊T. Let mdt (Mdt) be the minimum (maxi-
mum) number of doses scheduled for disease d∊D through
stage t∊T. For example, for the first disease in the
Recommend Childhood Immunization Schedule (see
Fig. 1), m1=(1, 1, 2, 2, 2, 2, 2, 3, 3, 3) and M1=(1, 2, 2,
2, 3, 3, 3, 3, 3, 3). The desired number of doses Std should
satisfy mdt � Std � Mdt, and hence, the set of states for stage
t∊T is 4t ¼ St 2 Zδ : mdt � Std � Mdt for all d 2 D

� �
;

where Z denotes the set of integers. For example, for the first
four diseases in Fig. 1, the set of possible states in stage 5 are
(2, 3, 3, 2), (2, 3, 3, 3), (3, 3, 3, 2), (3, 3, 3, 3).

Std is the number of doses desired to be given for disease
d∊D through stage t∊T. However, it may not be possible to
administer all of the desired doses in a state due to the
restriction on extraimmunization. Let Z(St) be the maximum
number of desired doses in St that can be administered
through stage t∊T without extraimmunization for any
disease d∊DNE.

Moving from state St−1 in stage t−1 to state St in stage t
corresponds to administering vaccines in time period t∊T. If
vaccination is permitted, it is desired to administer a vaccine
for each disease d∊D such that Std > St�1d . Note that Std �
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St�1d þ 1 because the doses for disease d∊D are mutually
exclusive. Furthermore, note that it is infeasible to move
from state St−1 in stage t–1 to state St in stage t if Std < St�1d

for any disease d∊D, since it is impossible to reduce the
number of doses that have been given for disease d∊D.
Therefore, state St−1 in stage t−1 is connected to state St in
stage t if and only if b=St−St−1 is a binary vector, and hence,
for a given stage t∊T, it is desired to administer vaccines for
the set of diseases D' ¼ d 2 D : bd ¼ St

d � St�1d ¼ 1
� �

,
where bd is the dth component of the binary vector b. The
set of vaccines that may be administered for the diseases in
D’ is V’={v∊V: Ivd=1 for some d∊D’ and Ivd=0 for all d∊
DNE\D’}. Once D’ and V’ are known, the problem is to find
a subset of V’ that protects against as many diseases in D’ as
possible without incurring extraimmunization for any disease
d∊DNE. This problem has the same structure as IP, except
that it contains only a single time period, and hence, it is
called the One Period Problem (OPP(b)).

Define g(b) to be the optimal value of OPP(b) and recall
that Z(St) is the maximum number of desired doses in St that
can be given without extraimmunization. If Z(St) is obtained
by moving from St−1, then Z Stð Þ ¼ Z St�1ð Þ þ g bð Þ, where
b ¼ St � St�1. Since it is desired to maximize Z(St) over all
states from the previous stage that are connected to St, the
dynamic programming recurrence relation is

Z Stð Þ ¼ max
St�124 t�1:b¼St−St�1 is binary

Z St�1
� �þ g bð Þ:

The final stage contains a single state, namely Sτ=(n1,
n2,...,nδ), thus the optimal value is Z(Sτ).

Theorem 1 The DP finds an optimal solution for IP.

Proof This result follows by demonstrating that the optimal
solution to IP is embedded in the state space of the DP,
which is shown by demonstrating that the state space for
stage t is sufficiently connected to the state space in stage t
−1 (t=2,3,...,t) and that Z(Sτ) equals the optimal value of
IP. See Appendix 1 for a detailed proof. □

Note that OPP(b) must be solved each time the recurrence
relation is used in the DP; however, for a given stage t∊T,
the binary vector b, which denotes the set of diseases for
which a vaccine dose is desired, may have already been
encountered in a previous stage, and hence, there is no need
to resolve OPP(b) if the solution has been stored and is
available. A “branch and remember” algorithm was used in
the computational experiments reported in Section 4 (see the
Appendix 1 for the pseudo-code for this algorithm.)

The DP algorithm offers several theoretically and compu-
tationally advantages. First, the DP algorithm is efficient in
practice with the current Recommended Childhood Immuni-
zation Schedule, since this schedule yields a reasonable state/
decision space, and the OPP(b) instances in each stage t∊T

are small. Second, the structure of the DP algorithm is ideal
for solving partial (or incomplete) childhood immunization
schedules that arise when children have been partially
immunized and then re-enter the healthcare system to
complete their immunization schedules (where the set of
vaccines used to partially immunize the children are feasible
initial solutions for the DP algorithm; this problem is termed
the schedule completion problem. Note that if this set of
vaccines is not feasible, then the recommended catch-up
schedule would need to be used, which would require a
completely new model formulation and analysis; see [5] for
details of this catch-up schedule). Lastly, the structure of the
DP algorithm makes it easier to capture restrictions that are
schedule-specific by imposing such restrictions on each OPP
(b) instance (see [5, 16]).

3.2 Randomized rounding heuristic

The randomized rounding heuristic uses the solution from
an LP relaxation to construct a feasible binary solution for
IP. This technique has been applied successfully for other
discrete optimization problems that share a common
structure with IP (e.g., [17, 28]). Relaxing the binary
constraints for the decision variables in IP yields the LP
relaxation, LP, with objective function (O), constraints (1–
3), and real decision variables 0≤Xtv≤1 for all t∊T, v∊V and
0≤πdj≤1 for all d∊D, j=1,2,...,nd. Denote the optimal
objective function values for IP and LP, as zIP and zLP,
respectively, where zLP ≥ zIP. Let X*

LPtv denote the optimal
decision vector for LP, with X*

LPtv, t∊T, v∊V, and π*dj, d∊D,
j=1,2,...,nd, denoting the optimal decision variable values
for LP. After solving LP, the randomized rounding heuristic
assigns binary decision variable Xtv=1(0) with probability
X*LPtv 1� X*LPtv

� �
for each time period t∊T and vaccine v∊V.

Note that constraint (3) in LP implicitly eliminates (i.e., sets
to zero) all decision variables X*

LPtv such that Rdt=Ivd=1 for
d∊DNE, and hence, the corresponding binary variable Xtv=
0. This binary variable assignment is then used to determine
the number of satisfied doses. The randomized rounding
heuristic is now formally given in pseudo-code form.

Randomized rounding heuristic for IP

Step 1. Solve LP
Step 2. For i=1,2,...,K (where K is the user specified

number of replications)

a. Xtv ← 0 for all t∊T and v∊V
b. πdj ← 0 for all d∊D and j=1,2,...,nd
c. For all t∊T and v∊V

i. Draw a random number RAND ~ U(0,1)
ii. If X*

LPtv
� RAND, then Xtv←1
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d. For all d∊DNE

i. For all j=1,2,...,nd

1. bπdj  
P

t2T
P

v2V Pdjt Xtv Ivd
2. If bπdj > 1, then set Xtv ← 0 such that Xtv=1 and

Pdjt=Ivd=1 for the bpdj ¼ 1
� �

variables with
corresponding smallest fractional values X*

LPtv

e. For all d∊D

i. For all j=1,2,...,nd

1. Compute bπdj  
P

t2T
P

v2V Pdjt Xtv Ivd

a. If d∊DNE and bπdj ¼ 1, then πdj←1
b. If d∊DE and bπdj > 1, then πdj←1

f. Compute SatisfiedDoses ið Þ ¼P
d2D

Pnd
j¼1 πdj for

replication i
Step 3. Return max

i
Satisfied Doses ið Þ

The randomized rounding heuristic executes in O(TLP+
K(τ2νδ)) time, where TLP is the time required to solve LP.
Steps 2.d and 2.e ensure that the solution returned by the
randomized rounding heuristic is feasible. Given that linear
programming is solvable in polynomial time (assuming an
appropriate algorithm; see [1]), it then follows that the
randomized rounding heuristic executes in polynomial time.
Theorem 2 shows that the expected value of the solution
returned by the randomized rounding heuristic is guaranteed to
be no worse than ξ ×zIP, where x ¼ 1� pmaxð Þa�1 for pmax ¼

max
t2T ;v2V :0<X*LPtv<1

X*
LPtv

n o
and ! ¼ max

d2D
Σv2V Ivdð Þð max

j¼1;2;:::;nd

Σt2TPdjtÞ, which is the maximum number of non-zero
columns in any row of the constraint matrix for IP.

Theorem 2 The Randomized Rounding heuristic is a
randomized ξ-approximation algorithm for IP.

Proof See the Proof of Theorem 2 in Appendix 1 for a
detailed proof. □

Theorem 2 shows that, in the worst case, the randomized
rounding heuristic could return a solution that is arbitrarily
close to zero; however, the computational results in Section 4
show that the randomized rounding heuristic performs well
in practice for several randomly generated IP instances.

4 Computational results

This section reports computational results comparing the
randomized rounding heuristic for IP with the DP algorithm
and an IP branch and bound (IP B&B) algorithm that both
optimally solve IP. The randomized rounding heuristic and
the DP and IP B&B algorithms were executed on three sets

of test problems to demonstrate their computational effec-
tiveness and limitations. The first test problem is the 2006
Recommended Childhood Immunization Schedule. The
second set of test problems are randomly generated based
on hypothetical near-term future childhood immunization
schedules, while the third set of test problems are larger,
randomly generated childhood immunization schedules
executed with several different vaccine sets. The size of
these randomly generated childhood immunization schedules
assume that future Recommended Childhood Immunization
Schedules will expand to include more diseases and time
periods, and hence, will require a larger number of both
monovalent and combination vaccines [9, 11, 18].

The solution quality effectiveness measure for the
randomized rounding heuristic and the DP and IP B&B
algorithms is ζ, which is the value of the objective function
Z divided by the total number of required doses, and hence,
ζ ¼ Z

�
Σδ

d¼1nd . Therefore, ζ represents the percentage of
dose requirements satisfied by the randomized rounding
heuristic or the DP and IP B&B algorithms. The execution
time (in CPU seconds) is also reported for the heuristic and
each exact algorithm, which is the efficiency effectiveness
measure. The randomized rounding heuristic and the DP
and IP B&B algorithms were coded and executed in
MATLABv7.0 on a 2.4 GHz Pentium IV. The IP B&B
algorithm used the existing binary solver in the MATLAB
optimization toolbox.

The first test problem is the 2006 Recommended Child-
hood Immunization Schedule (see Fig. 1). Therefore, D={1=
Hepatitis B, 2=Diphtheria–Tetanus–Pertussis, 3=Haemophi-
lus influenzae type b, 4=Polio, 5=Measles–Mumps–Rubella,
6=Varicella, 7=Pneumococcus, 8=Influenza, 9=Hepatitis
A} with dose vector n=(3, 5, 4, 4, 2, 1, 4, 1, 2), since
diphtheria, tetanus, and pertussis are considered one disease
and measles, mumps, and rubella are also considered one
disease, and T={1,2,...,10}. The schedule parameters Pdjt,
Qdt, and Rdt, for diseases d∊D, dose j=1,2,...,nd, and time
periods t∊T are all obtained from Fig. 1. For example, for
disease d=1=Hepatitis B and dose j=2, Pdjt=1(0) for time
periods t=2,3(1,4,5,6,7,8,9,10). Two different vaccine for-
mularies, V1 and V2, are evaluated on two different sets of
diseases that restrict extraimmunization, DNE1 and DNE2. The
vaccine formularies are V1={1={1}, 2={2}, 3={3}, 4={4},
5={5}, 6={6}, 7={7}, 8={8}, 9={9}, 10={2,3}, 11=
{1,3}, 12={1,2,4}, 13={5,6}} and V2={1={1}, 2={2,3,4},
3={1,9}, 4={4}, 5={5}, 6={6}, 7={7}, 8={8}, 9={9}
11={1,3}, 12={1,2,4}, 13={5,6}, 14={1,2,3,4}}, where V1

represents a set of pediatric vaccines currently licensed for
use in the United States and V2 represents a formulary of
pediatric vaccines with fewer monovalent vaccines and more
combination vaccines, some of which are not yet licensed for
use in the United States, but are projected to be in the future.
The parameters Ivd are indicated within the sets V1 and V2,
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respectively. For example, vaccine 1∊V1 is the monova-
lent vaccine for disease 1 (Hepatits B), vaccine 12∊V1 is
the combination vaccine Pediarix® that immunizes against
diseases 1 (Hepatitis B), 2 (Diphtheria-Tetanus-Pertussis),
and 4 (Polio), and vaccine 2∊V2 is the combination
vaccine Pentacel® that immunizes against diseases 2
(Diphtheria-Tetanus-Pertussis), 3 (Haemophilus influenzae
type b), and 4 (Polio), which has been submitted for
licensing in the United States. The disease sets are DNE1=
{1,2,3,4} and DNE2=D={1,2,3,4,5,6,7,8,9}. Table 1
reports the solution quality and execution time (in CPU
seconds) for the heuristic and the exact algorithms, for
each vaccine set and disease set combination. Further-
more, K=10 in the randomized rounding heuristic for each
vaccine set and disease set combination.

IP is solvable in polynomial time when all the vaccines in V
are monovalent vaccines or when there exists a cor-
responding monovalent vaccine for every disease in D, and
hence, the results for the solution quality and execution time
reported in Table 1 are not surprising, given that most
diseases have a corresponding monovalent vaccine, particu-
larly in vaccine set V1 [16]. Moreover, the randomized
rounding heuristic returned the optimal solution for each
case, but, in most cases, took more time to execute than the
exact algorithms since the random rounding was replicated
K=10 times. However, as the next set of test problems will
illustrate, this is unlikely to occur for future Recommended
Childhood Immunization Schedules, as the schedule expands
and more combination vaccines gain FDA approval.

The second set of test problems considers hypothetical
near-term future childhood immunization schedules. The
randomized rounding heuristic and the DP and IP B&B
algorithms were executed on 30 randomly generated
childhood immunization schedules with 15 time periods,
11 diseases, and a vaccine formulary of 30 vaccines.
Therefore, each random childhood immunization schedule
reflects a gradual expansion in the sets D (from 9 to 11
diseases) and T (from 10 to 15 time periods) and a modest
increase in the number of available vaccines, particularly,
combination vaccines. In each random childhood immuni-
zation schedule, 1≤nd≤5 for all diseases d∊D, 1≤Val(v)≤6
for all vaccines v∊V, and Pdjt=1 for at most three time
periods t∊T for every disease d∊D and dose j=1,2,...,nd.
For each randomly generated childhood immunization

schedule, the randomized rounding heuristic and both exact
algorithms were executed three times, where in execution 1,
2, and 3, dNE=4, 8, and 11, respectively. Furthermore, in
each execution, the randomized rounding heuristic was
replicated for K=100, 300, and 500. Table 2 reports the
solution quality and execution time (in CPU seconds)
averaged over the 30 random childhood immunization
schedules for each value of dNE (and K for the randomized
rounding heuristic). An additional measure l, which
indicates the number of childhood immunization schedules
that the respective heuristic or algorithm found the optimal
solution, is also reported. For the IP B&B algorithm, the
optimal solution was not always found because the
algorithm exceeded the default execution time limit (2 h)
or default iteration limit (107). Therefore, the statistics
reported in Table 2 for the IP B&B algorithm are averaged
over the l random childhood immunization schedules for
which the algorithm found the optimal solution.

The data reported in Table 2 show that the randomized
rounding heuristic found better solutions when δNE<<δ,
which is consistent with Theorem 2. Recall from the proof
of Theorem 2 that it can be shown that the bound on the
expected solution value returned by the randomized round-
ing heuristic improves when DNE=∅ (i.e., δNE=0). More-
over, the randomized rounding heuristic, on average, was
always more efficient than the IP B&B algorithm. Further-
more, the IP B&B algorithm’s ability to find an optimal
solution in a ‘reasonable’ amount of time and memory was
sensitive to the value of dNE. Moreover, the randomized
rounding heuristic was more efficient than the DP algorithm
for δNE=8 and 11, provided K=100. The DP algorithm was
both efficient (outperforming the randomized rounding
heuristic for K=300 and 500 and the IP B&B algorithm
in all cases) and effective (found an optimal solution in
each execution).

The observed difference in execution time between the
randomized rounding heuristic or DP algorithm and the IP
B&B algorithm reported in Table 2 could become prob-
lematic for larger childhood immunization schedules and/or
for practical uses. For example, a webpage used to find a
vaccine formulary for a given childhood immunization
schedule that prohibits extraimmunization would require an
algorithm to execute in real-time, since most web users
would terminate a web application that required several

Table 1 Computational results for 2006 recommend childhood immunization schedule

Algorithm V1 and DNE1 V1 and DNE2 V2 and DNE1 V2 and DNE2

ζ Time ζ Time ζ Time ζ Time

randomized rounding 1.00 0.15 1.00 0.54 0.96 0.56 0.96 0.57
DP 1.00 0.27 1.00 0.26 0.96 0.26 0.96 0.33
IP B&B 1.00 0.20 1.00 0.27 0.96 0.22 0.96 0.22
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seconds or minutes to execute. Moreover, the difference in
execution time between the randomized rounding heuristic
or DP algorithm and the IP B&B algorithm will provide a
more efficient analysis of larger childhood immunization
schedules that may involve Monte Carlo simulation (see
[22]), where either of these may require the solution of
hundreds of thousands of integer programming instances.
Furthermore, the childhood immunization schedule may
need to be solved for each child, on a case-by-case basis,
depending on the desired diseases in the set DNE, and
hence, efficient algorithms are needed so as to provide, in
real-time, practical value for the public health community.

The third set of test problems considers larger randomly
generated childhood immunization schedules that demon-
strate the effect of combination vaccines and further
demonstrate how a childhood immunization schedule’s size
affects the efficiency and solution quality of the randomized
rounding heuristic and the exact algorithms. The randomized
rounding heuristic and the exact algorithms were executed
on 30 randomly generated childhood immunization sched-
ules with 20 time periods, 13 diseases, and a vaccine
formulary of 50 vaccines, where δNE=10, 1≤nd≤5 for all
diseases d∊D, and Pdjt=1 for at most four time periods t∊T
for every disease d∊D and dose j=1,2,...,nd. For each
randomly generated childhood immunization schedule, the
randomized rounding heuristic and both exact algorithms
were executed six times, where for execution i=1,2,...,6, Val

(v)≤i for all vaccines v∊V. Table 3 reports the solution
quality and execution time (in CPU seconds) averaged across
all 30 randomly generated childhood immunization sched-
ules as well as the measure λ for each valency. The overall
average and standard deviation across all vaccine sets is also
reported. Note that the IP B&B algorithm found the optimal
solution for 151 of the 180 instances (each random
childhood immunization schedule was executed six times),
but exceeded the maximum number of iterations allowed for
the remaining 29 instances (three instances for Val(v)≤4, 11
instances for Val(v)≤5, and 15 instances for Val(v)≤6). The
statistics reported in Table 3 for the IP B&B algorithm are
for the 151 instances for which the IP B&B algorithm found
the optimal solution while the execution time in parenthesis
is the average over all instances. Furthermore, K=300 in
each execution of the randomized rounding heuristic.

The data reported in Table 3 demonstrate how the size
of the childhood immunization schedule and the complexity
of the vaccine set impact the execution time and solution
quality of the randomized rounding heuristic and the exact
algorithms. For example, in most cases, the execution time
required to execute the heuristic and exact algorithms steadily
increased as the valency (i.e., complexity) of the vaccine
formulary increased. As expected, the solution quality of the
randomized rounding heuristic deteriorated as the valency of
the vaccine formulary increased, since as the valency of the
vaccine formulary increases, the number of fractional varia-

Table 3 Computational Results for the Effect of Combination Vaccines

Val(v)≤ Algorithm

Randomized rounding DP IP B&B

ζ Time l ζ Time l ζ Time l

1 1.00 0.97 30 1.00 1.1 30 1.00 1.1 30
2 0.99 0.98 24 0.99 2.1 30 0.99 1.3 30
3 0.92 1.1 5 0.94 2.5 30 0.94 2.7 30
4 0.87 1.1 2 0.92 5.1 30 0.92 8.6 (1184) 27
5 0.79 1.2 1 0.87 5.3 30 0.87 27.5 (4210) 19
6 0.71 1.2 0 0.77 7.4 30 0.77 8.9 (5957) 15
Average 0.88 1.1 14 0.91 3.9 30 0.91 8.4 (1893) 25
SD 0.11 0.1 12.8 0.09 2.4 0 0.09 10.0 (2574) 6.6

Table 2 Computational results for future childhood immunization schedule

Algorithm dNE=4 dNE=8 dNE=11

ζ Time l ζ Time l ζ Time l

Randomized, K=100 0.972 0.36 24 0.722 0.44 8 0.549 0.38 5
Randomized, K=300 0.975 0.54 25 0.727 0.67 8 0.564 0.66 10
Randomized, K=500 0.976 0.72 25 0.729 0.93 8 0.569 0.93 13
DP 0.98 0.24 30 0.77 0.50 30 0.59 0.61 30
IP B&B 0.98 1.06 30 0.77 3.91 29 0.59 7.48 25

Health Care Manage Sci (2008) 11:339–352 347



bles in LP should increase (since each decision variable is
present in more constraints), which results in a larger gap
between the LP optimal solution value and the IP optimal
solution value. Therefore, since the randomized rounding
heuristic solution is derived from the LP optimal solution, the
gap between the randomized rounding heuristic solution value
and IP optimal solution value also increases. Theorem 2 offers
theoretical support for this claim, since pmax is likely to be
larger as the valency of the vaccine formulary increases.
However, the execution time of the randomized rounding
heuristic was insensitive to the valency of the vaccine
formulary versus the exact algorithms, which were more
sensitive to the valency of the vaccine formulary. Furthermore,
the randomized rounding heuristic was more efficient than
both exact algorithms; however, the DP algorithm was twice
as fast as the IP B&B algorithm on average for the instances
that the IP B&B algorithm was able to optimally solve and
was nearly 500 times as fast as the IP B&B algorithm when
averaged across all 180 instances. Moreover, the DP algorithm
effectively solved all 180 instances to optimality.

5 Conclusion and research extensions

This paper reports results on applying operations research
techniques to further examine the issue of extraimmuniza-
tion in pediatric immunization by extending the results in
Hall [16]. There are several articles in the literature that
report research that applies operations research techniques
to pediatric immunization problems (e.g., [20–22, 24–26]).
This paper moves in a new direction by applying discrete
optimization techniques to address the issue of pediatric
vaccine extraimmunization. A discrete optimization model
that seeks to maximize the effectiveness of a vaccine
formulary while prohibiting extraimmunization for a given
childhood immunization schedule was formulated in Sec-
tion 2. As more combination vaccines come to market and
the Recommended Childhood Immunization Schedule
becomes more complex to include more diseases and cover
more time periods, this discrete optimization model will
capture the combinatorial explosion of alternatives for
public health policy-makers and administrators, vaccine
manufacturers, pediatricians, and parents/guardians by
identifying vaccine formularies and schedules that safely
use combination vaccines, which will help address safety
concerns in pediatric immunization, reduce costs, and
reduce vaccine wastage associated with extraimmunization.

An exact DP algorithm as well as a randomized rounding
heuristic were presented in Section 3 and compared compu-
tationally to an IP B&B algorithm in Section 4. These results
showed that for larger randomly generated childhood
immunization schedules, the randomized rounding heuristic

was more efficient than the IP B&B algorithm and provided
a reasonable solution quality that, on average, was within 5%
of the optimal solution value. Furthermore, the randomized
rounding heuristic was able to find a feasible solution in
seconds for all random childhood immunization schedules,
whereas the IP B&B algorithm often exceeded default time
and memory limits when max

v2V
Val vð Þ � 4. Moreover, the

results showed the DP algorithm to be significantly more
efficient and effective than the IP B&B algorithm. Therefore,
for practical purposes, the results suggest that the DP
algorithm is the algorithm of choice, since it is an efficient
exact algorithm. However, with the significant expansion of
the Recommended Childhood Immunization Schedule over
the past decade (see [5, 9]) and with numerous new pediatric
vaccines being considered (see [18]), the randomized round-
ing heuristic will allow more efficient analysis of larger
childhood immunization schedules and practical analysis
involving Monte Carlo simulation or finding an optimal
vaccine formulary for each child on a case-by-case basis,
which will require the solution of several unique integer
programming instances. Advances in biotechnology and
differing perspectives on the safety of combination vaccines
will only heighten the possibility for considering each child
on a case-by-case basis (see [19]).

Work is in progress to determine the trade-off of
satisfying a given childhood immunization schedule while
minimizing extraimmunization versus strictly prohibiting
extraimmunization and maximizing the number of vaccine
doses satisfied, since both of these alternatives incur
different costs. The model presented in this paper will
allow such trade-offs to be analyzed. Moreover, further
examining the model extensions (theoretically and empir-
ically) presented in Section 2 is an area of future research
since these extensions offer practical value but may also
significantly alter the structure of the model, which would
require entirely different solution techniques. Finally, work
is in progress to further extend the results reported by
determining new heuristics for IP that either empirically
provide better solutions and/or improve the existing
approximation bound in Section 3.
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Appendix 1

Proof of Theorem 1

Let X*,π* be an optimal solution of IP. The proof proceeds
by demonstrating that a solution corresponding to X*,π* is
embedded in the state space of DP. The proof requires a few
additional definitions. Let Tdj={t∊T: Pdjt=1} to be the set
of time periods when vaccine dose j (=1,2,...,nd) may be
administered for disease d∊D. Tdj is called the jth time
window for disease d∊D. Given a disease d∊D and a time
period t∊T, define window(d,t) to be

window d; tð Þ ¼ Tdj if t 2 Tdj
; if t =2 [ndj¼1 Tdj;

�
which is the time window for disease d that contains time
period t (recall that the doses for a given disease are
mutually exclusive, which implies that t can belong to at
most one time window for a given disease). Define

ydt ¼
1 if there exists v; j such that X*tv ¼ 1;

Pdjt ¼ 1;X*
t0v ¼ 0; for all t 0 2 Tdj with t0 < t

and Ivd ¼ 1

0 otherwise:

8>>><>>>:
Therefore, the variable ydt equals one if t is in a time win-
dow for disease d, a vaccine that protects against disease d
was administered in time period t, and no vaccine for
disease d was administered in an earlier time period in the
same time window as window(d,t).

Let

Std ¼
Mdt if ydt0 ¼ 1 for some t 0 such that t0 � t and

t0 2 window d; tð Þ
mdt otherwise:

8<:
Hence, Std ¼ Mdt; if a dose for disease d was given in time
period t or a previous time period in window(d,t). By
definition, St is a state in DP for t∊T. The remainder of the
proof demonstrates that St−1 is connected to St for t=2, 3, ...,
t and that Z(St) equals the optimal value of IP, which isP

d2D
Pnd

j¼1 π
*
dj.

Recall that state St−1 is connected to state St if b=St−St−1

is a binary vector. This will be demonstrated by proving that

Std ¼ St�1d þ 1 if ydt ¼ 1 or St�1d ¼ md;t�1 < mdt

St�1d otherwise:

�

Given that the doses are sequentially ordered, mutually
exclusive, and consecutive, it follows from the definitions
of mdt and Mdt that Mdt=mdt if t is not in a time window for
disease d or if t is the final time period in a time window for
disease d, otherwise Mdt=mdt+1. Furthermore, mdt=md,t−1

unless t is the final time period in a time window for
disease d, in which case mdt=md,t-1+1. Combining these
facts yields Mdt≤md,t-1+1. Moreover, Std � Mdt and
St�1d � md;t�1, by the definition above, and hence, Std �
Mdt � md;t�1 þ 1 � St�1d þ 1:

Suppose that ydt=1. Then Std ¼ Mdt and a vaccine was
administered for disease d in time period t, but no other
vaccine for disease d was administered earlier in window(d,t).
Either t−1 ∊ window(d,t), in which case St�1d ¼ md;t�1 and
md;t�1 < Mdt; which in turn implies St�1d < Std ; or t �
1=2window d; tð Þ; in which case Md;t�1 < Mdt; which in turn
implies St�1d < Std . In either case, St�1d < Std implies Std ¼
St�1d þ 1.

Now suppose that St�1d ¼ md;t�1 < mdt. Then St�1d < Std ,
and hence, Std ¼ St�1d þ 1.

Now suppose that ydt=0 and it is not the case that
St�1d ¼ md;t�1 < mdt. If mdt < Std; then Std ¼ Mdt and a
vaccine for disease d must have been administered in
window(d,t). But ydt=0 implies that a vaccine for disease d
must have been administered in an earlier time period in
window(d,t). Therefore, St�1d ¼ Md;t�1 ¼ Mdt ¼ Std . If
md;t ¼ Std; then the only scenario under which Std ¼
St�1d þ 1 occurs is when St�1d ¼ md;t�1 < mdt. Furthermore,
St�1d > Std cannot occur because Md,t−1 exceeds mdt only
when t−1 and t are in the same time window. By
construction, if St�1d ¼ Md;t�1 and t−1 and t are in the
same time window, then Std ¼ Mdt. Consequently, the
suppositions of this paragraph ensure that St�1d ¼ Std . This
completes the proof that state St−1 is connected to state St.

It remains to show that Z(Sτ) equals the optimal value of
IP. Let b=St−St−1. Then

bd ¼ 1 if ydt ¼ 1 or St�1d ¼ md;t�1 < mdt

0 otherwise:

�

Define D’={d∊D: bd=1} and V’={v∊V: Ivd=1 for some
d∊D’ and Ivd=0 for every restricted d∊DNE\D’}. Let V* ¼
v 2 V : X*

tv ¼
n

1 and v contains an antigen for a disease d
such that ydt ¼ 1g: Suppose v∊V*. Then v contains an
antigen for a disease d such that ydt=1, so v contains an
antigen for at least one d∊D’. If v contains an antigen for a
restricted disease d, then p�dj ¼ 1 for some j=1, 2, ..., nd such
that t is in the time window for dose j. Hence

P
t2TP

v2V PdjtXtvIvd ¼ 1; which implies that ydt=1, thus d∊D’.
Consequently, v∊V’ and V*⊆V’. Therefore, V’ contains a set
of vaccines that can be administered in time period t and
contain antigens for at least

P
d2D ydt diseases. By the DP
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recurrence relation, Z Stð Þ � Z St�1ð Þ þP
d2D ydt. Applying

this result for t=2, 3, ..., t yields

Z SCð Þ � Z SC�1ð Þ þP
d2D ydC

� Z SC�2ð Þ þP
d2D yd;C�1 þ

P
d2D ydC

..

.

� P
t2T

P
d2D ydt:

Finally,
P

d2D
Pnd

j¼1 π
*
dj �

P
t2T

P
d2D ydt; hence the opti-

mal value of IP is less than or equal to Z(Sτ). □

Branch and Remember Algorithm Pseudo-Code

The following “branch and remember” algorithm was used
in the computational experiments reported in Section 4 for
the dynamic programming recurrence relation. This algo-
rithm not only stores the solution for OPP(b) at the root
problem, but also stores the solution for all the subproblems
that are generated.
OPP(b)

if OPP(b) has been solved previously, then return its
optimal value

D’={d∊D: bd=1}
if D’=∅, then return(0)
V’={v∊V: Ivd=1 for some d∊D’ and Ivd=0 for every
restricted d∊DNE\D’}

Choose d’∊D’
max_doses=0
for each v∊V’ such that Ivd=1,

b
0
d0 ¼

1 if bd0 ¼ 1 and Ivd0 ¼ 0
0 otherwise

�

n_covered=|{d’∈D’: Ivd’=1}|
doses=OPP(b’)
if doses+n_covered>max_doses, then max_doses=
doses+n_covered

endfor

b
0
d0 ¼

bd0 if d0 6¼ d
0 otherwise

�
doses=OPP(b’)
if doses>max_doses, then max_doses=doses
Store max_doses for b
return(max_doses)

Proof of Theorem 2

A randomized approximation algorithm is an algorithm that
executes in polynomial time and guarantees the expected

value of its returned solution is within some constant factor
ξ (i.e., randomized rounding is a randomized ξ-approxima-
tion algorithm if E zj j � x � zIP, where z is the value of the
objective function returned by the randomized rounding
heuristic and zIP is the optimal value for IP. Clearly, the
randomized rounding heuristic executes in polynomial time
(i.e., O(TLP+K(t

2υ δ))) given that linear programming is
solvable in polynomial time. Recall that TLP is the time
required to solve LP. For purposes of the approximation
bound, assume K=1 and define the following random
variable

bπdj ¼ 1 if disease d 2 D; dose j ¼ 1; 2; . . . ; nd is satisfied
0 otherwise:

�

Therefore, bπdj ¼ 1 if and only if
P

t2T
P

v2V Pdjt Xtv Ivd �
1 for disease d∊DE, dose j=1,2,..., nd and Σt∈TΣv∈V

Pdjt Xtv Ivd=1 for disease d∊DNE, dose j=1,2,...,nd. Further-
more, note the statistical independence of bπdj for all d∊D, j=
1,2,...,nd. Moreover, the objective function value returned by
the randomized rounding heuristic is z ¼ P

d2D

Pnd
j¼1

bpdj, and
hence,

E z½ � ¼ E
X
d2D

Xnd
j¼1

bπdj

" #
¼

X
d2D

Xnd
j¼1

E bπdj

	 

¼

X
d2D

Xnd
j¼1

0 � P bπdj ¼ 0
	 
þ 1 � P bπdj ¼ 1

	 
� �
¼

X
d2D
�
Xnd
j¼1

P bπdj ¼ 1
	 


:

Observe that P bπdj ¼ 1
	 
 ¼ P

P
t2T

	 P
v2V PdjtXtvIvd �

1� for disease d∊DE, dose j=1,2,...,nd and P bπdj ¼ 1
	 
 ¼

P
P

t2T
P

v2V PdjtXtvIvd ¼ 1
	 


for disease d∊DNE, dose j=
1,2,…,nd. Therefore, for disease d∊DE, dose j=1,2,...,nd,

P bπdj ¼ 1
	 
 ¼ P at least one Xtv ¼ 1½ � ¼ 1� P all Xtv ¼ 0½ �;

and for disease d∊DNE, dose j=1,2,...,nd,

P bπdj ¼ 1
	 
 ¼ P exactly one Xtv ¼ 1½ �

¼ 1� P more than one Xtv ¼ 1½ � þ P all Xtv ¼ 0½ �ð Þ:

Furthermore, P[at least one Xtv=1]≥P[exactly one Xtv=
1] for all diseases d∊D and doses j=1,2,...,nd, and hence,
for purposes of the approximation bound, assume that DE=
∅. (It can be shown that the randomized rounding heuristic
is a randomized (1−1/e)-approximation algorithm for IP
when DNE=∅ by using similar arguments from the Max-
Satisfiability Problem [17].)

Consider some disease d∊D and dose j=1,2,...,nd, then
the LP relaxation of IP implies π*dj ¼

P
t2T

P
v2V Pdjt
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X*
LPtv

Ivd . Furthermore, for this constraint, suppose there are
k fractional variables such that 0 < X*

LPtv
< 1. (If X*

LPtv
¼ 1

for some t∊T and v∊V, then P½bπdj ¼ 1� ¼ 1, and if X*LPtv
¼

0 for all t∊T and v∊V, then P½bπdj ¼ 1� ¼ 0). Then,

P π̂dj ¼ 1
	 
 ¼P exactly one Xtv ¼ 1½ � ¼ X*

LPtv1
1� X*LPtv2

� �
1� X*

LPtv3

� �
� � � 1� X*

LPtv

� �
þ 1� X*

LPtv1

� �
X*
LPtv2

1� X*
LPtv3

� �
� � � 1� X*

LPtvk

� �
þ � � �

þ 1� X*
LPtv1

� �
1� X*

LPtv2

� �
� � � 1� X*

LPtv k�1ð Þ

� �
X*
LPtv

;

which implies,

P π̂dj ¼ 1
	 
 � X*

LPtv1
1� pð Þk�1þX*

LPtv2
1� pð Þk�1þ � � �

þ X*
LPtvk

1� pð Þk�1; where p ¼ max
i¼1;2;...;k

X*LPtvi

¼ 1� pð Þk�1 X*
LPtv1
þ X*

LPtv2
þ � � � þ X*

LPtvk

� �
¼ 1� pð Þk�1π*dj:

Therefore,

E z½ � ¼ P
d2D

Pnd
j¼1

P bπdj ¼ 1
	 


� max
k

1� pmaxð Þ k�1ð ÞP
d2D

Pnd
j¼1

π*dj;where

pmax ¼ max
t2T ;v2V :0<X*LPtv<1

X*
LPtv

n o
� 1� pmaxð Þ !�1ð Þ � zLP;where ! ¼ max

d2D
! d and ! d

¼ Σv2V Ivdð Þ max
j¼1;2;:::;nd

Σt2TPdjt

� �
� 1� pmaxð Þ !�1ð Þ � zIP since zLP � zIPð Þ; and hence;

ξ ¼ 1� pmaxð Þ !�1ð Þ for the Randomized Rounding heuristic:
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