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Abstract The response to warming of tropical low-level clouds including both marine

stratocumulus and trade cumulus is a major source of uncertainty in projections of future

climate. Climate model simulations of the response vary widely, reflecting the difficulty

the models have in simulating these clouds. These inadequacies have led to alternative

approaches to predict low-cloud feedbacks. Here, we review an observational approach

that relies on the assumption that observed relationships between low clouds and the

‘‘cloud-controlling factors’’ of the large-scale environment are invariant across time-scales.

With this assumption, and given predictions of how the cloud-controlling factors change

with climate warming, one can predict low-cloud feedbacks without using any model

simulation of low clouds. We discuss both fundamental and implementation issues with

this approach and suggest steps that could reduce uncertainty in the predicted low-cloud

feedback. Recent studies using this approach predict that the tropical low-cloud feedback is

positive mainly due to the observation that reflection of solar radiation by low clouds

decreases as temperature increases, holding all other cloud-controlling factors fixed. The

positive feedback from temperature is partially offset by a negative feedback from the

tendency for the inversion strength to increase in a warming world, with other cloud-

controlling factors playing a smaller role. A consensus estimate from these studies for the

contribution of tropical low clouds to the global mean cloud feedback is
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0.25 ± 0.18 W m-2 K-1 (90% confidence interval), suggesting it is very unlikely that

tropical low clouds reduce total global cloud feedback. Because the prediction of positive

tropical low-cloud feedback with this approach is consistent with independent evidence

from low-cloud feedback studies using high-resolution cloud models, progress is being

made in reducing this key climate uncertainty.

Keywords Climate change � Cloud feedbacks � Low clouds

1 Seeking Observational Constraints on Low-Cloud Feedbacks

How clouds respond to the climate warming is a major uncertainty in climate change

science that hinders prediction of the temperature sensitivity to radiative perturbations

(Boucher et al. 2013). At the center of this uncertainty is the response of tropical oceanic

low clouds, which is the single cloud type that explains the most spread of climate model

predictions of cloud feedbacks (Bony and Dufresne 2005). A recent study estimates that

low clouds globally explain around 50% of the inter-model variance of the global mean

cloud feedback (Zelinka et al. 2016).

The widely varying responses of low clouds are perhaps unsurprising because climate

models struggle to simulate these clouds. Tropical low clouds involve highly interactive

processes of radiative transfer, turbulent and convective mixing and cloud physics that are

imperfectly represented by climate model parameterizations. The parameterizations are

necessary because the space and time-scales that climate models resolve are coarse relative

to the space and time-scales of tropical low clouds.

The problems simulating low clouds motivate approaches to determine tropical low-

cloud feedbacks that do not directly rely upon climate model simulations. One approach is

to use large-eddy simulations that resolve low-cloud processes to predict the low-cloud

changes forced by the climate changes in the environment (Rieck et al. 2012; Zhang et al.

2012; Blossey et al. 2013; Bretherton 2015). A second approach relies on observations of

clouds to predict how they will respond to changes in the large-scale environment typical

of climate warming. This observational approach is the subject of this paper.

At the heart of the observational approach is the fact that tropical low clouds are not

randomly distributed but instead tend to vary with characteristics of the large-scale

Fig. 1 Low-cloud cover from the International Satellite Cloud Climatology Project. Rectangles indicate the
preferred regions of tropical low clouds of the stratocumulus type. These regions were studied in Q15, but
they were also studied by M16, B16, and M17. Another common low-cloud type is trade cumulus which
typically occur in the regions to the west of the rectangles in the figure. These clouds were studied directly
by M17 and to some extent by B16. Low clouds are also common in the subsidence portions of the tropical-
extra-tropical transition zone between 20� and 40� latitude in each hemisphere, and these clouds were
studied in Z15 and M17. (Figure from Q15)
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environment (Fig. 1). The conditions that favor extensive sheets of low clouds such as

stratocumulus include a relatively cold sea-surface temperature (SST) and a strong capping

temperature inversion, among others. Elsewhere in the tropics, SST is warmer and the

inversion weaker even as the air is still subsiding, favoring the smaller cloud fractions

typical of trade cumulus clouds. Assuming low clouds are a response to their environment,

environmental conditions influencing low clouds may be called ‘‘cloud-controlling fac-

tors’’ (Stevens and Brenguier 2009).

The basis of the observational approach for predicting low-cloud feedbacks from their

controlling factors is the following: suppose we know how sensitive the clouds are to each

cloud-controlling factor, as derived from observations of cloud variability in the present

climate, and we have an idea of how each of the factors will change with climate warming,

as derived from climate models and confirmed by physical reasoning. Then we can predict

how the low clouds will change with climate warming under the assumption that the

sensitivities of clouds to their controlling factors are time-scale invariant. This approach

has been taken in five recent studies (Qu et al. 2015b; Zhai et al. 2015; Myers and Norris

2016; Brient and Schneider 2016; McCoy et al. 2017, in chronological order; hereafter

these studies will be named ‘‘Q15,’’ ‘‘Z15,’’ ‘‘M16,’’ ‘‘B16’’ and ‘‘M17,’’ respectively). In

this paper, we review these studies. From them we form a consensus estimate of the

average tropical low-cloud feedback for marine subsiding regions (including both stra-

tocumulus and trade cumulus) that can be used in an estimate of Earth’s climate sensitivity.

We also examine issues with this approach and how uncertainties in its predictions might

be reduced.

2 Cloud-Controlling Factors

The studies considered make the assumption that anomalies in some measure of tropical

low clouds DC relevant to radiative fluxes (such as low-cloud fraction or shortwave cloud-

radiative effect) can be represented by a first-order Taylor expansion in cloud-controlling

factors xi:

DC ¼
X

i

oC

oxi

����
xj 6¼xi

Dxi ð1Þ

In (1), the partial derivative oC
oxi

represents the sensitivity of low clouds to a cloud-con-

trolling factor and is assumed to be the same regardless of the time-scale over which

anomalies are calculated (‘‘time-scale invariant’’). This time-scale is often inter-annual, but

it could also be weekly or over decades and centuries. Any time-scale is valid provided it is

greater than about 2–3 days, the longest time-scale over which the boundary layer and its

clouds respond to changes in the cloud-controlling factors (Schubert et al. 1979; Bretherton

1993). Temporal averaging reduces but does not eliminate any disequilibrium between the

clouds and their controlling factors.

Table 1 lists the most important controlling factors for tropical low clouds. The

table also explains why tropical low clouds depend on each controlling factor, and cites a

supporting observational and/or large-eddy simulation modeling study. While a wide body

of research supports each factor, they do not all have the same level of theoretical

understanding or observational and modeling support. The relationship of increased low

cloud to increased inversion strength is the most robust relationship. Covariance between

factors, such as free-tropospheric relative humidity with downward longwave radiative
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flux, makes it difficult to conclusively identify the individual role of some factors from

observations, even if these are easily distinguished in modeling studies. Reliable large-

scale observations of some controlling factors are sometimes unavailable. It is unlikely that

Table 1 is missing any important cloud-controlling factors since it includes the majority of

the external large-scale variables in the energy and moisture budget equations for the

boundary layer (Stevens and Brenguier 2009). Nonetheless, the list may be missing some

known (e.g., aerosol) and unknown factors that likely only play a minor role in tropical

low-cloud feedbacks to climate warming.

3 Low-Cloud Feedbacks

In the forcing-adjustment-feedback framework (Sherwood et al. 2015), changes in global

mean top-of-atmosphere radiative flux (R) due to individual feedbacks such as clouds are

assumed to be linearly related to changes in global mean surface air temperature (Tg). The

contribution of tropical low clouds to the global cloud feedback can be thought of as the

product of the fraction of the planet dominated by tropical low clouds ðaÞ with the sen-

sitivity to changes in Tg of the local cloud-induced changes in top-of-atmosphere radiation

(e.g., using shortwave cloud-radiative effect):

Table 1 Most prominent cloud-controlling factors affecting tropical low clouds, their physical explanation,
and their support from observational and large-eddy simulation modeling studies

Cloud-controlling
factor

Physical explanation Observational
support

Modeling
support

Strengthened
inversion
stability

Reduced mixing across inversion keeps boundary
layer shallower, more humid and more cloudy

Wood and
Bretherton
(2006)

Bretherton
et al. (2013)

Reduced
subsidence

Deeper boundary layer increases cloud Myers and
Norris
(2013)

Blossey et al.
(2013)

Increased
horizontal cold
advection

Greater destabilization of the surface–atmosphere
interface increases upward buoyancy flux
promoting more clouds

Norris and
Iacobellis
(2005)

N/A

Increased free-
tropospheric
humidity

Entrainment drying is reduced, thus moistening the
boundary layer and increasing cloud

M16 van der
Dussen et al.
(2015)

Decreased
downward
longwave
radiation

Reduced downward longwave radiation increases
cloud-top radiative cooling, driving more
turbulence supporting cloud

Christensen
et al. (2013)

Bretherton
et al. (2013)

Colder Sea-surface
temperature
(SST)

Colder temperature reduces the efficiency of
entrainment necessitating more cloud to produce
a given entrainment rate

Q15 Bretherton
and Blossey
(2014)

Increased surface
wind speed

Increased surface driven shear mixing increases
latent heat flux and cloud

Brueck et al.
(2015)

Bretherton
et al. (2013)

In the first column, the direction of the cloud-controlling factor corresponds to that that would increase low
clouds. Only the single most prominent study supporting the cloud-controlling factor is listed in the third and
fourth columns

N/A indicates the absence of a study demonstrating the role of the factor in tropical low clouds
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dR

dTg
¼ a

dC

dTg
ð2Þ

If we view the local cloud response as resulting from changes in the local cloud-

controlling factors, we can use (1) to expand the local cloud feedback dC

dTg
as:

dC

dTg
¼

X

i

oC

oxi

dxi

dTg
ð3Þ

In (3), the partial derivatives oC
oxi

are the radiative sensitivities of cloud to the controlling

factors and dxi
dTg

measures how each cloud-controlling factor xi varies with increases in Tg on

climate change time-scales. Equation (3) expresses the concept that clouds respond to the

local values of the cloud-controlling factors while cloud-controlling factors may depend on

non-local factors (such as the large-scale circulation of the atmosphere), which can be

(imperfectly) parameterized as a function of Tg.

Multi-linear regression analysis of observations provides the sensitivities of clouds to

their controlling factors on inter-annual or shorter time-scales (but no shorter than 8 days

in the studies reviewed here), whereas analysis of climate model simulations reveals how

the factors vary with long-term climate change. Cloud sensitivities can also be calculated

from model simulations and compared to those calculated from observations on the time-

scales for which they are available.

Figure 2 shows the end result from one of the studies covered by this review (M16). In

particular, panel (a) compares the local cloud feedback predicted by Eq. (3) (called

‘‘constrained’’) with that simulated by climate models (called ‘‘actual’’); panel (b) shows

each individual term from the right-hand side of Eq. (3). As Fig. 2 shows, M16 deduce a

positive cloud feedback primarily because oC
oSST

is positive in the satellite cloud observa-

tional datasets they use. However, the positive contribution from SST increases is offset by

a negative contribution from changes in the Estimated Inversion Strength (EIS). This

contribution results from the facts that (1) climate models universally predict, with robust

physical justification, that EIS will increase with warming (Webb et al. 2013; Qu et al.

2015a), and (2) cloud amount and the associated reflection of solar radiation increases

strongly with increases in EIS in observations. EIS increases in warming simulations are

driven by increased SST gradients between tropical low cloud and deep convection regions

as well as increased land–ocean surface temperature contrast (Qu et al. 2015a). The other

factors examined in M16, namely horizontal temperature advection, free-tropospheric

humidity and subsidence, make smaller but collectively non-negligible negative contri-

butions to the predicted cloud feedback.

The five studies in our review make different choices with respect to the observational

datasets, cloud-controlling factors and spatiotemporal variability examined (Table 2).

Despite these differences, the following commonalities emerge: (1) SST is the most

important cloud-controlling factor for climate change cloud feedbacks; (2) tropical low

clouds are observed to decrease in extent or radiative impact with increasing SST, leading

to the prediction of positive tropical low-cloud feedbacks to climate change; (3) the four

studies that consider EIS agree that although EIS contributes a negative feedback, it only

partially offsets the positive feedback from SST; and (4) the three studies that consider

additional factors beyond EIS and SST agree that these additional factors collectively make

only a minor contribution to tropical low-cloud feedback.
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Figure 3 displays the quantitative predictions of the local tropical low-cloud feedback

from these observationally based studies, along with values predicted from large-eddy

simulations and global climate models; the ‘‘Appendix’’ explains how these predictions

were derived. Some observational studies have more than one estimate because they

consider multiple satellite cloud datasets (Q15 and M16), geographical areas (M17) or

temporal scales of variability (B16). Nearly all observational estimates of the local tropical

low-cloud feedback are positive and many values cluster near 1 W m-2 K-1.

4 Implications for Climate Sensitivity

Do the cloud feedback estimates from the observational studies reviewed here help narrow

the uncertainty in the climate change response of tropical low clouds? Local cloud feed-

back values from the cloud-controlling factor studies range from - 1.0 to

Fig. 2 a Local tropical low-
cloud feedback predicted from
the observed sensitivity of clouds
to their controlling factors (called
‘‘constrained’’) and that actually
simulated by climate models; and
b the components of the
predicted cloud feedback from
each controlling factor according
to Eq. (3). The estimate in black
is computing using the model-
mean changes in factors and
shows a 95% confidence interval
calculated from the uncertainty in
the cloud sensitivities calculated
from observations. In panel b and
for the constrained predictions in
panel a, the spread in model
predictions is due solely to inter-
model differences in how cloud-
controlling factors change with
rises in global mean surface air
temperature. Symbol color
classifies climate models
according to how well they
reproduce the observed cloud
sensitivities (cyan = above
average, orange = average,
red = below average). Acronym
definitions in the figure are:
‘‘EIS’’—Estimated Inversion
Strength, ‘‘SSTadv’’—horizontal
temperature advection,
‘‘RH700’’—relative humidity at
700 hPa, ‘‘omega700’’—
subsidence velocity at 700 hPa,
and ‘‘SW CRE’’—Shortwave
Cloud-Radiative Effect.
(Figure from M16)
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Table 2 List of observational cloud data, cloud-controlling factors, and the spatial–temporal variability
examined in each study employing observations of clouds and their controlling factors to predict tropical
low-cloud feedbacks

Study Satellite cloud observations
used

Cloud-controlling factors
included

Variability used to define
cloud sensitivities

Qu et al.
(2015b)—
Q15

Cloud fraction observations
from ISCCP (1984–2009),
MISR (2000–2013),
MODIS (2002–2014), and
PATMOS-x (1982–2009)

EIS and SST (model 1); EIS,
latent heat flux, specific
humidity lapse rate, free-
tropospheric humidity,
subsidence rate, surface
wind speed, and
horizontal temperature
advection (model 2)

Inter-annual temporal
variability in the annual
means of the tropical low-
cloud regions containing
stratocumulus and cumulus
with stratocumulus (Fig. 1)

Zhai et al.
(2015)—
Z15

Cloud fraction from merged
CloudSat and CALIPSO
data (2006–2010)

SST Seasonal cycle temporal
variability in the monthly
means averaged over
subsidence portions of the
20�–40� latitude band

Myers and
Norris
(2016)—
M16

Shortwave cloud-radiative
effect from CERES-EBAF
(2000–2012) and ISCCP-
FD (1984–1999)

EIS, SST, free-tropospheric
humidity, subsidence rate,
and horizontal
temperature advection

Combined spatial and
temporal variability in the
inter-annual anomalies of
monthly means of tropical
low-cloud regions
containing stratocumulus
and cumulus with
stratocumulus

Brient and
Schneider
(2016)—
B16

Shortwave cloud-radiative
effect from CERES-EBAF
(2000–2015) and low-
cloud fraction from
CALIPSO-GOCCP
(2006–2014)

EIS and SST Temporal variability at 3
time-scales (intra-annual,
seasonal cycle, and inter-
annual) and using inter-
annual anomalies in the
monthly means averaged
over geographically
varying tropical regions in
the lowest quartile of
500 hPa relative humidity

McCoy
et al.
(2017)—
M17

Cloud fraction from MODIS
(2002–2014)

EIS, SST, free-tropospheric
humidity, subsidence rate,
and surface wind speed

Combined spatial and
temporal variability in
8-day mean data within 3
oceanic regions: 40�N–
40�S, trade cumulus, and
mixed stratocumulus and
trade cumulus regions

Acronym definitions and references for the satellite cloud observations are: ISCCP International Satellite
Cloud Climatology Project (Rossow and Schiffer 1999), MISR Multiangle Imaging SpectroRadiometer
(Marchand and Ackerman 2010), MODIS Moderate Resolution Imaging Spectroradiometer (Platnick et al.
2003), PATMOS-x Pathfinder Atmospheres Extended (Foster and Heidinger 2013), merged CloudSat/
Calipso (Mace et al. 2009), CERES-EBAF Clouds and the Earth’s Radiant Energy System Energy Balanced
and Filled (Loeb et al. 2009), ISCCP-FD International Satellite Cloud Climatology Project Radiative Flux
Dataset (Zhang et al. 2004), and CALIPSO-GOCCP Cloud–Aerosol Lidar and Infrared Pathfinder Satellite
Observations GCM-Oriented CALIPSO Cloud Product (Chepfer et al. 2010)
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? 1.9 W m-2 K-1. This range would appear to offer no constraint on the climate model

range, - 0.8 to ? 1.8 W m-2 K-1, as seen in Fig. 3. Still it is worth recognizing that

many observational estimates are concentrated in a narrower range. We synthesize these

results to form a consensus estimate through a meta-analysis of these studies. A formal

approach would consider the uncertainty of each study and account for their degree of

independence, but measures of uncertainty are not supplied uniformly for these studies,

Cloud-Controlling 
Factor Predictions 
from Observations

Q15

M16

B16

Z15

M17

Global Climate Models

-2 K-1

Large-Eddy Simulations

ISCCP
PATMOS-x

MISR
MODIS

De-Seasonalized
Intra-Annual

Inter-Annual
Seasonal

This Study’s 
Meta-analysis

Latitude Bands
Trade Cumulus

Stratocumulus + Trade Cumulus

ISCCP
CERES

Trade Cumulus Stratocumulus

-1 0 1 2

CLOUDSAT-CALIPSO

CERES-EBAF

MODIS

Fig. 3 Values of local tropical low-cloud feedbacks predicted from recent observational studies, large-eddy
simulations and global climate models. Local feedbacks are defined as the local change in top-of-atmosphere
radiation from tropical low clouds per degree increase in global mean surface air temperature. Bar widths for
observational studies (unavailable for M17) and this study’s meta-analysis represent 90% confidence
intervals. Values from individual large-eddy simulation studies are shown. The bar width for global climate
models indicates the range of model results. See the ‘‘Appendix’’ for details
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and no confidence intervals are supplied by M17 at all. Instead we proceed approximately

by assuming that each study represents a partially independent result, which we justify by

noting the diversity of observational satellite cloud datasets, geographic domains, and time

periods employed. We also assume that each study gives a representative estimate of the

cloud feedback averaged over tropical low-cloud regions; this is further discussed below

(issue I3). Our consensus estimate is made by averaging all central estimates to form a

single value of cloud feedback for each study (shown near our meta-estimate in Fig. 3).

Then we compute the five-study mean and 90% confidence interval as 1.645 times the

sample standard deviation, consistent with a normal distribution. The meta-analysis

uncertainty describes the uncertainty across the ansätze employed by each of the five

studies but not the uncertainty within each study. Nonetheless, this uncertainty estimate

seems appropriate as it produces a 90% confidence interval whose width is within 10% of

the average interval width in individual studies shown in Fig. 3.

The meta-analysis produces a local tropical low-cloud feedback of

1.0 ± 0.7 W m-2 K-1. Our estimate suggests that climate models with negative tropical

low-cloud feedback are unrealistic, but still leaves an uncertainty range of * 50% (= 1.4/

2.6) of that of current climate models.

To determine how the local response of tropical low clouds contributes to climate

sensitivity, we first calculate the tropical low-cloud contribution to global cloud feedback

by multiplying the local cloud feedback by the fraction of the planet covered by tropical

low-cloud regions, following (2). Under the assumptions that (a) subsidence regions cover

2/3 of the tropical oceans, (b) oceans cover 3/4 of the tropics, and (c) the tropics cover� of

the planet, we estimate that tropical oceanic subsidence regions cover approximately 1/4 of

the planet (a = 1/4). Thus, we arrive at a contribution of tropical low clouds to the global

mean cloud feedback of 0.25 ± 0.18 W m-2 K-1.

We then calculate an approximate equilibrium climate sensitivity ECS according to

ECS ¼ F2co2=ð�kÞ, where F2co2 is the effective radiative forcing for a doubling of carbon

dioxide (CO2) and k is the climate feedback parameter (Dufresne and Bony 2008). The

climate feedback parameter is equal to the sum of the Planck response and feedbacks from

water vapor, lapse, surface albedo and clouds. We use average climate model values for the

forcing and non-cloud feedbacks as reported in Caldwell et al. (2016) (Table 3). Further

assuming a high-cloud altitude feedback (Zelinka et al. 2016) of ? 0.2 W m-2 K-1, but no

other cloud feedbacks, we compute an ECS of 2.4 K. Adding the central estimate of

? 0.25 W m-2 K-1 for the tropical low-cloud feedback from our meta-analysis to the

high-cloud altitude feedback, we arrive at a central estimate for ECS of 3.0 K. Thus, if the

tropical low-cloud feedback is positive with the magnitude suggested by these observa-

tional studies, ECS would be in the middle of its canonical range of 1.5–4.5 K (Stocker

et al. 2013).

5 Sources of Uncertainty

In interpreting cloud feedbacks derived from observations of clouds and their controlling

factors, a number of issues merit discussion. We roughly divide these into two categories:

those of a fundamental nature (F1–F4) that may limit the validity of this observational

approach, and those related to implementation (I1–I5) that may limit the accuracy of the

feedback estimated with a presumed valid approach. The latter issues, if addressed, might

allow for tighter constraints on tropical low-cloud feedback.
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5.1 Fundamental Issues

5.1.1 F1. Are Cloud Sensitivities Time-scale Invariant?

The approach used in these five studies relies heavily on the assumption that the sensitivity

of clouds to their controlling factors remains constant across any time-scale longer than a

few days—the longest time-scale over which the boundary layer is still in a state of

transient adjustment to changes in the cloud-controlling factors. We can test this propo-

sition by examining results from studies that consider multiple time-scales. B16 calculates

sensitivities at 3 time-scales: intra-annual, seasonal cycle, and inter-annual (from monthly

mean data). Table 5 indicates consistency (within their uncertainty estimates) across these

time-scales for the SST sensitivity. Although this is less true for the EIS sensitivity, the final

estimates of their cloud feedback are still consistent across time-scale (Fig. 3). M17 cal-

culates sensitivities at 2 time-scales: using 8-day means and annual means. They find that

the sensitivities vary by less than a factor of two between those two time-scales, with one

exception, namely for oC
oSST

from the regions of mixed stratocumulus and trade cumulus.

Because M17 do not supply uncertainty coefficients, one cannot judge if this difference is

significant. Separately, deSzoeke et al. (2016) make a thorough analysis of the time-scale

dependence of the relationship between low cloud and EIS, finding that while the amount

of low-cloud variance explained by EIS varies with time-scale, the sensitivity of low cloud

to EIS varies by less than a factor of two between daily, monthly, and inter-annual time-

scales examined. Klein (1997) examined low-cloud variability at a single point in the

Northeast Pacific and found that the signs of the correlation coefficients between low-cloud

fraction and several controlling factors remain fixed across time-scales from daily to

monthly. Some variations in the cloud sensitivities are expected due to statistical uncer-

tainty in sensitivity coefficients, and from this available evidence one cannot disprove the

notion that cloud sensitivities are time-scale invariant. Certainly the sensitivities agree

qualitatively and in sign across time-scales, if not in exact magnitude. To fully address this

question, more observational studies calculating cloud sensitivities with error estimates at

multiple time-scales are needed.

Table 3 Values of the CO2 radiative forcing and various feedbacks used in the calculation of equilibrium
climate sensitivity

Term Value

Radiative forcing for doubling of CO2 concentration (F2CO2
) 3.43 W m-2

Planck feedback - 3.15 W m-2 K-1

Water vapor feedback 1.69 W m-2 K-1

Lapse rate feedback - 0.53 W m-2 K-1

Surface albedo feedback 0.38 W m-2 K-1

High-cloud altitude feedback 0.20 W m-2 K-1

These values are the multi-model-mean values from Caldwell et al. (2016) computed by linear regression of
the first 150 years of the abrupt quadrupling of CO2 climate model experiments. As such, the forcing is an
effective radiative forcing that includes the rapid cloud adjustments. The values are averaged only for
models passing the clear-sky linearity test used to test the accuracy of the radiative kernel approach to
quantify feedbacks. See Caldwell et al. (2016) for details
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5.1.2 F2. Are Clouds Responding to the Controlling Factors?

When regression analysis is applied to observations to derive sensitivity coefficients, it is

assumed that these reflect the influence of the factors on the clouds, rather than the

influence of the clouds on the factors. But how confident are we that this is the case? This

concern is most obviously relevant for variables internal to the boundary layer. For

example, relative humidity in the boundary layer or the state of cloud organization would

be questionable candidates for a controlling factor and is not listed in Table 1 for this

reason. For the cloud-controlling factors listed in Table 1, substantial observational evi-

dence exists that cloud properties are best correlated to upwind (Klein et al. 1995; Klein

1997; Mauger and Norris 2010) or earlier (deSzoeke et al. 2016) sampling of the factors.

These lines of evidence reinforce the notion that these quantities are external and large-

scale characteristics of the atmosphere or ocean which influence the boundary layer and its

clouds, rather than the other way around.

The relationship between clouds and SST deserves extra discussion in this connection,

given the major role for oC
oSST

in determining tropical low-cloud feedback. Modeling studies

demonstrate that a positive radiative feedback from tropical low clouds can amplify low

frequency (multi-year and decadal) SST variability (Bellomo et al. 2014, 2015), so there is

no doubt that clouds affect SST. Nonetheless, it is also clear from large-eddy simulations

(Blossey et al. 2013) and observational evidence (Klein et al. 1995; Klein 1997; Mauger

and Norris 2010) that clouds respond to SST over just a few days. For an ocean mixed-layer

depth of 50 m, it takes about 300 days to produce an SST anomaly in response to cloud-

radiative anomalies that is consistent with the observed value of oC
oSST

(deSzoeke et al.

2016); covariations of cloud with SST at time-scales shorter than 300 days would therefore

reflect the influence of SST on cloud, and not the other way around. The fact that M17 find

similar values of oC
oSST

at 8-day time-scales as at inter-annual time-scales (with the exception

of the region with mixed stratocumulus and trade cumulus) suggests that two-way inter-

actions between cloud and SST do not cause oC
oSST

to be different at the longer time-scales.

Furthermore, climate model simulations with prescribed SST, which by definition do not

have the two-way interactions of clouds and SST, produce a value of oC
oSST

reasonably close

to those derived from simulations with fully coupled ocean–atmosphere models (X. Qu

personal communication).

To understand the reason for this similarity across time-scales, we appeal to our

understanding of the water vapor feedback. One expects water vapor anomalies to adjust to

changes in the underlying SST so that relative humidity is approximately conserved. One

expects this to be true even if water vapor did not produce the longwave radiative

anomalies that fed back on the SST changes. Thus, the diagnosed sensitivity of water vapor

to surface temperature is the same, whether the interaction is one-way or two-way. In a

similar way, we may also think of cloud anomalies as being in a state of mutual adjustment

with underlying SST, so as to maintain a boundary layer that is thermodynamically con-

sistent with its environment. This would be the case whether or not SST has enough time to

be affected by the top-of-atmosphere energy budget perturbation that the cloud anomaly

produces.
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5.1.3 F3. Uncertainty in the Climate Change Prediction of Cloud-Controlling
Factors

The cloud-controlling factors are among the more trustworthy variables of climate models

because they are aspects of the resolved large-scale state. While climate models generally

agree on their predicted climate changes, any inter-model spread contributes to spread in

the predicted low-cloud feedback with this observational approach. This can be seen in

Fig. 2, where the spread among climate models (which are displayed as colored symbols)

for the ‘‘constrained’’ column in panel a and for each factor in panel b arises solely from

inter-model spread in the climate changes in cloud-controlling factors dxi
dTg

. For the total

feedback (‘‘constrained’’ column in panel a), inter-model spread is comparable to, but

slightly smaller than the spread due to the uncertainty in the observed cloud sensitivities

(shown by the black uncertainty bar). Comparison to panel b indicates that much of the

total feedback spread is due to inter-model differences in the predicted changes in EIS and

free-tropospheric humidity. For SST—the factor with the largest average cloud feedback

contribution—inter-model spread in dSST

dTg
in the period examined (121–140 years after CO2

quadrupling) is smaller than the uncertainty in the observed value of oC
oSST

. We conclude

from this figure, as well as the analysis of Q15, that the uncertainty in the predicted climate

change of the cloud-controlling factors is a significant component of the cloud feedback

uncertainty but not quite as large as the uncertainty in oC
oSST

. Reducing this uncertainty

would include diagnosing the influences on the cloud-controlling factors and identifying

constraints on the climate-model-simulated changes. A step in this direction for EIS was

taken by Qu et al. (2015a). Also, a preliminary investigation finds that the normalized

changes in SST and associated cold advection are positively correlated across models with

the low-cloud feedback itself (Tim Myers, personal communication). This correlation is

consistent with more positive low-cloud feedbacks locally warming the ocean more (rel-

ative to the global mean temperature increase). Normalized changes in other cloud-con-

trolling factors including free-tropospheric humidity, subsidence and EIS do not have an

apparent relationship to the low-cloud feedback itself, consistent with the expectation that

their large-scale nature makes them additionally sensitive to remote influences. Until this

uncertainty is reduced, the ‘‘constrained’’ column in Fig. 2a suggests that the uncertainty in

the local cloud feedback will not be smaller than ± 0.5 W m-2 K-1. While this uncer-

tainty is considerably smaller than that of the individual observational estimates in Fig. 3,

it is not very much smaller than the ± 0.7 W m-2 K-1 uncertainty in our meta-estimate.

5.1.4 F4. Time-Dependency of Cloud-Controlling Factors During a Climate Change

Our cloud feedbacks estimates have been made under the assumption that changes in

cloud-controlling factors dxi
dTg

are constant in time. A growing body of evidence (Andrews

et al. 2015; Rugenstein et al. 2016) suggests that cloud feedbacks to climate change are

sensitive to the spatial pattern of SST warming, which evolves during simulated time-

dependent climate change. Of particular importance to tropical low-cloud feedbacks is the

differential rate of warming between tropical ascent and subsidence regions: if tropical

ascent regions initially warm more rapidly than tropical subsidence regions, EIS in tropical

subsidence regions will increase through the influence of the large-scale circulation

(Caldwell and Bretherton 2009; Qu et al. 2015a). This will contribute to low cloud
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increases and hence smaller low-cloud feedbacks (Zhou et al. 2016). When more warming

later appears in the subsidence regions, tropical low-cloud feedbacks will become more

positive. This behavior is most apparent in the simulations with abrupt quadrupling of CO2

(Andrews et al. 2015; Rugenstein et al. 2016), but it also occurs in decadal feedbacks

inferred for the last century (Gregory and Andrews 2016; Zhou et al. 2016). This does not

negate the framework of Eqs. (1–3). Rather it suggests that there would be value in

allowing that the dxi
dTg

, especially dEIS
dTg

and dSST
dTg

, might vary with time, even as the cloud

sensitivities oC
oxi

to local conditions remain constant.

As interesting as SST pattern effects are, they are unlikely to have a first-order impact on

the century time-scale tropical low-cloud feedback. With typical values of the cloud

sensitivities, a negative tropical local low-cloud feedback would not occur unless the ratio

of EIS to SST change is * 1, several times larger than the typical ratio of 0.2 exhibited by

climate models. Such a large value might happen for decadal variability (Zhou et al. 2016),

but is extremely unlikely to happen for century time-scale warming. Oceanic heat transport

on the century time-scale prevents warming in tropical subsidence regions from differing

much from warming in tropical ascent regions. For century time-scale forced climate

change such as 100 ? years after abrupt quadrupling of CO2 or by the end of the twenty-

first century in a scenario simulation, the values of cloud-controlling factors simulated by

climate models are such that the tropical low-cloud feedbacks are decidedly positive, given

the observed cloud sensitivities.

5.2 Implementation Issues

5.2.1 I1. Imperfect Observations of Clouds and Their Controlling Factors

Figure 3 shows that the central estimate spread among the four satellite cloud fraction

datasets in Q15 is 1.1 W m-2 K-1, but the spread among two satellite cloud-radiative

effect datasets in M16 is only 0.4 W m-2 K-1. Such differences could arise from uncer-

tainties in cloud observations. Indeed, the five studies in this review employed a wide range

of satellite-derived cloud metrics, including estimates of cloud fraction and shortwave

cloud-radiative effect (Table 2). However, the effect of these choices on cloud feedback

estimates is difficult to determine. Q15 and M16 use multiple cloud datasets, but the

datasets cover different years, and thus differences are not solely due to measurement or

algorithmic changes. The larger spread among Q15 estimates might be consistent with the

fact that cloud fraction is more difficult to measure. As a result, there may be greater

differences between cloud fraction datasets than those describing cloud-radiative effect

(Maddux et al. 2010; Pincus et al. 2012).

The differences in feedback estimates could also come from observational uncertainty

in cloud-controlling factors. Unfortunately, no study has quantified this effect. SST is

extremely well-observed from satellite, but observational uncertainty might be not negli-

gible for the other factors that often rely on reanalysis data (Pincus et al. this issue). For

example, M17’s estimate of oC
oEIS

using satellite EIS observations appears consistent with

M16’s estimate using EIS from reanalysis data. But this is not a clean comparison because

the satellite observations are used in data assimilation, among other reasons.

Clearly, more research into the impact on predicted low-cloud feedbacks of observa-

tional uncertainty in clouds and their controlling factors would be helpful. At the same

time, because the error bars on low-cloud feedback estimates derived from diverse cloud
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and cloud-controlling factors overlap substantially, we judge it unlikely that estimates of

cloud feedback would change significantly if observational uncertainties in cloud or cloud-

controlling factors were better quantified and reduced.

5.2.2 I2. Limited Duration of the Observational Record

The majority of studies use inter-annual variability to determine oC
oSST

and oC
oEIS

, and the

typical length (15–25 years) of the more reliable satellite records offers very limited

numbers of independent samples. This suggests the limited duration of the observational

record is a major contributor to uncertainty in the estimates shown in Fig. 3. A com-

pounding problem arises from the covariance of EIS and SST for current climate variability

on monthly and longer time-scales. However, the uncertainty in oC
oEIS

is probably smaller

than the uncertainty in oC
oSST

because sub-monthly variations of EIS, which typically do not

co-occur with large SST fluctuations, confirm the value of the EIS sensitivity (M17,

deSzoeke et al. 2016). As time goes by, longer satellite records will gradually reduce

uncertainty in oC
oSST

due to limited observational duration.

5.2.3 I3. Limited Spatial Sampling of the Observations

The results of large-eddy simulation suggest a systematic difference in the cloud feed-

back between regions dominated by trade cumulus and regions dominated by stratocu-

mulus (Fig. 3). Three of the observational studies used here, however, (Q15, M16, B16)

primarily analyze variations in the stratocumulus regions. These studies’ estimates of

low-cloud feedback may be biased because they do not sample trade cumulus that might

have a smaller feedback. However, M17’s feedback for trade cumulus is close to our

meta-estimate and is in fact larger than their feedback for stratocumulus regions. The

observational analysis for latitude bands in M17 and Z15 also produces feedbacks that do

not depart significantly from our meta-estimate. For individual cloud sensitivities, M17

found general agreement between regions for most factors, with the exception of sub-

sidence (Myers and Norris 2013; deSzoeke et al. 2016). Observational studies focused

specifically on trade cumulus exhibit relationships of low clouds to cloud-controlling

factors with the same sign as in M17 (Brueck et al. 2015; Nuijens et al. 2015). In

conclusion, there is not enough evidence at this time to demonstrate that differing spatial

sampling in the observational studies leads to a biased estimate of the mean feedback for

tropical low-cloud regions. Further observational studies, particularly for trade cumulus

regions, are needed.

The unusual spatial sampling in B16 bears further examination. In B16, the particular

locations analyzed vary in time, unlike those in the other studies. Moreover, they obtain a

single data point for each month by averaging data across all points they select, no matter

how wide their geographical separation. This means the cloud sensitivities they calculate

may not necessarily represent a local relationship between cloudiness and SST or EIS.

5.2.4 I4. Imprecise Statistical Modeling

A key question is whether clouds vary linearly with their controlling factors. Although low

clouds result from the interactions of inherently nonlinear processes, there is ample evi-

dence that a linear approach can explain cloud variations at spatial scales greater than
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100 km and time-scales longer than a few days. For example, observations show that a

linear relationship with inversion strength can explain over 80% of the variance in the

seasonal cycle of tropical and extra-tropical marine low clouds (Klein and Hartmann 1993;

Wood and Bretherton 2006). Over decadal time-scales, Seethala et al. (2015) find that

observed tropical low-cloud changes can be well explained with a linear model using SST,

EIS, and horizontal temperature advection as cloud-controlling factors. In large-eddy

simulations, changes in shortwave radiation reflected by low clouds in response to the

simultaneous changes in many cloud-controlling factors are within 10% of the linear sum

of changes in simulations forced by individual cloud-controlling factors (Bretherton et al.

2013).

There is a hazard in applying any statistical model ‘‘out of sample,’’ an inherent risk

whenever sensitivities inferred from a system’s variability are used to infer information

about the system’s response to a perturbation. But this does not appear to be an

important concern for low-cloud-controlling factors. In tropical subsidence regions, both

inter-annual variability in SST (1–2 K * two standard deviations, Deser et al. 2010) and

the amplitude of its seasonal cycle (2–4 K, Shea et al. 1992) are generally comparable in

magnitude to the 2–3 K increases typical of a response to CO2 doubling. If cloud

changes are indeed linear within the ranges of variability and climate change, the cloud

sensitivities derived from variability ought to approximately agree with those associated

with climate change. The reviewed studies find approximate agreement when we com-

pare the actual cloud feedback simulated by the climate model to that predicted by (3)

when the sensitivities to each factor are derived from each model’s simulation of current

climate variability. Figure 2a of M16 shows that the linear model of (3) gives a very

good prediction for the actual cloud feedback for those climate models whose cloud

sensitivities are closer to observations, but less so for the climate models with more

erroneous cloud sensitivities. Clouds in the latter models are likely sensitive to cloud-

controlling factors not found in nature and also excluded from the linear prediction

model. This good agreement (sometime regardless of model fidelity) was also found by

Z15, Q15, and B16, although in some instances the feedback from (3) overestimates the

actual feedback. The across-model agreement between cloud variability in the current

climate and the cloud feedback to climate change illustrates a type of ‘‘emergent con-

straint’’ relationship (Klein and Hall 2015). This range of evidence provides support for a

linear model of tropical low-cloud changes, although residuals between the actual cloud

feedback and that predicted by (3) should be expected.

5.2.5 I5. Incomplete Set of Cloud-Controlling Factors

The number of factors used varies across the reviewed studies (Table 2); in Q15 and

B16, one can directly examine the sensitivity to this issue. Q15 arrive at similar pre-

dictions whether they use two or seven factors, although the climate-model-predicted

feedback with seven factors would be 15–30% smaller than the feedback predicted with

two factors (SST and EIS). This is consistent with M16’s result that the factors other than

SST and EIS produce small negative feedbacks (Fig. 2b) whose collective sum is

- 0.4 W m-2 K-1. B16 find that oC
oSST

is * 30% smaller when a two-factor (SST and

EIS) regression model is used instead of a single factor (SST), consistent with the general

anti-correlation of SST and EIS within natural climate variability. This suggests that

studies (Z15, B16, Q15 two-factor model shown in Fig. 3, M17) calculating feedbacks
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with a reduced set of cloud-controlling factors may have a small positive bias in their

predicted low-cloud feedback.

6 Summary and Final Remarks

Tropical low-cloud feedback is a key uncertainty for climate change. In this paper, we

reviewed recent studies that predict the tropical low-cloud feedback using the observed

sensitivities of clouds to controlling factors of the large-scale environment. The strength of

this approach is that it relies primarily on observations of the cloud response to controlling

factors and does not depend on the simulation of clouds by climate models. (It does rely on

model predictions of how the controlling factors change with climate, however.) Although

we only discuss studies of tropical low clouds, there is also evidence that this approach

would also be useful for predicting and understanding low cloud amount and reflectivity

feedbacks over the middle-latitude oceans (Gordon and Klein 2014; Ceppi et al. 2016;

Terai et al. 2016; Grise and Medeiros 2017).

Studies taking this approach agree that the tropical low-cloud feedback is positive. Our

synthesis of the results from these studies is that the contribution of tropical low clouds to

the global mean cloud feedback is 0.25 ± 0.18 W m-2 K-1, indicating that climate

models with negative tropical low-cloud feedbacks are implausible. Our synthesis suggests

a central estimate for climate sensitivity of 3.0 K. Longer observational records offer

perhaps the best near-term prospects for reducing uncertainty, but ultimately smaller

uncertainties would also require greater certainty in the prediction of climate changes in

cloud-controlling factors. More observational studies targeting trade cumulus regions

would also be desirable (Brueck et al. 2015; Bony et al. 2017).

Our observational estimate of tropical low-cloud feedback is consistent with indepen-

dent estimates from large-eddy simulation models forced by climate-model-simulated

changes in cloud-controlling factors. The range of local cloud feedbacks from large-eddy

simulations is 0.3–2.3 W m-2 K-1 (Fig. 3). This overlaps reasonably well with our

observational estimate of the local cloud feedback of 0.3–1.7 W m-2 K-1.

Even if we know what the tropical low-cloud feedback should be based upon obser-

vations and large-eddy simulations, getting climate models to reproduce a feedback of this

magnitude is not straightforward. Although some climate models are in agreement with our

estimate of the tropical low-cloud feedback, it remains to be seen if they are in agreement

for the right reasons. This motivates additional research to understand the physical basis for

the cloud sensitivities (particularly for oC
oSST

) through both observations (Brient et al. 2016)

and large-eddy simulations (Bretherton and Blossey 2014), and whether the physics is

correctly modeled in global climate models (Zhang et al. 2013; Sherwood et al. 2014; Vial

et al. 2017
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Appendix: Details Used in Synthesizing Studies

In order for Fig. 3 to provide a meaningful comparison of feedbacks between studies, the

original estimates must be converted into a common measure. The common measure is the

local cloud feedback: namely by how much the absorbed local net radiation at the top-of-

atmosphere in tropical low-cloud regions changes per degree increase in the global mean

surface air temperature, as given by (3). We also aim to synchronize error bars so that they

each represent 90% confidence intervals, the typical confidence interval used in Inter-

governmental Panel on Climate Change reports.

In this synthesis, there are two common issues affecting multiple studies. First, all

observational studies except M16 only provide estimates of the cloud sensitivities oC
oxi
, so we

must supply values of the cloud-controlling factor changes dxi
dTg

in (3). We specify that dSST
dTg

,

the ratio of changes in local SST to changes in global mean surface air temperature, Tg, is

0.7 which is a typical value for climate model simulations of climate warming (Andrews

et al. 2015). A value less than unity reflects model predictions of greater warming over land

relative to oceans, high latitudes relative to low latitudes, and (least important) tropical

ascent regions relative to tropical subsidence regions. We also specify that dEIS

dTg
¼ 0:14,

matching climate model results that the ratio of temperature-mediated EIS changes to local

SST increases in tropical subsidence regions is around 20% (Webb et al. 2013; Qu et al.

2015a).

Second, questions arise whether the cloud sensitivities measured with observations of

either ‘‘cloud fraction’’ (in Q15, Z15, and M17) or ‘‘cloud-radiative effect’’ (in M16 and

B16) are a direct measure of the impact of tropical low clouds on the top-of-atmosphere

radiation budget. Tropical low clouds have only a small impact on the top-of-atmosphere

longwave radiation budget, so we focus on determining the impacts of tropical low clouds

on the shortwave radiation budget. The use by M16 and B16 of the shortwave cloud-

radiative effect (which is defined as clear-sky fluxes minus all-sky fluxes) as a surrogate for

these cloud impacts is known to be a good approximation since clear-sky shortwave

radiation undergoes relatively smaller changes over the ice-free oceans (Hakuba et al.

2016). However, the results are less clear when using observations of cloud fraction since

cloud feedbacks may also result from changes in other cloud properties, especially the

distribution of optical thickness (Zelinka et al. 2012). Cloud fraction itself is also relatively

sensitive to details of the observing system (Maddux et al. 2010; Pincus et al. 2012) and

how this system changes over time (Norris and Evan 2015). Nonetheless, these concerns

are somewhat mitigated by the fact that the observed variability in cloud reflectance in

tropical low-cloud regions is primarily driven by changes in low-cloud fraction (Klein and

Hartmann 1993; George and Wood 2010). To that end, we convert the cloud fraction

sensitivities from Q15, Z15, and M17 into cloud feedbacks by multiplying by the sensi-

tivity of the top-of-atmosphere radiation budget to a unit increase in low-cloud fraction. In

particular, we use a 1 W m-2 decrease per % increase in low-cloud fraction based upon

Klein and Hartmann (1993) who analyzed the relationship between top-of-atmosphere net

radiation and ISCCP cloud fraction in tropical low-cloud regions. We note this factor is
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within 10% of an average factor derived by comparing cloud-radiative effect sensitivities

to CALIPSO-GOCCP cloud fraction sensitivities (Tables 2, 3 of B16).

We now present the study-specific details used to derive the estimates shown in Fig. 3.

Q15

The cloud feedback for Q15 is calculated using the reported values from different satellite

cloud observations of the cloud sensitivities oC
oSST

and oC
oEIS

(Table S4 of Q15), together with

our specified values of dSST

dTg
and dEIS

dTg
. The 5–95% confidence intervals for total sensitivity

are calculated assuming that Q15’s reported values of 90% confidence intervals for the

sensitivities oC
oSST

and oC
oEIS

(scaled by 0.2) add in quadrature. This assumes that EIS and SST

are normally distributed and uncorrelated. Finally, we convert Q15 measures of low-cloud

fraction into cloud feedbacks by multiplying by the - 1 W m-2 per % cloud fraction

factor.

Z15

Z15 determine from seasonal cycle satellite observations that low-cloud fraction decreases

at a rate of 1.28% cloud fraction per degree SST increase with a 3-sigma (standard devi-

ation) uncertainty of 0.56% cloud fraction per degree. For a 90% confidence interval, the

uncertainty would be equal to 1.81 times the standard deviation of the slope estimate,

assuming that the slopes are governed by a Student’s t distribution with 10 degrees of

freedom (= 2 less than the 12 months used in a regression). Thus, we estimate that the 90%

uncertainty in this slope is 0.56*(1.81/3) = 0.34% cloud fraction per degree. As SST is the

only cloud-controlling factor in Z15, this slope is equal to the climate change time-scale

cloud fraction sensitivity and a cloud feedback can be computed by multiplying by
dSST

dTg
= 0.7 and the - 1 W m-2 per % cloud fraction factor. This yields a value of

? 0.90 ± 0.24 W m-2 K-1 to the 90% confidence interval of the local low-cloud feed-

back from Z15.

M16

M16 report a local tropical cloud feedback of ? 0.4 ± 0.9 W m-2 K-1. This estimate

combines separate estimates from two independent observational datasets in two different

time periods. In order to illustrate the level of agreement, we show the results for each

dataset separately. Tim Myers kindly provided these estimates which are

? 0.7 ± 1.7 W m-2 K-1 for ISCCP-FD and ? 0.3 ± 1.1 W m-2 K-1 for CERES-EBAF.

We make two modifications to convert these estimates into our desired quantity. First, the

confidence intervals in M16 are 95% confidence intervals calculated assuming perfect

knowledge of the changes in cloud-controlling factors, and 95% uncertainty in the sen-

sitivities of clouds to controlling factors. We convert the uncertainty estimates to 90%

confidence intervals by multiplying by (1.645/1.96), the ratio of the t-distribution standard

variables corresponding to 90 and 95% confidence intervals for large number samples.

Second, M16 calculate cloud feedbacks from the difference between year 121–140 of the

abrupt quadrupling of CO2 climate model experiment and a control integration, so that

differences in cloud-controlling factors result not only from increases in temperature but

also from adjustments to the CO2 radiative forcing (Gregory and Webb 2008; Sherwood
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et al. 2015). Thus, the M16 ‘‘feedback’’ includes cloud changes from rapid adjustments in

cloud-controlling factors that needs to be removed in order to have an improved estimate of

the temperature-mediated changes in the cloud feedback as represented by (3). The most

significant of the cloud adjustments to remove from M16 are those in response to the rapid

adjustment of EIS. From the difference of the two climate states, M16 estimate an EIS

change of dEIS
dTg

¼ 0:28. As this is twice of our desired value of that dEIS
dTg

¼ 0:14, the EIS

component of the temperature-mediated cloud feedback in M16 is overestimated by a

factor of two. Using M16’s reported sensitivity of top-of-atmosphere shortwave cloud-

radiative effect to EIS, we calculate that the M16 feedback should further be adjusted

upward by 0.5 W m-2 K-1. With this second change, we arrive at our estimates of

? 1.2 ± 1.4 W m-2 K-1 for ISCCP-FD and ? 0.8 ± 0.9 W m-2 K-1 for CERES-EBAF

for the 90% confidence intervals of the local low-cloud feedback from M16.

B16

Table 5 of B16 reports the sensitivity of the albedo cloud-radiative effect to two cloud-

controlling factors, SST and EIS, using de-seasonalized variations and variations band-

passed filtered to 3 time-scales. To recover the cloud feedback of (3), we use our specified

values of dSST
dTg

and dEIS
dTg

, and then multiply the sum by the average insolation of

387.9 W m-2 that B16 calculates for their examined regions. The central estimate of the

calculated cloud feedback shown in Fig. 3 is produced using their central estimate of the

cloud sensitivities. B16 also report 90% confidence intervals for these sensitivities. But

because B16 use a boot-strap procedure, their confidence intervals are not symmetric about

the central estimate. In order to produce 90% confidence intervals for the cloud feedback

which are also asymmetric about their central estimate, the following approximate pro-

cedure was used. First a provisional lower bound is calculated using the lower bounds for

the EIS and SST sensitivities. Likewise, a provisional upper bound is calculated using the

upper bounds for the EIS and SST sensitivities. At the same time, we calculate our target

value of the difference between the 5th and 95th percentiles of the cloud feedback dis-

tribution by assuming that the 5th–95th percentile difference in the SST and EIS (scaled by

0.2) sensitivities add in quadrature. We then modify our provisional upper and lower

bounds such that the difference between upper and lower bounds equals our target value of

the difference between the 5th and 95th percentiles without changing the mean value of the

upper and lower bounds. By this procedure, we recover approximate 90% confidence

intervals for the cloud feedback that are asymmetric about the central estimate.

M17

M17 use their observed estimates of the sensitivity of cloud to EIS and SST to calculate a

cloud fraction change for a 1 degree rise in local SST and 0.2 degree rise in EIS. As the

ratio of EIS to SST changes is the same as our desired value, we only need to multiply their

estimates by dSST
dTg

= 0.7 and the –1 W m-2 per % cloud fraction factor to yield the local

cloud feedback according to (3). Their cloud sensitivities are calculated from observations

in three types of regions: (a) 4 latitude bands between 40�N and 40�S, (b) 5 regions with

predominately trade cumulus clouds, and (c) 5 regions that contain a mix of stratocumulus

and trade cumulus clouds. M17 do not calculate any confidence intervals, and thus in Fig. 3

we report all their estimates without 90% confidence intervals.
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Large-Eddy Simulation Cloud Feedbacks

For large-eddy simulations, we use the estimates of local cloud feedback from Table 1 of

Bretherton (2015) along with his characterization of cloud regime simplified to either

stratocumulus or trade cumulus. For simplicity, we characterize the LES for his transition

regime as stratocumulus. We also include the estimate from the large-eddy simulation of

precipitating trade cumulus in Vogel et al. (2016). Per degree of local SST, their simula-

tions have a radiation change that spans the range of 0.3–0.55 W m-2 K-1. We assign the

feedback from this study to the midpoint of this range and multiply by dSST
dTg

= 0.7 to arrive

at a value of the local cloud feedback of 0.3 W m-2 K-1 for this study. We note that the

exact environmental changes forcing the large-eddy simulations vary in these studies. For

example, some simulations omit changes to EIS (Vogel et al. 2016), while others may

include changes in additional environmental parameters such as wind speed, subsidence

and CO2 concentration (Bretherton 2015). Comparison is justified based upon the expec-

tation that the temperature response is the dominant factor contributing to the cloud

feedback.

Global Climate Model Cloud Feedbacks

Figure 3 shows a range of climate model feedbacks for tropical low-cloud regions. This

estimate was derived from Q15, Z15, M16 (second column of panel a in Fig. 2), and B16,

each of whom examined the cloud responses to climate change simulated by climate

models in each of their studied regions. Because the regions studied differ, the estimates of

cloud feedback from climate models will differ. The cloud feedback estimates may also

differ because these studies examined different model ensembles (Coupled Model Inter-

comparison Project Version 3 vs. Version 5), model experiments (scenarios such as A1B or

the Representative Concentrations Pathway 4.5 or 8.5 versus idealized experiments such as

the abrupt quadrupling or 1% per year increase of CO2), and model variables (cloud

fraction versus shortwave cloud-radiative effect). Cloud fraction sensitivities are converted

to cloud feedbacks by multiplying by the previously mentioned factor of - 1 W m-2 per

% cloud fraction. This is appropriate because Fig. 2 of Qu et al. (2014) showed that in

climate models the sensitivity of the top-of-atmosphere shortwave cloud-radiative effect to

cloud fraction in tropical low-cloud regions is close to this factor. The differing model

experiments means that the rapid cloud adjustments to CO2 are included in some studies. In

addition to these four estimates, we also consider the average cloud feedbacks in tropical

subsidence regions calculated from the abrupt CO2 quadrupling simulations analyzed in

Caldwell et al. (2016). These feedbacks primarily reflect the shortwave feedbacks from low

clouds due to the absence of upper-level clouds. Despite these differences, the upper and

lower bounds of the climate model values across the five studies differ by no more than

0.7 W m-2 K-1 from the multi-study mean values of - 0.8 and ? 1.8 W m-2 K-1 shown

in Fig. 3.
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