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Abstract
Weshow a kind ofObata-type theoremon a compact Einstein n-manifold (W , ḡ)with smooth
boundary ∂W . Assume that the boundary ∂W is minimal in (W , ḡ). If (∂W , ḡ|∂W ) is not
conformally diffeomorphic to (Sn−1, gS), then for any Einstein metric ǧ ∈ [ḡ] with the
minimal boundary condition, we have that, up to rescaling, ǧ = ḡ. Here, gS and [ḡ] denote
respectively the standard round metric on the (n−1)-sphere Sn−1 and the conformal class of
ḡ. Moreover, if we assume that ∂W ⊂ (W , ḡ) is totally geodesic, we also show aGursky-Han
type inequality for the relative Yamabe constant of (W , ∂W , [ḡ]).

Keywords Conformal geometry · Constant scalar curvature · Relative Yamabe constant ·
Einstein metrics

1991 Mathematics Subject Classication 58E11 · 53C21 · 53A30

1 Introduction andmain results

In [14,15], Obata has proved the following uniqueness theorem for constant scalar curvature
metrics (csc metrics for brevity) on a closed Einstein manifold.

Obata Theorem Let g be an Einstein metric on a closed n-manifold M (n ≥ 2), and ǧ ∈ [g]
a csc metric. Then, the following uniqueness result holds:
(1) If (M, [g]) is conformally equivalent to (Sn, [gS]), then there exist a homothety
� : (Sn, gS) → (M, g) and a conformal transformation ϕ ∈ Conf(Sn, [gS]) such that
�∗ǧ = ϕ∗(�∗g).
(2) If (M, [g]) is not conformally equivalent to (Sn, [gS]), then, up to rescaling, ǧ = g.

Here, [g] and gS = gSn denote respectively the conformal class of g and the round metric
of constant curvature one on the n-sphere Sn .

Supported in part by the Grants-in-Aid for Scientific Research (B), Japan Society for the Promotion of
Science, No. 18H01117.

B Kazuo Akutagawa
akutagawa@math.chuo-u.ac.jp

1 Department of Mathematics, Chuo University, Tokyo 112-8551, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-021-00598-y&domain=pdf
http://orcid.org/0000-0003-3657-0948


578 Geometriae Dedicata (2021) 213:577–587

We will first review briefly a uniqueness problem on compact manifolds with boundary,
which is related to Obata Theorem. LetW be a compact n-manifold (n ≥ 2) with non-empty
smooth boundary ∂W . Let ḡ be a metric on W such that ∂W is minimal in (W , ḡ). We shall
call such ḡ a relative metric on W (cf. [1]). For the conformal class [ḡ], its subset

[ḡ]0 := {g̃ = e2 f · ḡ | f ∈ C∞(W ), Hg̃ = 0 on ∂W }
= {g̃ = e2 f · ḡ | f ∈ C∞(W ), ν( f ) = 0 along ∂W }

is called the relative conformal class of ḡ, where Hg̃ denotes the mean curvature ∂W in
(W , g̃), and ν = νḡ denotes the inner unit normal vector field along ∂W with respect to ḡ.
Set

Sn+ := {x = (x1, · · · , xn, xn+1) ∈ Sn ⊂ R
n+1 | xn+1 ≥ 0}, Sn−1 := {x ∈ Sn | xn+1 = 0},

Conf(Sn+, [gS]) := {ϕ ∈ Conf(Sn, [gS]) | ϕ(Sn+) = Sn+},
where gS denotes both the round metric on Sn and its restriction to Sn+. Then, we consider
the following naive question:

Problem Let ḡ be a relative Einstein metric on a compact n-manifoldW with boundary ∂W .
Then, for any relative csc metric ǧ ∈ [ḡ]0, the question is whether the following uniqueness
holds or not.
(1) If (W , [ḡ]) is conformally equivalent to (Sn+, [gS]), then there exist a homothety
� : (Sn+, gS) → (W , ḡ) and a conformal transformation ϕ ∈ Conf(Sn+, [gS]) such that
�∗ǧ = ϕ∗(�∗g).
(2) If (W , [ḡ]) is not conformally equivalent to (Sn+, [gS]), then, up to rescaling, ǧ = ḡ.

Like the case of non-positive csc metrics on a closed manifold, if ḡ has non-positive scalar
curvature Rḡ ≤ 0, then the uniqueness for relative csc metrics in [ḡ]0 holds, up to rescaling
(see the argument of [11, Proof of Theorem3.6] for proof). Hence, in the above problem,
it is enough to consider only the case of positive scalar curvature Rḡ > 0. Unfortunately,
there exists a counterexample to the second assertion (2) (see Escobar [7, p. 875] for instance).
However, if we assume that ∂W is totally geodesic in (W , ḡ), then the following holds, which
is a relative version of Obata Theorem.

Escobar Theorem ([7, Theorems3.2, 4.1]). Let ḡ be an Einstein metric of positive scalar
curvature (positive Einstein metric for brevity) on a compact n-manifold W with totally
geodesic boundary ∂W . Then, for any relative csc metric ǧ ∈ [ḡ]0, the same uniqueness
assertions as those (1), (2) in Problem hold.

The proof of Obata Theorem consists of two steps. The first step is to prove that ǧ ∈ [g]
is also an Einstein metric on M . So ignoring the first step, we may regard Obata Theorem as
the uniqueness result for Einstein metrics in a given conformal class.

Our main result of this paper is the following, which is released from the assumption that
∂W is totally geodesic in (W , ḡ).

Theorem 1.1 Let ḡ be a relative positive Einstein metric on a compact n-manifold W with
boundary. Then, for any relative Einstein metric ǧ ∈ [ḡ]0, the following holds:
(1) Assume that ḡ is a metric of positive constant curvature, and set g := ḡ|∂W .
(1.1) If (∂W , [g]) is conformally equivalent to (Sn−1, [gSn−1 ]), then there exist a homothety
� : (Sn+, gS) → (W , ḡ) and a conformal transformation ϕ ∈ Conf(Sn+, [gS]) such that
�∗ǧ = ϕ∗(�∗g).
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(1.2) If (∂W , [g]) is not conformally equivalent to (Sn−1, [gSn−1 ]), then, up to rescaling,
ǧ = ḡ.
(2) If ḡ is not a metric of positive constant curvature, then, up to rescaling, ǧ = ḡ.

Moreover, if we assume that ∂W is totally geodesic, we also show the following Gursky-
Han type inequality (cf. [12, Theorem2.4]):

Theorem 1.2 Under the same setting as Escobar Theorem, the following inequality holds:

Y (W , ∂W , [ḡ]) ≥ n

n − 2
· Vol(W , ḡ)2/n

Vol(∂W , g)2/(n−1)
Y (∂W , [g]), (1)

where g := ḡ|∂W , and that Y (W , ∂W , [ḡ]) and Y (∂W , [g]) denote respectively the relative
Yamabe constant of (W , ∂W , [ḡ]) (see Sect.2 for definition) and the Yamabe constant of
(∂W , [g]). Moreover, the equality in (1) holds if and only if g is a Yamabe metric on ∂W.
When this equality holds, a reverse inequality of (1) holds:

Y (W , ∂W , [ḡ]) ≤
(Vol(Sn−1, gSn−1)

Vol(∂W , g)

) 2
n(n−1) · Y (Sn+, Sn−1, [gSn ])

Y (Sn−1, [gSn−1 ]) Y (∂W , [g]). (2)

The equality in (2) also holds if and only if (W , ḡ) is homothetic to (Sn+, gSn ).

This paper is organized as follows. In Sect. 2, we recall some background materials,
particularly a variational characterization of relativeEinsteinmetrics and theYamabeproblem
on compact manifolds with boundary. We also give another counterexample to the second
assertion (2) of Problem, which is different from the one in Escobar [7, p. 875]. In Sect. 3, we
prove Theorem1.2. In Sect. 4, we finally prove Theorem1.1.

2 Preliminaries

We first recall to the variational characterization of Einstein metrics on a closed manifold.
Let M be a closed n-manifold (n ≥ 3). It is well known that a Riemannian metric on a closed
manifold M is Einstein if and only if it is a critical point of the normalized Einstein-Hilbert
functional E on the space M(M) of all Riemannian metrics on M

E : M(M) → R, g 	→ E(g) :=
∫

M Rgdμg

Vol(M, g)(n−2)/n
,

where Rg , dμg and Vol(M, g) denote respectively the scalar curvature and volume measure
of g, and the volume of (M, g). However, if we consider the analogue of the case of the
functional E on a compact n-manifold W with non-empty boundary ∂W , then the set of
critical points of E on the space M(W ) is empty (see Proposition2.1 below), where M(W )

denotes the space of all Riemannian metrics on W . In this case, we need to fix a kind of
boundary condition for all metrics, and then E must be restricted to a subspace of M(W ).

For a fixed conformal class C ∈ C(∂W ) on ∂W , set several subspaces of M(W ) for a as
below:

M(W ,C) := {ḡ ∈ M(W ) | [ḡ|∂W ] = C},
Mconst(W ,C) := {ḡ ∈ M(W ,C) | ∃c ∈ R s.t. Hḡ = c on ∂W },
M0(W ) := {ḡ ∈ M(W ) | Hḡ = 0 on ∂W },
M0(W ,C) := M(W ,C) ∩ M0(W ) = {ḡ ∈ M(W ,C) | Hḡ = 0 on ∂W }.

By Proposition2.1 below, it is reasonable to restrict the functional E to the subspace either
M0(W ,C) or M0(W ).
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Proposition 2.1 Let W be a compact n-manifold with boundary and E the normalized
Einstein-Hilbert functional on the space M(W ). Then, the following holds:
(1) ḡ ∈ Crit(E|M0(W ,C)) if and only if ḡ is a relative Einstein metric with [ḡ|∂W ] = C.
(2) ḡ ∈ Crit(E|M0(W )) if and only if ḡ is an Einstein metric such that ∂W is totally geodesic
in (W , ḡ).
(3) Crit(E) = ∅, Crit(E|M(W ,C)) = ∅, Crit(E|Mconst(W ,C)) = ∅.
Here, for instance, Crit(E) and Crit(E|M0(W ,C)) denote respectively the set of all critical
metrics of E and the set of those of its restriction to M0(W ,C).

Proof Let {ḡ(t)}t∈(−ε.ε) be a smooth family of metrics inM(W ) satisfying ḡ(0) = ḡ. Then,
we get the following first variation of E ([1, Claim3.1], see also [2, Sect. 2]):

d

dt

∣

∣

∣

t=0

∫

W
Rḡ(t)dμḡ(t) = −

∫

W
〈Ricḡ − 1

2
Rḡ · ḡ, h〉ḡdμḡ

−
∫

∂W

{

2
( ∂

∂t

∣

∣

∣

t=0
Hḡ(t)

)

+ 〈Aḡ, h〉ḡ
}

dσḡ,

where h, Ricḡ and Aḡ denote respectively the variational vector ∂
∂t ḡ(t)

∣

∣

t=0 of {ḡ(t)}, the
Ricci curvature of ḡ and the second fundamental form of ∂W in (W , ḡ), and also dσḡ :=
dμḡ�(∂W ).

By considering the case that {ḡ(t)}t∈(−ε.ε) ⊂ M0(W ) with h = 0 on ∂W , one can check
that any ḡ ∈ Crit(E) satisfies Ricḡ = λ · ḡ (for ∃λ ∈ R). Here, we use that Hḡ(t) = 0
for t ∈ (−ε, ε). By considering the case that {ḡ(t)}t∈(−ε.ε) ⊂ M0(W ) without any extra
condition, one can also get that Aḡ = 0 on ∂W . However, since, for any fixed ḡ ∈ M(W )with

Ricḡ = λ · ḡ and Aḡ = 0, but ∂
∂t

∣

∣

∣

t=0
Hḡ(t) is not zero generally for {ḡ(t)}t∈(−ε.ε) ⊂ M(W ),

and hence Crit(E) = ∅. Similarly, we get

Crit(E|M(W ,C)), Crit(E|Mconst(W ,C)) ⊂ {ḡ ∈ M(W ) | ḡ is Einstein and Hḡ = 0 on ∂W },
and hence these are empty.

Assume that {ḡ(t)}t∈(−ε.ε) ⊂ M0(W ). By the same reason as above, we get the second
assertion (2). Assume also that {ḡ(t)}t∈(−ε.ε) ⊂ M0(W ,C). Then, we get similarly the first
assertion (1). ��

For ḡ ∈ M(W ), g̃ = e2 f · ḡ, the following holds (cf. [8, (1.4)]):

Hg̃ = e− f (Hḡ + νḡ( f )).

From this, note that [ḡ]0 �= ∅ for any ḡ ∈ M(W ). From now on, we throughout assume that
ḡ ∈ M0(W ), namely a relative metric on W . The restriction of E to any relative conformal
class [ḡ]0 is always bounded from below similarly to the case of closed manifolds. Hence,
we can consider the following conformal invariant of (W , [ḡ])

Y (W , ∂W , [ḡ]) := inf
g̃∈[ḡ]0

E(g̃),

which is called the relative Yamabe constant of (W , ∂W , [ḡ]), or (W , [ḡ]) simply (cf. [1]).
Then, the following Aubin-type inequality for relative Yamabe constants, the so-called rel-
ative Aubin’s inequality holds (cf. [8, (4)]):

Y (W , ∂W , [ḡ]) ≤ Y (Sn+, Sn−1, [gS])
for any compact Riemannian n-manifold (W , ḡ) with minimal boundary ∂W .
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The relative Yamabe constant is related to the Yamabe problem on a compact n-manifold
W with boundary below

The Relative Yamabe Problem For any ḡ ∈ M0(W ), find a minimizer ǧ ∈ [ḡ]0 of E|[ḡ]0 ,
namely

E(ǧ) = inf
g̃∈[ḡ]0

E(g̃) (= Y (W , ∂W , [ḡ])).

If such a ǧ exists, it is called a relative Yamabe metric in [ḡ]0, which is a csc metric with
Rǧ = Y (W , ∂W , [ḡ]) · Vol(W , ǧ)−2/n .

On the relative Yamabe problem, although the formulation (3) in Escobar [8] is slightly
different from the above, but these are same each other. The relative Yamabe problem was
solved by Cherrier [5] and Escobar [8] under some restrictions. Indeed, Cherrier proved the
existence of a minimizer for the Yamabe functional E|[ḡ]0 provided

Y (W , ∂W , [ḡ]) < Y (Sn+, Sn−1, [gS]). (3)

Escobar also solved the relative Yamabe problem under one of the restrictions we list below.
Here is the list of conditions given in [8, Theorem6.1] (on further developments, see [4] for
instance):
(i) n = 3, 4, or 5,
(ii) W has a non totally geodesic point on ∂W ,
(iii) ∂W is totally geodesic and (W , ḡ) is locally conformally flat,
(iv) ∂W is totally geodesic, n ≥ 6 and the Weyl tensor does not vanish identically on ∂W .
Note that, in the case of either (ii) or (iv), the above strict inequality (3) holds. By the above
results, it is easy to see that the relative Yamabe problem is generically solvable.

Next, we will give some examples for Escobar Theorem.

Example 2.2 (1) Let ḡ be the standard product Einstein metric on W := S2(1) × S2+(1),
where S2(1) denotes the round 2-sphere of radius 1 in R

3. It is obvious that ∂W is totally
geodesic. By Escobar Theorem, this metric ḡ is a unique relative csc metric in [ḡ]0, up to
rescaling.
(2) Set W := CP

2 − B4. Let gP be the Page metric on CP
2#(−CP

2) = W �∂W (−W ),
which is an Einstein metric and not a metric of constant curvature. Then, there exists a natural
isometric involution ι onCP2#(−CP

2) such that the fixed point set of ι is equal to ∂W (cf. [3,
Proof of Theorem9.125]). Hence, ∂W is totally geodesic. By Escobar Theorem again, the
restriction gP |W of gP to W is a unique relative csc metric in [gP |W ]0, up to rescaling.

We now give another counterexample to the second assertion (2) in Problem of Sect. 1,
which is different from the one in [7, p. 875].

Counterexample Consider the Clifford torus �(T 2):

� : T 2 = S1 × S1 → S3(1) ⊂ C
2, (θ, φ) 	→ 1√

2
(e

√−1θ , e
√−1φ) (0 ≤ θ, φ ≤ 2π).

It is a minimal flat torus. Set

V1 � V2 = S3(1) − �(T 2).

It is well known that Vol(V 1) = Vol(V 2), each of which V i (i = 1, 2) is a solid torus with
minimal boundary ∂V i = �(T 2). Hence, ḡ := gS |V 1

is a metric of constant curvature one
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on V 1, and thus it is a relative Einstein metric. However, since �(T 2) is not totally geodesic
in V 1, it is follows from Escobar’s result [8, Theorem4.1] that

Y (V 1, ∂V 1, [ḡ]) < Y (S3+, S2, [gS]).
Hence, from Cherrier’s result, there exists a relative Yamabe metric ǧ ∈ [ḡ]0 such that
E(ǧ) = Y (V 1, ∂V 1, [ḡ]). From the fact that E(ḡ) = Y (S3+, S2, [gS]) > E(ǧ), then ǧ �= ḡ,
and thus the uniqueness assertion for relative csc metrics does not hold. Note also that, from
Theorem1.1, (1.2), ǧ is not an Einstein metric. More generally, any separating embedded
minimal hypersurface N in Sn(1) (n ≥ 3) which is not totally geodesic produces a coun-
terexample as below. Let

W1 � W2 = Sn(1) − N with Vol(W 1) ≥ Vol(W 2),

and then E(gSn |W 1
) ≥ Y (Sn+, Sn−1, [gSn ]). By the same reason as the above, we get the

counterexample (W 1, gSn |W 1
) to the second assertion (2) in Problem.

We finally prepare a necessary result for our proof of Theorem1.1. The following result
follows from Frankel-Petersen-Wilhelm theorem[16, Theorem3] (cf. [9]) for minimal hyper-
surfaces in a Riemannian manifold with positive Ricci curvature.

Proposition 2.3 Let (W , ḡ) be a compact Riemannian manifold of positive Ricci curvature
with non-empty boundary ∂W. Assume that ∂W is a minimal hypersurface. Then, ∂W is
connected.

3 Proofs of Theorem1.2

In order to prove Theorem1.2, we first give another proof of Escobar Theorem, which is
slightly different from the one given in Escobar [7, Proof of Theorem4.1].

Proof of Escobar Theorem. Step 1 For a sufficiently small ε > 0, we consider the ε-tubular
neighborhood Uε(∂W ) of ∂W :

Uε(∂W ) = {p ∈ W | distḡ(p, ∂W ) < ε} ∼= [0, ε) × ∂W .

In terms of Fermi coordinates (t = x0, x) = (x0, x1, · · · , xn−1) = expx (t ·ν(x)), the metric
ḡ can be expressed by

ḡ(t, x)αβdx
αdxβ

= dt2 +
{

g(x)i j − 2t Aḡ(x)i j + t2(−Rḡ(0, x)0i0 j + (Aḡ ◦ Aḡ)(x)i j ) + T (t, x)i j
}

dxi dx j ,

(4)

where g(x) := ḡ(0, x) on ∂W , (Rḡ)αβγ δ denotes components of the Riemannian curvature
tensor of ḡ, and T (t, x) = O(t3) as t ↘ 0. We use here the summation convention with
Roman indices in the range 1 ≤ i, j, · · · ≤ n − 1 and Greek in 0 ≤ α, β, · · · ≤ n − 1. Let
D(W ) := W �∂W (−W ) be the double of W . Note that D(W ) has a natural differentiable
structure coming from the one of W .
Step 2 The metric ḡ on W can be extended naturally to a metric ĝ on D(W ). In particular, ĝ
can be expressed on the ε-tubular neighborhood Uε(∂W ) ∼= (−ε, ε) × ∂W of ∂W in D(W )

as

ĝ(t, x) =
{

g(t, x) for (t, x) ∈ [0, ε) × ∂W ,

g(−t, x) for (t, x) ∈ (−ε, 0] × ∂W .
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For a general relative metric ḡ on W , ĝ is only a C0,1 metric on D(W ) since Aḡ does not
vanish generally. But, by the assumption that ∂W is totally geodesic (i.e., Aḡ = 0 on ∂W ), ĝ
is a C2,1 metric on D(W ). Note also that there exists a natural isometric involution of D(W )

such that ι(t, x) = (−t, x) on Uε(∂W ) ∼= (−ε, ε) × ∂W .
Step 3 Cover Uε(∂W ) by a family of harmonic coordinates. Then, applying DeTurck-
Kazdan’s regularity theorem [6] to the relative EinsteinC2,1 metric ĝ onD(W ), we conclude
that (D(W ), ĝ) is a real analyticEinsteinmanifold. Set ǧ = u4/(n−2)·ḡ onW foru ∈ C∞

>0(W ).
Then u satisfies the following:

−4(n − 1)

n − 2
�ḡu + Rḡu = Rǧu

n+2
n−2 on W .

u can be naturally extended to a positive function û on D(W ), similarly to ĝ. In particular,
û(t, x) = u(−t, x) on (−ε, 0]×∂W . Note that ∂u

∂t = 0 on ∂W since ǧ is also relative metric.

Then, û ∈ C1,1
>0 (D(W )), and hence, by the elliptic regularity, û ∈ C∞

>0(D(W )). Setting
g̃ := û4/(n−2) · ĝ on D(W ), we get that g̃ is a csc C∞ metric on D(W ).
Step 4 Consider the two conformal metrics ĝ and g̃ on D(W ). By the first step of the proof
of Obata Theorem (cf. [17, Proof of Proposition1.4]), g̃ is also an Einstein metric, and that
it satisfies the following Hessian equation:

̂∇2φ = �ĝφ

n
ĝ (φ := û− 2

n−2 ),

where ̂∇ denotes the Levi-Civita connection of ĝ. If φ is not constant on D(W ), it is known
that (D(W ), ĝ) is homothetic to (Sn, gS) [14], [18] (cf. [13, Theorem24]). By the existence
of the isometric involution ι of (D(W ), ĝ), the following assertions are equivalent:
• (D(W ), [̂g]) is conformally equivalent to (Sn, [gS]).
• (W , [ḡ]) is conformally equivalent to (Sn+, [gS]).

By the fact that ι is also an isometric involution of (D(W ), g̃), Escobar Theorem now
follows from Obata Theorem. ��
Proof of Theorem 1.2 Set g := ḡ|∂W . Since ḡ is Einstein, then the Gauss equation for the
hypersurface ∂W implies that

Rg = n − 2

n
Rḡ ≡ const > 0 on ∂W .

Moreover, by Escobar Theorem, ḡ is a relative Yamabe metric on W . Then,

Y (∂W , [g]) ≤
(

∫

∂W
Rgdμg

)

· Vol(∂W , g)−
n−3
n−1

= n − 2

n

(

∫

∂W
Rḡdμg

)

· Vol(∂W , g)−
n−3
n−1

= n − 2

n
Y (W , ∂W , [ḡ]) · Vol(W , ḡ)−

2
n · Vol(∂W , g)

2
n−1 ,

and hence we get the desired inequality (1). It is obvious that the equality in the above
inequality holds if and only if g is a Yamabe metric on ∂W .

Now, we assume that the equality in (1) holds, equivalently that g is a Yamabe metric on
∂W . Without loss of generality, we may also assume that Ricḡ = (n − 1) ḡ. By Gromov’s
isoperimetric inequality [10] for (W , ḡ) in (D(W ), ĝ), we then have that

Vol(∂W , g)

Vol(W , ḡ)
≥ Vol(Sn−1, gSn−1)

Vol(Sn+, gSn )
. (5)
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Moreover, the equality in (5) holds if and only if (W , ḡ) is isometric to (Sn+, gSn ). Combining
the inequality (5) with the equality in (1), we obtain the reverse inequality (2) as below:

Y (W , ∂W , [ḡ]) = n

n − 2
· Vol(W , ḡ)

2
n

Vol(∂W , g)
2

(n−1)

· Y (∂W , [g])

= n(n − 1)

(n − 1)(n − 2)
·
( Vol(W , ḡ)

Vol(∂W , g)

) 2
n · Y (∂W , [g])

Vol(∂W , g)
2

n(n−1)

≤ n(n − 1)

(n − 1)(n − 2)
·
( Vol(Sn+, gSn )

Vol(Sn−1, gSn−1 )

) 2
n · Y (∂W , [g])

Vol(∂W , g)
2

n(n−1)

(by (5))

= n(n − 1)Vol(Sn+, gSn )
2
n

(n − 1)(n − 2)Vol(Sn−1, gSn−1)
2

(n−1)

·
(Vol(Sn−1, gSn−1 )

Vol(∂W , g)

) 2
n(n−1) · Y (∂W , [g])

=
(Vol(Sn−1, gSn−1 )

Vol(∂W , g)

) 2
n(n−1) · Y (Sn+, Sn−1, [gSn ])

Y (Sn−1, [gSn−1 ]) · Y (∂W , [g]).

��

4 Proof of Theorem 1.1

Proof of Theorem 1.1 Step 1 Consider the two conformal relative metrics ḡ and ǧ = φ−2 ·
ḡ ( φ ∈ C∞

>0(W ) ) given in Theorem1.1. Then the following formula holds [15] (cf. [17]):

Eǧ = Eḡ + (n − 2)φ−1
(

∇2
φ − �ḡφ

n
· ḡ

)

on W ,

where Eǧ := Ricǧ − Rǧ
n · ǧ. By the assumption that both ḡ and ǧ are Einstein, we get

∇2
φ = �ḡφ

n
· ḡ on W . (6)

By the assumption that both ḡ and ǧ are relative metrics, we then have that ∂φ
∂t = 0 along

∂W in terms of Fermi coordinates (t, x) = (t, x1, · · · , xn−1) around ∂W . From this, we also
note that

∇2
∂tφ = ∂2t φ on Uε(∂W ), ∇∂xi

∇∂xi
φ = ∇∂xi

∇∂xi
φ, �gφ = �gφ along ∂W ,

where ∂t = ∂
∂t , ∂xi = ∂

∂xi
and ∇ denotes the Levi-Civita connection of g := ḡ|∂W . Com-

bining the above Hessian equation on W with these equations, we then get

∇2φ = �gφ

n − 1
· g on ∂W . (7)

Step2 Case2-1 Assume that (∂W , [g]) is not conformally equivalent to (Sn−1, [gSn−1 ]).
Applying a result of Tashiro [18] (cf. [13, Theorem21]) to (∂W , g)with the Hessian equation
(7) for φ, we have that, if φ �≡ const > 0 on ∂W , then (∂W , [g]) is conformally equivalent
to (Sn−1, [gSn−1 ]). It contradicts our assumption. Hence, we get that φ ≡ const > 0 on ∂W .
Suppose that φ �≡ const > 0 onW . Then, Crit(φ|Int(W )) �= ∅. Take a point p ∈ Crit(φ|Int(W ))

and fix it. By applying another result of Tashiro [19] (cf. [13, Lemmas13, 18, Corollary19])
to the two Einstein metrics ḡ and ǧ = φ−2 · ḡ with the Hessian equation (6) for φ, there
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exists an open neighborhood U (⊂ Int(W )) of p such that ḡ is a metric of positive constant
curvature on U . Then, |Wḡ|2 = 0 on U , where Wḡ denotes the Weyl curvature tensor of ḡ.
Recall that (Int(W ), ḡ) is a real analytic Einstein manifold since ḡ is Einstein on W . Hence
|Wḡ|2 = 0 on Int(W ) (and so on W ). Using again that ḡ is a positive Einstein metric on W ,
we finally conclude that ḡ is a metric of positive constant curvature on W , and thus ǧ is so
too.
Case2-2 Assume that (∂W , [g]) is conformally equivalent to (Sn−1, [gSn−1 ]). Suppose that
φ �≡ const > 0 on W . If Crit(φ|Int(W )) �= ∅, the same argument as Case2-1 implies that ḡ
is a metric of positive constant curvature on W . Moreover, suppose that Crit(φ|Int(W )) = ∅.
Then, Crit(φ|∂W ) �= ∅ since φ �≡ const > 0 on W . Take a point p ∈ Crit(φ|∂W ) and fix it.
The fact that ∂φ

∂t = 0 along ∂W implies that p ∈ Crit(φ). Take a small open geodesic ball B
satisfying B ⊂ Int(W ) and B ∩ ∂W = {p}. One can check that the argument in the result
of Tashiro [13, Lemmas13 and 18, Corollary19] is still valid for polar coordinates on (B, ḡ)
centered at p ∈ ∂W ∩ B. Then, we have also that ḡ is a metric of positive constant curvature
on W , and thus ǧ is so too.

In any case, φ ≡ const > 0 on W unless ḡ is a metric of positive constant curvature on
W . Hence, this completes the proof of the second assertion (2) in Theorem1.1.
Step3 We finally assume that ḡ is a metric of positive constant curvature onW . This implies
that ǧ is so too. Without loss of generality, we may also assume that both ḡ and ǧ are of
constant curvature one. Let π : ( ˜W , g̃) → (W , ḡ) be the universal Riemannian covering.
We claim here that ∂ ˜W is connected even if ˜W may not be compact. Suppose that ∂ ˜W
is not connected. Since the deck transformation group of π acts transitively on each fiber
π−1(q) (q ∈ W ) and that the base spaceW is compact, one can check that the same argument
as the proof of Frankel-Petersen-Wilhelm theorem[16, Theorem3] is still applicable to our
case.Namely, there exist two connected components V1, V2 of ∂ ˜W and aminimizing geodesic
γ joining V1 and V2. Then, combining the Synge’s second variational formula for the length
of γ with zero mean curvature of V1, V2 and the positivity of Ricci curvature of g̃, we can
get a contradiction. Hence, ∂ ˜W is connected.

By Cartan-Ambrose-Hicks extension theorem in Riemannian Geometry, there exists an
isometric immersion δ : ( ˜W , g̃) → (Sn, gSn ). Take any p ∈ ∂ ˜W and fix it. We can also
have an isometric immersion σ : ( ˜W , ĝ) → (Sn, gSn ) with σ(p) = δ(p) ∈ Sn , where
ĝ := π∗ǧ = (φ ◦π)−2 · g̃. Then, there exists an open neighborhoodU (inW ) around p such
that both δ|U and σ |U are isometric embeddings. Since (σ |U ) ◦ (δ|U )−1 : (δ(U ), gSn ) →
(σ (U ), gSn ) is a conformal diffeomorphism, then there exists ϕ ∈ Conf(Sn, [gSn ]) such that
(σ |U ) ◦ (δ|U )−1 = ϕ|δ(U ). This implies that ϕ∗gSn = (φ ◦ π ◦ δ−1)−2 · gSn on δ(U ) (⊂ Sn).
Changing σ if necessary, we may assume that Sn − (δ(U ) ∪ σ(U )) �= ∅. We take a point
p∞ ∈ Sn − (δ(U ) ∪ σ(U )). We also assume that ϕ ∈ Conf(Rn = Sn − {p∞}, [gE]) with
ϕ(p∞) = p∞, where gE denotes the Euclidean metric on R

n . Then, there exist λ > 0 and
v ∈ R

n such that

ϕ∗gSn = ϕ∗(( 2

1 + |z|2
)2 · gE

)

, z ∈ R
n

=
( 2λ

λ2 + |z − v|2
)2 · gE

=
( λ(1 + |z|2)

λ2 + |z − v|2
)2 · gSn .
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Hence,

φ ◦ π ◦ δ−1 = λ2 + |z − v|2
λ(1 + |z|2) on δ(U ) (⊂ R

n = Sn − {p∞}).

Note that, if λ = 1 and v = 0, then ϕ is an isometry of (Sn, gSn ) and that φ ≡ 1 on
π(U ) (⊂ W ). Since both ḡ and ǧ = φ−2 · ḡ are analytic metrics on Int(W ), then φ is an
analytic function on Int(W ), and hence φ ≡ 1 on W . Thus, ǧ = ḡ.
Case3-1 Assume that (∂W , [g]) is not conformally equivalent to (Sn−1, [gSn−1 ]). By the
argument of Case2-1, we then have that φ ≡ 1 on ∂W . Suppose that φ �≡ 1 on W . This
implies that either λ �= 1 or v �= 0. Then,

∂(δ(U )) = δ(∂ ˜W ∩U ) ⊂ {z ∈ R
n | λ(1 + |z|2) = λ2 + |z − v|2},

and hence, for any z ∈ ∂(δ(U )),

Tz(∂(δ(U )) = {w ∈ R
n | 〈w, (λ − 1)z + v〉 = 0}.

Thus,

T⊥
z (∂(δ(U )) = {t · (

(λ − 1)z + v
) | t ∈ R}.

Recall that ∂φ
∂t = 0 along ∂W in terms of Fermi coordinates (t, x1, · · · , xn−1). We then get

that gradz(φ ◦ π ◦ δ−1) = −2λ−1(1+ |z|2)−1
(

(λ − 1)z + v
) = 0 for any z ∈ ∂(δ(U )). This

implies that λ = 1 and v = 0, and hence this leads to a contradiction. We can now conclude
the assertion (1.2) that φ ≡ 1 on W and ǧ = ḡ.
Case3-2 Assume that (∂W , [g]) is conformally equivalent to (Sn−1, [gSn−1 ]). We consider
the restriction π |∂ ˜W : (∂ ˜W , g̃|∂ ˜W ) → (∂W , g) of the universal Riemannian covering π :
( ˜W , g̃) → (W , ḡ) to ∂ ˜W , which is also a Riemannian covering. Since ∂ ˜W is connected
and that ∂W ∼= Sn−1, then the restriction π |∂ ˜W : (∂ ˜W , g̃|∂ ˜W ) → (∂W , g) must be an
isometry. Hence, the covering π is a 1-fold Riemannian covering, namely an isometry, and
thusW is simply connected. ByCartan-Ambrose-Hicks extension theorem again, there exists
an isometric embedding δ : (W , ḡ) → (Sn, gSn ). By the assumption that (∂W , [g]) is
conformally equivalent to (Sn−1, [gSn−1 ]), there exists a closed geodesic ball Br (p0) of
radius r > 0 centered at p0 in (Sn, gSn ) such that δ(W ) = Br (p0). If r �= π

2 , then ∂Br (p0)
is not minimal, and so ∂W is not minimal. Hence, r = π

2 , and that (W , ḡ) is isometric to
(Sn+, gSn ). It then follows from the assertion (1) of Escobar Theorem that the assertion (1.1)
of Theorem1.1 holds. This completes the proof of Theorem1.1. ��
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