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Abstract
This paper examines and showcases a framework to generate artworks using evo-
lutionary algorithms. Based on the idea of an incremental abstract artistic process 
stylized images are generated from different input images without human supervi-
sion. After explaining the underlying concept, the solution space of different styles 
is explored and its properties for style consistency and style variety are discussed. 
A first step towards better control of the outcome is implemented through masking, 
followed by a discussion about potential improvements and further research.

Keywords  Genetic algorithm · Artistic rendering · Computational art

1  Introduction

Whereas evolutionary systems are often used to support optimization-focused, domain 
specific design tasks, the act of creating artistically pleasing artworks remains a chal-
lenge. Based on the idea of art creation as a series of composeable, stacked actions 
towards an desirable result, this work conceptualizes a framework of artistic creation. It 
uses a genetic algorithm and the means of evolution to produce artistic artifacts without 
human supervision. Using simple building blocks and their composition the algorithm 
exhibits a wide variety of parameters which allow to configure the emerging human-
like painting process. A variety of different styles and expressions can be achieved, 
while each of those can be applied to different inputs, producing consistent results. 
The following section positions this work in the wider context of creative evolutionary 
systems and highlights similarities and core differences to existing approaches. After-
wards, Sect. 3 explains the concept and Sect. 4 explores aspects of its implementation. 
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Finally Conclusion and Future Work highlights some improvements and possible next 
steps (Fig. 1).

1.1 � An incremental artistic process

The process mimicked by the algorithm in this paper defines the creation of art as an 
overlapping series of actions. An artist, striving to express an object otruth , will do so by 
firstly perceiving it as oartist and secondly expressing this representation of the object in 
a medium, creating oart . The perception of the artist is shaped by a multitude of factors: 
Inner convictions, social surroundings, upbringing, education, ideology and so forth. 
This results in a transformation during the perception, turning otruth into a personalized 
version of the object oartist . When creating art based on oartist the used medium and 
the skill of the artist influence the outcome oart . The transformation of o throughout 
this process is what defines the style and signature of an artist. Both are embodied in 
the personalized way of viewing otruth , as well as in the ability and limitations of the 
expression within the chosen medium.

While executing these transformations the artist takes a series of actions, each step 
being perceived as the current, most valuable one. As an example, when constructing a 
landscape painting, an artist might start with a rough composition, coloring large-scale 
features to give a backdrop and then further refine the outlines, adding details and fine 
grained shades further into the process. This abstract way of art creation is the founda-
tion of the algorithm designed and explored in this work. The framework presented in 
this work simulates this process by splitting the image generation process into a series 
of brush strokes, that are optimized against a global fitness function. Different experi-
ments are conducted to investigate the expressiveness and consistency of the developed 
system, to validate its usefulness as a starting point for further research.

2 � Related work

At their core all evolutionary algorithms solve a search problem for a good candi-
date of a certain fitness function within a vast solution space. To achieve this, the 
algorithm utilizes two systems, one for creating and modifying such candidates, and 

Fig. 1   Example results created within the scope of this work
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another for rating them in terms of their fitness. After already being used for various 
tasks in high-knowledge domains like architecture and engineering, supporting the 
human knowledge workers in different applications, their usage as generative sys-
tems for art was pioneered by Dawkins[1] and later on popularized by Sims [2] and 
Todd [3]. Today numerous systems exist that generate 2d image artifacts via various 
approaches [4–11]. In the context of this work the concept of creating two dimen-
sional artworks can be divided into imaginative- and interpretative-systems (for a 
much finer classification see [12]).

Imaginative systems try to evolve and create the very object that should be 
expressed as an artwork, while Interpretative systems strive to reinterpret an existing 
object artistically. Examples from the first category are often expression based sys-
tems, modeling the generated picture as a set of functions [2, 13–15]. Approaches 
from the second category seek to replicate a given source image by reinterpreting it 
[4, 9, 16, 17], shifting the focus from the generation of an interesting object, towards 
an interesting interpretation. The algorithm in this work follows a interpretative 
approach, implementing a simplified artistic process. A common problem, given 
the vast solution space and the subjectivity of artworks, is the rating of candidates 
[18]. Evaluating the aesthetics of a generated image is hard using evolutionary algo-
rithms, due to the complexity of fitness function that would incorporate the notion of 
aesthetics. The solution space also contains many undesirable results, either because 
of missing aesthetic features, or because they are unimpressive and just ’more-of-
the-same’. One possible solution to this problem is to include human interaction in 
the design process [19]. Those interactive evolutionary computing systems are able 
to produce a variety of artifacts for images [14, 15, 19–21]. At the same time involv-
ing a human slows the generative process down and, due to the subjective nature, 
also comes at a cost for consistency and coverage [18, 22]. While the mentioned 
problem of efficient solution space exploration is less prevalent in interpretative sys-
tems, as the content of the painting is defined by the input image, the generation 
of an interesting and artistically pleasing result remains a difficult task. Fully auto-
mated algorithms struggle to identify visually interesting, so called salient, elements 
of the source image, something that humans easily do [23]. Failing to identify those 
elements and creating a painting by some form of uniform optimization [9], “tends 
to produce a machine-generated signature in the resulting painterly renderings” [23]. 
More recent approaches therefore “[...] trend away from use of local low-level image 
processing operators towards the incorporation of mid-level computer vision tech-
niques in stroke placement heuristics” [23]. Those techniques include color segmen-
tation [8], analysis of interest by eye-tracking [24] and image heuristics like salience 
mapping [25] or complexity [26] to guide the algorithm in the generative process. 
While the problem of salience is not addressed as directly as in other works [23, 25] 
it allows for some intrinsic benefits (see Sect. 4.2).

The approach of this work, outlined in the next section, draws inspiration from 
existing interpretative systems, especially the concept of composing the final image 
from a set of brush-strokes [4–6, 27], while this approach works with primed tex-
tures of strokes that are imprinted like stamps, rather than constructing the stroke 
curvature itself. Other implementations exist, which explore a similar direction 
[10, 11, 28]. Contrary to a global generation and optimization of a final image, this 
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works focus on a local, limited generation, combined with a global fitness function. 
This yields a composition of multiple optimized steps, which can only reach a cer-
tain fitness on their own, rather than a globally optimized result. Incorporating more 
complex measures to evaluate the fitness of the candidates [29, 30] may increase the 
perceived creativity [7] and overall complexity [26] of the results, as discussed in 
Sect. 5.

3 � Evolutionary artistic rendering

As described in Sect. 1.1 the idea of this work is to transform the art of painting 
into an incremental optimization problem. Instead of optimizing a number of fully 
evolved candidates globally, it limits the optimization process to a number of sub 
routines, each optimizing up to a certain fitness ceiling, before expanding the solu-
tion space. By transforming the problem of “What is the best candidate” into “What 
are the best next n steps to take” the system mimics an incremental process, con-
structing the painting piece by piece. By restricting the possible actions for the algo-
rithm to choose from, a consistent and expressive style can be created and applied to 
input images.

3.1 � Overview of the system

This section explains the high level workings of the algorithm and shows the differ-
ent parts and how they interact with each other. This serves as a foundation for the 
following sections.

The overall system used for the generative process is shown in Fig.  2: A source 
image ( ) and a configuration serve as the input of the system. To mimic the 
incremental approach described in Sect. 1.1 the system goes through a number of 
i iterations, each resulting in c strokes permanently added to the canvas ( ). 
Every iteration starts with a fresh population of potential individual ( ), which 
are optimized through multiple generations, using the means of evolutionary algo-
rithms explained in Sect. 3.2, to find the current best c strokes and imprints them 
onto the canvas. This process continues until a finishing criteria (total number of 
iterations, or overall fitness of the candidate image), is achieved. Given c strokes per 
iteration and i iterations the total number of strokes on the canvas after finishing the 
process is i ∗ c.

3.2 � Evolutionary algorithm

To generate a desirable image the process uses a genetic algorithm to optimize 
candidates. A decent familiarity with evolutionary, especially genetic algorithms, 
is assumed. A more complete introduction into genetic algorithms is given in [12] 
or [31]. This section features key areas of interests of the artistic process. First the 
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genotype and phenotype representation, defining how candidates are stored and ren-
dered, are explained, then the manipulation and selection strategies and lastly the 
possible parameter space for the image generation, as well as some aspects of the 
implementation.

3.2.1 � Genotype & phenotype

The genome for a single candidate consists of n sub-sections, each describing a sin-
gle brush stroke, where n equals the number of strokes per candidate defined glob-
ally for the generation process. The maximal configuration of a single brush stroke 
part is shown in Fig.  3. As mentioned in Sect.  3.3, values that are removed from 
the evolutionary process, for example by fixing their value, are pruned and will not 
show up in the genome. Each gene provides the interpreter with a value between 
0 and 1, which then in turn is translated to form the phenotype of a brush stroke. 
The phenotype of a single brush stroke, as shown in context in Fig. 4, translates the 
[0,1] values from the genotype into the transformation and shape to be imprinted on 
the canvas. Technically a brush stroke is a transparent quad, with a certain texture, 
which is scaled, rotated and positioned on the canvas. The position is encoded as a 
vector within the canvas object space. This means (P1,P2) = (0, 0) corresponds to 
the lower left corner, (1,1) to the upper-right respectively. The quad can be rotated 
clockwise, e.g. a value R1 = 0.25 yielding a 90 degree rotation. The quads uniform 
scale is defined by a base size (see Sect. 4.2), which is calculated by the overall algo-
rithm and not evolved with the candidates. The scale gene can be used to deviate 
from this base size by [−5%, 5%]. This mechanic and its effect is explained further 
in Sect. 4.2. The actual texture content is selected from a texture array of size t. The 
array holds multiple brush strokes, allowing the algorithm to evolve the stroke tex-
tures used by each candidate, as shown in Sect. 4.1. To allow this, B1 gets translated 
into an index of the array, indicating which texture to pick. If the array only con-
tains a single texture (see Sect. 5.: Cubic brush pack) B1 has no effect and is pruned 
from the genome. Lastly the texture selected is tinted by a RGB color defined by 
(C1,C2,C3) multiplied by the transparency value of the texture.

Fig. 2   High-level overview of the procedure
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3.2.2 � Manipulation

One important part of evolutionary algorithms are the means of manipulat-
ing candidates. Two general concepts for this are mutation and recombination. 
The proposed algorithm implements rather simple variants of both mechanics to 
change the genome of candidates. Mutation is controlled by an overall mutation 
rate [0,1] expressing the chance to mutate for each candidate. If a mutation occurs 
a two step process selects a gene within the candidate and then a single bit within 
this gene to flip. While this method is quite robust and can execute reasonably 
fast, it has the drawback of high interdependence between the number of brush 
strokes, as well as the precision (see Implementation) of the genome representa-
tion. A higher number of strokes n gives a longer genome per candidate and as 
only a single mutation is carried out, the chance of each brush to be mutated is 
1

n
 . Furthermore, due to the binary representation of numbers, the position of each 

gene that is mutated has a strong influence on the resulting numerical change. A 
mutation on position c in our gene will change the value of the gene by 2c

maxValue
 , 

where maxValue depends on the chosen data type and is used to normalize the 
gene. The current implementation balances these shortcomings by having a gen-
erally high mutation rate of 90%. This allows for a fast exploration of the solution 

Fig. 3   Maximum genome configuration for a single brush stroke. Each box corresponds to one gene, 
which yields a value within [0,1]

Fig. 4   Phenotype of a single brush stroke, with a certain color, placed and transformed on the canvas
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space, which leads to quick convergence to sensible brushes, due to the high 
selection of the tournament selection. Recombination executes a uniform crosso-
ver strategy between two candidates A and B [32]. For each gene index of A and B 
a swap is performed with a likelihood of 50%, exchanging the gene of A with the 
gene of B and vice versa. As this crossover is performed on each individual gene 
it is independent of the genome length. As a single gene fully encodes a pheno-
type property as mentioned in Sect. 3.3, crossover will never change the value of 
a gene, instead only swap properties between two candidates.

3.2.3 � Selection and fitness

The last component of the evolutionary algorithm is the selection of candidates to 
create the next generation for the population. This approach uses Tournament Selec-
tion [33]. This selection model provides a reasonably high selection pressure [34], 
a higher-than-average fitness in each child generation and beneficial implementa-
tion properties, due to the ability to run in parallel. The fitness function is used by 
the evolutionary algorithm to rate the performance of different individuals. In this 
work the fitness function compares the artifact generated by painting the candidates 
strokes onto the current canvas with the original image. A simple way of comparing 
two images is the negated sum of the difference between all pixels (Eq.  1).

Equation 1: Fitness function, used to evaluate sets of brush strokes.
This work uses a slightly improved variation of Δpixel (see Eq.  2), scaling the dif-

ference of each color channel to approximate the visual sensitivity of human percep-
tion [35]. r̄ is mean red value, �R,G and B are the Euclidean distances within each 
color channel. The Sect. 5 discussed various further improvements that can be made 
to this, which might unlock more sophisticated image analogies.

Equation 2: Equation to calculate color distance, per pixel, between source and can-
didate image [35].

3.3 � Implementation

The software is implemented in C# and HLSL1 using the Unity3d Engine2 for ren-
dering and GeneticSharp [36] for the evolutionary optimization. The source code 

(1)1 −

∑width

x=0

∑height

y=0
�pixel(candidate(x, y), source(x, y))

width ∗ height ∗ maxDifference

(2)𝛥pixel(C1,C2) =

√(
2 +

r̄

256

)
× 𝛥R2 + 4 × 𝛥G2 +

(
2 +

255 − r̄

256

)
× 𝛥B2

1  https://​docs.​micro​soft.​com/​en-​us/​windo​ws/​win32/​direc​t3dhl​sl/​dx-​graph​ics-​hlsl, accessed 27.10.2020.
2  https://​unity.​com/, accessed 27.10.2020.

https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://unity.com/
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is publicly available at https://​github.​com/​floAr/​Evolu​tiona​ryArt​istUn​ity, including 
Unity prefabs of the experiments used in the following section. The genome struc-
ture is a custom implementation to allow for fast normalization and adaptive pruning 
of genes, that are set to constant values. One important concept is that a single gene, 
for the purpose of genetic algorithms, holds multiple bits of data, which map to a 
single property of a brush stroke. This allows operations like mutation and crosso-
ver to either operate on bit level (operate the numeric value of a property) or gene 
level (operate on the whole property). By default gene values are represented using 
16bit unsigned integers which are mapped from [0, 65.535] to [0,1],3 resulting in 
a minimum step size of 1.52e−5 between possible values. If desired, this could be 
decreased to use 8bit unsigned integers, with a step size of 3.9e−2 and a smaller 
memory footprint, or increased up to 64bit, resulting in a step size of only 5.5e−20 . 
The computation of heavy operations like painting a candidate, imprinting the can-
vas and comparing a candidate with the source image is implemented using shaders 
and executed on the GPU, to allow parallelization.

4 � Evaluation

In this chapter the properties and artistic capabilities of the system are explored and 
evaluated. This work focuses on the expressiveness of the system (see Sect. 4.1), as 
it is fundamental to help its user to express an artistic idea. Figure 5 shows the input 
images used for the experiments. Each image is scaled to 512 by 512 pixels and 
used in the experiments without further modification. The first two images are paint-
ings by Johannes Vermeer [37] and Vincent Van Gogh [38], the third and fourth 
images are photographs, with minor modifications (some houses on the horizon 
were cropped out) and the last image serves as a benchmark for stroke precision and 
color fastness.

In total four different brush texture packs were used: Watercolor, Droplets, Cubic 
and Stroked. The appendix lists the brush textures used in each pack.Unless speci-
fied otherwise the experiment settings used for the genetic algorithm are 50 itera-
tions, with 7 strokes per candidate. This yields results made up from 350 individual 
strokes, as each iteration uses a population-size of 100 individuals per generation, 
each individual encoding 7 strokes. The evolutionary algorithm optimizes until the 
terminal condition of 20 generations of stagnant fitness is reached, then the win-
ning individual is imprinted onto the canvas and a new iteration is started. Selection 
is done with Tournament Selection [33], with a tournament size of two genomes. 
Mutation is handled by flipping a random bit, the mutation chance starts at 90% and 
decreases by 10% every 50 generations, down to a minimum of 20% (see. Sect. 3.3 
for the reasoning behind this). Crossover uses the Uniform Crossover strategy [32] 
with a fixed probability of 50%. For the experiment all features of a brush stroke 
are evolved as described in Sect. 3.2.1. Other default settings are base opacity value 

3  https://​docs.​micro​soft.​com/​en-​us/​dotnet/​csharp/​langu​age-​refer​ence/​built​in-​types/​integ​ral-​numer​ic-​
types, accessed 22.10.2020.

https://github.com/floAr/EvolutionaryArtistUnity
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/integral-numeric-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/integral-numeric-types
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for each brush, set as � = 0.7 (70% opacity) and a brush base size which interpo-
lates between 0.8 (which corresponds to 80% of the canvas) and 0.025 over all itera-
tions. The functions used to interpolate are shown in Fig. 9 and their effect evaluated 
in Sect. 4.2. While adding those features to the evolutionary set widens the search 
space, the decision to fix them for most experiments was made to limit the scope and 
increase the comparability of the results. The generative process starts from a white, 
or black canvas, depending on the overall background color of the source image. All 
experiments with their parameters can be seen in Fig. 17. A recording, showing the 
setup and a run of the algorithm, is available at https://​youtu.​be/​KEuT2​mphq0w.

4.1 � Expressiveness

A core requirement of an artistic system is the ability to express the users desired 
artistic outcome. Therefore this section evaluates the expressiveness of the algo-
rithm. For this, two different aspects are to be considered: Style Variety, which is the 
scope of different styles that can be generated, as well as Style Consistency, which 
means generating consistent results, when applying a selected style to different input 
images. Both features are important to model the signature and style described in 
Sect. 1.1. To model a signature and style of an artist the system needs to be able to 
generate diverse, but also consistent styles.

4.1.1 � Style variety

The simplest way of creating different styles is adjusting the brushes used to paint 
the image. In Fig.  6 three different examples of possible styles, which vary only 
in the selected brush texture, are shown on four different images. Each row shows 
how a single image can be represented differently by changing the brush texture, 
creating variety in plasticity and style, while preserving the content. This is in line 
with [4] which found that brush characteristics are a mayor factor influencing the 
outcome of the generative process.

The first two columns show how relatively similar brushes, both are opaque and 
laminar, can invoke very different detail textures. The difference in shape (stretched 
vs circular) as well as in border structure (smooth vs rigged) translate nicely into 
the structure of the painting, without creating noticeable artifacts. The third column 
shows how far a style can differ, given a more diverse brush set. The thin strokes 

Fig. 5   Input images used. From left to right: Girl with a Pearl Earring [37], Wheat Field With Cypresses 
[38], Photos of a dog under tree and a church (2020) and benchmark image

https://youtu.be/KEuT2mphq0w
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create a hatched and sketchy look, overshooting the content target (especially notice-
able in the benchmark image on the very bottom), as their inherit error for this is 
way smaller compared to more laminar brushes.Other means of variation are shown 
in Fig. 7: Using the same brush texture different images can be generated by setting 
other constrains. The first column shows the image generated by the Cubic brush 
packs, which uses a single, white square as the only brush texture. The upper image 
uses the default configuration and is able to replicate the image quite well using 

Fig. 6   Different brushes yield varying results. From left to right: The Watercolor, Droplet and Strokes 
packs were used (see Sect. 5)
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rotation and scale to vary the single texture. The lower image shows a result with 
fixed rotation. In this case the R1 gene (see Sect. 3.2.1) is removed for each brush 
and instead provided as a fixed value. This leads to axis aligned blocks, which can 
not approximate the geometry of the source as well as before, yielding a mosaic 
like style. The center column shows the difference between the default opacity value 
(70%) in the first row and 20% opacity below. The image with lower alpha, albeit 
using the same brush pack, appears smoother and more continuous. The last column 
shows the default result for the Watercolor brush and a variant where the color genes 
where removed below. Instead a single gene was used in the genome to evolve a one-
of-n color selection. Just like brush selection this allows the algorithm to only evolve 
colors from a predefined set. The color space consists of seven colors sampled from 
the image (shown in upper image) as well as black and white. Furthermore the � for 
the brushes was fixed on 100% opacity for this experiment, to prevent color mixing 
due to blending. This limitation results in a posterized look of the image, bringing 
forth sharp contrasts and cutting smaller features due to missing means of approxi-
mation. This examples show the capabilities of the system to express multitudes of 
styles given the possible combinations of different restrictions.

4.1.2 � Style consistency

Given the ability to generate a variety of different styles, enabling a wide spectrum 
of styles to realize a custom reinterpretation, consistency is as important when 

Fig. 7   Example of fine grained style variation. The upper image is the ’default’, the lower one a more 
restricted result. The leftmost column has constrained rotation, the center one uses a lower transparency 
value and the right one is limited to a set of seven colors
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considering an artistic tool. As described in Sect. 1.1 the combination of both fac-
tors allow to mimic the transformative process of creating an artwork from an inter-
nal representation. Looking at Fig. 6 each column shows that a style produces con-
sistent results over a variety of different images, creating an equable look and feel. 
Between different types of input images, style elements remain noticeable and create 
a recognizable set of interpretations. This effect increases as the difference between 
the used style restrictions does. The more regulated and therefore specific a certain 
style is, the easier it is to recognize those peculiarities in the generated artifacts.

4.2 � Image saliency

Within approaches that aim to transform an input image into stylized artefacts, a com-
mon problem is detection of salient regions. One way to counteract this problem is to 
employ more complex operators in the fitness function, like higher order computer 
vision mechanics [8, 25] to preprocess the image, or to be used in the fitness func-
tion. This approach instead makes use of emerging properties of the image generation 
itself: The way an image is constructed by the algorithm resembles the construction 
of a painting as done by humans (see Sect. 1.1). This behaviour emerges because of 
two properties of the algorithm: By only being able to place a limited number of brush 
strokes the algorithm has a fitness ceiling for each iteration. Given seven strokes in 
the first iteration the target image can only be approximated to a certain amount. This 
leads to the construction of the artwork from coarse to fine, as filling the most erro-
neous large areas will yield the highest fitness gain. Furthermore the adjustment of 
the brush size over the course of the process strengthens the behaviour to start with 
larger features and move to more detailed adjustments later on, starting already from a 
more sophisticated representation. This progression from coarse to fine features forces 
the algorithm to only add smaller details, after the overall color composition has been 
already executed, which favors regions with smaller details in later iterations. This 
behaviour is visible in Fig. 8, which shows the canvas at different stages in the evolu-
tion process. The first iteration provides the overall shading, as the seven brush strokes 
are used to cover the white background. Four iterations later the outline of the image 
is roughly sketched, and the following iterations keep on refining the outline and add-
ing finer shading. After 50 iterations the overall outline of the image is clearly defined, 
with the latest and smallest strokes adding highlights and details. While this does not 
directly map to salience in all cases, it puts focus onto adding high contrast details, 
which correlates with visually highly interesting regions [23].

A more detailed examination of different brush size progressions (Fig. 9) and its 
influence on the generated result can be seen in Fig. 10. The target image contains 
many details, such as small shaded areas, color gradients and tiny features, which 
makes it hard to replicate truthfully. Between the three results the only difference is 
how the brush size was interpolated between 0.8 and 0.025. Equation  5 shows an 
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approximation three different lerp-functions used.4 the brush size is calculated for 
each iteration i by interpolating between the maximum and minimum size. In Fig. 10 
the results of different lerp-functions are shown: Image (A) uses the Bias Small func-
tion (blue), which converges fast to small brush sizes, (B) uses the Default function 
(red) and image (C) uses the Bias Large function (green), with a focus on larger brush 
sizes.

(3)blue = 1 −
√
2 − x +

√
x

(4)red =
1

2
(1 + cos� + x)

(5)green =
√
1 − x2

Fig. 8   Different stages of the generation of a single image. Left to right: 1, 5, 25 and 50 iterations

Fig. 9   Interpolation functions to calculate brush size

4  Those functions are Unity specific implementations so the actual implementation might vary slightly
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Equation 5: Approximations of different lerp functions for scaling the brushes.

The results show the effect of brush size on plasticity, with the smaller brushes creat-
ing a very ’rough’ surface, whereas the large brushes tend to blend together, exhibiting 
smoother gradients and softer edges. By adjusting the brush stroke sizes available to the 
algorithm certain focus on detail can be triggered, as the smaller strokes tend to embed 
smaller features into the design, as their effect to the fitness function is greater on small, 
high contrast features, than on large areas.While this helps to alleviate some of the prob-
lems in regards to missing salience detection, it does not solve the problem in itself, as 
all these intrinsic optimizations operate on a uniform level. This can be seen in Fig. 6, 
when comparing the landscape painting with the portrait: While the landscape painting 
has a relatively even distribution of salience, the portrait has specific details, like the 
eyes and lips, which are not captured well with this approach. A hybrid is the photo of 
the dog under the tree where the algorithm adds detail to the landscape, but also fails to 
add enough detail to the dog itself, reducing its presence in the final outcome.

4.3 � Masking

Further guidance of the process is achievable, by masking important regions of the 
image. Masking results in an adjustment of the error values, which are multiplied by a 
value between 0 and 1, therefore shifting the importance of those regions accordingly. 
A value of 1 (white) means the error produced in this pixel is facilitated fully into the 
overall error, whereas a value of zero (black) would remove this pixel completely from 
the error metric, effectively allowing the algorithm to fill this pixel with any color, 
without any effect for the evolutionary algorithm. This technique is especially valuable 
on source images with a high noise, as it allows the artist to specify precise points of 
interest, preventing the process to get stuck on local detail, that are not adding to the 
overall, desired appearance of the result. If a mask is provided, the fitness function in 
Sect. 3.2.3 is multiplied by the r channel of the mask texture, as shown in Eq. 6.

Fig. 10   Influence of different size compositions. From left to right: a Bias towards small brush strokes, b 
default and c bias towards large brush strokes
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Equation 6: Fitness function, with additional masking.

In Fig. 11 the result of a masked generation is shown: Given the binary nature of 
the mask the process ignores the region that is not masked in white completely and 
tries to put as many strokes on the triangle outline as possible. While this provides 
effective means of shaping the focus of the algorithm towards the source image it 
remains a complex task to establish mask for more complex source images.

Figure 12 shows more complex images produced used the same setting as in Fig.6, but 
facilitating different masks. Depending on the mask the process exhibits a multitude of 
properties that might be desirable. An interesting comparison is between the leftmost and 
center column. The left mask is a rough manual annotation, whereas the center mask was 
generated by edge detection. It can be observed that with the center mask it is harder to find 
spots where brushes can fit easily, as the many, spread out high-value pixels have a larger 
influence on the error compared to the 50% black error in the manual annotation. This 
leads to many brush strokes parking in the black areas of the image when it the process can 
not find a good candidate to improve the image and therefore discards the brush stroke by 
moving it into an area where it does not influence the error metric. At the same time the 
noisy mask generated by edge detection provides better stability of the brushes around the 
focal point of the image, which produces a more detailed texture of the main object.

Vastly different results can be achieve by removing error restraints from areas that 
are defining parts of the source image. The rightmost image in Fig.  12 shows the 
source image with most of the center ignored for error calculation. The mask only 
focuses on the background, with a slight noise filter to blend the mask a few pixels into 
the depiction of the woman. This leads to a chaotic assembly of color, which maintains 
the shape of the primary object and stills hints at the original by bleeding in the origi-
nal colors from the outline. As shown in this section masking the generative process 
allows to apply, as well as relax, constraints of the image generation process, leading 
to interesting, sometimes unexpected results. While this pays into the expressiveness 

(6)1 −

⎛
⎜⎜⎝

∑width

x=0

∑height

y=0
�pixel(candidate(x, y), source(x, y)) ∗ mask(x, y)

width ∗ height ∗ maxDifference

⎞
⎟⎟⎠

Fig. 11   Adding a mask to the process allows to focus on specific regions. From left to right: a 
Unmasked, b result using the same parameters as well as a mask, c mask used
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of the system it is only partly suitable to guiding the artistic process and solving the 
problem of image saliency [25]. This could be improved further by adjusting the mask 
during generation by a human actor, to shift focus of the process while detail emerge.

5 � Conclusion and future work

This work has shown a generative system based on an abstract art generating pro-
cess and a genetic algorithm. Different features have been explored and evaluated 
in regards of their possible solution space and shortcomings. As mentioned by 
Collomosse [23] detection of salient regions is a core feature of unsupervised gen-
erative systems. While this work employs techniques to improve detail placement 
for uniformly salient images, it remains a problem for source images with small 
salient regions. Masking of the images strikes a middle-ground by front loading 
some design by human actors before the creative process, but can only solve the 
salient problem to a limited extend. Other techniques exist and can be paired with 
this approach, like manually authored guidance maps for stroke placement [28] 
or higher order computer vision methods, like edge detection or color segmenta-
tion [8, 24, 25]. Recent advances in neural network research allow for high fidelity 
and automated extraction of salient regions [39]. Other neural network research 
areas like style transfer [40, 41] might also provide benefits and allow for interest-
ing results by generating more complex brush strokes and enriching the details of 
the final artwork. Conceptually this work is based on an abstract art generating 

Fig. 12   Different effects of multiple masks (Top row) and the corresponding results (Bottom row). 
Besides the mask all settings are equal to Watercolor from Fig. 6
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process (see Sect.  1.1) but focuses mainly on the second transformation, the 
expression of the internal representation into a medium. The first transformation, 
the personalized perception of objects is modelled by the calculation of the fitness 
function as it, defines how the system (artist) can perceive the ground truth (input 
image). By basing the fitness only on pixel errors, the algorithm always compares 
against otruth , our input image itself. A more sophisticated method could also intro-
duce additional artistic traits and use preprocessing like segmentation [5, 30], or 
extracting latent vectors [42], to achieve a higher order of ’understanding’ of the 
source image . Various error metrics, like Wasserstein distance [43], complexity 
measures [26] or style transfer loss metrics [40] allow the comparison of images 
within a higher order space and could yield artifacts that go beyond simple pixel 
similarity [11]. The current system operates under a one-shot model: After con-
figuring the algorithm it runs without any human interaction. While this proves 
to be beneficial for runtime, it severely limits the flexibility of the system to adapt 
to the artists desires [18, 21, 44]. Penitential extension of the systems could trans-
form it more into a interactive operation, giving the user the ability tow pause the 
generate and augment the current state. A non exhaustive list of ideas include live 
manipulation of the mask, shifting focal areas during the run, pinning and deleting 
of individual strokes and even painting directly on the canvas. The aim with this 
augmentations is to build up a conversation between the user and the algorithm, to 
slowly adjust the objective otruth (pixel distance) into a personalised otruth personal-
ized to the user themselves. Further improvements can be made in regards to the 
current implementation of the system. The Sect. 3.2.2 mentions the high interde-
pendence between genome length and mutation chance, especially with the brush 
texture. Normalizing those values would allow to reuse settings between different 
styles more robustly and lessen the required user input when exploring different 
interesting styles. Another aspect is the continuity of the generation process. Itera-
tions are decoupled from each others, the algorithm has no means to determine 
how many of them happened already, or how many are left. Currently each itera-
tion starts with an imprinted canvas, onto which the strokes of the best candidates 
are added. In regards of the candidates itself, ’catastrophic forgetting’ [45] occurs 
after each generation. Instead of imprinting only the best candidates, it would also 
be possible to build the stack of actions in memory, enabling parallel processing 
of the best n candidates of each generation. While this will exponentially increase 
memory consumption and time, it will allow the buildup of more complex pat-
terns, that take several layered brush strokes, and therefore more iterations to 
evolve. Given these improvements, different paths ahead are possible, reinforcing 
the autonomous capabilities of the system presented in this work, or fusing them 
with user controlled input and turning it into a semi-supervised content creation 
tool. Other exotic use cases can be found in emerging properties of the generated 
artifact. One particular exotic use case would be compression of source images, 
given that a genome representation of an image is roughly 10 times smaller than 
its pixel data. Yet to enable those use cases more sophisticated methods of salience 
detection and non-uniform detail preservation are to be implemented .
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Appendix

Brush packs

All brush textures, unless stated otherwise, where created for this work using Gimp 
2.10.45. Figures 13, 14, 15, 16, 17.

Fig. 13   Watercolor from [28]

Fig. 14   Droplets from [46]

Fig. 15   Strokes, ballpoint pen 
and scanned

Fig. 16   Cubic 

5  https://​www.​gimp.​org/, accessed 28.10.2020.

https://www.gimp.org/
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