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Abstract We present the first part of an analysis aimed at introducing variables which
are suitable for constructing a space of quantum states for the Teleparallel Equivalent
of General Relativity via projective techniques—the space is meant to be applied in
a canonical quantization of the theory. We show that natural configuration variables
on the phase space of the theory can be used to construct a space of quantum states
which however possesses an undesired property. We introduce then a family of new
variables such that some elements of the family can be applied to build a space of
quantum states free of that property.

Keywords Teleparallel equivalent of general relativity · Canonical quantization ·
Space of kinematic quantum states

1 Introduction

A formulation of general relativity called Teleparallel Equivalent of General Relativity
(TEGR)1 has not been yet used as a starting point for a quantization of gravity [2,3].
Since nowadays no existing approach to quantum gravity seems to be fully successful
it is worth to check whether it is possible to construct a model of quantum gravity
based on TEGR. In this paper we will address an issue of constructing a space of
quantum states for TEGR which could be applied in the procedure of canonical (or a
canonical-like) quantization of the theory.

1 See [1] for the newest review on TEGR.
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A Hamiltonian analysis of TEGR [4–8] shows that it is a constrained system. Since
we do not expect that constraints on the phase space of TEGR can be solved classically
we would like to apply the Dirac’s approach to canonical quantization of constrained
systems. According to this approach one first constructs a space of kinematic quan-
tum states, that is, quantum states which correspond to classical states constituting the
unconstrained phase space, next among kinematic quantum states one distinguishes
physical quantum states as those corresponding to classical states which satisfy all
constraints. Thus our goal is to construct a space of kinematic quantum states for
TEGR.

Since TEGR is a background independent theory it is desirable to construct a space
of quantum states for it in a background independent manner. Methods which provide
a construction of this sort are known from Loop Quantum Gravity (LQG)—see e.g.
[9,10] and references therein—but because of a reason explained below they are rather
not applicable to TEGR. Therefore we are going to construct the desired space for
TEGR by means of a general method [11] deliberately developed for this purpose.
This method works as follows.

The starting point for the method is a phase space of a theory of the form P × �,
where P is a space of momenta, and � is a (Hamiltonian) configuration space (that
is, a space of “positions”). One starts the construction by choosing a set K of real
functions on � called configurational elementary degrees of freedom. Analogously,
one chooses a set of momentum elementary degrees of freedom consisting of some
real functions on P . Next, one defines a special directed set (�,≥)—each element
of this set corresponds to a finite collection of both configurational and momentum
elementary d.o.f.—and with every element λ of � one associates a set of quantum
states denoted by Dλ.

Given λ ∈ �, the set Dλ of quantum stated is constructed as follows. The element
λ corresponds to a finite set K of configurational d.o.f.. One uses the d.o.f. in K to
reduce “infinite-dimensional” space � to a finite dimensional space �K —this reduc-
tion consists in identifying all points of � for which each d.o.f. in K gives the same
value. Then one defines a Hilbert space of functions on �K square integrable with
respect to a measure on �K . The set Dλ is a set of all density operators (i.e. positive
operators of trace equal 1) on this Hilbert space—because density operators represent
some (mixed, in general,) quantum states one can treat Dλ as a set of such states.

In this way one obtains a family {Dλ}λ∈� of sets of quantum states. If the set (�,≥)

is chosen properly then it naturally generates on {Dλ}λ∈� the structure of a projective
family. Finally, the desired space of kinematic quantum states related to the original
phase space P × � is defined as the projective limit of the family.

As shown in [11], the task of constructing such a space of quantum states reduces to a
construction of a directed set (�,≥) satisfying some assumptions—these assumptions
are imposed both on elementary d.o.f. constituting elements of � and the relation ≥.
Since now a directed set (�,≥) satisfying all these assumption will be called proper
directed set (�,≥).

The goal of the present paper is to find variables on the (Hamiltonian) configuration
space � of TEGR which are suitable for constructing a proper directed set (�,≥) for
the theory. More precisely, we are looking for variables on the configuration space
which provide a set K of configurational d.o.f. such that
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1. d.o.f. in K separate points of �;
2. d.o.f. in K are defined via integrals of functions of components of the variables;

the functions are polynomials of the components of degree 1;
3. there exists a directed set elements of which are finite subsets of K such that for

every element K of the directed set there exists a natural bijection from �K onto
R

N , where N is the number of d.o.f. in K ;
4. d.o.f. in K are defined in a background independent way i.e. without application

of any background field.

The first three Assumptions above correspond to some assumptions imposed in
[11] on a proper set (�,≥). The present Assumption 1 can be found in Sect. 2 of
[11] containing preliminaries and the Assumption 2 above describes a practical way
to satisfy Assumption 3b of [11] (see Sect. 3.2 and Section 6.2 in that paper). The
present Assumption 3 corresponds to Assumption 2 of [11] (see Sect. 3.2 in that
paper). Let us note that the original Assumption 2 is imposed on every finite subset
K of K which (together with a finite set F̂ of momentum d.o.f.) constitute an element
of (�,≥): “if (F̂, K ) ∈ �, then...”. But we do not have any set (�,≥) for TEGR
yet—we are at a stage of preparations for constructing such a set—and therefore
we cannot impose the original Assumption 2 as it is formulated in [11]. Instead, we
require the existence of a directed set consisting of some special finite subsets of K—
formulating in this way the present Assumption 3 we hope that a directed set of this
sort may facilitate a construction of a proper directed set (�,≥) for TEGR. Finally,
Assumption 4 express our wish to construct quantum states for TEGR in a background
independent manner.

Results of our inquiries can be summarized as follows: we will find two kinds of
variables on the configurations space � of TEGR which not only satisfy the four
assumptions above but can be actually used in a background independent manner
to construct two distinct spaces of quantum states for TEGR. One of these vari-
ables are natural configurational variables on the phase space of TEGR, that is,
one-forms (θ A), A = 0, 1, 2, 3, defined on a three-dimensional manifold being a
space-like slice of a spacetime. We will show, however, that the space of quan-
tum states derived from these variables possesses an undesired property. Therefore
we will transform the natural variables obtaining a family of new variables such
that some elements of the family can be used to build a space of quantum states
for TEGR free of that property—a construction of this space will be presented in
[12].

Let us emphasize that the analysis of variables suitable for constructing a space of
quantum states for TEGR will be continued in an accompanying paper [13] where we
will analyze more closely the family of new variables.

Some constructions presented in the present paper are similar to (elements of) a
construction of a space of kinematic quantum states for a simple background inde-
pendent theory called Degenerate Plebański Gravity (DPG)—the latter construction
is described in [11]. It seems to us that it may be quite helpful for the reader to study
first the construction in [11] since it is simpler that ones described here.

Let us finally explain why the LQG methods of constructing quantum states do not
seem to be applicable to TEGR. The reason is quite simple: the methods require finite
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dimensional spaces {�K } to be compact2 and it is rather difficult to obtain naturally
such spaces in the case of TEGR.

The paper is organized as follows: Sect. 2 contains preliminaries, in Sect. 3 we
consider the natural variables (θ A) and explain why the space of quantum state con-
structed from them does not seem to be very promising for canonical quantization
of TEGR. In Sect. 5 we present the family of new variables. Section 6 contains a
short summary and an outline of the analysis to be presented in the accompanying
paper [13]. In Appendix we prove two very important lemmas which guarantee that
both kinds of variables considered in this paper provide d.o.f. satisfying Assumption
3 above.

2 Preliminaries

2.1 Vector spaces with scalar products

Let such M be a four-dimensional oriented vector space equipped with a scalar prod-
uct η of signature (−,+,+,+). We fix an orthonormal basis (vA) (A = 0, 1, 2, 3)

of M such that the components (ηAB) of η given by the basis form the matrix
diag(−1, 1, 1, 1). The matrix (ηAB) and its inverse (ηAB) will be used to, respec-
tively, lower and raise capital Latin letter indices A, B, C, D ∈ {0, 1, 2, 3}.

Denote by E the subspace of M spanned by the vectors {v1, v2, v3}. The scalar
product η induces on E a positive definite scalar product δ—its components (δI J ) in
the basis (v1, v2, v3) form a matrix diag(1, 1, 1). The matrix (δI J ) and its inverse (δ I J )

will be used to, respectively, lower and raise capital Latin letter indices I, J, K , L , M ∈
{1, 2, 3}.

2.2 Phase space

In this paper we will consider a particular phase space being a set of some fields on
a three-dimensional oriented connected smooth3 manifold �. A point in the phase
space consists of:

1. a quadruplet of smooth one-forms (θ A) ≡ θ on � such that4

(a) at each point y ∈ � three of four one-forms (θ A(y)) are linearly independent,
(b) the metric

q = ηABθ A ⊗ θ B (2.1)

on � is Riemannian (positive definite).

2 See [14] for a discussion of obstacles which appear if one tries to apply the LQG methods for non-compact
spaces {�K }.
3 Throughout the paper “smooth” means “of C∞ class”.
4 Conditions 1a and 1b are not independent—in fact, the former is implied by the latter [13], but for further
considerations it will be convenient to formulate them separately.
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2. a quadruplet of smooth two-forms (pA) on �; pA is the momentum conjugate to
θ A.

Since now � will denote the space of all quadruplets (θ A) satisfying the Conditions
above and P will denote the space of all momenta (pA). We will call the space �

(Hamiltonian) configuration space.
The phase space under consideration is then a Cartesian product P×�. As shown in

[8] and [15] this is a phase space of both TEGR and a simple theory of the teleparallel
geometry called Yang-Mills-type Teleparallel Model5 (YMTM) [16].

2.3 Reduced configuration spaces

As mentioned above we are going to construct quantum states for TEGR by means of
the method described in [11]. Let us recall some notions used in that paper.

Suppose that a set K of configurational elementary d.o.f. on � is chosen. Given
finite set K = {κ1, . . . , κN } ⊂ K we say that θ ∈ � is K -equivalent to θ ′ ∈ �,

θ ∼K θ ′,

if for every κI ∈ K

κI (θ) = κI (θ
′).

The relation ∼K is an equivalence one and therefore it defines a quotient space

�K := �/ ∼K .

We will denote by [θ ] an equivalence class given by θ .
There exists a natural6 injective map from �K into R

N :

�K 
 [θ ] �→ K̃ ([θ ]) :=
(
κ1(θ), . . . , κN (θ)

)
∈ R

N . (2.2)

We will say that the d.o.f. in K are independent if the image of K̃ is an N -
dimensional submanifold of R

N . The set �K given by a set K of independent d.o.f.
will be called a reduced configuration space.

Let us note that the formulation of Assumption 3 in Sect. 1 lacks some precision
since there we did not define what the “natural bijection from �K onto R

N ” is. Now
we can formulate the assumption strictly:

5 In [15] while describing the phase space of YMTM we imposed only the weaker and insufficient Condition
1a and overlooked Condition 1b.
6 The set K is unordered, thus to define the map K̃ one has to order elements of K . Thus the map K̃ is
natural modulo the ordering. However, every choice of the ordering is equally well suited for our purposes
and nothing essential depends on the choice. Therefore we will neglect this subtlety throughout the paper.
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3. there exists a directed set elements of which are finite subsets of K such that for
every element K of the directed set the map K̃ given by (2.2) is a bijection or,
equivalently,

�K ∼= R
N (2.3)

under K̃ , where N is the number of elements of K .

3 Natural variables on �

3.1 Configurational elementary d.o.f.

Let us use the natural7 variables (θ A) on � to define configurational elementary d.o.f..
Since the variables are one-forms we follow the LQG methods (see [9,10]) and define
the following real function on �:

� 
 θ �→ κ A
e (θ) :=

∫

e

θ A ∈ R, (3.1)

where e is an edge8 in �. Let

K̄ :=
{

κ A
e

}
,

where A = 0, 1, 2, 3 and e runs over a set of all edges in �. We choose K̄ to be a set
of configurational elementary d.o.f. generated by the natural variables.

Now we have to check whether the set K̄ satisfies Assumptions listed in Sect. 1.
It is clear that functions in K̄ separate points of �, thus K̄ meets Assumption 1. The
function κ A

e (θ) can be easily expressed in terms of components of the one-form θ A

given by local coordinate frames on �. It follows immediately from such expressions
that K̄ satisfies Assumption 2.

Regarding Assumption 3, let us focus on sets of d.o.f. given by graphs9 in �—it is
known from LQG that under a technical requirement10 all graphs in � form a directed
set. Consider then a graph γ being a collection {e1, . . . , eN } of edges in �. The graph
defines a finite set

Kγ :=
{

κ A
e1

, . . . , κ A
eN

| A = 0, 1, 2, 3
}

7 The variables are natural in this sense that they are a result of the Legendre transformation [4,7,8] applied
to a Lagrangian formulation of TEGR in terms of cotetrad fields on a four-dimensional manifold.
8 A simple edge is a one-dimensional connected C∞ submanifold of � with two-point boundary. An edge
is an oriented one-dimensional connected C0 submanifold of � given by a finite union of simple edges.
9 We say that two edges are independent if the set of their common points is either empty or consist of one
or two endpoints of the edges. A graph in � is a finite set of pairwise independent edges.
10 One assumes � to be a real-analytic manifold and restrict oneself to edges built from analytic simple
edges.
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of elementary d.o.f.. The set (Kγ ,≥), where γ runs over the directed set of graphs
in � and the relation ≥ is induced by the directing relation on the set of graphs, is a
directed set.

There holds the following lemma proven in Appendix 7:

Lemma 3.1 Let γ = {e1, . . . , eN } be a graph. Then for every (x A
j ) ∈ R

4N there
exists θ ∈ � such that

κ A
e j

(θ) = x A
j

for every A = 0, 1, 2, 3 and j = 1, 2, . . . , N.

Let us now comment on the lemma. Recall now that Condition 1b of the phase space
description presented in Sect. 2.2 means that for every θ ∈ � and for every nonzero
vector X tangent to � the values (θ A(X)) form a space-like vector in M ∼= R

4. On
the other hand, given edge e and θ ∈ �, we can interpret a quadruplet (κ A

e (θ)) as
a vector in M. Naively thinking, one could expect that (κ A

e (θ)) should be space-like
also. However, a sum—and then an integral—of space-like vectors in M may be any
other vector in M and this is exactly why the lemma is true.

Note that Lemma 3.1 implies that for every graph γ in � the map K̃γ (see (2.2)) is
a bijection or, equivalently, the reduced configuration space

�Kγ
∼= R

4N ,

where N is the number of edges of γ . Consequently, the set K̄ with the directed set
(Kγ ,≥) satisfies Assumption 3.

It is clear that the d.o.f. in K̄ are defined in a background independent manner. Note
that there exists on K̄ a natural action of diffeomorphisms on �: given diffeomorphism
ϕ on �, a d.o.f. κ A

e ∈ K̄ is mapped by the diffeomorphism to ϕ∗κ A
e being a function

on � such that

(
ϕ∗κ A

e

)
(θ) :=

∫

e

ϕ∗θ A =
∫

ϕ(e)

θ A = κ A
ϕ(e)(θ).

This means that K̄ is preserved by the action of the diffeomorphisms.
We conclude that the set K̄ of configurational d.o.f. defined by the natural variables

(θ A) satisfies all Assumptions presented in Sect. 1. Thus the set K̄ seems to be suitable
for constructing in a background independent way a set of quantum states for TEGR.
In fact, the directed set (Kγ ,≥) can be extended to a proper directed set (�,≥) for
TEGR—the construction of the latter set is fully analogous to the construction of a set
(�,≥) for DPG [11]. Since the resulting set (�,≥) for TEGR is proper it generates
a space of kinematic quantum states for TEGR which will be denoted by D̄.
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3.2 An undesired property D̄

Unfortunately, the space D̄ of kinematic quantum states for TEGR seems to be too
large to be used in a canonical quantization of TEGR. The space is “too large” in the
following sense.

Let us denote by �′ the set of all quadruplets (θ A) of one-forms on � which satisfy
Condition 1a of the phase space description (see Sect. 2.2). Obviously, � ⊂ �′ and
consequently Lemma 3.1 is true in the case of �′. Defining the space �′

Kγ
analogously

to �Kγ and D′
λ analogously to Dλ we see immediately that

�′
Kγ

∼= �Kγ , D′
λ

∼= Dλ. (3.2)

Thus the space D̄ meant to correspond to � corresponds actually to the larger space
�′.

Note that the space �′ contains quadruplets (θ A) which via the formula (2.1)
define on � not only Riemannian metrics but also metrics which (locally or globally)
are Lorentzian (i.e. of signature (−,+,+)). Thus the kinematic quantum states in
D̄ correspond also to a large set of quadruplets (θ A) which have nothing to do with
elements of �—note that it is rather not possible for a quadruplet defining a Lorentzian
metric to be a limit of a sequence of elements of �.

Is it possible to isolate quantum states in D̄ which do not correspond to Lorentzian
metrics on �? Perhaps it is, but we expect this to be rather difficult because of the
following reason. By means of d.o.f. belonging to a finite subset Kγ of K̄ we are not
able to distinguish between elements of � and those of �′\�—see the first Eq. (3.2).
On the other hand, all d.o.f. in K̄ separate points not only in � but also in �′. Thus
the all d.o.f. in K̄ distinguish between elements of � and �′\�. Consequently, we are
not able to isolate quantum states which do not correspond to Lorentzian metrics by
means of a family {Rλ}λ∈� of restrictions such that each restriction Rλ is imposed on
elements of Dλ but would have to isolate desired states at the level of the whole D̄.
Taking into account the complexity of D̄, this task seems to be very difficult. Therefore
we prefer to find other variables which could give us a space of quantum states free
of the undesired property of D̄.

4 New variables on �

4.1 New variables—preliminary considerations

The undesired property of D̄ just described follows from the fact that the variables
(θ A) can be used to parameterize not only the configuration space � but also the
larger space �′ (provided Condition 1b has been omitted). Thus to obtain a space
of kinematic quantum states for TEGR free of the property of D̄ we can try to find
new variables which parameterize the space � and cannot be used to describe those
elements of �′ \� which correspond to Lorentzian metrics on �. Below we present
some preliminary considerations results of which will be used in the next subsection
to define such new variables.
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Condition 1a of the phase space description together with continuity of the fields
mean that three of four one-forms (θ A) define a local coframe on � and consequently
the remaining one-form can be expressed as a linear combination of the three ones. It
turns out that Condition 1b allows to formulate a stronger statement:

Lemma 4.1 A quadruplet (θ A) belongs to � if and only if for every point y ∈ �

1. the forms (θ1(y), θ2(y), θ3(y)) are linearly independent,
2.

θ0(y) = αI (y)θ I (y) (4.1)

where αI (y) are real numbers satisfying

αI (y)α I (y) < 1. (4.2)

Proof Let us fix a point y ∈ �. For the sake of simplicity till the end of this proof
we will omit the symbol “y” in the notation i.e. we will denote θ A(y) by θ A, αI (y)

by αI and q(y) by q. As before we will refer to the two conditions imposed on the
elements of � in Sect. 2.2 as to, respectively, Condition 1a and Condition 1b and to
the two assertions of the lemma as, respectively, Assertion 1 and Assertion 2.

Step 1: Conditions 1a and 1b imply Assertion 1 Condition 1a means that either
(i) (θ1, θ2, θ3) or (i i) (θ0, θ I , θ J ), I �= J , are linearly independent. Let us show that
(i) is true even if (i i) holds. Without loss of generality we assume that (θ0, θ1, θ2)

are linearly independent. Then for some real numbers a, b, c

θ3 = aθ0 + bθ1 + cθ2

and

q = −θ0 ⊗ θ0 + θ1 ⊗ θ1 + θ2 ⊗ θ2 +
(

aθ0 + bθ1 + cθ2
)

⊗
(

aθ0 + bθ1 + cθ2
)

.

Let Y be a vector belonging to Ty� such that θ0(Y ) = 1 and θ1(Y ) = θ2(Y ) = 0.
Because of Condition 1b the number q(Y, Y ) must be positive:

q(Y, Y ) = −1 + a2 > 0

which means that

a2 > 1. (4.3)

Now by virtue of (4.3) and the following equations

θ3 = aθ0 + bθ1 + cθ2

θ1 = θ1

θ2 = θ2

the forms (θ1, θ2, θ3) are linearly independent.
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Step 2: Condition 1b and Assertion 1 are equivalent to Assertions 1 and 2 If
Assertion 1 is true then there exists real numbers (αI ), I = 1, 2, 3, such that

θ0 = αI θ
I .

Consequently

q = (−αI αJ + δI J ) θ I ⊗ θ J . (4.4)

The metric q is positive definite if and only if the eigenvalues of the matrix

(qI J ) := (−αI αJ + δI J ) (4.5)

are positive. Of course, if all the (αI ) are zero then the eigenvalues are positive. Assume
then that

αI α
I > 0. (4.6)

Then the eigenvectors of the matrix (qI J ) are (αI ) and (βI ), (γI ), where the latter two
vectors satisfy

∑
I

βI αI =
∑

I

γI αI =
∑

I

βI γI = 0.

Indeed,

∑
J

qI J αJ = αI

(
−

∑
J

αJ αJ + 1

)
=

(
1 − αJ α J

)
αI

and

∑
J

qI J βJ = βI ,
∑

J

qI J γJ = γI .

These results mean that the eigenvalues of (qI J ) are 1, 1 and

1 − αI α
I . (4.7)

The conclusion is that q is positive definite if and only if (i) all the {αI } are zero or
(i i) 1 − αI α

I > 0 if (4.6) holds. Obviously, the alternative of the conditions (i) and
(i i) can be equivalently expressed as the following one condition

1 − αI α
I > 0.

Thus we showed that Condition 1b and Assertion 1 are equivalent to Assertions 1 and
2.
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Step 3: final conclusion Clearly, Assertion 1 implies Condition 1a. This fact together
with the result of Step 1 ensure that Conditions 1a and 1b are equivalent to Condition
1b and Assertion 1. Now to finish the proof it is enough to take into account the result
of Step 2. ��
Corollary 4.2 If (θ A) ∈ � then the triplet (θ1, θ2, θ3) is a global coframe on �.

Proof The corollary follows immediately from Assertion 1 of Lemma 4.1. ��
A consequence of the corollary is that the space � splits into two disjoint subspaces:

� = �+ ∪ �−, �+ ∩ �− = ∅,

where �+ is constituted by quadruplets (θ0, θ I ) such that the coframe (θ I ) is com-
patible with the fixed orientation of � and �− consists of quadruplets such that (θ I )

defines the opposite orientation on the manifold.
Let us finally reformulate Lemma 4.1 in the following way:

Lemma 4.3 There exists a one-to-one correspondence between elements of � and all
pairs (αI , θ

J ) consisting of

1. real functions αI , I = 1, 2, 3, on � such that

αI α
I < 1, (4.8)

2. one-forms θ J , J = 1, 2, 3, on � constituting a global coframe on the manifold.

The correspondence is given by

(
αI , θ

J
)

�→
(
θ0 = αI θ

I , θ J
)

∈ �. (4.9)

Note that a collection (αI ) can be treated as a function on � valued in a unit open
ball

B :=
{

(a, b, c) ∈ R
3 | a2 + b2 + c2 < 1

}
.

Lemma 4.3 guarantees that the space � can be parameterized by global coframes
on � and functions (αI ) on the manifold valued in the ball B. Let us now use these
variables to define elementary d.o.f..

Since (αI ) are real functions on �, that is, zero-forms it is natural to use a point
y ∈ � to define a map

� 
 θ �→ κ ′I
y (θ) := α I (y) ∈ R. (4.10)

On the other hand elementary d.o.f. corresponding to the global coframes can be
chosen as before, i.e.,

� 
 θ �→ κ I
e (θ) =

∫

e

θ I ∈ R. (4.11)
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Let

K̄′ :=
{

κ ′I
y , κ J

e

}
,

where I, J = 1, 2, 3, y runs over � and e over the set of all edges in the manifold. We
choose K̄′ to be a set of configurational elementary d.o.f. generated by the variables
(αI , θ

J ).
Let us check whether the set K̄′ satisfies all Assumptions presented in Sect. 1. It

obviously meets Assumption 1. Note that the r.h.s. of (4.10) can be treated as an integral
of the function α I over the set {y} ⊂ � and, consequently, K̄′ satisfies Assumption 2.

Regarding Assumption 3, consider a finite set u = {y1, . . . , yM } of points in � and
a graph γ = {e1, . . . , eN } in the manifold and define a finite set of d.o.f.

K ′
u,γ :=

{
κ ′I

y1
, . . . , κ ′I

yM
, κ J

e1
, . . . , κ J

eN
| I, J = 1, 2, 3

}
. (4.12)

Note that a collection of all such sets is a directed set: we say that K ′
u′,γ ′ is greater

than K ′
u,γ ,

K ′
u′,γ ′ ≥ K ′

u,γ ,

if u′ ⊃ u and γ ′ ≥ γ .
Now we have to find the image of the map K̃ ′

u,γ (see (2.2)). It is obvious that there
holds the following lemma

Lemma 4.4 Let u = {y1, . . . , yM } be a finite collection of points in �. Then for
every (z I

j ) ∈ B
M there exist real functions (αI ) satisfying the condition described in

Lemma 4.3 such that

α I (y j ) = z I
j

for every I = 1, 2, 3 and j = 1, 2, . . . , M.

The next lemma is proven in Appendix 6:

Lemma 4.5 Let γ = {e1, . . . , eN } be a graph. Then for every (x I
j ) ∈ R

3N there

exists a global coframe (θ I ) on � compatible (incompatible) with the orientation of
the manifold such that

∫

e j

θ I = x I
j

for every I = 1, 2, 3 and j = 1, 2, . . . , N.

The following conclusion is a simple consequence of Lemmas 4.3, 4.4, and 4.5:
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Corollary 4.6 Let u = {y1, . . . , yM } be a finite collection of points in � and γ =
{e1, . . . , eN } be a graph such that either u or γ is not an empty set (N , M ≥ 0 but
N + M > 0). Then for every (z I

i , x J
j ) ∈ B

M × R
3N there exists θ ∈ �+(�−) such

that

κ ′I
yi

(θ) = z I
i , κ J

e j
(θ) = x J

j

for every I, J = 1, 2, 3, i = 1, . . . , M and j = 1, 2, . . . , N.

The image of K̃ ′
u,γ is then B

M × R
3N and the reduced configuration space

�K ′
u,γ

∼= B
M × R

3N .

This means that the set K̄′ does not satisfy Assumption 3.
On the other hand, K̄′ meets Assumption 4. A diffeomorphism ϕ on � maps a d.o.f.

κ ′I
y into a function on � given by

(
ϕ∗κ ′I

y

)
(θ) :=

(
ϕ∗α I

)
(y) = α I (ϕ(y)) = κ ′I

ϕ(y)(θ).

Of course, K̄′ is preserved by the action of all diffeomorphisms on �.
The conclusion is that the set K̄′ does not meet Assumptions 3 but satisfies all

remaining ones. Moreover, the variables (αI , θ
J ) can be used to define Lorentzian

metrics on � provided we give up the condition (4.8)—if αI α
I > 1 then the eigen-

value (4.7) of the matrix (4.5) is negative and the resulting metric (4.4) is Lorentzian.
However, there is a progress with respect to the previously considered variables (θ A)

and the corresponding d.o.f. in K̄, because now if a sextuplet (αI , θ
J ) defines a metric

which is Lorentzian on a subset of � then any triplet {κ ′I
y |I = 1, 2, 3} of d.o.f. with

y belonging to the subset can be used to distinguish between this sextuplet (αI , θ
J )

and ones belonging to �.
Fortunately, it is not difficult to transform the variables (αI , θ

J ) to ones which
cannot define Lorentzian metrics and which naturally provide d.o.f. satisfying all
Assumptions. Indeed, it is easy to realize that the only source of the two problems
with the variables (αI , θ

J ) is the fact that every triplet (αI ) corresponding to an element
of � defines a function on � valued in the ball B. Thus to remove the problems it is
enough to choose a diffeomorphism from B onto R

3,

B 
 (z J ) �→ τ(z J ) =
(
τ 1(z J ), τ 2(z J ), τ 3(z J )

)
∈ R

3

and define new variables as
(
τ I (αK ), θ J

)

and

� 
 θ �→ κ I
y (θ) := τ I (αJ (y)) ∈ R (4.13)
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as a new elementary d.o.f. instead of (4.10).
However, there are many diffeomorphisms of this sort and the question is which

one should we use? Or, is there a distinguished diffeomorphism? As we will show
below a pair of such diffeomorphisms is distinguished by an ADM-like Hamiltonian
framework of TEGR.

4.2 New variables and new d.o.f.

Given (θ A) ∈ �, consider the following equations imposed on smooth functions
ξ A (A = 0, 1, 2, 3), on � [4]:

ξ AθA = 0, ξ AξA = −1. (4.14)

Solutions of these equations play an important role in deriving an ADM-like Hamil-
tonian framework of TEGR [4,8] and YMTM [15]—the configuration variable of
Lagrangian formulations of TEGR and YMTM is a cotetrad field on a four-dimensional
manifold; the cotetrad field is decomposed into “time-like” and “space-like” parts the
latter one being (θ A) ∈ �; then a solution of (4.14) is used to express the “time-
like” part as a function of the ADM lapse function, the ADM shift vector field and
(θ A). Moreover, a solution of (4.14) appears in formulae describing constraints of
both TEGR and YMTM, and the equations (4.14) are used repeatedly while deriving
constraint algebras of both theories [8,15].

Note that at every point y ∈ � the values (ξ A(y)) of a solution of (4.14) form
a time-like vector in M which means that the value ξ0(y) cannot be 0. Taking into
account the assumed smoothness of ξ A we can expect that there exist exactly two
distinct solutions of (4.14) which can be distinguished by the sign of ξ0. As shown in
[15] by presenting explicite solutions of (4.14) the expectation is correct.

Surprisingly, it turns out that there is a simple relation between the variables (αI )

and the space-like components ξ I of ξ A being a solution of (4.14) and this relation
provides us with two diffeomorphisms of the sort we need. Indeed, taking into account
Equation (4.1) we see that

(
ξ A

)
≡

(
ξ0, ξ I

)
= ξ0

(
1, α I

)
(4.15)

satisfy the first equation (4.14). Setting this result to the second equation (4.14) we
obtain

ξ0 = ± 1√
1 − αJ α J

= sgn(ξ0)√
1 − αJ α J

,

where sgn(ξ0) = ±1 is the sign of ξ0. Thus

(ξ A) = sgn(ξ0)√
1 − αJ α J

(
1, α I

)
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and

ξ I = sgn(ξ0)
α I

√
1 − αJ α J

. (4.16)

Clearly, the r.h.s. of the equation above defines two diffeomorphisms from B onto R
3

B 
 (z J ) �→ τ(z J ) := sgn
(
ξ0)

(
z I

√
1 − zL zL

)
∈ R

3 (4.17)

and both seem to be equally well suited for our goal.
In this way we obtain new variables on the Hamiltonian configuration space �:

Lemma 4.7 Given function ι defined on the space of all global coframes on � and
valued in the set {1,−1}, there exists a one-to-one correspondence between elements
of � and all sextuplets (ξ I , θ J ) consisting of

1. functions ξ I , I = 1, 2, 3, on �,
2. one-forms θ J , J = 1, 2, 3, on � constituting a global coframe on the manifold.

The correspondence is given by

(
ξ I , θ J

)
�→

(
θ0 = ι

(
θ L) ξI√

1 + ξK ξ K
θ I , θ J

)
∈ �. (4.18)

Proof Given sgn(ξ0) = ±1, the map

R
3 
 (z I ) �→ τ−1(z I ) = sgn

(
ξ0)

(
zI√

1 + zL zL

)
∈ B (4.19)

is the inverse of the diffeomorphism (4.17) and therefore the map

(
ξ I ) �→ sgn

(
ξ0)

(
ξI√

1 + ξLξ L

)
(4.20)

describes a one-to-one correspondence between all triplets (ξ I ) of real functions on
� and all triplets (αI ) of real functions on the manifold such that αI α

I < 1. Conse-
quently, given function ι, the map

(
ξ I , θ J

)
�→

(
ι(θ L)

ξI√
1 + ξLξ L

, θ J

)
(4.21)
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is a bijection from the set of all pairs (ξ I , θ J ) as described in Lemma 4.7 onto the set
of all pairs (αI , θ

J ) as described in Lemma 4.3—the inverse map to (4.21) reads

(
αI , θ

J
)

�→
(

ι(θ L)
α I

√
1 − αLαL

, θ J

)
. (4.22)

To finish the proof it is enough to note that the composition of the bijection (4.21)
with the bijection (4.9) gives the map (4.18). ��

Let us emphasize that Lemma 4.7 describes a family of distinct variables (ξ I , θ J )

which differ from each other by the choice of the function ι. To understand the role
of the function ι let us fix both the function and a pair (ξ I , θ J ) such that ξ I ξI is not
the zero function on �. Solving Equations (4.14) given by the quadruplet (θ A)∈�

corresponding to (ξ I , θ J ) via (4.18) we obtain two solutions ξ A which differ from
each other by the sign of ξ0. Note now that the one form θ0 can be expressed in terms
the solutions ξ A—using (4.20) being the inverse map to one defined by (4.16) we
obtain

θ0 = αI θ
I = sgn(ξ0)

ξI√
1 + ξK ξ K

θ I .

Comparing this with (4.18) we conclude that the variables (ξ I ) constituting the fixed
pair (ξ I , θ J ) coincide with space-like components of this solution ξ A for which
sgn(ξ0) = ι(θ L). Thus the function ι allows us to relate unambiguously the vari-
ables (ξ I ) to components of one of the two solutions of (4.14).

Consider new variables (ξ I , θ J ) given by a function ι. Now we can express the
formula (4.13) defining new elementary d.o.f. in the following form

� 
 θ �→ κ I
y (θ) = ξ I (y) ∈ R, (4.23)

where y ∈ �. Let

K :=
{

κ I
y , κ J

e

}
,

where I, J = 1, 2, 3, y runs over �, e over the set of all edges in the manifold and
κ J

e is given by (4.11). We choose K to be a set of configurational elementary d.o.f.
generated by the variables (ξ I , θ J ).

Taking into account the properties of the set K̄′ described in the previous subsection
and (4.23) we immediately conclude that the new set K satisfies Assumptions 1, 2 and
4. Diffeomorphisms on � act on elements of K as they do on ones of K̄′ hence we
have

ϕ∗κ I
y = κ I

ϕ(y), ϕ∗κ J
e = κ J

ϕ(e).

Obviously, K is preserved by the action.
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Corollary 4.6 and the relation between (ξ I ) and (αJ ) (see (4.21) and (4.22)) allows
us to formulate the following lemma:

Lemma 4.8 Let u = {y1, . . . , yM } be a finite collection of points in � and γ =
{e1, . . . , eN } be a graph such that either u or γ is not an empty set (N , M ≥ 0 but
N + M > 0). Then for every (z I

i , x J
j ) ∈ R

3M × R
3N there exists θ ∈ �+(�−) such

that

κ I
yi
(θ) = z I

i , κ J
e j

(θ) = x J
j

for every I, J = 1, 2, 3, i = 1, . . . , M and j = 1, 2, . . . , N.

Thus for every finite set

Ku,γ :=
{
κ I

y1
, . . . , κ I

yM
, κ J

e1
, . . . , κ J

eN
| I, J = 1, 2, 3

}
. (4.24)

the map K̃u,γ given by (2.2) is bijective. In other words,

�Ku,γ
∼= R

3M × R
3N .

We conclude that the set K with a directed11 set (Ku,γ ,≥) given by all finite subsets
of � and all graphs in the manifold meets Assumption 3.

Let us finally make sure that the new variables (ξ I , θ J ) cannot define Lorentzian
metrics on �. By virtue of (4.4) and (4.21) the metric q on � given by the variables
can be expressed as

q = qI J θ I ⊗ θ J =
(
δI J − ξI ξJ

1 + ξ K ξK

)
θ I ⊗ θ J . (4.25)

The eigenvalues 1 and 1 − αI α
I of the matrix (qI J ) found in the proof of Lemma 4.1

(see Equation (4.7)) expressed in terms of (ξ I ) read 1 and (1+ξI ξ
I )−1. Consequently,

the matrix (qI J ) is positive definite for every (ξ I ). Thus even if a triplet (θ J ) is not a
global coframe on � the corresponding metric q satisfy

q(Y, Y ) ≥ 0

for every vector Y tangent to �. This means that the new variables cannot describe
any metric on the manifold which locally or globally is Lorentzian.

It is also worth to note that if ξ I = 0 then (θ J ) is an orthonormal coframe with
respect to q—this fact can be easily deduced from (4.25). Thus we can regard (ξ I )

as variables indicating how much the coframe (θ J ) deviates from being orthonormal
with respect to q (of course, the same can be said about (αI )).

We conclude that for every function ι the set K of d.o.f. defined by corresponding
new variables (ξ I , θ J ) satisfy all Assumptions listed in Sect. 1. Moreover, the variables
cannot define Lorentzian metrics on �.

11 The relation ≥ is defined as described just below the formula (4.12).
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5 Summary

In this paper we showed that the natural variables (θ A) on the Hamiltonian configu-
ration space � of TEGR (and YMTM) can be used to build via the general method
described in [11] the space D̄ of kinematic quantum states. The space D̄ is constructed
in a background independent manner. It turned out that states constituting this space
correspond not only to elements of �, but also to quadruplets (θ A) which define
Lorentzian metrics on the manifold � being a space-like slice of a spacetime. Since
the task of isolating quantum states in D̄ which do not correspond to Lorentzian metrics
seems to be very difficult we decided to look for other more suitable variables.

The results of our inquiry is the family {(ξ I , θ J )} of variables parameterized by
functions {ι} defined on the set of all global coframes on � and valued in the set
{−1, 1}. Each element of the family satisfies all Assumptions presented in Sect. 1 and
cannot define any Lorentzian metric on �. Therefore we expect that at least some
of the variables can be used to define in a background independent way a space of
kinematic quantum states for TEGR free of the undesired property of the space D̄. We
will show in [12] by an explicite construction that the expectation is correct.

However, at this moment we are not completely ready for a construction of a space
of quantum states from variables (ξ I , θ J ) because of the following reason. Recall
that we would like to apply the Dirac’s approach to a canonical quantization of TEGR
which means that once a space of kinematic quantum states is constructed we will have
to impose on the states “quantum constraints” as counterparts of constraints on the
phase space of TEGR—this is the second step of the Dirac’s quantization procedure.
The problem is that it is not obvious whether every element of the family {(ξ I , θ J )}
generates a space of quantum states suitable for defining “quantum constraints” on it.

Although at this stage we are not able to solve this problem completely, we will
address the issue in the accompanying paper [13]—we will show there that indeed
some variables (ξ I , θ J ) are quite problematic. Namely, the constraints of TEGR (and
YMTM) when expressed in terms of these variables depend on a special function
defined on �. It turns out that this function cannot be even approximated by functions
on any �Ku,γ . This means that in the case of a space of kinematic quantum states built
from such variables we will not be able to define “quantum constraints” by means of
a family of restrictions such that each restriction is imposed on elements of a single
space Dλ. It is clear that if we are not able to define “quantum constraints” in such a
way then this task becomes much more difficult.

Fortunately, as it will be proven in [13], there exist exactly two closely related ele-
ments of the family {(ξ I , θ J )} for which the problem just described does not appear—
the elements are closely related in this sense that functions {ι} distinguishing them
differ from each other by a factor −1. Using one of these two elements we will con-
struct in [12] a space D of kinematic quantum states for TEGR. The space D will be
obviously free of the undesired property of D̄ and we hope that D will be also suitable
for carrying out the second step of the Dirac’s procedure.

Acknowledgments This work was partially supported by the Grant N N202 104838 of Polish Minis-
terstwo Nauki i Szkolnictwa Wyższego.
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6 Appendix A: Proof of Lemma 4.5

6.1 Preliminaries

Let us recall a definition of a simple edge—it is a one-dimensional connected C∞
submanifold of � with two-point boundary. On the other hand, a one-dimensional
C∞ submanifold of � with boundary is a subset E of the manifold such that for every
x ∈ E there exists a neighborhood U of x open in � and a C∞ coordinate chart χ on
U such that

χ(E ∩ U ) =
{

(z1, z2, z3) ∈ R
3 | z1 = z2 = 0, 0 < z3 < 1

}

or

χ(E ∩ U ) =
{

(z1, z2, z3) ∈ R
3 | z1 = z2 = 0, 0 ≤ z3 < 1

}
.

Consequently, given an oriented simple edge e there exist numbers a < 0 and b > 1
and a smooth curve

]a, b[
 λ �→ ẽ(λ) ∈ �

such that (i) e = ẽ([0, 1]), (i i) the orientations of the curve and the edge coincide,
(i i i) the vector ˙̃e(λ) tangent to the curve at ẽ(λ) is non-zero for every λ ∈ [0, 1]. Such
a curve will be called standard curve for e. If ẽ is a standard curve for a simple edge
e and ω is a smooth one-form on � then a map

]a, b[
 λ �→ ω( ˙̃e(λ)) ∈ R

is smooth.
An edge is an oriented one-dimensional connected C0 submanifold of � given by

a finite union of simple edges. Given an edge e of two-point boundary, its orientation
allows to distinguish one of its endpoints as a source denoted by se and the other as a
target denoted by te; if an edge is a loop then we choose one of its points and treat it
as both the source and the target of the edge. We will call the set e\{se, te} interior of
the edge e and will denote it by Int e. Note that, given an oriented simple edge e and
its standard curve ẽ, se = ẽ(0), te = ẽ(1) and Int e = ẽ(]0, 1[).

An edge e is a composition of edges e1 and e2, e = e2 ◦ e1, if (i) e as an oriented
manifold is a union of e1 and e2, (i i) te1 = se2, (i i i) e1 ∩ e2 consists merely of some
(or all) endpoints of e1 and e2. Every edge turns out to be a composition of oriented
simple edges.

Given a set W ⊂ �, its characteristic function is equal 1 on W and 0 outside W .
We will call a function φ : � �→ R an almost characteristic function of W if it is
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smooth and is zero outside W , positive on W and if there exists a non-empty open
subset W ′ ⊂ W such that φ is equal 1 on W ′. We will also denote by 1 a constant
function on � of values equal 1.

To simplify the notation, given quadruplet (θ A) ∈ �, we introduce the following
symbol

θ A(e) ≡
∫

e

θ A = κ A
e (θ).

For every composition e2 ◦ e1

θ A(e2 ◦ e1) = θ A(e1) + θ A(e2). (6.1)

6.2 The proof

Proving Lemma 4.5 amounts to proving the following one:

Lemma 6.1 Let γ be a graph in � consisting of oriented simple edges {e1, . . . , eN }
and let (θ I ) be a smooth global coframe on �. Fix an edge ei of γ and a non-zero
vector (x I ) ∈ R

3. Then the coframe (θ I ) can be deformed to a smooth global coframe
(θ̄ I ) such that (θ̄ I ) defines the same orientation of � as (θ I ) does and

θ̄ I (e j ) =
{

x I if j = i
θ I (e j ) otherwise

.

Proof Let U be an open subset of � such that

γ ∩ U = Int ei .

The main part of the proof will be divided into four steps:

1. first we will divide the edge ei into three edges f0, f1 and f2 such that ei =
f2 ◦ f0 ◦ f1 and then we will fix an open set U0 ⊂ U such that

U0 ∩ f j =
{

Int f j if j = 0,

∅ otherwise
. (6.2)

2. then we will modify the coframe (θ I ) on the set U in such a way that the resulting
coframe (θ ′I ) will satisfy

θ ′I ( f0) = x I . (6.3)

3. next we will deform the coframe (θ ′I ) on U\ f0 obtaining thereby a coframe (θ ′′I )
for which the vector

(
θ ′′I ( f1) + θ ′′I ( f2)

)
∈ R

3
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Fig. 1 Construction of the coordinate frame (z1, z2)

will meet a special condition.
4. finally, we will modify (θ ′′I ) on U0 in such a way that the resulting coframe (θ̄ I )

will satisfy

θ̄ I ( f0) = x I − θ ′′I ( f1) − θ ′′I ( f2).

This will finish the main part of the proof since for (θ̄ I ) constructed in this way

θ̄ I (e) = θ̄ I ( f1) + θ̄ I ( f0) + θ̄ I ( f2) = x I .

Step 1 Denote for simplicity ei ≡ e and fix a standard curve ẽ for the edge.
Let (YI ) be a frame on � dual to (θ I ). Then Y := x I YI , where (x I ) is the fixed

vector in R
3, is a non-zero vector field on the manifold. Assume that there exists a

point y0 ∈ Int e such that the value of Y at y0 is not tangent to e—this assumption will
allow us to construct a special coordinate frame on a neighborhood U ′ ⊂ U of y0.

To this end consider a bunch of integral curves of the vector field Y which intersect
the edge e at points belonging to U ′—see Fig. 1. This bunch can be parameterized by
the parameter λ of the curve ẽ:

R 
 s �→ χλ(s) ∈ �

is an integral curve of Y which intersects12 the edge e at the point ẽ(λ). Moreover, we
can adjust the parameter s along each integral curve in the bunch in such a way that
χλ(s = 0) coincides with the intersection point i.e. χλ(s = 0) = ẽ(λ).

12 Of course, we have to choose the neighborhood U ′ “small” enough to ensure that every integral curve
in the bunch intersects the set e ∩ U ′ exactly once.
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Fig. 2 The edges f0, f1 and f2 and the sets U0 and U1

Now, if a point y lies on the curve χλ i.e. if y = χλ(s) then we can associate with
it two numbers:

z1 = λ − λ0 and z2 = s,

where ẽ(λ0) = y0. Thus we obtained a coordinate frame (z1, z2) on the bunch. If U ′ is
sufficiently “small” then one can find a function z3 on U ′ such that its values are zero
on the bunch and (z1, z2, z3) are coordinates on U ′. There exists a positive number

ζ < min {λ0, 1 − λ0} ≤ 1

2
(6.4)

such that the values of each coordinate in (z1, z2, z3) ranges at least between −ζ and
ζ .

Let us fix a number 0 < r < ζ and define the edges

f0 := ẽ ([λ0 − r, λ0 + r ]) , f1 := ẽ ([0, λ0 − r ]) , f2 := ẽ ([λ0 + r, 1]) .

and sets

U0 : =
{

(z1, z2, z3) ∈ U ′ | (z1)2 + (z2)2 + (z3)2 < r2
}

,

U1 : =
{

(z1, z2, z3) ∈ U ′ | (z1)2 + (z2)2 + (z3)2 < (r ′)2
}

,

where r < r ′ < ζ—see Fig. 2.
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Fig. 3 The action of τπ/2 on the edge e

Step 2 Let Z0 be a vector field on U ′ defined as

Z0 = z2∂z1 − z1∂z2 .

If φ is an almost characteristic function on U1 such that it is equal 1 on U0 then the
local vector field φZ0 can be naturally extended to a smooth vector field Z on � of a
compact support which is the closure of U1. Let {τt }t∈R be a one-parameter family of
diffeomorphisms on � generated by Z . Clearly, in the coordinate frame (z1, z2, z3)

the restriction of diffeomorphism τt to U0 is a rotation around the z3-axis through an
angle t . Hence τπ/2 maps the z1 axis onto z2 axis, that is, the edge f0 into the image of
the integral curve χ0—see Fig. 3. Moreover, since z1 is the parameter along the curve
ẽ and z2 is the parameter along χλ0

τπ/2(ẽ(λ)) = χλ0(λ − λ0)

provided λ ∈ [λ0 − r, λ0 + r ]. Therefore for every λ ∈ [λ0 − r, λ0 + r ] the tangent
vector ˙̃e(λ) satisfies

τπ/2∗( ˙̃e(λ)) = Y
(
χλ0(λ − λ0)

)
.

Consequently,

(
τ ∗
π/2θ

I
)

( ˙̃e(λ)) = θ I (Y ) = x I (6.5)
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Fig. 4 Construction of (θ ′′I ) on a neighborhood of the edge f1

and
∫

f0

(
τ ∗
π/2θ

I
)

=
λ0+r∫

λ0−r

x I dλ = 2r x I .

Let φ be the almost characteristic function on U1 equal 1 on U0. Then the following
one-forms

θ ′I :=
(

1 +
(

1

2r
− 1

)
φ

)
τ ∗
π/2θ

I (6.6)

form a global coframe on �—note that by virtue of the inequalities r < ζ and (6.4)
the function (1 + ( 1

2r − 1)φ) is positive. This coframe coincides with (θ I ) outside the
set U1 ⊂ U and satisfies (6.3)

Step 3 We assumed that (x I ) is a non-zero vector in R
3. Without loss of generality

we can assume that x1 �= 0. Our goal now is to deform the coframe (θ ′I ) on the set
U \ f0 in such a way that the resulting coframe (θ ′′I ) satisfies

|θ ′′1( f1) + θ ′′1( f2)| <
|x1|

3
. (6.7)

To this end we divide the edge f1 into edges g0, g1, g2 such that f1 = g2 ◦g0 ◦g1—
see Fig. 4—and choose the edges g1 and g2 to be short enough to satisfy

|θ ′1(g1)| <
|x1|
18

and |θ ′1(g2)| <
|x1|
18

.
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To carry out the desired deformation of the coframe (θ ′I ) we proceed as follows:
by virtue of the compactness of g0 we can cover Int g0 by a finite number of open
subsets {Wβ} such that each Wβ admits existence of an almost characteristic function
φβ on it13 and

γ ∩
(⋃

β

Wβ

)
= Int g0.

Let a1, a2 ∈]0, λ0 − r [ be numbers such that

g0 = ẽ ([a1, a2]) .

For each almost characteristic function φβ on Wβ we define W ′
β ⊂ Wβ as a set on

which φβ is equal 1. Since the union
⋃

β Wβ covers Int g0 the sets {W ′
β} can be chosen

in such a way that the union
⋃

β W ′
β covers ẽ([a1 + ε1, a2 − ε2]) for some ε1, ε2 > 0.

If a number ν satisfies 0 < ν < 1 then the function

∏
β

(1 − νφβ) (6.8)

is positive on �, equal one outside the union
⋃

β Wβ and it is not greater than (1 − ν)

on the union
⋃

β W ′
β covering the edge ẽ([a1 + ε1, a2 − ε2]). Therefore

∣∣∣
∫

g0

∏
β

(1 − νφβ)θ ′1∣∣∣ =
∣∣∣

a2∫

a1

∏
β

(1 − νφβ)θ ′1( ˙̃e) dλ

∣∣∣

≤
∣∣∣

a1+ε1∫

a1

∏
β

(1 − νφβ)θ ′1( ˙̃e) dλ

∣∣∣ +
∣∣∣

a2−ε2∫

a1+ε1

∏
β

(1 − νφβ)θ ′1( ˙̃e) dλ

∣∣∣

+
∣∣∣

a2∫

a2−ε2

∏
β

(1 − νφβ)θ ′1( ˙̃e) dλ

∣∣∣ (6.9)

and

∣∣∣
a2−ε2∫

a1+ε1

∏
β

(1 − νφβ)θ ′1( ˙̃e) dλ

∣∣∣ ≤
a2−ε2∫

a1+ε1

∣∣∣
∏
β

(1 − νφβ)θ ′1( ˙̃e)
∣∣∣dλ

≤ (1 − ν)(a2 − ε2 − a1 − ε1) supp
λ∈[a1+ε1,a2−ε2]

|θ ′1( ˙̃e(λ))|

< (1 − ν)(a2 − a1) supp
λ∈[a1,a2]

|θ ′1( ˙̃e(λ))| (6.10)

13 To satisfy this requirement Wβ may be defined as an open coordinate ball of non-zero radius.
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Note now that modifying appropriately the function (6.8) we can make the value of
the l.h.s. of (6.9) as small as we want. This can be achieved by (i) choosing ν as close
to 1 as we want and (i i) choosing the functions {φβ} in such a way that the sets {W ′

β}
determine the values of ε1, ε2 as close to zero as we want. An important observation is
that the restriction (6.10) is independent of ε1, ε2. Consequently we can first choose ν

to restrict appropriately the value of the second term at the r.h.s. of (6.9) and then we
can choose values of ε1, ε2 to restrict the values of the first and the third terms without
spoiling the restriction imposed on the second one.

An analogous construction done for the edge f2 provides us with a function

∏
β ′

(1 − ν′φ′
β ′).

Let

θ ′′I :=
{∏

β(1 − νφβ)
∏

β ′(1 − ν′φ′
β ′) θ ′1, for I = 1

θ ′I otherwise
.

For the number ν and the functions {φβ} appropriately chosen

|θ ′′1(g0)| =
∣∣∣
∫

g0

∏
β

(1 − νφβ)θ ′1
∣∣∣ <

|x1|
18

.

Thus

|θ ′′1( f1)| < |θ ′′1(g1)| + |θ ′′1(g0)| + |θ ′′1(g2)| <
|x1|

6
.

Similarly, we can choose the number ν′ and the functions {φ′
β ′ } in such a way that

|θ ′′1( f2)| <
|x1|

6
.

In this way we obtained a coframe (θ ′′I ) which satisfies (6.7).

Step 4 Recall that U0 is an open set such that γ ∩ U0 = Int f0. We keep assuming
that x1 �= 0. Denote

t I ≡ θ ′′I ( f1) + θ ′′I ( f2)

and consider the following one-forms

θ̄ I = θ ′′I − 3
t I

x1 φ θ ′′1, (6.11)
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where φ is an almost characteristic function on U0 such that

λ0+r∫

λ0−r

φ(ẽ(λ)) dλ = 2r

3
.

Note that (θ̄ I ) is a global coframe—indeed, the determinant of a matrix defining
the transformation (6.11) between (θ ′′I ) and (θ̄ I ) at a point x ∈ � is equal to

1 − 3
t I

x1 φ(x). (6.12)

By virtue of (6.7)

1 > 3
|t I |
|x1| ≥ 3

|t I |
|x1|φ(x) ≥ 3

t I

x1 φ(x).

Consequently, the determinant (6.12) is positive and the transformation (6.11) is invert-
ible at every point x ∈ �.

On the other hand, by virtue of (6.6) and (6.5) for λ ∈ [λ0 − r, λ0 + r ]

θ ′′1( ˙̃e(λ)) = x1

2r

and

θ̄ I ( f0) =
∫

f0

θ̄ I =
∫

f0

θ ′′I − 3
t I

x1

λ0+r∫

λ0−r

φ θ ′′1( ˙̃e) dλ

= x I − 3
t I

2r

λ0+r∫

λ0−r

φ(ẽ(λ)) dλ

= x I − t I = x I − θ̄ I ( f1) − θ̄ I ( f2).

This finishes the main part of the proof.
Final remarks Recall that while carrying out Step 1 we were assuming that there
exists a point y0 ∈ Int e such that the value of the vector field Y = x I YI at this
point is not tangent to e. If there is no such point then Step 1 should be preceded
by a modification of the original coframe (θ I ) on the set U which may consist in a
pull-back of the coframe by means of a diffeomorphism similar to that applied in Step
2. Choosing appropriately the diffeomorphism one can obtain a coframe satisfying the
assumption.

Note also that each transformation of the coframes used in the proof preserves both
smoothness of the coframes and the orientation of � defined by the original coframe
(θ I ). ��
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Formulating Lemma 6.1 we assumed that the vector (x I ) is non-zero. Let us divide
the edge ei considered in the lemma into two edges f1 and f2 such that ei = f2 ◦ f1.
By virtue of the lemma the coframe (θ I ) can be deformed to a coframe (θ̄ I ) such that

θ̄ I ( f1) = x ′I ,
θ̄ I ( f2) = −x ′I ,
θ̄ I (e j ) = θ I (e j ), j �= i

for some non-zero vector (x ′I ). Thus

θ̄ I (ei ) = −x ′I + x ′I = 0.

Corollary 6.2 Lemma 6.1 holds also in the case of (x I ) = 0.

An immediate consequence of Lemma 6.1 and the corollary above is Lemma 4.5
restricted to graphs built from oriented simple edges only. But because every edge is
a composition of simple edges and because of (6.1) Lemma 4.5 it true without any
restrictions.

7 Appendix B: Proof of Lemma 3.1

We will prove slightly stronger versions of Lemma (3.1)—the versions are obtained
by replacing in the lemma the condition θ ∈ � by, respectively, θ ∈ �+ and θ ∈ �−.

While proving the lemma we will use the notation and some notions introduced in
Sect. 6.1.

In fact, it is enough to prove the lemma for every graphs built from oriented simple
edges. Consider then a graph γ being a collection {e1, . . . , eN } of such edges. Let
us divide each edge e j of the graph into three edges f j1, f j2 and f j3 such that e j =
f j3 ◦ f j2 ◦ f j1. Given (x A

j ) ∈ M
N , by virtue of Lemma 4.5 there exists a global

coframe (θ I ) on � compatible (incompatible) with the orientation of the manifold
such that for every j = 1, 2, . . . , N

θ1( f j1) = −x0
j , θ1( f j2) = x0

j , θ1( f j3) = x1
j ,

θ2( f j1) = 0, θ2( f j2) = 0, θ2( f j3) = x2
j ,

θ3( f j1) = 0, θ3( f j2) = 0, θ3( f j3) = x3
j .

(7.1)

To prove the lemma it is enough to find a smooth function α1 on � such that at
every point x ∈ �

(α1(x))2 < 1 (7.2)
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and

∫

f j1

α1θ
1 = x0

j

2
,

∫

f j2

α1θ
1 = x0

j

2
,

∫

f j3

α1θ
1 = 0. (7.3)

Indeed, if α1 satisfies both conditions above then choosing additionally functions
α2 := α3 := 0 and defining

θ0 := αI θ
I

we obtain a quadruplet (θ0, θ I ) of one-forms. By virtue of Lemma 4.1 the quadruplet
is an element of �. Moreover, if (θ I ) is compatible (incompatible) with the orientation
of � then the quadruplet belongs to �+(�−). Due to (7.1) and (7.3)

θ0(e j ) =
∫

f j1

α1θ
1 +

∫

f j2

α1θ
1 +

∫

f j3

α1θ
1 = x0

j

2
+ x0

j

2
+ 0 = x0

j ,

θ1(e j ) = θ1( f j1) + θ1( f j2) + θ1( f j3) = −x0
j + x0

j + x1
j = x1

j ,

θ2(e j ) = θ2( f j1) + θ2( f j2) + θ2( f j3) = 0 + 0 + x2
j = x2

j ,

θ3(e j ) = θ3( f j1) + θ3( f j2) + θ3( f j3) = 0 + 0 + x3
j = x3

j .

Let us then start a construction of the desired function α1. Since now till the end
of the proof we will exclude from our considerations the edges { f j3} and focus solely
on edges { f ja} with a = 1, 2. Moreover, since now till Eq. (7.11) we will restrict
ourselves to those edges { f ja} for which the corresponding x0

j �= 0.

Let us fix a standard curve f̃ ja for every edge f ja under consideration. For each
f ja there exist numbers λ−, λ+ ∈ [0, 1] (λ− < λ+) such that

λ−∫

0

θ1
( ˙̃f ja

)
dλ = (−1)a 1

5
x0

j ,

λ+∫

0

θ1
( ˙̃f ja

)
dλ = (−1)a 4

5
x0

j ,

where as before ˙̃f ja(λ) denotes a vector tangent to the corresponding standard curve
at the point f̃ ja(λ). Let

g ja := f̃ ja([λ−, λ+]).

Consequently,

∫

g ja

θ1 =
λ+∫

λ−

θ1
( ˙̃f ja

)
dλ = (−1)a 3

5
x0

j . (7.4)

123



1620 Page 30 of 33 A. Okołów

Fig. 5 Construction of α1 on a neighborhood of the edge e j

By virtue of the compactness of g ja we can cover Int g ja by a finite number of

open subsets {W ja
β } such that each W ja

β admits existence of an almost characteristic

function φ
ja
β on it14 and

γ ∩
( ⋃

β

W ja
β

)
= Int g ja, (7.5)

(⋃
β

W ja
β

)
∩

( ⋃
β ′

W j ′a′
β ′

)
= ∅ (7.6)

if only j �= j ′ or a �= a′—see Fig. 5.
There exists a positive number ζ ja such that the function

φ ja := ζ ja
∑
β

φ
ja
β

is positive but lower than 1 on
⋃

β W ja
β , is equal zero outside this set and

∣∣∣
∫

g ja

φ jaθ1
∣∣∣ <

2

5
|x0

j |. (7.7)

Consider now a family of function

ϕ ja
σ := 1 −

(
1 − φ ja

)σ

,

14 To satisfy this requirement W ja
β may be defined as an open coordinate ball of non-zero radius.
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where the number σ ≥ 1. It follows from the properties of φ ja that for every allowed
σ

0 ≤ ϕ ja
σ < 1. (7.8)

Moreover, the function ϕ
ja
σ is a smooth15 function of a compact support being the

closure of
⋃

β W ja
β :

supp ϕ ja
σ =

( ⋃
β

W ja
β

)
. (7.9)

These properties of ϕ
ja
σ guarantee that for every λ ∈ [λ−, λ+] and for every σ ∈

[1,∞[

|ϕ ja
σ θ1

( ˙̃f ja

)
| ≤ |θ1

( ˙̃f ja

)
|.

Because the latter function is integrable on [λ−, λ+] the Lebesgue’s dominated con-
vergence theorem allows us to conclude that the following function

σ �→ � ja(σ ) :=
∫

g ja

ϕ ja
σ θ1 =

λ+∫

λ−

ϕ ja
σ θ1

( ˙̃f ja

)
dλ

is continuous on [1,∞[. If σ = 1 then ϕ
ja
σ = φ ja and (see (7.7))

|� ja(1)| <
2

5
|x0

j |.

Moreover, the properties of φ ja guarantee that if the parameter σ goes to the infinity
then the family {ϕ ja

σ } converges pointwisely to the characteristic function on
⋃

β W ja
β .

Thus by virtue of the Lebesgue’s theorem and (7.4)

lim
σ→∞ � ja(σ ) = (−1)a 3

5
x0

j .

All these mean that for each � ja there exist σ ∈ [1,∞[ such that

� ja(σ ) =
∫

g ja

ϕ ja
σ θ1 = (−1)a

x0
j

2
. (7.10)

Denote the function ϕ
ja
σ with this special σ by ϕ ja .

15 Note that for n > σ the n-th derivative of ϕ
ja
σ contains a factor (1−φ ja)σ−n which could be a source of

non-differentiability of ϕ
ja
σ if a value of a function (1 − φ ja) was zero. This is, however, not the case—the

function is positive everywhere.
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In this way we defined functions {ϕ ja} for indices { j} such that x0
j �= 0. If x0

j = 0
then set

ϕ ja = 0 (7.11)

everywhere on �.
Now to finish the proof it is enough to define

α1 :=
N∑

j=1

2∑
a=1

(−1)aϕ ja .

Indeed, by virtue of (7.6) supports of the functions {ϕ ja} are pairwise disjoint. This
fact, (7.8) and (7.11) guarantee that α1 satisfies (7.2). Moreover, because of (7.5), (7.9)
and (7.11)

γ ∩ supp ϕ ja =
{

g ja ⊂ Int f ja if x0
j �= 0,

∅ otherwise
.

Taking into account (7.10) we conclude that Eq. (7.3) are satisfied.
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15. Okołów, A., Świeżewski, J.: Hamiltonian formulation of a simple theory of the teleparallel geometry.
Class. Quantum Gravit. 29, 045008 (2012), Preprint arXiv:1111.5490

16. Itin, Y.: Conserved currents for general teleparallel models. Int. J. Mod. Phys. 17, 2765 (2002), E-print
arXiv:gr-qc/0103017

123


	Variables suitable for constructing quantum states for the teleparallel equivalent of general relativity I
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Vector spaces with scalar products
	2.2 Phase space
	2.3 Reduced configuration spaces

	3 Natural variables on Θ
	3.1 Configurational elementary d.o.f.
	3.2 An undesired property bar mathcal D

	4 New variables on Θ
	4.1 New variables---preliminary considerations
	4.2 New variables and new d.o.f.

	5 Summary
	Acknowledgments
	6 Appendix A: Proof of Lemma 4.5
	6.1 Preliminaries
	6.2 The proof

	7 Appendix B: Proof of Lemma 3.1
	References


