
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:2
https://doi.org/10.1007/s10710-023-09449-z

1 3

Framework for unsupervised incremental evolution
of stylized images

Florian Uhde1 

Received: 30 July 2021 / Revised: 2 January 2023 / Accepted: 4 January 2023 /
Published online: 28 February 2023
© The Author(s) 2023

Abstract
This paper examines and showcases a framework to generate artworks using evo-
lutionary algorithms. Based on the idea of an incremental abstract artistic process
stylized images are generated from different input images without human supervi-
sion. After explaining the underlying concept, the solution space of different styles
is explored and its properties for style consistency and style variety are discussed.
A first step towards better control of the outcome is implemented through masking,
followed by a discussion about potential improvements and further research.

Keywords  Genetic algorithm · Artistic rendering · Computational art

1  Introduction

Whereas evolutionary systems are often used to support optimization-focused, domain
specific design tasks, the act of creating artistically pleasing artworks remains a chal-
lenge. Based on the idea of art creation as a series of composeable, stacked actions
towards an desirable result, this work conceptualizes a framework of artistic creation. It
uses a genetic algorithm and the means of evolution to produce artistic artifacts without
human supervision. Using simple building blocks and their composition the algorithm
exhibits a wide variety of parameters which allow to configure the emerging human-
like painting process. A variety of different styles and expressions can be achieved,
while each of those can be applied to different inputs, producing consistent results.
The following section positions this work in the wider context of creative evolutionary
systems and highlights similarities and core differences to existing approaches. After-
wards, Sect. 3 explains the concept and Sect. 4 explores aspects of its implementation.

 *	 Florian Uhde
	 florian.uhde@posteo.de
	 https://www.inf.ovgu.de/en/

1	 Faculty of Computer Science, Otto-von-Guericke-University, Magdeburg, Germany

http://orcid.org/0000-0003-2409-645X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09449-z&domain=pdf

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 2 of 21

Finally Conclusion and Future Work highlights some improvements and possible next
steps (Fig. 1).

1.1 � An incremental artistic process

The process mimicked by the algorithm in this paper defines the creation of art as an
overlapping series of actions. An artist, striving to express an object otruth , will do so by
firstly perceiving it as oartist and secondly expressing this representation of the object in
a medium, creating oart . The perception of the artist is shaped by a multitude of factors:
Inner convictions, social surroundings, upbringing, education, ideology and so forth.
This results in a transformation during the perception, turning otruth into a personalized
version of the object oartist . When creating art based on oartist the used medium and
the skill of the artist influence the outcome oart . The transformation of o throughout
this process is what defines the style and signature of an artist. Both are embodied in
the personalized way of viewing otruth , as well as in the ability and limitations of the
expression within the chosen medium.

While executing these transformations the artist takes a series of actions, each step
being perceived as the current, most valuable one. As an example, when constructing a
landscape painting, an artist might start with a rough composition, coloring large-scale
features to give a backdrop and then further refine the outlines, adding details and fine
grained shades further into the process. This abstract way of art creation is the founda-
tion of the algorithm designed and explored in this work. The framework presented in
this work simulates this process by splitting the image generation process into a series
of brush strokes, that are optimized against a global fitness function. Different experi-
ments are conducted to investigate the expressiveness and consistency of the developed
system, to validate its usefulness as a starting point for further research.

2 � Related work

At their core all evolutionary algorithms solve a search problem for a good candi-
date of a certain fitness function within a vast solution space. To achieve this, the
algorithm utilizes two systems, one for creating and modifying such candidates, and

Fig. 1   Example results created within the scope of this work

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 3 of 21  2

another for rating them in terms of their fitness. After already being used for various
tasks in high-knowledge domains like architecture and engineering, supporting the
human knowledge workers in different applications, their usage as generative sys-
tems for art was pioneered by Dawkins[1] and later on popularized by Sims [2] and
Todd [3]. Today numerous systems exist that generate 2d image artifacts via various
approaches [4–11]. In the context of this work the concept of creating two dimen-
sional artworks can be divided into imaginative- and interpretative-systems (for a
much finer classification see [12]).

Imaginative systems try to evolve and create the very object that should be
expressed as an artwork, while Interpretative systems strive to reinterpret an existing
object artistically. Examples from the first category are often expression based sys-
tems, modeling the generated picture as a set of functions [2, 13–15]. Approaches
from the second category seek to replicate a given source image by reinterpreting it
[4, 9, 16, 17], shifting the focus from the generation of an interesting object, towards
an interesting interpretation. The algorithm in this work follows a interpretative
approach, implementing a simplified artistic process. A common problem, given
the vast solution space and the subjectivity of artworks, is the rating of candidates
[18]. Evaluating the aesthetics of a generated image is hard using evolutionary algo-
rithms, due to the complexity of fitness function that would incorporate the notion of
aesthetics. The solution space also contains many undesirable results, either because
of missing aesthetic features, or because they are unimpressive and just ’more-of-
the-same’. One possible solution to this problem is to include human interaction in
the design process [19]. Those interactive evolutionary computing systems are able
to produce a variety of artifacts for images [14, 15, 19–21]. At the same time involv-
ing a human slows the generative process down and, due to the subjective nature,
also comes at a cost for consistency and coverage [18, 22]. While the mentioned
problem of efficient solution space exploration is less prevalent in interpretative sys-
tems, as the content of the painting is defined by the input image, the generation
of an interesting and artistically pleasing result remains a difficult task. Fully auto-
mated algorithms struggle to identify visually interesting, so called salient, elements
of the source image, something that humans easily do [23]. Failing to identify those
elements and creating a painting by some form of uniform optimization [9], “tends
to produce a machine-generated signature in the resulting painterly renderings” [23].
More recent approaches therefore “[...] trend away from use of local low-level image
processing operators towards the incorporation of mid-level computer vision tech-
niques in stroke placement heuristics” [23]. Those techniques include color segmen-
tation [8], analysis of interest by eye-tracking [24] and image heuristics like salience
mapping [25] or complexity [26] to guide the algorithm in the generative process.
While the problem of salience is not addressed as directly as in other works [23, 25]
it allows for some intrinsic benefits (see Sect. 4.2).

The approach of this work, outlined in the next section, draws inspiration from
existing interpretative systems, especially the concept of composing the final image
from a set of brush-strokes [4–6, 27], while this approach works with primed tex-
tures of strokes that are imprinted like stamps, rather than constructing the stroke
curvature itself. Other implementations exist, which explore a similar direction
[10, 11, 28]. Contrary to a global generation and optimization of a final image, this

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 4 of 21

works focus on a local, limited generation, combined with a global fitness function.
This yields a composition of multiple optimized steps, which can only reach a cer-
tain fitness on their own, rather than a globally optimized result. Incorporating more
complex measures to evaluate the fitness of the candidates [29, 30] may increase the
perceived creativity [7] and overall complexity [26] of the results, as discussed in
Sect. 5.

3 � Evolutionary artistic rendering

As described in Sect. 1.1 the idea of this work is to transform the art of painting
into an incremental optimization problem. Instead of optimizing a number of fully
evolved candidates globally, it limits the optimization process to a number of sub
routines, each optimizing up to a certain fitness ceiling, before expanding the solu-
tion space. By transforming the problem of “What is the best candidate” into “What
are the best next n steps to take” the system mimics an incremental process, con-
structing the painting piece by piece. By restricting the possible actions for the algo-
rithm to choose from, a consistent and expressive style can be created and applied to
input images.

3.1 � Overview of the system

This section explains the high level workings of the algorithm and shows the differ-
ent parts and how they interact with each other. This serves as a foundation for the
following sections.

The overall system used for the generative process is shown in Fig. 2: A source
image () and a configuration serve as the input of the system. To mimic the
incremental approach described in Sect. 1.1 the system goes through a number of
i iterations, each resulting in c strokes permanently added to the canvas ().
Every iteration starts with a fresh population of potential individual (), which
are optimized through multiple generations, using the means of evolutionary algo-
rithms explained in Sect. 3.2, to find the current best c strokes and imprints them
onto the canvas. This process continues until a finishing criteria (total number of
iterations, or overall fitness of the candidate image), is achieved. Given c strokes per
iteration and i iterations the total number of strokes on the canvas after finishing the
process is i ∗ c.

3.2 � Evolutionary algorithm

To generate a desirable image the process uses a genetic algorithm to optimize
candidates. A decent familiarity with evolutionary, especially genetic algorithms,
is assumed. A more complete introduction into genetic algorithms is given in [12]
or [31]. This section features key areas of interests of the artistic process. First the

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 5 of 21  2

genotype and phenotype representation, defining how candidates are stored and ren-
dered, are explained, then the manipulation and selection strategies and lastly the
possible parameter space for the image generation, as well as some aspects of the
implementation.

3.2.1 � Genotype & phenotype

The genome for a single candidate consists of n sub-sections, each describing a sin-
gle brush stroke, where n equals the number of strokes per candidate defined glob-
ally for the generation process. The maximal configuration of a single brush stroke
part is shown in Fig. 3. As mentioned in Sect. 3.3, values that are removed from
the evolutionary process, for example by fixing their value, are pruned and will not
show up in the genome. Each gene provides the interpreter with a value between
0 and 1, which then in turn is translated to form the phenotype of a brush stroke.
The phenotype of a single brush stroke, as shown in context in Fig. 4, translates the
[0,1] values from the genotype into the transformation and shape to be imprinted on
the canvas. Technically a brush stroke is a transparent quad, with a certain texture,
which is scaled, rotated and positioned on the canvas. The position is encoded as a
vector within the canvas object space. This means (P1,P2) = (0, 0) corresponds to
the lower left corner, (1,1) to the upper-right respectively. The quad can be rotated
clockwise, e.g. a value R1 = 0.25 yielding a 90 degree rotation. The quads uniform
scale is defined by a base size (see Sect. 4.2), which is calculated by the overall algo-
rithm and not evolved with the candidates. The scale gene can be used to deviate
from this base size by [−5%, 5%]. This mechanic and its effect is explained further
in Sect. 4.2. The actual texture content is selected from a texture array of size t. The
array holds multiple brush strokes, allowing the algorithm to evolve the stroke tex-
tures used by each candidate, as shown in Sect. 4.1. To allow this, B1 gets translated
into an index of the array, indicating which texture to pick. If the array only con-
tains a single texture (see Sect. 5.: Cubic brush pack) B1 has no effect and is pruned
from the genome. Lastly the texture selected is tinted by a RGB color defined by
(C1,C2,C3) multiplied by the transparency value of the texture.

Fig. 2   High-level overview of the procedure

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 6 of 21

3.2.2 � Manipulation

One important part of evolutionary algorithms are the means of manipulat-
ing candidates. Two general concepts for this are mutation and recombination.
The proposed algorithm implements rather simple variants of both mechanics to
change the genome of candidates. Mutation is controlled by an overall mutation
rate [0,1] expressing the chance to mutate for each candidate. If a mutation occurs
a two step process selects a gene within the candidate and then a single bit within
this gene to flip. While this method is quite robust and can execute reasonably
fast, it has the drawback of high interdependence between the number of brush
strokes, as well as the precision (see Implementation) of the genome representa-
tion. A higher number of strokes n gives a longer genome per candidate and as
only a single mutation is carried out, the chance of each brush to be mutated is
1

n
 . Furthermore, due to the binary representation of numbers, the position of each

gene that is mutated has a strong influence on the resulting numerical change. A
mutation on position c in our gene will change the value of the gene by 2c

maxValue
 ,

where maxValue depends on the chosen data type and is used to normalize the
gene. The current implementation balances these shortcomings by having a gen-
erally high mutation rate of 90%. This allows for a fast exploration of the solution

Fig. 3   Maximum genome configuration for a single brush stroke. Each box corresponds to one gene,
which yields a value within [0,1]

Fig. 4   Phenotype of a single brush stroke, with a certain color, placed and transformed on the canvas

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 7 of 21  2

space, which leads to quick convergence to sensible brushes, due to the high
selection of the tournament selection. Recombination executes a uniform crosso-
ver strategy between two candidates A and B [32]. For each gene index of A and B
a swap is performed with a likelihood of 50%, exchanging the gene of A with the
gene of B and vice versa. As this crossover is performed on each individual gene
it is independent of the genome length. As a single gene fully encodes a pheno-
type property as mentioned in Sect. 3.3, crossover will never change the value of
a gene, instead only swap properties between two candidates.

3.2.3 � Selection and fitness

The last component of the evolutionary algorithm is the selection of candidates to
create the next generation for the population. This approach uses Tournament Selec-
tion [33]. This selection model provides a reasonably high selection pressure [34],
a higher-than-average fitness in each child generation and beneficial implementa-
tion properties, due to the ability to run in parallel. The fitness function is used by
the evolutionary algorithm to rate the performance of different individuals. In this
work the fitness function compares the artifact generated by painting the candidates
strokes onto the current canvas with the original image. A simple way of comparing
two images is the negated sum of the difference between all pixels (Eq. 1).

Equation 1: Fitness function, used to evaluate sets of brush strokes.
This work uses a slightly improved variation of Δpixel (see Eq. 2), scaling the dif-

ference of each color channel to approximate the visual sensitivity of human percep-
tion [35]. r̄ is mean red value, �R,G and B are the Euclidean distances within each
color channel. The Sect. 5 discussed various further improvements that can be made
to this, which might unlock more sophisticated image analogies.

Equation 2: Equation to calculate color distance, per pixel, between source and can-
didate image [35].

3.3 � Implementation

The software is implemented in C# and HLSL1 using the Unity3d Engine2 for ren-
dering and GeneticSharp [36] for the evolutionary optimization. The source code

(1)1 −

∑width

x=0

∑height

y=0
�pixel(candidate(x, y), source(x, y))

width ∗ height ∗ maxDifference

(2)𝛥pixel(C1,C2) =

√(
2 +

r̄

256

)
× 𝛥R2 + 4 × 𝛥G2 +

(
2 +

255 − r̄

256

)
× 𝛥B2

1  https://​docs.​micro​soft.​com/​en-​us/​windo​ws/​win32/​direc​t3dhl​sl/​dx-​graph​ics-​hlsl, accessed 27.10.2020.
2  https://​unity.​com/, accessed 27.10.2020.

https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://unity.com/

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 8 of 21

is publicly available at https://​github.​com/​floAr/​Evolu​tiona​ryArt​istUn​ity, including
Unity prefabs of the experiments used in the following section. The genome struc-
ture is a custom implementation to allow for fast normalization and adaptive pruning
of genes, that are set to constant values. One important concept is that a single gene,
for the purpose of genetic algorithms, holds multiple bits of data, which map to a
single property of a brush stroke. This allows operations like mutation and crosso-
ver to either operate on bit level (operate the numeric value of a property) or gene
level (operate on the whole property). By default gene values are represented using
16bit unsigned integers which are mapped from [0, 65.535] to [0,1],3 resulting in
a minimum step size of 1.52e−5 between possible values. If desired, this could be
decreased to use 8bit unsigned integers, with a step size of 3.9e−2 and a smaller
memory footprint, or increased up to 64bit, resulting in a step size of only 5.5e−20 .
The computation of heavy operations like painting a candidate, imprinting the can-
vas and comparing a candidate with the source image is implemented using shaders
and executed on the GPU, to allow parallelization.

4 � Evaluation

In this chapter the properties and artistic capabilities of the system are explored and
evaluated. This work focuses on the expressiveness of the system (see Sect. 4.1), as
it is fundamental to help its user to express an artistic idea. Figure 5 shows the input
images used for the experiments. Each image is scaled to 512 by 512 pixels and
used in the experiments without further modification. The first two images are paint-
ings by Johannes Vermeer [37] and Vincent Van Gogh [38], the third and fourth
images are photographs, with minor modifications (some houses on the horizon
were cropped out) and the last image serves as a benchmark for stroke precision and
color fastness.

In total four different brush texture packs were used: Watercolor, Droplets, Cubic
and Stroked. The appendix lists the brush textures used in each pack.Unless speci-
fied otherwise the experiment settings used for the genetic algorithm are 50 itera-
tions, with 7 strokes per candidate. This yields results made up from 350 individual
strokes, as each iteration uses a population-size of 100 individuals per generation,
each individual encoding 7 strokes. The evolutionary algorithm optimizes until the
terminal condition of 20 generations of stagnant fitness is reached, then the win-
ning individual is imprinted onto the canvas and a new iteration is started. Selection
is done with Tournament Selection [33], with a tournament size of two genomes.
Mutation is handled by flipping a random bit, the mutation chance starts at 90% and
decreases by 10% every 50 generations, down to a minimum of 20% (see. Sect. 3.3
for the reasoning behind this). Crossover uses the Uniform Crossover strategy [32]
with a fixed probability of 50%. For the experiment all features of a brush stroke
are evolved as described in Sect. 3.2.1. Other default settings are base opacity value

3  https://​docs.​micro​soft.​com/​en-​us/​dotnet/​csharp/​langu​age-​refer​ence/​built​in-​types/​integ​ral-​numer​ic-​
types, accessed 22.10.2020.

https://github.com/floAr/EvolutionaryArtistUnity
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/integral-numeric-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/integral-numeric-types

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 9 of 21  2

for each brush, set as � = 0.7 (70% opacity) and a brush base size which interpo-
lates between 0.8 (which corresponds to 80% of the canvas) and 0.025 over all itera-
tions. The functions used to interpolate are shown in Fig. 9 and their effect evaluated
in Sect. 4.2. While adding those features to the evolutionary set widens the search
space, the decision to fix them for most experiments was made to limit the scope and
increase the comparability of the results. The generative process starts from a white,
or black canvas, depending on the overall background color of the source image. All
experiments with their parameters can be seen in Fig. 17. A recording, showing the
setup and a run of the algorithm, is available at https://​youtu.​be/​KEuT2​mphq0w.

4.1 � Expressiveness

A core requirement of an artistic system is the ability to express the users desired
artistic outcome. Therefore this section evaluates the expressiveness of the algo-
rithm. For this, two different aspects are to be considered: Style Variety, which is the
scope of different styles that can be generated, as well as Style Consistency, which
means generating consistent results, when applying a selected style to different input
images. Both features are important to model the signature and style described in
Sect. 1.1. To model a signature and style of an artist the system needs to be able to
generate diverse, but also consistent styles.

4.1.1 � Style variety

The simplest way of creating different styles is adjusting the brushes used to paint
the image. In Fig. 6 three different examples of possible styles, which vary only
in the selected brush texture, are shown on four different images. Each row shows
how a single image can be represented differently by changing the brush texture,
creating variety in plasticity and style, while preserving the content. This is in line
with [4] which found that brush characteristics are a mayor factor influencing the
outcome of the generative process.

The first two columns show how relatively similar brushes, both are opaque and
laminar, can invoke very different detail textures. The difference in shape (stretched
vs circular) as well as in border structure (smooth vs rigged) translate nicely into
the structure of the painting, without creating noticeable artifacts. The third column
shows how far a style can differ, given a more diverse brush set. The thin strokes

Fig. 5   Input images used. From left to right: Girl with a Pearl Earring [37], Wheat Field With Cypresses
[38], Photos of a dog under tree and a church (2020) and benchmark image

https://youtu.be/KEuT2mphq0w

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 10 of 21

create a hatched and sketchy look, overshooting the content target (especially notice-
able in the benchmark image on the very bottom), as their inherit error for this is
way smaller compared to more laminar brushes.Other means of variation are shown
in Fig. 7: Using the same brush texture different images can be generated by setting
other constrains. The first column shows the image generated by the Cubic brush
packs, which uses a single, white square as the only brush texture. The upper image
uses the default configuration and is able to replicate the image quite well using

Fig. 6   Different brushes yield varying results. From left to right: The Watercolor, Droplet and Strokes
packs were used (see Sect. 5)

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 11 of 21  2

rotation and scale to vary the single texture. The lower image shows a result with
fixed rotation. In this case the R1 gene (see Sect. 3.2.1) is removed for each brush
and instead provided as a fixed value. This leads to axis aligned blocks, which can
not approximate the geometry of the source as well as before, yielding a mosaic
like style. The center column shows the difference between the default opacity value
(70%) in the first row and 20% opacity below. The image with lower alpha, albeit
using the same brush pack, appears smoother and more continuous. The last column
shows the default result for the Watercolor brush and a variant where the color genes
where removed below. Instead a single gene was used in the genome to evolve a one-
of-n color selection. Just like brush selection this allows the algorithm to only evolve
colors from a predefined set. The color space consists of seven colors sampled from
the image (shown in upper image) as well as black and white. Furthermore the � for
the brushes was fixed on 100% opacity for this experiment, to prevent color mixing
due to blending. This limitation results in a posterized look of the image, bringing
forth sharp contrasts and cutting smaller features due to missing means of approxi-
mation. This examples show the capabilities of the system to express multitudes of
styles given the possible combinations of different restrictions.

4.1.2 � Style consistency

Given the ability to generate a variety of different styles, enabling a wide spectrum
of styles to realize a custom reinterpretation, consistency is as important when

Fig. 7   Example of fine grained style variation. The upper image is the ’default’, the lower one a more
restricted result. The leftmost column has constrained rotation, the center one uses a lower transparency
value and the right one is limited to a set of seven colors

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 12 of 21

considering an artistic tool. As described in Sect. 1.1 the combination of both fac-
tors allow to mimic the transformative process of creating an artwork from an inter-
nal representation. Looking at Fig. 6 each column shows that a style produces con-
sistent results over a variety of different images, creating an equable look and feel.
Between different types of input images, style elements remain noticeable and create
a recognizable set of interpretations. This effect increases as the difference between
the used style restrictions does. The more regulated and therefore specific a certain
style is, the easier it is to recognize those peculiarities in the generated artifacts.

4.2 � Image saliency

Within approaches that aim to transform an input image into stylized artefacts, a com-
mon problem is detection of salient regions. One way to counteract this problem is to
employ more complex operators in the fitness function, like higher order computer
vision mechanics [8, 25] to preprocess the image, or to be used in the fitness func-
tion. This approach instead makes use of emerging properties of the image generation
itself: The way an image is constructed by the algorithm resembles the construction
of a painting as done by humans (see Sect. 1.1). This behaviour emerges because of
two properties of the algorithm: By only being able to place a limited number of brush
strokes the algorithm has a fitness ceiling for each iteration. Given seven strokes in
the first iteration the target image can only be approximated to a certain amount. This
leads to the construction of the artwork from coarse to fine, as filling the most erro-
neous large areas will yield the highest fitness gain. Furthermore the adjustment of
the brush size over the course of the process strengthens the behaviour to start with
larger features and move to more detailed adjustments later on, starting already from a
more sophisticated representation. This progression from coarse to fine features forces
the algorithm to only add smaller details, after the overall color composition has been
already executed, which favors regions with smaller details in later iterations. This
behaviour is visible in Fig. 8, which shows the canvas at different stages in the evolu-
tion process. The first iteration provides the overall shading, as the seven brush strokes
are used to cover the white background. Four iterations later the outline of the image
is roughly sketched, and the following iterations keep on refining the outline and add-
ing finer shading. After 50 iterations the overall outline of the image is clearly defined,
with the latest and smallest strokes adding highlights and details. While this does not
directly map to salience in all cases, it puts focus onto adding high contrast details,
which correlates with visually highly interesting regions [23].

A more detailed examination of different brush size progressions (Fig. 9) and its
influence on the generated result can be seen in Fig. 10. The target image contains
many details, such as small shaded areas, color gradients and tiny features, which
makes it hard to replicate truthfully. Between the three results the only difference is
how the brush size was interpolated between 0.8 and 0.025. Equation 5 shows an

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 13 of 21  2

approximation three different lerp-functions used.4 the brush size is calculated for
each iteration i by interpolating between the maximum and minimum size. In Fig. 10
the results of different lerp-functions are shown: Image (A) uses the Bias Small func-
tion (blue), which converges fast to small brush sizes, (B) uses the Default function
(red) and image (C) uses the Bias Large function (green), with a focus on larger brush
sizes.

(3)blue = 1 −
√
2 − x +

√
x

(4)red =
1

2
(1 + cos� + x)

(5)green =
√
1 − x2

Fig. 8   Different stages of the generation of a single image. Left to right: 1, 5, 25 and 50 iterations

Fig. 9   Interpolation functions to calculate brush size

4  Those functions are Unity specific implementations so the actual implementation might vary slightly

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 14 of 21

Equation 5: Approximations of different lerp functions for scaling the brushes.

The results show the effect of brush size on plasticity, with the smaller brushes creat-
ing a very ’rough’ surface, whereas the large brushes tend to blend together, exhibiting
smoother gradients and softer edges. By adjusting the brush stroke sizes available to the
algorithm certain focus on detail can be triggered, as the smaller strokes tend to embed
smaller features into the design, as their effect to the fitness function is greater on small,
high contrast features, than on large areas.While this helps to alleviate some of the prob-
lems in regards to missing salience detection, it does not solve the problem in itself, as
all these intrinsic optimizations operate on a uniform level. This can be seen in Fig. 6,
when comparing the landscape painting with the portrait: While the landscape painting
has a relatively even distribution of salience, the portrait has specific details, like the
eyes and lips, which are not captured well with this approach. A hybrid is the photo of
the dog under the tree where the algorithm adds detail to the landscape, but also fails to
add enough detail to the dog itself, reducing its presence in the final outcome.

4.3 � Masking

Further guidance of the process is achievable, by masking important regions of the
image. Masking results in an adjustment of the error values, which are multiplied by a
value between 0 and 1, therefore shifting the importance of those regions accordingly.
A value of 1 (white) means the error produced in this pixel is facilitated fully into the
overall error, whereas a value of zero (black) would remove this pixel completely from
the error metric, effectively allowing the algorithm to fill this pixel with any color,
without any effect for the evolutionary algorithm. This technique is especially valuable
on source images with a high noise, as it allows the artist to specify precise points of
interest, preventing the process to get stuck on local detail, that are not adding to the
overall, desired appearance of the result. If a mask is provided, the fitness function in
Sect. 3.2.3 is multiplied by the r channel of the mask texture, as shown in Eq. 6.

Fig. 10   Influence of different size compositions. From left to right: a Bias towards small brush strokes, b
default and c bias towards large brush strokes

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 15 of 21  2

Equation 6: Fitness function, with additional masking.

In Fig. 11 the result of a masked generation is shown: Given the binary nature of
the mask the process ignores the region that is not masked in white completely and
tries to put as many strokes on the triangle outline as possible. While this provides
effective means of shaping the focus of the algorithm towards the source image it
remains a complex task to establish mask for more complex source images.

Figure 12 shows more complex images produced used the same setting as in Fig.6, but
facilitating different masks. Depending on the mask the process exhibits a multitude of
properties that might be desirable. An interesting comparison is between the leftmost and
center column. The left mask is a rough manual annotation, whereas the center mask was
generated by edge detection. It can be observed that with the center mask it is harder to find
spots where brushes can fit easily, as the many, spread out high-value pixels have a larger
influence on the error compared to the 50% black error in the manual annotation. This
leads to many brush strokes parking in the black areas of the image when it the process can
not find a good candidate to improve the image and therefore discards the brush stroke by
moving it into an area where it does not influence the error metric. At the same time the
noisy mask generated by edge detection provides better stability of the brushes around the
focal point of the image, which produces a more detailed texture of the main object.

Vastly different results can be achieve by removing error restraints from areas that
are defining parts of the source image. The rightmost image in Fig. 12 shows the
source image with most of the center ignored for error calculation. The mask only
focuses on the background, with a slight noise filter to blend the mask a few pixels into
the depiction of the woman. This leads to a chaotic assembly of color, which maintains
the shape of the primary object and stills hints at the original by bleeding in the origi-
nal colors from the outline. As shown in this section masking the generative process
allows to apply, as well as relax, constraints of the image generation process, leading
to interesting, sometimes unexpected results. While this pays into the expressiveness

(6)1 −

⎛
⎜⎜⎝

∑width

x=0

∑height

y=0
�pixel(candidate(x, y), source(x, y)) ∗ mask(x, y)

width ∗ height ∗ maxDifference

⎞
⎟⎟⎠

Fig. 11   Adding a mask to the process allows to focus on specific regions. From left to right: a
Unmasked, b result using the same parameters as well as a mask, c mask used

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 16 of 21

of the system it is only partly suitable to guiding the artistic process and solving the
problem of image saliency [25]. This could be improved further by adjusting the mask
during generation by a human actor, to shift focus of the process while detail emerge.

5 � Conclusion and future work

This work has shown a generative system based on an abstract art generating pro-
cess and a genetic algorithm. Different features have been explored and evaluated
in regards of their possible solution space and shortcomings. As mentioned by
Collomosse [23] detection of salient regions is a core feature of unsupervised gen-
erative systems. While this work employs techniques to improve detail placement
for uniformly salient images, it remains a problem for source images with small
salient regions. Masking of the images strikes a middle-ground by front loading
some design by human actors before the creative process, but can only solve the
salient problem to a limited extend. Other techniques exist and can be paired with
this approach, like manually authored guidance maps for stroke placement [28]
or higher order computer vision methods, like edge detection or color segmenta-
tion [8, 24, 25]. Recent advances in neural network research allow for high fidelity
and automated extraction of salient regions [39]. Other neural network research
areas like style transfer [40, 41] might also provide benefits and allow for interest-
ing results by generating more complex brush strokes and enriching the details of
the final artwork. Conceptually this work is based on an abstract art generating

Fig. 12   Different effects of multiple masks (Top row) and the corresponding results (Bottom row).
Besides the mask all settings are equal to Watercolor from Fig. 6

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 17 of 21  2

process (see Sect. 1.1) but focuses mainly on the second transformation, the
expression of the internal representation into a medium. The first transformation,
the personalized perception of objects is modelled by the calculation of the fitness
function as it, defines how the system (artist) can perceive the ground truth (input
image). By basing the fitness only on pixel errors, the algorithm always compares
against otruth , our input image itself. A more sophisticated method could also intro-
duce additional artistic traits and use preprocessing like segmentation [5, 30], or
extracting latent vectors [42], to achieve a higher order of ’understanding’ of the
source image . Various error metrics, like Wasserstein distance [43], complexity
measures [26] or style transfer loss metrics [40] allow the comparison of images
within a higher order space and could yield artifacts that go beyond simple pixel
similarity [11]. The current system operates under a one-shot model: After con-
figuring the algorithm it runs without any human interaction. While this proves
to be beneficial for runtime, it severely limits the flexibility of the system to adapt
to the artists desires [18, 21, 44]. Penitential extension of the systems could trans-
form it more into a interactive operation, giving the user the ability tow pause the
generate and augment the current state. A non exhaustive list of ideas include live
manipulation of the mask, shifting focal areas during the run, pinning and deleting
of individual strokes and even painting directly on the canvas. The aim with this
augmentations is to build up a conversation between the user and the algorithm, to
slowly adjust the objective otruth (pixel distance) into a personalised otruth personal-
ized to the user themselves. Further improvements can be made in regards to the
current implementation of the system. The Sect. 3.2.2 mentions the high interde-
pendence between genome length and mutation chance, especially with the brush
texture. Normalizing those values would allow to reuse settings between different
styles more robustly and lessen the required user input when exploring different
interesting styles. Another aspect is the continuity of the generation process. Itera-
tions are decoupled from each others, the algorithm has no means to determine
how many of them happened already, or how many are left. Currently each itera-
tion starts with an imprinted canvas, onto which the strokes of the best candidates
are added. In regards of the candidates itself, ’catastrophic forgetting’ [45] occurs
after each generation. Instead of imprinting only the best candidates, it would also
be possible to build the stack of actions in memory, enabling parallel processing
of the best n candidates of each generation. While this will exponentially increase
memory consumption and time, it will allow the buildup of more complex pat-
terns, that take several layered brush strokes, and therefore more iterations to
evolve. Given these improvements, different paths ahead are possible, reinforcing
the autonomous capabilities of the system presented in this work, or fusing them
with user controlled input and turning it into a semi-supervised content creation
tool. Other exotic use cases can be found in emerging properties of the generated
artifact. One particular exotic use case would be compression of source images,
given that a genome representation of an image is roughly 10 times smaller than
its pixel data. Yet to enable those use cases more sophisticated methods of salience
detection and non-uniform detail preservation are to be implemented .

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 18 of 21

Appendix

Brush packs

All brush textures, unless stated otherwise, where created for this work using Gimp
2.10.45. Figures 13, 14, 15, 16, 17.

Fig. 13   Watercolor from [28]

Fig. 14   Droplets from [46]

Fig. 15   Strokes, ballpoint pen
and scanned

Fig. 16   Cubic 

5  https://​www.​gimp.​org/, accessed 28.10.2020.

https://www.gimp.org/

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 19 of 21  2

Funding  Open Access funding enabled and organized by Projekt DEAL. No funding was received for
conducting this study.

Declarations 

Conflict of interest  All authors certify that they have no affiliations with or involvement in any organiza-
tion or entity with any financial interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 R. Dawkins, The Blind Watchmaker - Evidence of Evolution Reveals a Universe without Design
(WW Norton & Company, 1986)

	 2.	 K. Sims, Artificial evolution for computer graphics, in Proceedings of the 18th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’91, Association for Computing
Machinery, New York, NY, USA (1991), p. 319-328 https://​doi.​org/​10.​1145/​122718.​122752http://​
www.​karls​ims.​com/​papers/​siggr​aph91.​html

	 3.	 S. Todd, W. Latham, Evolutionary art and computers. Academic Press, Inc., USA (1992), http://​
portal.​acm.​org/​citat​ion.​cfm?​id=​561831

	 4.	 P. Haeberli, Paint by numbers: abstract image representations. Comput. Gr. (ACM) 24(4), 207–214
(1990). https://​doi.​org/​10.​1145/​97880.​97902

	 5.	 M. Valstar, S. Colton, M. Pantic, Emotionally aware automated portrait painting. Belgian/Nether-
lands Artificial Intelligence Conference (2008), pp. 407–408

	 6.	 A. Hertzmann, A survey of stroke-based rendering. IEEE Comput. Gr. Appl. 23(4), 70–81 (2003)

Fig. 17   Detailed configuration of all experiments

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/122718.122752
http://www.karlsims.com/papers/siggraph91.html
http://www.karlsims.com/papers/siggraph91.html
http://portal.acm.org/citation.cfm?id=561831
http://portal.acm.org/citation.cfm?id=561831
https://doi.org/10.1145/97880.97902

	 Genetic Programming and Evolvable Machines (2023) 24:2

1 3

2  Page 20 of 21

	 7.	 J. Correia, P. Machado, J. Romero, P. Martins, F. Amílcar Cardoso, Breaking the mould an evolu-
tionary quest for innovation through style change (2019)

	 8.	 B. Gooch, G. Coombe, P. Shirley, Artistic vision: painterly rendering using computer vision tech-
niques. NPAR symposium on non-photorealistic animation and rendering (10 2003)

	 9.	 A. Hertzmann, Paint by relaxation, in Proceedings of Computer Graphics International Conference,
CGI (2001), pp. 47–54

	10.	 S. Shahriar, Procedural paintings with genetic evolution algorithm (2020), https://​github.​com/​
IRCSS/​Proce​dural-​paint​ing

	11.	 Z. Huang, S. Zhou, W. Heng, Learning to paint with model-based deep reinforcement learning, in
Proceedings of the IEEE International Conference on Computer Vision 2019-Octob, 8708–8717

	12.	 Z. Huang, S. Zhou, W. Heng, Learning to paint with model-based deep reinforcement learning, in
Proceedings of the IEEE International Conference on Computer Vision 2019-Octob, 8708–8717

	13.	 T. Unemi, SBART 2.4: Breeding 2D CG images and movies and creating a type of collage, in International
Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES. (1999), pp. 288–291

	14.	 S. Rooke, Chapter 13 - Eons of Genetically Evolved Algorithmic Images. In: Bentley, P.J., Corne,
D.W.B.T.C.E.S. (eds.) The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann,
San Francisco (2002), pp. 339–365 http://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​B9781​55860​
67395​00525

	15.	 D. Hart, Toward greater artistic control for interactive evolution of images and animation, in ACM
SIGGRAPH 2006: Sketches, SIGGRAPH ’06. ed. by M. Giacobini (Springer, Berlin Heidelberg,
Berlin, Heidelberg, 2006), pp.527–536

	16.	 A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, D.H. Salesin, Image analogies, in Proceedings
of the 28th annual conference on Computer graphics and interactive techniques SIGGRAPH 01
2001(August), 327–340

	17.	 A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, D.H. Salesin, Image analogies, in Proceedings
of the 28th annual conference on Computer graphics and interactive techniques SIGGRAPH 01
2001(August), 327–340

	18.	 J. McCormack, Open problems in evolutionary music and art. Tech. rep. (2005), http://​www.​csse.​
monash.​edu.​au/​~jonmc

	19.	 H. Takagi, Interactive evolutionary computation: fusion of the capabilities of EC optimization and
human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

	20.	 P. Machado, A. Cardoso, All the truth about NEvAr. Appl. Intel. 16(2), 101–118 (2002)
	21.	 J. Secretan, N. Beato, D.B. D’Ambrosio, A. Rodriguez, A. Campbell, J.T. Folsom-Kovarik, K.O.

Stanley, Picbreeder: a case study in collaborative evolutionary exploration of design space. Evolut.
Comput. 19(3), 373–403 (2010). https://​doi.​org/​10.​1162/​EVCO_a_​00030

	22.	 P.J. Bentley, D.W. Corne, in An introduction to Creative Evolutionary Systems. eds by P.J. Bentley,
D.W.B.T.C.E.S. Corne, The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann, San
Francisco (2002), pp. 1–75 http://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​B9781​55860​67395​00355

	23.	 J.P. Collomosse, in Evolutionary Search for the Artistic Rendering of Photographs. ed. by J.
Romero, P. Machado, The Art of Artificial Evolution, Springer Berlin Heidelberg, Berlin, Heidel-
berg (2007), pp. 39–62https://​doi.​org/​10.​1007/​978-3-​540-​72877-1_2

	24.	 A. Santella, D. Decarlo, Abstracted painterly renderings using eye-tracking data. NPAR Symposium
on Non-Photorealistic Animation and Rendering (7 2002)

	25.	 J.P. Collomosse, P.M. Hall, Genetic paint: a search for salient paintings. Lect. Notes Comput. Sci.
3449, 437–447 (2005)

	26.	 P. Machado, J. Romero, M. Nadal, A. Santos, J. Correia, A. Carballal, Computerized measures of vis-
ual complexity. Acta Psychologica 160, 43–57 (2015). https://​doi.​org/​10.​1016/j.​actpsy.​2015.​06.​005

	27.	 S. Colton, Stroke Matching for Paint Dances. Computational Aesthetics 2010: Eurographics Work-
shop on Computational Aesthetics in Graphics, Visualization and Imaging (Victoria, British Colum-
bia, Canada, May 28–30, 2009), pp. 67–74

	28.	 A. Opara, Genetic drawing project (2020), https://​github.​com/​anopa​ra/​genet​ic-​drawi​ng
	29.	 P. Torres, C. Simon, LNCS 5484 - Evolving approximate image filters. Appl Evolut Comput 1–11

(2009), http://​link.​sprin​ger.​com/​chapt​er/​10.​1007/​978-3-​642-​01129-0_​53
	30.	 S. Colton, Automatic invention of fitness functions with application to scene generation. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 4974 LNCS, 381–391 (2008)

	31.	 C.G. Johnson, J.J.R. Cardalda, Genetic algorithms in visual art and music. Leonardo 35(2), 175–184
(2002). https://​doi.​org/​10.​1162/​00240​94025​29405​59

https://github.com/IRCSS/Procedural-painting
https://github.com/IRCSS/Procedural-painting
http://www.sciencedirect.com/science/article/pii/B9781558606739500525
http://www.sciencedirect.com/science/article/pii/B9781558606739500525
http://www.csse.monash.edu.au/%7ejonmc
http://www.csse.monash.edu.au/%7ejonmc
https://doi.org/10.1162/EVCO_a_00030
http://www.sciencedirect.com/science/article/pii/B9781558606739500355
https://doi.org/10.1007/978-3-540-72877-1_2
https://doi.org/10.1016/j.actpsy.2015.06.005
https://github.com/anopara/genetic-drawing
http://link.springer.com/chapter/10.1007/978-3-642-01129-0_53
https://doi.org/10.1162/00240940252940559

1 3

Genetic Programming and Evolvable Machines (2023) 24:2	 Page 21 of 21  2

	32.	 G. Syswerda, Uniform crossover in genetic algorithms, in Proceedings of the 3rd International Con-
ference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1991),
pp. 2–9

	33.	 D.E. Goldberg, K. Deb, in A Comparative Analysis of Selection Schemes Used in Genetic Algo-
rithms. ed. by RAWLINS, G.J.E.B.T.F.o.G.A. Foundations of Genetic Algorithms, vol. 1, Elsevier
(1991), pp. 69–93 http://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​B9780​08050​68455​00082

	34.	 B.L. Miller, D.E. Goldberg, Genetic algorithms, tournament selection, and the effects of noise.
Complex Syst. 9(3), 193–212 (1995)

	35.	 CompuPhase: Colour metric (2019), https://​www.​compu​phase.​com/​cmetr​ic.​htm
	36.	 D. Giacomelli, GeneticSharp (2013), https://​github.​com/​giaco​melli/​Genet​icSha​rp/
	37.	 J. Vermeer, No Meisje met de parel (1665), https://​www.​mauri​tshuis.​nl/​en/​explo​re/​the-​colle​ction/​

artwo​rks/​girl-​with-a-​pearl-​earri​ng-​670/
	38.	 V. Van Gogh, Wheat Field With Cypresses (1889), https://​www.​vince​ntvan​gogh.​org/​wheat-​field-​

with-​cypre​sses.​jsp
	39.	 J. Wei, S. Wang, Z. Wu, C. Su, Q. Huang, Q. Tian, Label Decoupling Framework for Salient Object

Detection, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
(6 2020), pp. 13025-13034

	40.	 F. Uhde, S. Mostaghim, Towards a General Framework for Artistic Style Transfer, in Computational
Intelligence in Music, Sound, Art and Design. ed. by A. Liapis, J.J. Romero Cardalda, A. Ekárt
(Springer International Publishing, Cham, 2018), pp.177–193

	41.	 H.Y. Lee, H.Y. Tseng, J.B. Huang, M. Singh, M.H. Yang, Diverse image-to-Image translation via
disentangled representations. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11205 LNCS, 36–52 (2018)

	42.	 F. Uhde, S. Mostaghim, Dissecting Neural Networks Filter Responses for Artistic Style Transfer, in
International Conference on Computational Intelligence in Music, Sound, Art and Design (Part of
EvoStar) Springer (2021), pp. 297–312.

	43.	 M. Arjovsky, S. Chintala, L. Bottou, in Wasserstein generative adversarial networks, ed. by D. Pre-
cup, Y.W. Teh. 34th International Conference on Machine Learning, ICML 2017 Proceedings of
Machine Learning Research, vol. 1. PMLR, International Convention Centre, Sydney, Australia
(2017), pp. 298–321http://​proce​edings.​mlr.​press/​v70/​arjov​sky17a.​html

	44.	 S. Colton, M. Cook, A. Raad, Ludic considerations of tablet-based evo-art. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bio-
informatics) 6625 LNCS(PART 2), 223–233 (2011)

	45.	 J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, R. Hadsell, Overcom-
ing catastrophic forgetting in neural networks, in Proceedings of the National Academy of Sciences
of the United States of America 114(13), 3521–3526 (3 2017), http://​www.​pnas.​org/​conte​nt/​114/​13/​
3521.​abstr​act

	46.	 Starline: Watercolor Splatters, https://​www.​freep​ik.​com/​free-​vector/​black-​ink-​water​color-​splat​ters-​
drips_​10555​025.​htm

Publisher’s Note  Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://www.sciencedirect.com/science/article/pii/B9780080506845500082
https://www.compuphase.com/cmetric.htm
https://github.com/giacomelli/GeneticSharp/
https://www.mauritshuis.nl/en/explore/the-collection/artworks/girl-with-a-pearl-earring-670/
https://www.mauritshuis.nl/en/explore/the-collection/artworks/girl-with-a-pearl-earring-670/
https://www.vincentvangogh.org/wheat-field-with-cypresses.jsp
https://www.vincentvangogh.org/wheat-field-with-cypresses.jsp
http://proceedings.mlr.press/v70/arjovsky17a.html
http://www.pnas.org/content/114/13/3521.abstract
http://www.pnas.org/content/114/13/3521.abstract
https://www.freepik.com/free-vector/black-ink-watercolor-splatters-drips_10555025.htm
https://www.freepik.com/free-vector/black-ink-watercolor-splatters-drips_10555025.htm

	Framework for unsupervised incremental evolution of stylized images
	Abstract
	1 Introduction
	1.1 An incremental artistic process

	2 Related work
	3 Evolutionary artistic rendering
	3.1 Overview of the system
	3.2 Evolutionary algorithm
	3.2.1 Genotype & phenotype
	3.2.2 Manipulation
	3.2.3 Selection and fitness

	3.3 Implementation

	4 Evaluation
	4.1 Expressiveness
	4.1.1 Style variety
	4.1.2 Style consistency

	4.2 Image saliency
	4.3 Masking

	5 Conclusion and future work
	Appendix
	Brush packs
	References

