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Abstract
The mass of carbon contained in trees is governed by the volume and density of their 
wood. This represents a challenge to most remote sensing technologies, which typically 
detect surface structure and parameters related to wood volume but not to its density. Since 
wood density is largely determined by taxonomic identity this challenge is greatest in tropi-
cal forests where there are tens of thousands of tree species. Here, using pan-tropical lit-
erature and new analyses in Amazonia with plots with reliable identifications we assess the 
impact that species-related variation in wood density has on biomass estimates of mature 
tropical forests. We find impacts of species on forest biomass due to wood density at all 
scales from the individual tree up to the whole biome: variation in tree species composi-
tion regulates how much carbon forests can store. Even local differences in composition 
can cause variation in forest biomass and carbon density of 20% between subtly differ-
ent local forest types, while additional large-scale floristic variation leads to variation in 
mean wood density of 10–30% across Amazonia and the tropics. Further, because spe-
cies composition varies at all scales and even vertically within a stand, our analysis shows 
that bias and uncertainty always result if individual identity is ignored. Since sufficient 
inventory-based evidence based on botanical identification now exists to show that species 
composition matters biome-wide for biomass, we here assemble and provide mean basal-
area-weighted wood density values for different forests across the lowand tropical biome. 
These range widely, from 0.467 to 0.728 g  cm−3 with a pan-tropical mean of 0.619 g  cm−3. 
Our analysis shows that mapping tropical ecosystem carbon always benefits from locally 
validated measurement of tree-by-tree botanical identity combined with tree-by-tree meas-
urement of dimensions. Therefore whenever possible, efforts to map and monitor tropical 
forest carbon using remote sensing techniques should be combined with tree-level meas-
urement of species identity by botanists working in inventory plots.
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1 Introduction

Tropical forests contain more species and biomass than any other biome on Earth. While 
they are being rapidly degraded and deforested, large areas of relatively intact tropical for-
est still exist, particularly in the Amazon and Congo basins. Wherever they persist, tropical 
forests contribute hugely to societies, economies, and human well-being, providing vital 
services that sustain people and nations (Watson et al. 2018). For example, dozens of the 
tree species in South American forests are also cultivated or domesticated, and hundreds 
more are close relatives (Levis et al. 2017). Meanwhile, the carbon sink into mature forests 
has mitigated deforestation and fossil fuel emissions in many Amazon nations for decades 
(Phillips and Brienen 2017; Phillips 2018; Vicuña Miñano et al. 2018), so slowing the rate 
of climate change. These services are all under threat, however, with climate change itself 
a leading concern. Tropical lands have been warming fast, and continued warming is pro-
jected to combine with stronger droughts and potentially lead to crossing ecological thresh-
olds (e.g., Good et al. 2018), bringing increased risks to biomass storage, tree species, and 
human societies.

This unique nexus of values and threats in tropical forests means that measuring and map-
ping their biophysical properties—and then tracking changes—are central goals of global 
environmental science. Yet because of their extent and complexity, tropical forests are chal-
lenging to measure and monitor with precision. For the key property of biomass—from 
which we may derive carbon storage per unit area—space-borne and airborne sensor tech-
nologies are increasingly used to infer biomass [Zolkos et al. 2013; Minh et al. 2014; Coomes 
et al. 2017; Jucker et al. 2018a; Duncanson et al. (this volume)]. Laser scanning enables pre-
cise measurement of canopy height, and if done at sufficient intensity can reveal the three-
dimensional structure of trees, while space-borne radar offers potentially global-scale assess-
ment of forest structure. Optical sensing of canopies is widely used to infer vegetation state, 
such as distinguishing forest from non-forest. However, a key technical limitation is that no 
technology directly measures a critical determinant of every tree’s biomass—its identity. This 
represents a fundamental challenge, especially given that the single most remarkable and cel-
ebrated feature of tropical forests is their extraordinary diversity of species and variation in 
tree composition (e.g., ter Steege et al. 2013). Indeed, tropical tree species composition varies 
at all scales from a few metres to across the whole biome due to factors that include climate, 
geomorphology, nutrient supply, evolutionary history, and anthropogenic impacts (e.g., Salo 
et al. 1986; Gentry 1988; Tuomisto et al. 1995; Condit et al. 2002; ter Steege et al. 2006; 
Honorio Coronado et al. 2009; Asner et al. 2017; Levis et al. 2017).

Accurate measurement of most tropical trees’ biological identity requires direct obser-
vation from the ground, supported by collection and subsequent careful identification of 
the herbarium vouchers by trained botanists (Baker et al. 2017). Since biological compo-
sition determines the physical composition of forests in terms of leaf (e.g., Fyllas et  al. 
2009; Asner et  al. 2017) and wood properties (Muller-Landau 2004; Patiño et  al. 2009; 
Baraloto et  al. 2011), then an inability to perceive biodiversity may significantly hinder 
estimation of biomass and carbon storage. Yet how much the variation in tropical forest 
species actually matters for biomass mapping remains controversial. The aims of this paper 
are to explore and quantify this issue for tropical forests and then suggest how the dif-
ficulties faced by current remote Earth Observation techniques in mapping tropical forest 
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species compositional variation and biomass density might be mitigated. By combining 
literature and new analysis, we examine the issue from the scale of individual tropical tree 
up to whole continents and assess its impact on Amazon biomass estimates.

1.1  In Practice, Does Diversity Matter?

Forests are made mostly of trees, and in tropical forests these come in extraordinary vari-
ety. There can be 300 tree species in a 100-by-100-m patch of Amazon forest. Remarkably, 
these single-hectare tropical samples contain more woody plant species than are found 
in all of Earth’s boreal forests—an area some nine orders of magnitude greater. Tropical 
Peru has almost 5000 tree species recorded, with new species being discovered every year 
(Vásquez et al. 2018), while the temperate UK has less than 50. In Amazonia, there are 
as many as 16,000 tree species (ter Steege et al. 2013). With huge floristic diversity, it is 
reasonable to expect a high degree of functional diversity too, including in the key attrib-
utes that affect tree biomass (Baker et al. 2009; Baker 2018). There is ongoing debate as 
to whether diversity helps support higher biomass, and if so how (e.g., Bunker et al. 2005; 
Sullivan et al. 2017), but here we are interested in the question of how differences in the 
composition of species from one diverse forest to another impact biomass. Thus, here it 
is the different taxonomic and evolutionary identities of the tree species present which are 
hypothesised to matter, not the number of species per se.

While the biomass contained by any individual tree is determined by many factors, 
these are reducible to just two: (1) its size—the volume of wood—and (2) the amount of 
matter per unit volume or its density. (Here we use the standard definition of ‘basic specific 
gravity’, defined as the ratio of the oven-dry mass of a wood sample divided by its green 
volume, e.g., Chave et al. 2006.) The genetic identity of a tree affects both how big it can 
become and how dense it is (Baker et al. 2004; Fauset et al. 2015; Coelho de Souza et al. 
2016). Various studies have shown that these effects are largely independent (e.g., Turner 
2001; Coelho de Souza et al. 2016; Hietz et al. 2017): across tropical tree species, maxi-
mum size (height, diameter, volume) and density of wood are largely uncorrelated. Since 
size is a poor predictor of wood density it follows we cannot use the dimensions of trees to 
infer their density. The fundamental disconnect between size and wood density means that 
measuring size alone can never capture all information needed to derive biomass.

Consequently, in species-diverse tropical forests tree biomass varies greatly even for a 
fixed tree size. In southern Peru, Goodman et al. (2012, 2014a) identified, harvested, and 
painstakingly weighed 51 individual trees as large as 169 cm diameter. We plot these data 
here to illustrate how volume and wood density combine to determine biomass (Fig. 1). 
Canopy trees with similar dimensions have very different biomass. For example, a Cava-
nillesia umbellata canopy tree with wood density measured at 0.132  g  cm−3 had a dry 
aboveground mass of 2.3 Mg, while an Apuleia leiocarpa individual with wood density 
of 0.855 g cm−3 weighed 12.2 Mg, in spite of having slightly less wood volume. Further, 
in multivariate allometric models of tree biomass based on harvested tropical trees, wood 
density is the most important factor after stem diameter in explaining tree biomass—enter-
ing models before height (e.g., Chave et al. 2014; Goodman et al. 2014a)—with biomass 
scaling almost linearly with wood density (Chave et al. 2014). With the huge range in wood 
density of species present locally, it is essential to know identity in order to estimate tropi-
cal tree biomass with confidence.

Yet it does not necessarily follow that the impact of identity on biomass will persist at 
the larger scales of interest to most Earth Observation questions. Here, we seek to address 
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the question of the extent to which species composition impacts on forest biomass at stand, 
landscape, and larger scales by reviewing current evidence and developing new analyses. 
Ultimately, we wish to shed light on the pervasiveness of species effects, focussing on 
South American tropical forests due to the relatively larger literature here.

At the very largest scales, some spatial variation in forest biomass driven by wood den-
sity is already recognised. For example in the neotropics, dry forest trees generally have 
greater wood density (Chave et al. 2006), and it has long been known that successional for-
ests have lower wood density than mature forests (e.g., Brown and Lugo 1990). However, 
across the tropical moist forest biome we could not find any analysis at the pan-tropical 
level as to whether wood density varies systematically continent to continent.

At the sub-continental scale, concerted, species-driven differences in wood density pre-
vail even within the same biome and same successional stage. In mature African moist 
forests, soil-related compositional differences cause significant differences in basal-area-
weighted wood density, with forests on relatively fertile acrisols and cambisols having 10% 
lower values (0.609 and 0.617 g cm−3) than on arenosols (0.660 g cm−3) and 20% lower 
than swamp forests on histosols (0.728 g cm−3) (Lewis et al. 2013). Basal-area-weighted 
wood density is also significantly higher for Central African forests than their West or East 
African counterparts (Lewis et al. 2013). Likewise, South American forests differ greatly 
when comparing central with western Amazonia, with 16% lower per-stem wood density 
in the west caused by differences in floristic composition (Baker et  al. 2004). This is in 

Fig. 1  Direct measurement of tropical trees shows that wood density and size each independently control 
biomass. Red points represent 51 forest trees destructively sampled and weighed by Goodman et al. (2014a, 
b) in Amazonian Peru. Point areas are proportional to the actual, directly measured aboveground biomass 
(AGB) of each tree, plotted against their trunk volume and directly measured wood density. Trunk volume 
was estimated as basal area multiplied by tree height. The greyscale background depicts a quasi-continuous 
allometric estimate of AGB for combinations of tree volume and wood density. To do this, the Chave et al. 
(2014) allometric equation was solved for each combination of diameter and wood density, with tree height 
estimated using a three-parameter Weibull model fitted to all trees in the Goodman et al. (2014a, b) dataset
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spite of similar climate and instead is linked to differences in stem turnover rates, with 
the western forests much more dynamic (Phillips et al. 2004), often associated with more 
cation-rich and structurally poor soils (Quesada et al. 2012): trees grow and die faster here 
and this favours species which are adapted to exploiting gaps quickly. While different 
life-history strategies are found in all Amazon forests, the mean wood density in the slow 
turnover forests on the Guiana Shield is 50% greater than in the fast turnover forests in 
south-west Amazonia (ter Steege et al. 2006), helping drive much greater standing biomass 
in the north-east (Malhi et al. 2006; Johnson et al. 2016). This large-scale species-driven 
difference in biomass is invisible in space-borne LiDAR-derived biomass estimates (c.f. 
Mitchard et al. 2014), but is accounted for in hybrid biomass maps that attempt to combine 
plot-derived measures of species differences across space with LiDAR measurements (Avi-
tabile et al. 2016).

While the broad difference between north-east and south-west Amazon forests is clear, 
uncertainties remain, including the exact nature of the relationships between AGB and 
wood density, and between mortality rates and wood density, and crucially whether these 
relationships also persist at smaller geographical units. Some evidence suggests that at finer 
scales a more nuanced situation prevails. Within western Amazonia, Landsat-based analy-
ses have revealed great variation in spectral types of forest, starting with the seminal study 
of Salo et al. (1986). In combination with fieldwork, spectral variation has been linked to 
variation in species and subtle geomorphological, edaphic, and geological controlling fac-
tors have been revealed (e.g., Tuomisto et al. 1995; Higgins et al. 2011). Recently, using 
airborne hyperspectral sensing variation in canopy function has been explored here at high 
resolution (Asner et al. 2017; Draper et al. 2019). These analyses all confirm both discrete 
and continuous variations in canopy function across Peru’s forests.

Recent investigations also show how soil and species differences affect tropical forest 
wood density in regional and landscape scales. In the Central African Republic, Gourlet-
Fleury et al. (2011) found differences in wood density of 20% between forest types in one 
landscape, mediated by soil nutrients and drainage. Similarly, in north-west Amazonia 
and in French Guiana, Baraloto et al. (2011) found that forests with richer soils tended to 
support trees with lower wood density. In particular, they report highest wood density in 
white sand forests, with these having nearly 20% higher average wood density than terra 
firme and seasonally flooded forests. In Borneo, Jucker et al. (2018a, b) also found large, 
landscape-level differences in community-mean wood density. As in Amazonia and French 
Guiana, in Borneo it is white sand forests that have highest wood density. Jucker’s (2018a) 
analysis also reveals smaller but significant variation in basal-area-weighted wood density 
between and within different sites in north-east Borneo, including additional substrate-
related variation between forests growing on alluvial versus sandstone-derived soils. Here, 
forest-wide wood density is, respectively, 10% lower and 10% greater than the Borneo-
wide forest mean (Qie et al. 2017). Therefore, in every case—across African, South Ameri-
can, and Asian landscapes—failing to account for habitat-related variation in wood den-
sity significantly biases AGB estimates. In Borneo, where extensive field sampling was 
combined with hyperspectral imaging, wood density estimates inferred from canopy leaf 
spectra vary with topography by as much as 40% at the 1-ha scale (Jucker et al. 2018b). In 
sum, complex variation in biodiversity across tropical forest landscapes is the rule, not the 
exception, and this matters for biomass mapping.

While quantifying how floristic variation impacts AGB is critical for mapping purposes, 
the question of why tropical forests’ wood density varies spatially is equally important. In 
the white sand case, Borneo and South America are biogeographically isolated from one 
another so the consistent response implies independent convergence in function driven by 
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selective pressures, possibly as a result of low nutrient availability favouring more conserv-
ative, slow-growing species. Topographic differences in wind disturbance (Fortunel et al. 
2014) and drought stress (Cosme et al. 2017) may also control local-scale wood density 
variation. In Amazonia, the large regional differences in wood density are related to greater 
dominance by light-wooded families in the south-west (e.g., palms and mimosoid legumes) 
and dense-wooded families in the north-east (e.g., Sapotaceae and caesalpinoid legumes). 
This may be ultimately driven by the unique biogeographic history of the Guiana Shield 
and the edaphic differences between deep, weathered soils in east-central Amazonia and 
less developed soils in the Andean forelands affecting forest dynamics (Fyllas et al. 2009; 
Baraloto et al. 2011; Quesada et al. 2012; Johnson et al. 2016). Forest structure and dynam-
ics are not only causally linked, but impact other carbon pools too. For example, wood den-
sity also affects carbon storage after death: light-wooded forests store less necromass than 
dense-wooded systems (Chao et  al. 2009). The mechanistic links between environment, 
structure, composition and dynamics are relevant for the practical task of remote sensing of 
biomass as they point to forest properties measureable remotely which may be used to infer 
composition and hence wood density.

In sum, species variation impacts AGB at landscape, regional and continental scales. 
Yet given the scale of the biome we have only begun to evaluate how biodiversity affects 
mature forest biomass and wood density. Across the 6 million  km2 extent of Amazonia, we 
lack case study analysis of impacts on AGB, especially at fine scales and in larger, biogeo-
graphic units. Here we aim to address these gaps. We first analyse plot-based inventories 
from one of the best-sampled Amazon landscapes, backed up by some of the most compre-
hensive botanical work anywhere in the tropics. Secondly, using the latest published data 
from the RAINFOR plot network we revisit the question of how much wood density mat-
ters for large-scale Amazon-wide forest biomass and forest dynamics, and to what extent 
these relationships hold in geoecological units within Amazonia. Finally, we combine 
the new and recent ecological work reporting wood density to document for the first time 
basal-area-weighted forest wood density estimates at multiple scales across the tropics.

2  Methods

For our landscape-scale evaluation of species impacts on biomass, we focus on the lower 
Tambopata region, in south-eastern Peru. Thirty-five years of botanical collecting have 
generated a relatively complete knowledge of the flora of the region, and forest inven-
tory and monitoring provide sample plots in intact and human-modified forests, includ-
ing 1-ha permanent plots and 0.1-ha inventories using modified Gentry transects (Gentry 
1988; Clinebell et  al. 1995; Phillips and Miller 2002; Phillips et  al. 2003; Pallqui et  al. 
2014). Variation in fluvial disturbance, soil chemistry, and land use all affect tree species 
and human livelihoods here (e.g., Phillips et  al. 2003; Lawrence et  al. 2005). The land-
scape is divisible into two major landforms reflecting areas with recent Holocene deposi-
tion (‘depositional’) and more weathered Pleistocene sediments now being eroded (‘ero-
sional’) (Kalliola et al. 1992; Räsänen et al. 1992; Osher and Buol 1998). This reflects the 
folk categories recognised by local dwellers, ‘Altura’ and ‘Bajio’, who account for subtle 
differences in elevation and forest resources (Phillips et al. 2006). Classifications derived 
from larger-scale maps of the Peruvian Amazon (e.g., Asner et al. 2017; Peru Ministerio 
de Ambiente 2015) are consistent with local perceptions of the natural forest environment 
but don’t fully coincide. We therefore use here the local terms ‘Altura’ and ‘Bajio’ and the 
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locally equivalent ‘Pleistocene’ and ‘Holocene’ terminology. We centre our analysis on the 
mature-forest landscape in a roughly 600-km2 region of the lower Tambopata (Fig. 2), an 
area with more than 1000 tree species (Phillips et  al. 2003). We only use mature-forest 
plots that are botanically identified as our interest is to identify floristic variation that is 
geomorphologically associated, rather than due to land-use change. Sampling was con-
ducted between 1983 and 2007 (median date 1998) and stratified collaboratively with 
local residents by geomorphology using Landsat imagery, with exact locations randomised 
within target habitats. While the landscape has a fluvial signature, to our knowledge the 
samples included here have not been subject to recent river flooding.

Following established procedures (e.g., Baker et al. 2004; Lewis et al. 2013; Malhi et al. 
2014), we derive taxon-specific wood density (WD) from a large-scale Global Wood Den-
sity database (Zanne et al. 2009) and estimate AGB at the tree and plot levels (Table S1). 
We use standard methods to estimate biomass (Chave et  al. 2014) accounting for stem 
diameter, tree species identity, and height derived from forest-type-specific height-diameter 
allometries (Sullivan et al. 2018). We also accounted for palm-specific allometry (Good-
man et al. 2014b) and implemented these procedures in the BiomasaFP R package (Lopez-
Gonzalez et al. 2015).

Because we wanted to assess the impact of using incomplete biological information 
(‘identity-poor’) on forest biomass estimates, we first allocated the best available WD per 
stem and then calculated alternative averages at different scales, using these mean values 
instead of the best available values to test questions about how spatial scale of identity 
impacts WD. Thus wood density is allocated to individual trees optimally by accounting 
for actual tree-by-tree identity (to generate community wood density), and then instead by 
applying to each tree just: (2) the plot-mean WD; (3) the forest-type mean WD; (4) the 
Tambopata landscape-mean WD; and (5) the Amazon-wide mean WD values. Thus, for 
example, (2) represents a situation where we have perfect knowledge of plot average wood 
density but no knowledge of individual tree identity, (3) represents a situation where we 
have knowledge only of forest-type mean wood density, and so on. In each case, we com-
pute mean values using simple abundance-weighting and by weighting by basal area of 
each species. The different procedures to compute forest wood density are summarised in 
Table 1. We use our AGB estimates to quantitatively address three linked questions for our 
study landscape: (1) To what extent does wood density vary among Pleistocene and Holo-
cene landscapes at the tree level and the plot level?; (2) Does accounting for wood density 
change the expected relationship between forest basal area and biomass?; and (3) What are 
the consequences in terms of bias and uncertainty of using different ‘identity-free’ estima-
tors of aboveground biomass?

Then, to explore the links between composition, structure, and function at Amazon scale 
we use the latest published data from the RAINFOR long-term plot network (Malhi et al. 
2002; Peacock et al. 2007). This includes plots monitored for as long as 30 years (John-
son et al. 2016), with standardised protocols applied to field data collection (Phillips et al. 
2010) and data management (Lopez-Gonzalez et al. 2011). This enables us to address for 
the first time the relationships between forest functional composition (WD), forest structure 
(AGB), and forest dynamics (stem mortality, AGB mortality) in one analysis. We do this at 
pan-Amazon level, and also for each of the sub-regions of Amazonia defined by geography 
and substrate origin (Fittkau 1971; Feldpausch et al. 2012): Western Amazonia (Colombia, 
Ecuador, and Peru), where soils mostly derive from recent Andean deposits; the Brazilian 
Shield (Bolivia and Brazil); the Guiana Shield (Guyana, French Guiana, Venezuela); and 
eastern central Amazonia (Brazil), largely comprised of old sedimentary substrates derived 
from the other three regions (Quesada et al. 2012; Schargel 2011). We thus assess AGB 
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as a function of WD across more than 150 permanent plots distributed across Amazonia 
and compare these to long-term measured rates of stem turnover and carbon turnover for 
the same forests. We ask, (4) Does wood density of Amazon forests correlate with AGB at 
regional and Amazon-wide scales? (5) Is mean wood density predictable from the long-
term dynamics of the same forests?

2.1  Data Analysis

2.1.1  Landscape‑Level Analyses

To examine whether species wood densities vary with tree size, we calculated the corre-
lation between the diameter of individual trees and their species wood density. This was 
performed separately for Pleistocene and Holocene forests, pooling data from plots in each 
landscape. We used nonparametric Kendall’s tau as tree diameter was not normally distrib-
uted. We tested whether plot-level mean WD, total basal area and AGB differed between 
forest types using t tests, or Mann–Whitney tests when the response variable was not nor-
mally distributed (basal area, AGB). To assess whether landscape-level differences in wood 
density alter the relationship between basal area and biomass, we used linear models to 
relate AGB (log-transformed to meet linear model assumptions of normality and homo-
geneity of variances) to BA, forest type and their interaction, the latter indicating whether 
the relationship differed between forest types. To quantify the impact of using identity-free 
estimators of wood density instead of species wood density, we recalculated the AGB of 
each plot substituting species WD with the different levels of identity-poor WD metrics 
(Table 1).

2.1.2  Amazon‑Wide Analyses

We assessed the relationship between biomass and wood density and basal area using 
bivariate linear regression, fitted both to the pan-Amazon data set and separately to each 

Fig. 2  Multiple perspectives on Amazon forest diversity. The figure depicts the study region and forest-type 
variation sensed with imagery acquired contemporaneously with the floristic and ecological inventories. a 
Top left. South American forest cover in the year 2000 and location of Peru. b Top right. Western Amazon 
forest ‘Functional Classes’ inferred from hyperspectral imagery by Asner et al. (2017) in Peru, with loca-
tion of the lower Tambopata region in south-east Peru highlighted in red box. c Centre. Our sample land-
scape outlined as 15-by-40-km zone oriented along the lower Tambopata river. Young or disturbed vegeta-
tion regenerating after fluvial and anthropogenic clearing represents ≈ 10% of the landscape and was not 
sampled. Black icons represent locations of floristic sample plots in ‘Altura’ forest (Pleistocene sediments); 
red icons sample plots in ‘Bajio’ forest (Holocene sediments). In this false-colour image, the purple-green 
hued vegetation closer to the river corresponds to ‘Bajio’; the brighter green away from the river is ‘Altura’. 
Landsat imagery from https ://lands at.usgs.gov/lands atloo k-image s, level-1 data product using imagery from 
1999 to 2001, centred on Landsat path 114 row 175 and treated with a three-standard-deviation stretch. d 
Below left. The best-sampled forests centred on Tambopata reserved zone. Note the fine-scale variation in 
canopy composition and structure driven by small elevational differences. The total elevational range within 
this IKONOS image is ≈ 30  m. e Below right: Ground-truthed interpretation of IKONOS imagery based 
on direct observation of geomorphology, hydrology and vegetation species and structure. Colours corre-
spond to ten distinct local forest types (Gentry 1988, Conservation International and Foster 1994): among-
habitat diversity in species composition and associated functional traits is greater than the basic Altura–
Bajio dichotomy. ‘Altura’ forest is dark green here (ancient Pleistocene river terrace); ‘Bajio’ forest includes 
orange and pink (different levels of Holocene terraces) as well as swamp and fluvial successional systems. 
Images from Palmero (2004)

▸

https://landsat.usgs.gov/landsatlook-images
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biogeographic region. We used variation partitioning to identify the independent contribu-
tions of each variable to explaining variation in AGB (Legendre and Legendre 2012); lin-
ear models were constructed with WD (M1), BA (M2) or both WD density and BA (M3) 
as explanatory variables, and R2 values extracted. Shared variation due to both variables 
is calculated as  M1R2 + M2R2 − M3R2, which is subtracted from  M1R2 and  M2R2 to get the 
independent effect of each variable. Finally, we used linear regression to assess the bivari-
ate relationships between WD and attributes of forest dynamics, and between AGB and 
measures of mortality.

3  Results

(1) Wood density varies fivefold among species in Tambopata, with a similar range in both 
forest types. Species wood density is only weakly associated with tree size, with corre-
lations between species wood density and diameter slightly stronger in Holocene (Bajio) 
forests (Kendall’s tau correlation, τ = − 0.095, P < 0.001) than Pleistocene (Altura) forests 
(τ = − 0.036, P < 0.001).

At the plot level (Table S1), there is a marked variation in wood density within land-
scapes. Abundance-weighted mean wood density was on average 16.6% higher in Altura 
forests than in Bajio forests (t = 7.37, df = 22.5, P < 0.001, Fig. 3), and basal-area-weighted 
mean wood density was 13.4% higher (t = 4.66, df = 23.4, P < 0.001, Fig. 3). In contrast, 
basal area was on average 9.0% higher in Bajio forest plots, but this difference was not 
statistically significant (Mann–Whitney test, P = 0.274, Fig. 3). Aboveground biomass was 
similar in both forest types (Mann–Whitney test, P = 0.387, Fig. 3).

(2) Landscape-associated differences in wood density greatly alter the relationship 
between basal area and biomass. In Altura forests, aboveground biomass increased by 
3.6% per 1-m2 increase in basal area (linear regression, ln (AGB) = 0.036 ± 0.003 BA, 
t = 12.8, P < 0.001, Fig. 4). Yet in Bajio forests, because average wood density was lower, 
AGB increased by just 2.3% per 1-m2 increase in basal area (interaction between forest type 
and basal area, β = − 0.013 ± 0.004, t = 3.5, P = 0.002, Fig. 4). When analysis is repeated 
without any one of the three highest basal area outliers, the interaction term remains statis-
tically significant.

Results were unaffected by plot size. Differences in wood density between Altura 
and Bajio forests remained when restricting analysis to plots of ≥ 1 ha (t = 5.15, df = 7.0, 

Fig. 3  Landscape variation in wood density, basal area and aboveground biomass. Boxplots show varia-
tion in each variable within Altura and Bajio forests, with grey points showing values from individual plots 
(jitter on x-axis for presentation purposes only). Differences between Altura and Bajio forests were tested 
using t tests (abundance-weighted wood density (WD), basal-area-weighted wood density) or Mann–Whit-
ney tests (basal area, aboveground biomass), ***P < 0.001; **P < 0.01; *P < 0.05, NS P ≥ 0.05
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P = 0.001), and the difference in the basal area–biomass relationship between forest types 
remained statistically significant when allowing it to be scale-dependent (no interaction 
between plot size and basal area, t = 0.05, P = 0.638; strong interaction between basal area 
and forest type, t = 3.49, P = 0.002).

(3) Ignoring the actual species identity of each tree biases estimates of forest biomass 
(Table  S2). Using plot-mean wood density for all trees instead of their species-specific 
wood density (i.e. representing a situation where we have perfect knowledge of forest-wide 
spatial variation in wood density but no knowledge of individual identities) results in a 
mean error in estimating aboveground biomass of 15.0 ± 2.5 Mg ha−1 (~ 4.3% of AGB), 
with a maximum error of 39.8 Mg ha−1 (~ 11.9% of AGB) (Table S2). The maximum error 
was 77.1 Mg ha−1 (~ 17% of AGB). This bias itself varies between forest types, being nega-
tive for the Bajio forests but not for the Altura forests (Table S2).

Compared to estimates based on species’ wood densities, when values were substituted 
with average wood density, all these ‘identity-free’ estimates of AGB had error and bias. 
Both the absolute error and bias increased with the spatial scale of the averaging process 
(Fig. 5). In particular, absolute bias increased markedly when moving from using a plot- or 
forest-type-mean wood density to a landscape or Amazon-wide mean wood density (e.g., 
absolute error was 26.6% higher when landscape-mean wood density was applied instead 
of the forest-type-mean). Yet even plot-level mean values introduce uncertainty and bias to 
the forest biomass estimates.

(4) Across the Amazon basin, low forest biomass is strongly associated with both  low 
wood density and low basal area (Fig. 6). This is of course unsurprising, given that wood 
density and stem size are used to calculate tree biomass, but these Amazon-basin associa-
tions are worth noting especially given varying patterns at sub-regional scales.

(5) The relationships between basal area, wood density and forest AGB vary, with dif-
ferent slopes and intercepts among regions. In particular for western Amazonia, relation-
ships are different to the other regions. There are also correlations between stand wood 
density and basal area, but these are weak and variable among regions (Fig. 6).

(6) Neither the rate of biomass production nor that of its loss is clearly associated 
with basal-area-weighted wood density. Thus, the species traits of Amazon forests do not 
strongly control the rate at which carbon is being cycled by the forest (Fig.  7, and see 
Fauset et  al. 2019). Yet they are associated with the rates are which individual trees are 
cycled—stem mortality rates are clearly linked to the wood density of the forest, confirm-
ing that the lower the stand-level wood density is, the more rapidly the trees die (Fig. 7).

Fig. 4  Relationship between 
stand basal area and aboveground 
biomass in Altura and Bajio for-
ests. Note that aboveground bio-
mass has been log-transformed to 
homogenise variances
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(7) These relationships between wood density and forest dynamics propagate through to 
clear relationships between biomass and forest dynamics. Thus, while standing biomass is 
not obviously associated with the rate at which wood biomass dies (Fig. 8 left), it is clearly 
related to the rate at which individual trees die (Fig. 8 right). Lower biomass forests typi-
cally have much lower wood density (Fig. 6) and much faster stem turnover (Fig. 8).

Fig. 5  Error in stand-level aboveground biomass estimates when using wood density means calculated as 
plot, forest type, landscape, and Amazon-wide scales, rather than the actual species values. Violin plots 
illustrate the distribution of values among plots, while points show the mean error across plots. Note the 
differences also between abundance-weighted WD and basal-area-weighted WD: the latter clearly entails 
less bias

Fig. 6  Amazon and regional relationships between basal-area-weighted wood density, biomass, and basal 
area. For each variable pair, regression models were fitted across the whole data set and for each region. 
Regions are Western Amazon, Brazilian Shield, East-Central Amazon, Guyana Shield, following Feld-
pausch et al. 2012. Statistically significant relationships are plotted. Note that regression models with basal-
area-weighted wood density predict Amazon biomass with much greater fidelity than simple relationships 
with basal area alone (Tables S3, S4). Model coefficients are given in Table S5
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4  Discussion

Our analysis shows that identity matters. Mapping tropical forest biomass and carbon 
always benefits from locally validated ground-based measurement of biological variation. 
In our well-studied Amazon landscape, forest wood density varies within and among land-
scape geomorphological units. Because relationships between wood density and forest size 
metrics such as basal area themselves vary, knowledge of forest dimensions and species 
composition is necessary for estimating tropical biomass. At larger Amazon-wide scales, 
we also find that lower wood density forests are closely associated with lower AGB and 
faster stem turnover. Yet within some Amazon regions and particularly western Amazonia, 
this relationship with forest dynamics breaks down. We explore the implications of these 
findings here.

In the specific case of Tambopata, the impacts of size and identity on mature-forest 
biomass are decoupled: while wood density is ≈ 15% greater in the erosional Pleistocene 
landscape, basal area is equal or greater in depositional Holocene landscapes. As a result, 
while aboveground biomass is similar in both landscapes, not accounting for species effects 
(i.e. simply assuming a uniform wood density) would substantially underestimate AGB in 

Fig. 7  Amazon and regional relationship between forest dynamic processes and wood density. Regression 
models were fitted across the whole data set and for each region. Statistically significant relationships are 
plotted. Model coefficients are given in Table S5

Fig. 8  Amazon and regional relationship between forest mortality and AGB. Regression models were fitted 
for the whole data set and for each region. Statistically significant relationships are plotted. Note the close 
similarity with the centre and right panels of Fig. 7: species wood density strongly determines biomass and 
is closely associated with the rate at which individual trees die (figures adapted from Fig. 8 in Johnson et al. 
2016). Model coefficients are given in Table S5
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erosional landscapes. Indeed, all ‘identity-free’ approaches that ignore the floristic varia-
tion within these forests lead to biased estimates of forest biomass. Notably, using a land-
scape-level Tambopata-wide mean wood density results in equally poor estimates of AGB 
as using an Amazon-wide mean wood density, although the sign of the errors is reversed. 
In this landscape, very good, forest-type-specific floristic knowledge is essential to estimate 
AGB with an error (bias) of less than 10%. While forest-type- and plot-mean wood den-
sity values give performance gains, the error (bias) on both is still 15–30 Mg AGB  ha−1 
compared with the baseline ‘identity-rich’ state in which every tree in each plot is botani-
cally identified and taxon-specific wood density values are used for every tree. This bias 
itself varies between forest types, being negative for the Bajio forests but variable for the 
Altura forests, indicating that in the former canopy trees have greater wood density than 
understorey trees but not in the latter. This underlines the value of accounting for size and 
identifying all trees—large and small—to reduce bias and uncertainty in forest-level bio-
mass estimation. Our results show that landscape-level mapping of tropical forest biomass 
requires both tree-level and landscape-level knowledge of biodiversity. Future analyses 
should account for this and also assess the extent to which accounting for within-species 
tree level and environmental variation in wood density (e.g., Patiño et al. 2009; Baraloto 
et al. 2011; Fortunel et al. 2014) might further improve the fidelity of AGB retrieval.

At larger scales, identity also matters: there are large differences in stand-level wood 
density across Amazonia. Basal-area-weighted wood density varies by 80% between the 
lowest and highest 1-ha plot values, and even within individual sub-regions it varies by as 
much as 40%. Low wood density Amazon forests have faster stem turnover, confirming 
that lower stand-level wood density is associated with more rapid rates of tree death. The 
relationship is especially marked for stem-level mortality, but much less so for biomass 
mortality. A key feature of stand-level wood density variation therefore is that it reflects 
forest dynamics and especially the rate of turnover in the tree population. However, the 
pan-Amazon associations between wood density and biomass, and wood density and mor-
tality break down at some scales. In some regions (e.g., western Amazonia), variation in 
the size class distribution among forests may be more important than variation in mean 
wood density for determining variation in AGB (Fig. 6), but in most regions and across 
Amazonia, mean wood density is a major determinant of biomass.

4.1  Towards Integrating Species Effects into AGB Mapping

Currently, few attempts to map tropical forest biomass and carbon fully account for species 
effects—either because they are assumed to be unimportant, or else because ground-level 
data needed to parameterise and validate them is lacking. Yet foresters have long known 
that species impact on tropical biomass. An extensive compilation from the last century 
(Fearnside 1997) suggested that wood density in the Brazilian Amazon varies by 25% 
across forest types (from 0.60 to 0.75  g  cm−3), but as this is based on forestry surveys 
with imprecise identification it contains considerable uncertainty. A recent pan-tropical 
assessment of forest structure confirmed great variation of wood density within each con-
tinent (Sullivan et al. 2017, Fig. S16). This suggests that biodiversity-driven variation in 
wood density is a pervasive and multi-scalar feature of all tropical forests. Since sufficient 
inventory-based evidence based on botanical identification now exists to show that species 
composition matters biome-wide for biomass, we here compiled mean values where we 
could source well-identified, well-measured plot data where basal-area weighting has been 
consistently applied (Table 2).
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Accounting for variation in such forest-wide means can improve biomass estimates. We 
find differences in intact forest basal-area-weighted wood density of as much as 20% in 
African, Bornean and Amazon landscapes of  101–103  km2, of 20% within  105–106-km2 
geographic regions in north-west Amazonia and French Guiana, and 10–30% at the con-
tinental scale (between  107  km2 units) between south-west and north-east Amazonia. The 
data compiled in Table 2 show that wood density impacts hugely on biomass even at con-
tinental levels. For example, applying a pan-tropical wood density mean to Central Ameri-
can forests could result in over-estimating aboveground carbon stocks there by 15%.

Our pan-Amazon results suggest a possible avenue for using technology like LiDAR 
to indirectly derive the key composition-based property of wood density. Thus, by quan-
tifying tree mortality rates it may be possible to estimate wood density and so improve 
LiDAR’s ability to estimate AGB. LiDAR is being increasingly used to sense tree biomass 
mortality (e.g., Espírito-Santo et al. 2014; Leitold et al. 2018). If these estimates can be 
produced over large-enough spatial and temporal scales to yield time-averaged tree mortal-
ity rates, it may be possible to derive proxies for wood density and validate them with plot 
species-level identifications. This would be a promising angle to explore, for example, with 
repeat-survey LiDAR data as they become available. Similarly, hyperspectral properties of 
forest canopies may correlate with wood density and underlying soil conditions, so these 
hold promise for deriving canopy wood density estimates that can be validated with full 
forest species-level identifications.

The multi-scale variability in forest wood density means that the next generation of 
tropical forest carbon maps and models needs to account better for species and functional 
variation. Mapping at all scales benefits from locally validated, ground-based identifica-
tion of measured trees. Because most tropical forests are very diverse, this requires highly 
skilled professional botanists to collect and identify the trees, working in georeferenced 
plots, measured carefully and more-or-less synchronously with remote sensing measure-
ments. There are currently just a handful of tropical forest landscapes where remote- and 
ground-based measurements exist with the requisite level of species identification (Chave 
et al. 2019). We need many more, distributed across key environmental and biodiversity 
gradients, if tropical forest nations are to realise the potential of remote sensing to help 
measure and validate their carbon stocks, fluxes, and nationally determined contributions 
to the Paris Climate Accord.
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