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Abstract The behaviour of a crack in the centre of a
plate subject to a far-field applied stress perpendicular
to the crack surface has been studied. The plate contains
an initial, self-equilibrated residual stress, symmetric to
the central position of the crack. The component of the
residual stress perpendicular to the crack at the centre
of the plate can be tensile or compressive. Elastic and
elastic–plastic material behaviours have been consid-
ered and crack closure effects have been included in
the analyses. For elastic behaviour a series of analy-
ses based on stress intensity factor solutions have been
developed to calculate the crack opening and the stress
intensity factor for cracks of different lengths rela-
tive to the size of the residual stress field. Different
magnitudes of applied stress relative to the magnitude
of the residual stress were applied. Crack behaviour
maps have been developed that show the behaviour of
the crack for different crack lengths and magnitudes
of applied stress. For elastic–plastic behaviour a strip
yield model has been used to develop a similar set of
analyses to those for the elastic case. The results com-
pare favourably with those produced by finite element
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analysis. Thework provides the basis for a first estimate
of the likelihood of fracture for a component containing
residual stress and subject to applied load.
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1 Introduction

In an engineering component containing a crack, resid-
ual stresses interact with stresses generated by applied
loading in a complex manner. Typically, numerical
techniques are required to predict the likelihood of frac-
ture, providing results that are particular to the set of
conditions considered. The work we describe here rep-
resents an attempt to understand the general behaviour
of the crack for a simple geometry, loading and residual
stress distribution that provides insight into the results
of more complex analyses.

In general, a residual stress distribution is charac-
terised by themagnitude and location of the peak resid-
ual stress and the spatial extent of its distribution. As
an example, consider the as-welded residual stresses
generated by a butt-weld between two identical plates.
The magnitude of the peak residual stresses depends
on the welding parameters and the material properties,
including the phase transformation behaviour. Assum-
ing symmetry the in-plane location of the peak residual
stress is the centreline of the weld. Finally, the spatial
extent of the residual stress distribution depends on the
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geometry of theweld and the thickness of the plates.We
now introduce a through-thickness crack into the plate,
symmetric about the weld centreline and subject the
plate to a uniaxial applied stress in the direction paral-
lel to theweld centreline.When the crack length is large
compared to the extent of the residual stress distribu-
tion, the residual stress can be neglected, and a fracture
analysis based only on the magnitude of the applied
stress. Conversely, when the crack length is small com-
pared to the extent of the residual stress distribution, the
fracture analysis must use the sum of the residual stress
and applied stress. When the crack length is similar to
the extent of the residual stress distribution the analy-
sis is more difficult: the crack is subject to stresses that
vary with position and may in general cause parts of
the crack surface to be in contact.

Terada (1976) provided an early analysis of the
effect of residual stress on a crack. He proposed a resid-
ual stress distribution to represent a butt-weld between
two plates and then developed a method to evaluate the
stress intensity factor assuming elastic behaviour. Tada
and Paris (1983) extended Terada’s analysis to differ-
ent residual stress distributions and provided an alter-
native method to evaluate the stress intensity factor.
Terada and Najajima (1985) considered a crack asym-
metrically located within the residual stress field. Chell
and Ewing (1977) discussed the effect of plasticity on
fracture when residual stresses exist. Wu and Carls-
son (1984) calculated stress intensity factors for half-
elliptical surface cracks in residual stress fields demon-
strating the non-conservatismof two-dimensional anal-
yses. Labeas and Diamantakos (2009) used finite ele-
ment analysis to explore the stress intensity factor for
a crack of varying length embedded in a residual stress
field. Bouchard andWithers (2006) and Bouchard et al.
(2012) used a Fourier approach to study the influence
of the size of the residual stress distribution on the
stress intensity factor. In general, previous work has
not explored the behaviour of the crack as the magni-
tude and spacial extent of the residual stress has been
varied and therefore has been unable to draw general
conclusions about the behaviour of the crack.

In this paper we investigate the behaviour of a crack
in an infinite two-dimensional plate with an initial
residual stress distribution under superimposed uniax-
ial tension. First, we describe our method for gener-
ating a residual stress distribution using a stress func-
tion. Next, we use existing stress intensity factor solu-
tions to explore the linear elastic behaviour of the crack

as the length of the crack relative to the size of the
residual stress field is altered and the magnitude of the
applied stress is increased. Maps are developed that
show the behaviour of the crack for different magni-
tudes of applied stress and crack size. For example,
these maps show the conditions for the tip of the crack
to be closed and therefore no likelihood of fracture to
exist. Finally, the strip yield model is used to inves-
tigate the elastic–plastic behaviour of the crack with
increasing applied stress, for one size of the crack. The
finite element method is used to provide comparisons
with these results.

2 Residual stress field

The usual approach to generating a residual stress field
is bymodelling a process that introduces residual stress,
such as elastic–plastic bending (Goudar and Smith
2013), welding (Smith and Smith 2009) or shrink-
fitting (Mahmoudi et al. 2011). The generated residual
stress field is usually complex and of fixed magnitude
and distribution,making it difficult to formgeneral con-
clusions about the influence of the residual stresses on
subsequent behaviour. In this work we will generate
a plane axisymmetric self-equilibrated residual stress
distribution using the stress function (Timoshenko and
Goodier 1982)

ϕ = ϕ (r) (1)

with

σrr = 1

r

∂ϕ

∂r
, σθθ = ∂2ϕ

∂r2
(2)

Using this approach, it is straightforward to vary the
spacial extent of the residual stresses and their magni-
tude. We choose the stress function

ϕ = −σRSR
2 exp

[
− r2

2R2

]
(3)

giving

σrr = σRS exp

[
− r2

2R2

]
,

σθθ = σRS
R2 − r2

R2 exp

[
− r2

2R2

]
(4)

which for positive σRS produces a residual stress field
consisting of a circle of tensile tangential stress σθθ of
radius R centred at the origin surrounded by compres-
sive tangential stress that decays to zero away from the
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The effect of residual stress on a centre-cracked plate 103

Fig. 1 a Residual stress components σrr and σθθ versus r , b geometry of crack and residual stress

origin. Figure 1a plots the stresses σrr and σθθ versus
r and Fig. 1b shows the geometry. The minimum value
of σθθ is −2σRSe−3/2 at x = √

3R. When the residual
stress field is introduced into an elastic–plastic mate-
rial, the magnitude of σRS must be less than the yield
stress of the material to avoid plasticity.

The eigenstrain method is an alternative approach
to the use of a stress function for the introduction of
a residual stress in a finite element analysis, see for
example Ribeiro and Hill (2016). “Appendix A” pro-
vides a calculation of the eigenstrain corresponding to
the stress function of Eq. (3).

Although the residual stress produced by the stress
function of Eq. (3) is of simple form, it matches closely
residual stress fields produced by a variety of differ-
ent methods. For example, Fig. 2a shows the centre
hole drilling results of Formby and Griffiths (1977)
for a 4 mm thick rectangular steel plate heated locally
between two circular copper heaters with the geometry
in Fig. 2b. The heating causes the steel to yield which
leaves a tensile residual stress in the centre of the plate
once it cools. The results of a series of residual stress
measurements are shown in Fig. 3a for a 10 mm thick
circular stainless steel disc that has been compressed
between two circular tool steel indenters as shown in

Fig. 3b (Pagliaro et al. 2009). In this case the residual
stress in the centre of the plate is compressive. Finally,
Fig. 4a shows contour and neutron diffractionmeasure-
ments of residual stress in a butt-welded steel plate
(Balakrishnan et al. 2018). Figure 4b shows the dimen-
sions of the plate and Fig. 4c the detail of the weld.
In all sets of experiments the dimensions of the plates
were not large enough for the residual stress to decay
to zero. Furthermore, the residual stress distributions
in Figs. 2 and Fig. 4 will not be axisymmetric.

In the following sections the axisymmetric residual
stress distribution of Eq. (4) is first transformed into
the rectangular components defined in Fig. 1b (Timo-
shenko and Goodier 1982).

σxx = σRS

[
1 − y2

R2

]
exp

[
− x2

2R2 − y2

2R2

]

σyy = σRS

[
1 − x2

R2

]
exp

[
− x2

2R2 − y2

2R2

]

σxy = σRS

[
− xy

R2

]
exp

[
− x2

2R2 − y2

2R2

]
(5)

The analytical work only requires the σyy compo-
nent of stress for y = 0 to evaluate residual stress
intensity factors. To simplify the resulting expressions,
we write
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104 G. Wu et al.

Fig. 2 a Comparison of residual stress produced by the stress function with residual stress measured in a heated rectangular plate,
b geometry of the heated plate (Formby and Griffiths 1977)

Fig. 3 a Comparison of residual stress produced by the stress function with residual stress measured in an indented circular plate,
b geometry of the indented plate (Pagliaro et al. 2009)

σyy
∣∣
y=0 = σRS f (x) (6)

where

f (x) =
[
1 − x2

R2

]
exp

[
− x2

2R2

]
The form of the stress σyy at y = 0 versus x is equiv-
alent to that of σθθ versus r shown in Fig. 1a and is
identical to that used by Terada (1976). Other stress
functions could be used to generate a residual stress
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The effect of residual stress on a centre-cracked plate 105

Fig. 4 a Comparison of residual stress produced by the stress function with residual stress measured in a butt-welded steel plate, b
geometry of the welded plate, c detail of weld (Balakrishnan et al. 2018)

field and would give different detailed results to those
presented here. Our aim however is to explore the effect
of a simple residual stress field on the behaviour of a
crack, although our simple residual stress field includes
all the general attributes of a residual stress field.

Although the distribution of the residual stress has
been determined, the method of its creation has not
been defined. Therefore, the effect of the process that
caused the residual stress on the subsequent material
properties, the state of hardening for example, has not
been included. In the work described here the material
is taken to be elastic-perfectly plastic, but in general
parameters defining the history of the material in addi-
tion to the residual stresses would have to be prescribed
(Lei et al. 2000).

3 Elastic crack behaviour

In this section the elastic behaviour of a crack in a
residual stress field is studied when subjected to addi-
tional tensile or compressive uniaxial applied stress.
The geometry of the crack is shown in Fig. 1b. Depend-
ing on the length of the crack, the level of applied stress
and themagnitude of the residual stresses the crackmay
be closed, partially open or fully open. These different
crack states are defined in Fig. 5. A crack behaviour
map may be used to describe the behaviour of the

crack, where one axis represents the length of the crack
and the other the level of the applied stress. Different
states of opening of the crack occupy different regions
of the crack behaviour map. We first present the crack
behaviourmap for positiveσRS, that iswhen the tangen-
tial residual stress is tensile at the centre. Throughout
this paper we will refer to this case as tensile resid-
ual stress. We then describe the analysis that allows
the boundaries between the regions of crack behaviour
to be found. Finally, we present the crack behaviour
map for negative σRS, referred to here as the case of
compressive residual stress.

3.1 Tensile residual stress

Figure 6 shows the behaviour of the crack for ten-
sile residual stress and tensile and compressive applied
stress. The half-length of the crack c is normalised with
respect to the size of the tensile region of the residual
stress field R and the applied stress σAPP is normalised
with respect to σRS. As an example, the line segment
AC in Fig. 6 forms the boundary between two regions
of crack behaviour. Above the line, for higher magni-
tudes of applied stress, the crack is fully open. Below
the line the crack is partially open: closed at the tip but
open in the centre. These two crack states are defined
in Fig. 5.
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Fig. 5 Full set of crack geometries for a crack located at the
centre of the residual stress distribution of Fig. 1 combined with
applied stress acting in the y direction

Fig. 6 Elastic crack behaviour map for tensile residual stress

For all sizes of crack, the crack is always closed if the
applied stress is compressive and greater in magnitude
than the value of the residual stress at x = 0, that is
σAPP < −σRS. As the magnitude of the compressive
applied stress is reduced, the crack opens first at x =
0 when the sum of the applied and residual stresses
equals zero. The boundary between the fully closed
and partially open regions of crack behaviour, the line
AB, is therefore given by σAPP/σRS = −1

Once the crack is partially open, progressively
increasing the magnitude of the applied stress will
eventually cause the crack to open completely. The
magnitude of applied stress to open the crack fully
depends on the length of the crack. For crack half-
lengths less than

√
5R (c/R ≈ 2.236) the boundary

between the fully open and partially open regions is
the line AC. This line is given by the condition that the
total stress intensity factor KTOT given by the sum of
stress intensity factors due to the applied stress KAPP

and the residual stress KRS is equal to zero:

KTOT = KAPP + KRS = 0 (7)

where

KAPP = σAPP
√

πc

KRS = 2σRS√
πc

c∫
x=0

f (x) dx√
1 − x2/c2

Note that KAPP depends on the applied stress and the
length of the crack whereas for a given residual stress
state, KRS depends only on the length of the crack. KRS

is derived by integration of the expression for the stress
intensity factor due to pairs of splitting forces applied
to the crack surface (Tada et al. 2000).

For crack half-lengths greater than
√
5R, if the

applied stress is high enough that the crack is fully
open and the applied stress is then reduced the crack
closes first at two points along the crack surface, sym-
metric about the centre of the crack. The position of
these points depends on the crack length. The bound-
ary between the fully open and partially open regions
is the line CD. This line is given by the condition that
the total opening displacement at the point of first con-
tact δTOT given by the sum of the displacement due to
the applied stress δAPP and to the residual stress δRS is
equal to zero:

δTOT = δAPP + δRS = 0 (8)
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where

δAPP = 4σAPP
√
c2 − d2

E ′

δRS = 8σRS
πE ′

d∫
x=0

f (x) coth−1

√
c2 − x2

c2 − d2
dx

+ 8σRS
πE ′

c∫
x=d

f (x) tanh−1

√
c2 − x2

c2 − d2
dx

E ′ is the effectivemodulus depending onwhether plane
stress or plane strain conditions apply

E ′ = E for plane stress

E ′ = E

1 − ν2
for plane strain

Again, δRS is derived by integration of the expression
for the crack opening due to pairs of splitting forces
applied to the crack surface (Tada et al. 2000).

For crack half-lengths greater than
√
5R a small

regime of crack behaviour exists as shown in Fig. 5
where the crack is partially open: open at the tips and in
the centre but closed between these points. This regime
is bounded by the two lines CD and CE. To use closed
form expressions to find the line CE requires a solu-
tion for the stress intensity factors at the multiple tips
of three collinear cracks. We have not attempted to do
this, instead the line CE in Fig. 4 has been found using
finite element analysis.

In addition to the behaviour of the crack for different
applied stresses, stress intensity factors may also be
calculated. For example, Fig. 7 shows the total stress
intensity for a crack of half-length c = R versus the
applied stress. This corresponds to the vertical dashed
line in Fig. 6where c/R = 1.At the pointmarked X the
crack begins to open at the centre but is closed at the tip.
At the pointmarkedY,whenσAPP/σRS ≈ −0.4446, the
crack is open completely. The stress intensity factor is
zero for points between X and Y . For points above Y
the total stress intensity factor KTOT is calculated by

KTOT = KAPP + KRS (9)

where KAPP and KRS are given by Eq. (7). Note that
when σAPP = 0, the point Z in Fig. 6, KAPP = 0 and
KTOT = KRS ≈ 0.4446 σRS

√
πc. As shown in Fig. 7,

once the crack opens at the tip, the total stress intensity
varies linearly with the applied stress.

The half-length of the open portion of the crack a
(see Fig. 5 for the geometry of a partially open crack,

Fig. 7 Elastic normalised stress intensity factor K/σRS
√

πc and
normalised crack opening a/c versus normalised applied stress
σAPP/σRS for tensile residual stress and a normalised crack
length of c/R = 1

closed at the tip and open at the centre) is calculated by
the condition that the stress intensity factor at the point
where the crack closes (x = a)must be zero. Therefore
a is calculated by

KTOT = KAPP + KRS = 0 (10)

where KAPP and KRS are given by the same expressions
as in Eq. (7), except that c is replaced by a. Figure 7
also shows the half-length of the open portion of the
crack a versus the applied stress. The crack begins to
open at an applied stress of σAPP/σRS = −1 and is
open completely (a/c = 1) for applied stresses higher
than σAPP/σRS ≈ −0.4446.

The finite element results shown in Fig. 7 for com-
parison were evaluated using the Abaqus 6.11 finite
element system using a quarter mesh with symmetry
constraints applied on the lower and left hand edges
of the mesh as shown in Fig. 8. The residual stress
distribution of Eq. (5) was prescribed using the SIG-
INI user subroutine facility in Abaqus. The width of
the fine region of elements around the crack was four
times the half-length of the crack and the width of the
complete mesh 75 times the half-length of the crack.
Plane stress conditions were used with linear quadri-
lateral elements CPS4. Calculations of stress intensity
factors in this work used the JEDI code (Beardsmore
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Fig. 8 Details of the finite elementmodel used to calculate stress
intensity factors

2008). This uses a contour integral evaluation and con-
veniently defines the contours automatically.

3.2 Compressive residual stress

The behaviour of the crack for negative σRS, that is
when the tangential residual stress is compressive at
the centre, is shown in Fig. 9. The half-length of the
crack c is normalised with respect to the size of the
compressive region of the residual stress field R and
the applied stress σAPP is normalised with respect to
|σRS|.

Again, exact analytical solutions have been devel-
oped to define the boundaries between the regions of
crack behaviour. However, for the case of compres-
sive residual stress the calculations are generally more
involved. For tensile residual stress, apart from a small
region where the crack is open at the tips and the centre
but closed in between, the analysis can use stress inten-
sity factor solutions for a single crack. For compressive
residual stress however, Fig. 9 shows a large region of
behaviour where the crack is open at the tip but closed
in between. For the analysis of this case, stress intensity
factor solutions for twin collinear cracks are required.

Reference to Fig. 9 shows that the crack is fully
closed provided the applied load is less than a value
that depends on the crack length. When the crack half-
length is less than c = √

3R (c/R < 1.732) the crack

Fig. 9 Elastic crack behaviour map for compressive residual
stress

opens first at the tip. Points on the line AC in the figure
are therefore given by the condition that the sum of the
residual stress and the applied stress equals zero at the
crack tip:

σAPP + σRS f (c) = 0 (11)

When the crack half-length is greater than c = √
3R,

the crack opens first at the point of maximum tensile
residual stress which occurs at x = √

3R. Therefore,
the line CE is given by

σAPP + 2σRSe
−3/2 = 0 (12)

For crack half-lengths greater than c = √
3R, the crack

becomes open at the tip when the stress intensity at the
tip, x = c, is zero. The geometry of the crack is equiv-
alent to twin symmetric collinear cracks and an analyt-
ical solution to find the boundaries between different
regions of crack behaviour requires stress intensity fac-
tors solutions for twin cracks. Therefore, points on the
lineCD are given by simultaneous solution of the equa-
tions

Ka
TOT = Ka

APP + Ka
RS = 0

Kc
TOT = Kc

APP + Kc
RS = 0 (13)

Ka
APP and Kc

APP are the stress intensity factors for twin
cracks with crack tips located at x = ± a and x =
± c due to a uniform applied stress. Ka

RS and Kc
RS are

the corresponding stress intensity factors for residual
stress. Equation (13) first requires the stress intensity
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factor at the inner tip of the twin cracks at x = ± a to
be zero. This provides the condition that twin cracks
represent a single crack, closed between x = a and
x = −a. Equation (13) also requires the stress intensity
factor at the outer tips, at x = ± c, to be zero. This
provides the condition that the crack is just open at the
tips. Solution of Eq. (13) provides values for a andσAPP
for prescribed values for c and σRS. The stress intensity
factors in Eq. (13) are calculated using the expressions
in “Appendix B” and are given by

Ka
APP = σAPP

√
πa

1

a
√
c2 − a2

{
c2

E (m)

K (m)
− a2

}

Kc
APP = σAPP

√
πc

c√
c2 − a2

{
1 − E (m)

K (m)

}

Ka
RS = 2σRS√

πa
√
c2 − a2

c∫
x=a

f (x)

{
x
√
c2 − x2√
x2 − a2

+ c

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}
dx

K c
RS = 2σRS√

πc
√
c2 − a2

c∫
x=a

f (x)

{
x
√
x2 − a2√
c2 − x2

− c

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}
dx

where

m = 1 − a2

c2
, φ = sin−1

√
c2 − x2

c2 − a2

K (m) , E (m) , F (φ,m) and E (φ,m) are complete
and incomplete elliptic integrals of the first and sec-
ond kinds.

For all sizes of crack, the crack is always fully open
provided the applied stress is high enough. If the crack
is fully open and the applied stress is then reduced
the crack closes first at the centre. The applied stress
at which closure occurs depends on the length of the
crack. The boundary between the fully open and par-
tially open regions is the line AB. This line is given by
the condition that the total opening displacement δTOT
at the centre of the crack due to the applied stress δAPP
and the residual stress δRS is equal to zero:

δTOT = δAPP + δRS = 0 (14)

where (Tada et al. 2000)

δAPP = 4σAPPc

E ′

δRS = 8σRS
πE ′

c∫
x=0

f (x) cosh−1 c

x
dx

Fig. 10 Elastic normalised stress intensity factor K/σRS
√

πc
and normalised crack opening a/c versus normalised applied
stress σAPP/σRS for compressive residual stress and a nor-
malised crack length of c/R = 1

In the same way as for tensile residual stress, stress
intensity factors may be calculated for cracks in a com-
pressive residual stress fieldwith superimposed applied
stress. For example, Fig. 10 shows the stress intensity
factor normalised by σRS

√
πc for a crack of half-length

c = R, versus the applied stress. This corresponds
to the vertical dashed line in Fig. 9 with c/R = 1.
At the point marked X in Fig. 9 the crack begins to
open at the tip but is closed at the centre. At the point
marked Y the crack is open completely. The applied
stress corresponding to point Y is calculated to be given
by σAPP/|σRS| ≈ 0.7910. The procedure for calculat-
ing the stress intensity factor for points between X and
Y is first to choose a value for the partially open half-
length a (see Fig. 5 for the geometry of a partially open
crack, open at the tip and closed at the centre) where
0 < a < c. The applied stress corresponding to the
chosen value of a is determined from the condition
that the stress intensity factor at a is zero:

Ka
TOT = Ka

APP + Ka
RS = 0 (15)

Once the applied stress corresponding to the chosen
value of a is determined, the stress intensity factor
Kc
TOT at the tip of the crack is calculated by

Kc
TOT = Kc

APP + Kc
RS (16)
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For points above Y in Fig. 9 the crack is open com-
pletely and the stress intensity factor is

KTOT = KAPP + KRS (17)

where KAPP and KRS are defined in Eq. (7).
Figure 10 also shows the half-length of the open

portion of the crack a normalised by c for a crack of
half-length c = R versus the applied stress.At the point
marked X inFig. 9 the crackbegins to open at the tip and
a = c. At the point marked Y the crack just opens fully
and a = 0. The applied stress corresponding to each
value of a has already been found during the calculation
of the stress intensity factor.

4 Strip yield model

We will now use the strip yield model of Dugdale
(1960) and Barrenblatt (1962) to examine the effect
of small-scale yielding on the behaviour of a crack in a
residual stress field. We will not present revised crack
behaviour maps valid for small-scale yielding since in
general these maps are similar to the maps for elas-
tic behaviour of Figs. 6 and 9. Instead we choose one
crack length defined by c = R and study the behaviour
of the crack as the applied load is increased from an ini-
tial state where the crack is fully closed. The approach
described in this section can be used for other crack
lengths.

Strip yield models have been used before in the
context of residual stress. For example, Becker (1997)
and Radayev and Stepanova (2001) examined resid-
ual stresses caused by a stress cycle applied to a crack
while Liu (1998) calculated plastic zone sizes and
crack opening displacements for cracks within a resid-
ual stress distribution caused by welding. In addition,
Wang (1999) used a strip yield model for a crack in a
residual stress field to analyse the effect of the resid-
ual stresses on crack closure and hence their influence
on fatigue crack growth rates. We remark that the strip
yield model has also been used by Chell (1976) for
example to consider other crack geometries, Kfouri
(1979) to look at biaxial loading, Daniewicz (1994)
to include the effects of strain hardening and Neimitz
(2004) for cases where in-plane and out-of-plane con-
straint exist.

Fig. 11 Geometry of the strip yield model for a single crack

4.1 Tensile residual stress

For tensile residual stress we consider an initial state
where the applied stress is sufficient to ensure the crack
is fully closed. For a crack of half-length c = R the
applied stress σAPP must be less than (more compres-
sive than) −σRS. As the applied stress is increased the
crack opens first in the centre, as described in the pre-
vious section. It is only when the crack has opened
fully to the tip that the small-scale yielding behaviour
is different to the elastic behaviour. When the applied
stress is larger than that to open the crack fully the strip
yieldmodelmay be used to calculate the effective stress
intensity factor.

Figure 11 shows the geometry of the crack when
fully open. A yielded zone of length ρ forms ahead of
the crack tip. The size of this yielded zone is calculated
using the condition that the total stress intensity fac-
tor for an extended crack of half-length c + ρ is zero.
When residual stresses act in addition to the applied
stress, the total stress intensity factor KTOT is calcu-
lated as the sum of the stress intensity factors due to
the applied stress KAPP, the residual stress KRS and
stresses applied to the crack tip to represent the yield
zone KY. Therefore

KTOT = KAPP + KRS + KY = 0 (18)
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where (Tada et al. 2000)

KAPP = σAPP
√

π (c + ρ)

KRS = 2σRS√
π (c + ρ)

c+ρ∫
x=0

f (x) dx√
1 − x2/(c + ρ)2

KY = 2σY

√
c + ρ

π
sin−1 c

c + ρ
− σY

√
π (c + ρ)

Solution of Eq. (18) gives the size of the plastic zone
ρ. The effective stress intensity factor will be evalu-
ated using the technique of Burdekin and Stone (1966),
which requires the crack opening displacement to be
calculated at x = c. The total crack opening displace-
ment δTOT is evaluated as the sum of the crack opening
due to the applied stress δAPP, the residual stress δRS
and the stresses in the yielded zone δY. That is

δTOT = δAPP + δRS + δY (19)

where (Tada et al. 2000)

δAPP = 4σAPP
E ′

√
(c + ρ)2 − c2

δRS = 8σRS
πE ′

c∫
x=0

f (x) coth−1

√
(c + ρ)2 − x2

(c + ρ)2 − c2
dx

+ 8σRS
πE ′

c+ρ∫
x=c

f (x) tanh−1

√
(c + ρ)2 − x2

(c + ρ)2 − c2
dx

δY = −4σY
E ′

√
(c + ρ)2 − c2

+ 8σY
πE ′

[
sin−1

(
c

c + ρ

) √
(c + ρ)2 − c2

+ c ln

(
c + ρ

c

)]

Finally, the effective stress intensity factor is obtained
by

KEFF =
√
E ′σYδTOT (20)

Figure 12 shows normalised effective stress intensity
factors versus normalised applied stress for four dif-
ferent values for the yield stress given by σY/σRS =
1, 1.5, 2, 2.5. Note that we have chosen to define
the relative magnitude of the yield stress and resid-
ual stress by σY/σRS rather than σRS/σY so that
σY/σRS is asymptotic to σAPP/σRS. For example, when
σY/σRS = 2, σRS = σY/2 and the curve is asymptotic
to σAPP/σRS = 2 which is equivalent to σAPP/σY =

Fig. 12 Elastic–plastic normalised effective stress intensity fac-
tor KEFF/σRS

√
πc versus normalised applied stress σAPP/σRS

for tensile residual stress and a normalised crack length of
c/R = 1

1. Lower values of σY/σRS represent higher magni-
tudes of residual stress. The figure also shows two-
dimensional plane stress finite element results obtained
for KEFF using the calculation

KEFF = √
E ′ J (21)

where J is the value of the J -integral evaluated
using the JEDI procedure (Beardsmore 2008). Very
good agreement is obtained, even for applied stresses
approaching the yield stress where large plastic zones
develop and small-scale yielding conditions certainly
do not exist.

4.2 Compressive residual stress

Again, we consider an initial state where the applied
stress is sufficient to ensure the crack is fully closed.
For a crack of half-length c = R the applied stress σAPP
must be less than zero. For the case of a compressive
residual stress the crack opens first at the tips and there-
fore the small-scale yielding behaviourwill be different
to the elastic behaviour. The strip yield model may still
be used to calculate the effective stress intensity factor
but complicated by the need to use a twin crack geom-
etry. When the applied stress is high enough to open

123



112 G. Wu et al.

Fig. 13 Geometry of the strip yield model for twin cracks

the crack completely, the same strip yield model as for
tensile residual stress case can be used.

A strip yield model combined with a twin collinear
crack geometry has been used previously, most often
in the context of multiple site damage, where adja-
cent fatigue cracks interact with each other. Exam-
ples of such work are: Smith (1964), Theocaris (1983),
Collins and Cartwright (2001), Nishimura (2002), Xu
et al. (2011), Bhargava and Hasan (2011), Chang and
Kotousov (2012) and Chen (2014).

Figure 13 shows the geometry of the crack when
partially open. A yielded zone of length ρ forms ahead
of the crack tip which is again calculated using the
condition that the total stress intensity factor for the
extended crackmust be zero. However, there is an addi-
tional requirement that the total stress intensity factor
at the inner crack tip where x = a must also be zero,
although there is no plastic zone at the inner tip. For
this case then

Ka
TOT = Ka

APP + Ka
RS + Ka

Y = 0

Kc+ρ
TOT = Kc+ρ

APP + Kc+ρ
RS + Kc+ρ

Y = 0 (22)

where

Ka
APP = σAPP

√
πa

1

a
√

(c + ρ)2 − a2

×
{
(c + ρ)2

E (m)

K (m)
− a2

}

Kc+ρ
APP = σAPP

√
π (c + ρ)

c + ρ√
(c + ρ)2 − a2

×
{
1 − E (m)

K (m)

}

Ka
RS = 2σRS√

πa
√

(c + ρ)2 − a2

c+ρ∫
x=a

f (x)

×
{
x
√

(c + ρ)2 − x2√
x2 − a2

+ (c + ρ)

[
E (m) F (φ,m)

K (m)
− E (φ,m)

] }
dx

K c+ρ
RS = 2σRS√

π (c + ρ)
√

(c + ρ)2 − a2

c+ρ∫
x=a

f (x)

×
{

x
√
x2 − a2√

(c + ρ)2 − x2
− (c + ρ)

[
E (m) F (φ,m)

K (m)
− E (φ,m)

] }
dx

Ka
Y = −2σY√

πa
√

(c + ρ)2 − a2

c+ρ∫
x=c

×
{
x
√

(c + ρ)2 − x2√
x2 − a2

+ (c + ρ)

[
E (m) F (φ,m)

K (m)
− E (φ,m)

] }
dx

K c+ρ
Y = −2σY√

π (c + ρ)
√

(c + ρ)2 − a2

c+ρ∫
x=c

×
{

x
√
x2 − a2√

(c + ρ)2 − x2
− (c + ρ)

[
E (m) F (φ,m)

K (m)
− E (φ,m)

] }
dx

and

m = 1 − a2

(c + ρ)2
, φ = sin−1

√
(c + ρ)2 − x2

(c + ρ)2 − a2

The stress intensity factors in Eq. (22) are calculated
using the expressions in “Appendix B”. Note that Ka

Y is
the contribution of the yielded zone at the outer crack
tip to the stress intensity factor at the inner crack tip.

Solution of Eq. (22) gives the size of the plastic zone
ρ and the position of the inner crack tip a. Again, evalu-
ation of the effective stress intensity factor requires the
crack opening displacement to be calculated at x = c.
The total crack opening displacement δTOT is evalu-
ated as the sum of the crack opening due to the applied
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stress δAPP, the residual stress δRS and the stresses in
the yielded zone δY. That is

δTOT = δAPP + δRS + δY (23)

where (Tranter 1961)

δAPP = 4 (c + ρ) σAPP

E ′

[
E (φ,m) − E (m) F (φ,m)

K (m)

]

The crack opening displacements δRS and δY are cal-
culated using the method described in “Appendix B”.
For pairs of unit point forces applied to the crack at
x = ± d where a < d < c we calculate the opening at
x = c using Eq. (35) to be

δL (d) = 2

E ′

c+ρ∫
x=c

K c
x K

d
x dx

where Kc
x is given by Eq. (33), with b replaced by c,

and Kd
x is given by Eq. (34). Similarly, for pairs of unit

point forces applied to the crack at x = ± d where
c < d < c+ ρ we calculate the opening at x = c to be

δR (d) = 2

E ′

c+ρ∫
x=d

K c
x K

d
x dx

Finally, δRS and δY are calculated by

δRS = σRS

⎡
⎣

c∫
x=a

δL (x) f (x) dx +
c+ρ∫

x=c

δR (x) f (x) dx

⎤
⎦

δY = −σY

c+ρ∫
x=c

δR (x) dx

The applied stress required to open the crack fully for
small-scale yielding can be found using the same gen-
eral procedure as for the linear elastic case: find the
applied load for the central opening to be zero. We
solve

δAPP + δRS + δY = 0 (24)

where

δAPP = 4σAPP (c + ρ)

E ′

δRS = 8σRS
πE ′

c+ρ∫
x=0

f (x) cosh−1 c + ρ

x
dx

δY = − 8σY
πE ′

c+ρ∫
x=c

cosh−1 c + ρ

x
dx

Fig. 14 Elastic–plastic normalised effective stress intensity fac-
tor KEFF/σRS

√
πc versus normalised applied stress σAPP/σRS

for compressive residual stress and a normalised crack length of
c/R = 1

Figure 14 shows normalised effective stress intensity
factors versus normalised applied stress for four dif-
ferent values for the yield stress given by σY/|σRS| =
1, 1.5, 2, 2.5. The figure also shows finite element
results obtained using the same procedure as for tensile
residual stress.

Finally, Fig. 15 compares the results of the strip yield
model for tensile residual stress and compressive resid-
ual stress, where the magnitude of the residual stress is
equal to the yield stress, that is σY/|σRS| = 1. Fig-
ure 15 also shows the results for the standard strip
yield model, the case with no residual stress. Finite
element results are also shown. The kink in the strip
yield model results for compressive residual stress at
σAPP/|σRS| ≈ 0.6957 corresponds to the point when
the crack becomes fully open. This compares with the
corresponding point for linear elastic behaviour which
occurs at σAPP/|σRS| ≈ 0.7910. Therefore, the effect
of plasticity on the crack behaviour map for compres-
sive residual stress of Fig. 9 is to lower the line AB
slightly.
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Fig. 15 Comparison of elastic–plastic normalised effective
stress intensity factor KEFF/σY

√
πc versus normalised applied

stress σAPP/σY with no residual stress, for tensile residual stress
and for compressive residual stress with a normalised crack
length of c/R = 1

5 Discussion

5.1 Effect of residual stress on crack behaviour

Results have been obtained for a residual stress field
derived from a closed form expression which allows
themagnitude and extent of the field to be varied. Alter-
natively, the residual stresses may be obtained from a
finite element simulation of a process that creates resid-
ual stress, welding for example, or indeed from a set of
experimental measurements. The techniques described
in this paper can then be used to provide exact values for
the stress intensity factor for elastic material behaviour
or approximate values for elastic–plastic behaviour.
Although the detail of the crack behaviour will depend
on the precise form of the residual stress distribution,
general statements can be made of the crack behaviour
based on the results presented here.

For a tensile residual stress field and with no super-
imposed applied stress, reference to the line ACE in
Fig. 6 shows that the crack is open at the tip and there-
fore the stress intensity factor is greater than zero for
almost all crack lengths, although the magnitude varies
with the length of the crack. In Fig. 7 it can be seen
that for elastic behaviour and for a crack of half-length
c = R, once the crack is open the stress intensity fac-
tor increases linearly with applied stress. For elastic–

plastic behaviour, Fig. 12 shows that the effective stress
intensity factor is greater than the elastic value as the
applied stress approaches the yield stress.

For a compressive residual stress field, reference to
the lineACD in Fig. 9 shows that with no superimposed
applied stress the crack is closed for crack lengths less
that the size of the residual stress field and open at the
tips for cracks greater than the size of the field. For elas-
tic behaviour, Fig. 10 indicates that for a crack of half-
length c = R, partial opening of the crack causes a non-
linear variation of stress intensity factor with applied
stress until the crack opens completely whereupon the
variationbecomes linear.Again, it canbe seen inFig. 14
that elastic–plastic behaviour causes the effective stress
intensity factors to be higher than the elastic value as
the applied stress increases, but in comparison to the
case of tensile residual stress the transition occurs at
lower values of applied stress.

For both tensile and compressive residual stress,
when the crack is partially open, open at the tips but
closed elsewhere, the stress intensity factor is higher
thanwouldbe calculated if crack closurewasneglected.

This work has only considered cracks that are
located symmetrically within a symmetric residual
stress field. The case of an asymmetric crack, while
more difficult to analyse, is certainly possible using the
same techniques as have been developed here.

Our results can be used to provide a first estimate of
the likelihood of fracture for a crack in a residual stress
field. They also enable the stress intensity factor range
to be calculated from a given cycle of applied stress to
allow predictions of fatigue crack growth to be made.

5.2 Influence of plane conditions

The results of the analysis of the elastic behaviour of the
crack do not depend on plane conditions, that is iden-
tical results are obtained for plane strain as for plane
stress. Although crack opening displacements are cal-
culated using the effective modulus E ′ which has a dif-
ferent value for plane strain compared to plane stress,
these displacements are only used to find the boundary
between different regions of crack behaviour. The posi-
tions of these boundaries are unaffected by the value of
the effective modulus.

The strip yield model used previously does how-
ever assume plane stress conditions. The size of the
strip yield zone calculated in the model depends only
on the stress normal to the crack. If plane strain con-
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Table 1 Comparison of strip yield (SY) and finite element (FE)
normalised effective stress intensity factors KEFF/σAPP

√
πR for

plane stress and plane strain with a yield stress σY/σAPP = 1.5

for no residual stress, tensile residual stress of magnitude
σRS/σAPP = 1 and compressive residual stress of magnitude
|σRS|/σAPP = 1

Crack length Plane condition No residual stress Tensile residual stress Compressive residual stress

c/R = 0.6 Plane stress (SY) 0.8709 1.415 0.1923

Plane stress (FE) 0.8450 1.406 0.1973

Plane strain (FE) 0.8106 1.141 0.4301

c/R = 1.0 Plane stress (SY) 1.124 1.401 0.7694

Plane stress (FE) 1.102 1.406 0.8150

Plane strain (FE) 1.045 1.230 0.8609

c/R = 1.6 Plane stress (SY) 1.422 1.371 1.481

Plane stress (FE) 1.384 1.348 1.403

Plane strain (FE) 1.327 1.276 1.334

ditions exist, stresses would be developed perpendicu-
lar to the plane and these would influence the calcula-
tion of the strip yield zone. Although, Neimitz (2004)
has described modifications to the strip yield model
to account for variations of in-plane and out-of-plane
constraint, no attempt has been made here to extend
the analysis to plane strain. Rice (1974) remarked the
effect of constraint on the size of the plastic zone was
muchmoremarked than the effect on the effective stress
intensity factor. Nevertheless, a finite element study has
been carried out to explore the sensitivity of the results
to plane conditions.

Table 1 shows the results of the strip yield model
and the finite element study for the case of no residual
stress, tensile residual stress and compressive resid-
ual stress. Values of the normalised effective stress
intensity factor are given for three different crack sizes
c/R = 0.6, 1.0, 1.6 and one magnitude of the
yield stress relative to the applied stress defined by
σY/σAPP =1.5.

For the case of no residual stress, effective stress
intensities are higher for longer cracks but changing
the plane condition does not have a significant effect,
although the plane stress values are slightly higher than
plane strain. For the range of conditions considered in
the table, the strip yield results are within 3% of the
finite element results for plane stress. For the case of
tensile residual stress, the magnitude of the residual
stress field is defined by σRS/σAPP = 1. Again, plane
conditions donot have a significant effect and the agree-
ment between the strip yield and finite element results
is very good.

Finally, for the case of compressive residual stress
the magnitude of the residual stress field is defined by
σRS/σAPP = −1. In contrast to the two previous sets of
results, the plane stress condition gives effective stress
intensity factors much lower than the plane strain con-
dition when the crack length is smaller than the size of
the residual stress field. This result can be understood
by comparing the sizes of the plastic zones for the two
plane conditions. Figure 16a shows the plastic zone
sizes for the case of no residual stress for a crack size
given by c/R = 1.0 and a yield stress σY/σAPP = 1.5.
Both plastic zones are situated at the crack tip. The
plane stress case gives a larger plastic zone. Figure 16b
now shows the plastic zone sizes for the case of com-
pressive residual stress for a smaller crack size given
by c/R = 0.6 and a yield stress σY/σAPP = 1.5. For
the plane stress condition, a yielded region exists away
from the crack tip situated at the position of maxi-
mum tensile residual stress. This yielded region does
not occur for plane strain conditions due to the addi-
tional constraint. The effective stress intensity factor
and the crack tip plastic zone size for plane stress are
much smaller than for plane strain. It is remarkable
that the strip yield model gives very similar results to
the plane stress finite element model, even though the
strip yield model only accounts explicitly for a yielded
region situated at the crack tip.

5.3 Effect of crack length

The equations presented in Sections 3 and 4 of this
paper may be used to find the stress intensity factors for
cracks of different lengths, as presented in Fig. 17. The
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Fig. 16 Comparison of
plastic zone sizes for plane
stress and plane strain
conditions with a yield
stress σY/σAPP = 1.5: a
c/R = 1.0 with no residual
stress and b c/R = 0.6 for
compressive residual stress
of magnitude
|σRS|/σAPP = 1

figure shows normalised stress intensity factor versus
normalised crack length for elastic material behaviour
for cases of no residual stress, and tensile and com-
pressive residual stress with |σRS| = σAPP. Figure 17
also shows normalised effective stress intensity factors
for elastic–plastic behaviour where σY = 1.5 σAPP.
These elastic–plastic results strictly are only valid for a
static crack, that is where the crack has been introduced
into a residual stress field all in one go. Sherry et al.
(2006) suggest that the effective stress intensity factor
for a crack that has been introduced progressively into
a residual stress field is less than that for a static crack
of the same length. In the figure, symbols are used to
differentiate between LEFM and strip-yield results and
do not represent FE calculated values.

Using Fig. 17, the stress intensity factor for a crack
of a certain length can be compared with the fracture
toughness of thematerial to determine the likelihood of
fracture. When the fracture toughness of the material is
low enough so that fracture occurswhen the normalised
stress intensity factor is of the order of 1 for example,
as marked on the figure by a dashed line, it is essential
that residual stresses are included in the assessment.
For such conditions the crack size at fracture for ten-
sile residual stress is much smaller than for the case
of no residual stress, or of compressive residual stress.
Conversely when the fracture toughness is higher so
that fracture occurs when the normalised stress inten-
sity factor is of the order of 2 for example, also marked
on the figure by a dashed line, the fracture assessment
is largely insensitive to the existence of residual stress.

5.4 Comparison with structural integrity procedures

Structural integrity codes such as R6 (EDF 2001) and
BS 7910 (BSI 2013) introduce a V factor to account
for the interaction between the applied and residual
stresses due to plasticity. The V factor allows the frac-

Fig. 17 Normalised effective stress intensity factor versus nor-
malised crack length for elastic behaviour (open symbols) and
elastic–plastic behaviour with σY = 1.5σAPP (closed symbols)

ture ratio, Kr to be calculated which is used in the
subsequent assessment of structural integrity:

Kr = KAPP + V KRS

Kmat
(25)

where KAPP is the stress intensity factor calculated
using an elastic analysis for applied stress, KRS the
stress intensity factor using an elastic analysis for resid-
ual stress and Kmat is thematerial toughness.AV factor
closer to zero in Eq. (25) results in the calculation of
a smaller fracture ratio and suggests a safer loading
condition. Recommended procedures to determine V
factors can be found in R6 or BS 7910. Both codes
suggest that V should be taken to be zero if the resid-
ual stress is compressive, although this can be seen
to be overly conservative by reference to Fig. 17 (at
c/R = 0.5, the stress intensity factor for combined
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Fig. 18 Comparison of V factors calculated using the strip-yield
(SY) model described in this paper with the R6 simplified pro-
cedure versus normalised applied stress for different magnitudes
of yield stress and for a crack of length c/R = 1

applied and compressive residual stress is much less
than that for applied stress only).

The analytical methods presented in this paper allow
the V factor to be estimated without detailed finite ele-
ment analysis using the equation

V = KAPP

KRS

(
KEFF

KAPP
EFF

− 1

)
(26)

where KEFF is the effective stress intensity factor cal-
culated using an elastic–plastic analysis for combined
applied load and residual stress and KAPP

EFF is the effec-
tive stress intensity factor for an elastic–plastic analysis
for applied load only (Kim et al. 2006).

Figure 18 compares the V factors obtained by the
simplified procedures in R6 and BS 7910 with those
obtained using Eq. (26) for the case of tensile residual
stress. The V factors predicted using Eq. (26) are much
less than those estimated using the simplified proce-
dures, suggesting these procedures result in conserva-
tive assessment outcomes.However,V factors obtained
using Eq. (26) are calculated using an elastic-perfectly
plastic material model while the simplified procedures
make an account for hardening.

6 Conclusions

Analytical and finite element methods have been used
to map the elastic behaviour of a crack in a residual
stress field. Depending on the length of the crack and
the magnitude of the superimposed applied stress the
crack may be fully open, partially open and open at the
tip, partially open but closed at the tip or fully closed.Of
course, a non-zero stress intensity factor only develops
when the crack is open at the tip.

Effective stress intensity factors for an elastic-
perfectly plastic crack in a residual stress field under
plane stress conditions have been calculated using strip
yield and finite element methods with good agreement,
even for high levels of applied stress approaching the
yield stress. The crack opening behaviour is similar to
that of an elastic crack.

Plane stress and plane strain conditions for an
elastic-perfectly crack in a residual stress field have
been compared using finite element analysis for a range
of crack lengths and applied stresses. The effective
stress intensity factors are similar except that under
plane stress conditions and compressive residual stress
some yielding occurs away from the crack tip leading
to significantly lower stress intensity factors for shorter
crack lengths.
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Appendix A: Correspondence of stress function
and eigenstrain approaches for generating residual
stress fields

In this appendix the eigenstrain distribution is calcu-
lated corresponding to the residual stresses produced
by the stress function in the main body of the paper.
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For plane axisymmetry, the total strain components,
εrr and εθθ , are

εrr = 1

E
(σrr − νσθθ ) + ε∗

rr

εθθ = 1

E
(σθθ − νσrr ) + ε∗

θθ (27)

where ε∗
rr and ε∗

θθ are components of the eigenstrain
(DeWald and Hill 2006).

The equation of strain compatibility for plane
axisymmetry is

r
dεθθ

dr
+ εθθ − εrr = 0 (28)

Substitution of the strain components from Eq. (27)
into Eq. (28) provides an equation that the eigenstrain
components must satisfy for the residual stress to be
equivalent to those derived from the stress function of
Eq. (3). For the stress componentsσrr andσθθ ofEq. (2)
this equation is

r

[
σRSr

(
r2 − 4R2

)
R4E

exp

[
− r2

2R2

]
+ dε∗

rr

dr

]

+ ε∗
θθ − ε∗

rr = 0 (29)

Any set of eigenstrain components satisfying Eq. (29)
will produce the same residual stress distribution, for
example if we choose ε∗

θθ = ε∗
rr we obtain the solution

ε∗
θθ = ε∗

rr = σRS
(
r2 − 4R2

)
R2E

exp

[
− r2

2R2

]
(30)

Appendix B: Stress intensity factors and crack
opening displacements for twin collinear cracks
under point loads

This appendix presents solutions for the stress inten-
sity factors and crack opening displacements for twin
collinear cracks under point loads. These solutions are
used in the main body of the paper to evaluate stress
intensity factors and crack opening displacement for a
crack in a compressive residual stress field. The princi-
pal reference used in this appendix is Tada et al. (2000)
although the equations presented in this reference con-
tain errors which have been corrected here. Other rel-
evant work includes Tranter (1961), Erdogan (1962),
Lowengrub and Srivastava (1968), Maiti et al. (1979)
and Xu et al. (2011)

The initial case considered here is that of a concen-
trated force P per unit thickness applied to one of the

Fig. 19 A single point load applied to twin collinear cracks

cracks at a distance d from the centre (Fig. 19). This
case is used to generate solutions for the case of two
pairs of point forces presented next. The stress intensity
factors are:

K±a = P

2
√

πa
√
c2 − a2

{√
c2 − d2

√
d ± a

d ∓ a

+ b

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}

K±c = P

2
√

πc
√
c2 − a2

{
±

√
d2 − a2

√
b ± d

b ∓ d

− b

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}
(31)

where m = 1 − a2

c2
, φ = sin−1

√
c2−d2

c2−a2
.

K (m) and F (φ,m) are complete and incomplete
elliptic integrals of the first kind. E (m) and E (φ,m)

are complete and incomplete elliptic integrals of the
second kind.

The stress intensity factors for two pairs of concen-
trated forces (Fig. 20) can be generated by superimpo-
sition, using Eq. (31):

Ka = 2P√
πa

√
c2 − a2

{
d
√
c2 − d2√
d2 − a2

+ c

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}

Kc = 2P√
πc

√
c2 − a2

{
d
√
d2 − a2√
c2 − d2

− c

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}
(32)

Figure 21 shows normalised stress intensity factors
for the two crack tips versus the position of application
of the point loads calculated using Eq. (32) for a/c =
0.3791, compared with finite element results, obtained
using the techniques described in the main body of the
paper.
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Fig. 20 Two pairs of point loads applied to twin collinear cracks

Fig. 21 Comparison of analytical andfinite element calculations
for normalised stress intensity factors at the tips x = ±a and
x = ±c for two pairs of point loads applied at x = ±d for
a/c = 0.3791

By integration, Eq. (32) is used to find the stress
intensity factors presented in Eq. (13) for twin collinear
cracks in a residual stress field.

The opening of the crack due to two pairs of con-
centrated forces may be evaluated from Eq. (32) using
the Paris method (Tada et al. 2000). First we define Kb

x
as the stress intensity at x due to two pairs of unit con-
centrated forces applied at ±b to twin cracks, each of
length x − a.

Kb
x = 2√

πx
√
x2 − a2

{
b
√
b2 − a2√
x2 − b2

− x

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}
(33)

Fig. 22 Comparison of analytical andfinite element calculations
for the normalised crack opening displacement at x = ±b for
two pairs of point loads applied at x = ±d for a/c = 0.4929
and d/c = 0.7583

where m = 1 − a2

x2
and φ = sin−1

√
x2−b2

x2−a2

Next we define Kd
x as the stress intensity at x due

to two pairs of unit concentrated forces applied at ±d,
again to twin cracks of length x − a.

Kd
x = 2√

πx
√
x2 − a2

{
d
√
d2 − a2√
x2 − d2

− x

[
E (m) F (φ,m)

K (m)
− E (φ,m)

]}
(34)

where m = 1 − a2

x2
and φ = sin−1

√
x2−d2

x2−a2

The crack opening displacement δ at x = ±b due
to two pairs of concentrated forces of magnitude P
applied at x = ±d to twin cracks each of length c − a
(Fig. 20) is calculated by

δ = 2P

E ′

c∫
x=d

K b
x K

d
x dx for b < d

δ = 2P

E ′

c∫
x=b

K b
x K

d
x dx for b > d (35)

Figure 22 shows normalised crack opening displace-
ment versus distance along the crack calculated using
Eq. (B7) for a/c = 0.4929 and d/c = 0.7583, com-
pared with finite element results.
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Equation (35) is used in themain body of the paper to
find the crack opening displacements for twin collinear
cracks in a residual stress field.
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