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Abstract We present general formulas for transverse and transverse-traceless (TT)
symmetric tensors in flat spaces. TT tensors in conformally flat spaces can be obtained
by means of a conformal transformation.

Keywords Transverse tensors · TT tensors · Conformal method

1 Introduction

A symmetric tensor T i j is called transverse if it satisfies

∇i T
i j = 0 (1)

where ∇i denotes the covariant derivative with respect to metric gi j of a D-dimensional
space. Condition (1) occurs in general relativity as an analog of the conservation law
for energy and momentum, as the harmonic coordinate condition or as the momentum
constraint in the initial data problem for the vacuum Einstein equations. In the last
case one often assumes that, additionally,

gi j T
i j = 0 . (2)

If (1) and (2) are satisfied then the tensor T i j is called transverse-traceless (TT). TT
tensors were introduced by Arnowitt, Deser and Misner in 1959 [1].
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Equation (1) is particularly simple if ∇i is the covariant derivative corresponding to
a flat connection. Even then its solutions are interesting, especially if (2) is satisfied,
mainly because they can be used to construct initial vacuum data by means of the
Lichnerowicz-York method [2,3]. This method is based on the invariance of Eqs. (1)–
(2) under the transformation

g′
i j = ψ

4
D−2 gi j , T ′

i j = ψ−2Ti j (3)

with a nonvanishing function ψ . Examples of conformally flat data obtained in this
way can be found in classical papers by Misner [4], Brill and Lindquist [5], Bowen
and York [6] and Brandt and Brügmann [7].

In this article we present general solution of equations

T i j
, j = 0 , (4)

with or without condition (2) with constant metric gi j . They are expressed in terms of
potentials which undergo gauge transformations. From them all TT tensors in confor-
mally flat spaces can be obtained by means of transformation (3).

For obvious reasons we assume D ≥ 2. All results are based on the Poincare
lemma about local exactness of closed forms. For our purposes it is convenient to use
the following form of this lemma

α
I i1..i p

,i p
= 0 ⇒ α I i1..i p = β

I i1..i p+1
,i p+1

, (5)

where tensors α and β are completely antisymmetric in indices i1, i2, ... and I denotes
a set of additional indices. Integer p satisfies 1 ≤ p ≤ D − 1.

2 Solutions of T i j
, j = 0

Proposition 1 All solutions of Eq. (4) have the form

T i j = Rik jp
,kp , (6)

where Rik jp is a tensor possessing all algebraic symmetries of the Riemann tensor.

Proof Let us apply the Poincare lemma (5) with p = 1 and I = i to Eq. (4). Hence,
there exists tensor Si jk such that

T i j = Si jk,k , Sik j = −Si jk . (7)

Condition T i j = T ji yields

S[i j]k
,k = 0 . (8)
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Taking into account (5) with I = [i j] we obtain potentials V i jkp such that

S[i j]k = V i jkp
,p (9)

and

V i jkp = −V jikp = −V i jpk . (10)

A combination of Eq. (9) for different permutations of indices i jk leads to

Si jk =
(
V i jkp − V ik jp − V jkip

)
,p

. (11)

Substituting (11) to (7) yields

T i j = −
(
V ik jp + V jpik

)
,kp

. (12)

Let Rik jp be defined by

Rik jp = −V ik jp − V jpik + 2V [ik j p]

where the square bracket denotes antisymmetrization over all indices inside the
bracket. Then (12) takes the form (6). Tensor Ri jkp has algebraic symmetries of the
Riemann tensor. It is antisymmetric in the first and second pair of indices, symmetric
with respect to interchange of these pairs and R[i jkp] = 0 (hence also Ri[ jkp] = 0).

��
For D = 2 one has

Rik jp = 1

2
Rεikε j p , (13)

where R is arbitrary function and εi j is the standard completely antisymmetric tensor.
It follows from (6) that

T i j = εikε j p R,kp . (14)

For D ≥ 3 tensor Ri jkp contains more components than number of degrees of free-
dom admitted by Eq. (4). Arbitrariness in choice of Ri jkp describes the following
proposition.

Proposition 2 For D = 2 function R is given up to the translation
R −→ R + R′, where

R′ = ai x
i + b , ai , b = const . (15)
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For D ≥ 3 tensor Rik jp is given up to the translation by

R′ik j p =
(

1

2
ξ ik j pr + 1

2
ξ j pikr − ξ [ik j pr ]

)

,r
, ξ ik j pr = ξ [ik][ j pr ] . (16)

Proof For D = 2 an addition to R does not change T i j if all its second derivatives
vanish. Thus, it has to be linear in all coordinates.

In order to show that for D ≥ 3 all solutions of the equation

R′ik j p
,kp = 0 , (17)

with symmetries of the Riemann tensor, have the form (16) let us write (17) as

(
R′ik j p

,k

)
,p

= 0. (18)

From the Poincare lemma (5) with I = i one obtains

R′ik j p
,k = 1

2
V i jpk

,k , (19)

where tensor V i jpk is antisymmetric in the last 3 indices, V i jpk = V i[ j pk]. Thanks to
R′[i jk]p = 0 an antisymmetrization of (19) over the indices i j leads to

(
R′i j pk + V [i j]pk)

,k
= 0 . (20)

Using again (5), now with I = [i j], we obtain

R′i j pk + V [i j]pk = ξ
i j pkr

,r , (21)

where ξ i pjkr = ξ [i p][ jkr ]. Antisymmetrization of (21) over i j p yields

V [i j p]k = ξ
[i j p]kr

,r . (22)

Taking a suitable combination of Eq. (22) with different permutations of indices allows
to express tensor V in the form

V i jpk =
(

3ξ [ j pk]ir + 4ξ [i j pk]r)
,r

. (23)

Substituting (23) to (21) leads to (16). ��
In dimension D = 2 gauge transformations (15) can be used to remove a constant term
and terms linear in coordinates in an expansion of R around a fixed point. In higher
dimensions tensor Rik jp can be decomposed into a traceless part Cik jp, corresponding
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to the Weyl tensor in general relativity, and the rest which is defined by an analog of
the Ricci tensor Rkp = Ri

kip

Rik
jp = Cik

jp + 4aδ
[i
[ j R

k]
p] − 2bRδ

[i
[ jδ

k]
p] . (24)

Here R = Ri
i and

a = 1

D − 2
, b = 1

(D − 1)(D − 2)
. (25)

Tensor Cik jp vanishes identically for D = 3. For D ≥ 4 we can try to achieve this
condition by means of the gauge transformation (16).

Proposition 3 In dimension D = 3 every solution and in D ≥ 4 every analytic
solution of (4) has the form

Ti j = a 
 Ri j − 2aRk
(i, j)k + bR,i j + (aRkp

,kp − b 
 R)gi j , (26)

where Ri j is an arbitrary symmetric tensor undergoing the gauge transformation

Ri j −→ Ri j + ξ(i, j) − ξ k,kgi j (27)

with arbitrary functions ξi .

Proof Equation (26) follows if (24) with Cik jp = 0 is substituted to (6). In order to
prove that for D ≥ 4 conditionCik jp = 0 is available one could look for an appropriate
gauge transformation of the form given by Proposition 2. In our opinion it is easier to
prove solvability of (26) with respect to Ri j if a transverse tensor T i j is given. Let us
distinguish coordinate x1, which together with xa , a = 2, ...D, composes a Cartesian
system of coordinates. Concerning evolution of Ri j with respect to x1 Eq. (26) with
indices 11 and 1a are constraints since they do not contain second derivatives of Ri j

over x1. It is easy to show that they are preserved in x1 if they are satisfied at x1 = 0
and remaining Eq. (26) are fulfilled. If functions Ti j are analytic then the constraints
at x1 admit solutions and from the Cauchy-Kowalewska theorem we obtain analytic
solutions Ri j of all Eq. (26). This situation is similar to that in general relativity.
Equations (26) are identical with the linearized Einstein equations if Ri j − 1

D−1 Rgi j
is identified with the first corrections to the constant metric gi j . This analogy suggests
the gauge transformations (27). It is easy to show that they preserve the rhs of (26).
Counting number of components of Ri j and ξi we can be sure that transformations
(27) are general up to functions of D−1 variables. In order to exclude such additional
functions one should find all transformations (16) preservingCik jp = 0 and investigate
their efect on Ri j . It hasn’t been done. ��
Remark If gi j has the Lorentzian signature then Eq. (26) for Ri j are hyperbolic and
the assumption about analyticity in Proposition 3 can be weakened.
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3 TT tensors

For T i j given by expression (6) the traceless condition (2) leads to the following
equation for the “Ricci tensor” Ri j = Rk

ik j

Rkp
,kp = 0 . (28)

Equation (28) can be easily solved in terms of potentials.

Proposition 4 For D = 2 TT tensors are given by (14), where R satisfies


 R = 0 . (29)

For D ≥ 3 TT tensors are given by (6) and

Rpk = S(pk)r
,r , (30)

where

S pkr = −S prk . (31)

Proof For D = 2 there is Ri j = 1
2 Rg

i j , so (28) reduces to Eq. (29), which can be
further integrated by means of holomorphic functions (for a definite signature of gi j )
or functions of null coordinates (for mixed signature).

For D ≥ 3 there is no other restrictions on Rpk except (28). Integrating (28) with
use of (5) yields

Rpk
,k = V pk

,k , V pk = −V kp (32)

and integrating (32) leads to

Rpk = V pk + S pkr
,r , (33)

where new potentials S pkr satisfy (31). Symmetrization of (33) over indices pk yields
(30). ��
Potentials Si jk are not uniquely defined. Their arbitrariness can be easily defined in
the case of gauge Ci jkp = 0.

Proposition 5 If (26) and (30) are satisfied then potentials Si jk undergo gauge trans-
formations

Si jk −→ Si jk − 2gi[ jξ k] + χ
i jkr

,r + ηi jk , (34)

where

χ i jkr = χ i[ jkr ] , ηi jk = η[i jk] . (35)
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Proof In order to prove (34) one should solve condition

S′(i j)k
,k = 0 (36)

for an addition to Si jk which does not influence Ri j given by (30). From (36) and (5)
it follows that

S′(i j)k = V i jkr
,r , (37)

where V i jkr = V (i j)[kr ]. If we define χ i jkr = 3
8V

i[ jkr ] then V i jkr = 4χ(i j)kr . Taking
into account the identity

S′i jk = S′[i jk] + 2

3
S′(i j)k − 2

3
S′(ik) j (38)

one obtains

S′i jk = χ
i jkr

,r − χ
[i jk]r

,r + S′[i jk] . (39)

Denoting two last expressions in (39) by ηi jk leads to transformation (34). ��
An application of transformation (34) with ξ k = −S ik

i /(D − 1) and vanishing all
other terms allows to obtain S ik

i = 0 and R = 0. Then substituting (30) into (26)
yields

Ti j = a
(

S k

(i j) ,k + Skr(i, j)kr

)
. (40)

An appropriate choice of η allows to get S[i jk] = 0. Further gauge conditions can be
assumed thanks to free functions χ i jkr .

A description of TT tensors in dimension D = 3 is much simpler than in D ≥ 4.
In this case Propositions 4 and 5 lead to the following result.

Proposition 6 In dimension D = 3 every TT tensor is given by

T i j = εkl(i
(

A j)

k − A j)p
kp,

)
,l

, (41)

where Ai j is a symmetric tensor undergoing the gauge transformations

Ai j −→ Ai j + χ(i, j) + ηgi j (42)

with arbitrary functions χi and η.

Proof For D = 3 one has Cik jp = 0 and

Rik jp = −εiklε j psGls , (43)
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where Gls = Rls − 1
2 Rgls corresponds to the Einstein tensor. Substituting (64) to (6)

leads to the following simplified version of formula (26)

T i j = −εiklε j psGls,kp . (44)

Gauge transformation (27) is now the most general since

ξ ik j pr = −ξlε
likε j pr (45)

should be substituted into (16). If T i
i = 0 then Rpk is given by (30), where

S pkr = εkrl Ap
l . (46)

Tensor A can be arbitrary, but only its symmetric part appears in Gls . Without loss of
generality we can assume

Alp = Apl , (47)

hence the gauge condition S ik
i = 0 is satisfied. Substituting (46) to (30) and using

(44) leads to (41).
Tensor A can be further simplified by means of (34). Since for D = 3

χ i jkr = χ iε jkr , ηi jk = ηεi jk (48)

condition S ik
i = 0 is preserved if

ξ k = 1

2
εki jχ[i, j] . (49)

Substituting (46), (48) and (49) to (34) yields (42). ��
Remark If T ′i j is a transverse tensor then

T i j = εkl(i T ′ j)
k,l (50)

is a TT tensor. Case (41) corresponds to

T ′i j = 
Ai j − 2A(i j)p
p, + Apk

,pkg
i j . (51)

If D ≥ 4 one can consider gauge conditions for a TT tensor other than Ci jkr = 0. A
natural candidate is condition Ri j = 0.

Proposition 7 In dimension D ≥ 4 every analytic TT tensor has the form

T i j = Cik jp
,kp , (52)

where Cik jp is a tensor with all algebraic properties of the Weyl tensor.
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Proof Formula (52) is true if transformations (16) allow to kill Ri j . Let us look for
solutions of equations

ξ
(kp)r

,r = −Rkp , (53)

where

ξ kpr = ξ
ik pr
i . (54)

Let x1 and xa be coordinates introduced in the proof of Proposition 3. Equation (53)
with k = p = 1 is a constraint regarding evolution of ξ kpr with respect to x1. The
derivative of this constraint over x1 leads to the new constraint

ξ
(ab)1

,ab = R11
,1 + 2R1a

,a . (55)

Condition (55) is preserved if T i
i = 0 since then Rkp

,kp = 0. Thus, if we assume (53)

with k = p = 1 and (55) on the surface x1 = 0 then, in analytic case, we obtain
solution of all Eq. (53). It remains to prove that for this solution there is a tensor ξ ik j pr

which satisfies (54). It is the case since every such tensor admits decomposition

ξ
j pr

ik = ξ̂
j pr

ik + αδ
[ j
[iξ

pr ]
k] − βδ

[ j
[iδ

p
k] ξ

r ] , (56)

where ξ̂
j pr

ik is traceless and

α = 6

D − 3
, β = 6

(D − 2)(D − 3)
, ξ r = ξ kr

k . (57)

It follows from (56) that tensors ξ̂ ik j pr and ξ kpr can be defined independently. ��
If Ri j = 0 then gauge transformations (16) are restricted by

ξ
(kp)r

,r = 0. It follows from (36)-(39) that solution of this condition is

ξ i jk = χ
i jkr

,r + ηi jk , (58)

where tensors χ and η satisfy (35). Transformations (16) with condition (58) can be
further used to simplify formula (52).

4 Discussion

All calculations were performed in Cartesian coordinates xi . If we replace partial
derivatives with respect to xi by covariant derivatives ∇k then we can pass to other
systems of coordinates. In particular formula (6) then takes the form

T i j = ∇k∇p R
ik jp . (59)
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For a nonflat metric expression (59) fails to satisfy (1) because of nonvanishing com-
mutators of covariant derivatives.

Given solutions of Eqs. (1) and (2) in a flat space we can obtain all TT tensors
in conformally flat spaces by means of transformation (3). The author is not able to
express in general these solutions in terms of covariant derivatives of potentials with
no use of the conformal factor ψ . The only exception is the case of spaces of constant
curvature (space forms corresponding to flat space, sphere or hyperbolic space). Then

Ri j
kp = λ(δikδ

j
p − δ

j
kδ

i
p) , λ = const (60)

and Eq. (1) is still satisfied if formula (59) is replaced by

T i j = −∇k∇p R
k(i j)p + 1

2
λRi j . (61)

In order to satisfy T i
i = 0 it is sufficient, but may be not necessary, to assume the

covariant version of (30)

Rpk = ∇r S
(pk)r (62)

together with

Si jk = −Sik j , S ik
i = 0 . (63)

We expect that for D ≥ 4 the gauge condition Ci jkl = 0 is available for transverse
tensors and condition Ri j = 0 for TT tensors.

Let us assume that space is flat but a TT tensor is invariant under a symmetry
of metric. Such solutions can be obtained by means of invariant tensor potentials
appearing in Propositions 1–7. Such description is not necessarily optimal as it follows
from the paper of Conboye and Ó Murchadha [8] and Conboye [9] in dimension D = 3.
Their expressions for TT tensors contain only two arbitrary functions and at most their
second derivatives, not third as in (41).

For a general metric g we are not able to write down solutions of (4), with or
without H = 0, in terms of potentials. In the case of D = 3 and axially symmetric
fields Eq. (4) can be completely solved in generic case (see Propositions 2.1 and 2.2
in [10]), but then condition H = 0 becomes a differential equation.

In this paper we focused on mathematical description of transverse and transverse-
traceless tensors. Concerning physical applications we are mainly interested in using
results of Sect. 3 in order to construct initial data within the conformal approach to
the vacuum Einstein equations. Following results of Maxwell [11] one can include in
these data marginally trapped surfaces which are expected to develop into black hole
horizons. Such configurations would generalize those of Bowen and York [6]. They are
often considered as nonphysical since the Kerr metric does not admit any conformally
flat section. However, the conformal flatness property will be spoiled during the time
evolution. It would be interesting to see if the Kerr like black holes will be created
in agreement with the cosmic censor hypothesis. We are going to consider a related
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but simpler problem: using our data and Maxwell’s approach we will test the Penrose
inequality involving the surface area of an initial trapped surface and the total mass of
the initial surface.

Another possible application of our approach would be a construction of cosmolog-
ical initial data describing perturbations of the standard cosmological models (note that
surfaces of constant time in the Friedmann-Robertson-Walker spacetimes are always
conformally flat).

An example of condition (4) in general relativity is provided by the de Donder
condition (

√|g|gμν),ν = 0. It is specially useful in the linearized gravity in vacuum
since, together with the Einstein vacuum equations, it leads to equations

hi j, j = 0 , hii = 0 (64)

�hi j = 0 (65)

(where � = ημν∂μ∂ν) for corrections hi j to the space components of the Minkowski
metric ημν . In the standard approach solutions of these equations are obtained as linear
superpositions of harmonic waves. Using our results we can go further by taking hi j
in the form (41) with matrix A satisfying the unconstrained wave equation (65). Note
that functions Ai j can be found e.g. by means of separation of variables what is not
possible for hi j because of conditions (64).

We hope that other physical applications appear with time.
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