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Abstract
The paper investigates the status of gravitational energy in Newtonian Gravity (NG),
developing upon recent work by Dewar and Weatherall. The latter suggest that
gravitational energy is a gauge quantity. This is potentially misleading: its gauge
status crucially depends on the spacetime setting one adopts. In line with Møller-
Nielsen’s plea for a motivational approach to symmetries, we supplement Dewar
and Weatherall’s work by discussing gravitational energy–stress in Newtonian space-
time, Galilean spacetime, Maxwell-Huygens spacetime, and Newton–Cartan Theory
(NCT). Although we ultimately concur with Dewar and Weatherall that the notion
of gravitational energy is problematic in NCT, our analysis goes beyond their work.
The absence of an explicit definition of gravitational energy–stress in NCT somewhat
detracts from the force of Dewar andWeatherall’s argument. We fill this gap by exam-
ining the supposed gauge status of prima facie plausible candidates—NCT analogues
of gravitational energy–stress pseudotensors, the Komar mass, and the Bel-Robinson
tensor. Our paper further strengthens Dewar and Weatherall’s results. In addition, it
sheds more light upon the subtle link between sufficiently rich inertial structure and
the definability of gravitational energy in NG.
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1 Introduction

Energy is a pivotal concept in all of physics. Ubiquitous—not least via the First Law of
Thermodynamics—it has even been argued (by e.g. [7]) to be the salient metaphysical
property of matter. It’s therefore enticing to inquire into the status of the energy asso-
ciated with the gravitational degrees of freedom in Newtonian Gravity (NG): Does
NG admit of a meaningful definition of gravitational energy?

The question is of interest for at least three reasons. First, one would like to learn
what makes gravity special, vis-à-vis other physical entities—perhaps already at the
pre-general-relativistic level. Second, given that NG is an action-at-a-distance theory,
one may wonder: Does this fact impinge upon the definition of a local notion of
gravitational energy?With general relativity (GR), as a local field theory, in mind, one
may ask: To what extent is NG free from the conceptual and interpretative difficulties
of quasi-local notions of gravitational energy in GR (cf. e.g. [67])? Third, it’s well
known (e.g. [44], Ch. 12) that NG can be cast in a purely geometrical form, analogous
to GR: In it, gravitational phenomena are re-conceptualised asmanifestations of a non-
flat spacetime geometry. This geometrisation seems to be linked to GR’s notorious
conceptual difficulties with respect to finding a meaningful notion of gravitational
energy (cf. [48]). Echoing Bunge’s suggestion, one might think, these difficulties in
defining gravitational energy in GR intimate that gravity isn’t a matter field, i.e. of
the same type as the electromagnetic one (cf., for instance, Sotiriou, [66], Sect. 5.2).
Studying NG in its geometrised form in closer detail thus promises to help us to better
understand such conceptual difficulties—especially given that gravitational energy in
NG’s un-geometrised form is well-understood and unproblematic. Or so it appears.

In a recent paper [15], Dewar and Weatherall have challenged this. They assert
that gravitational energy in Newtonian gravitational theories fails to be well-defined:
that it’s gauge-variant. The current paper responds to this claim. Notwithstanding
our agreement with Dewar and Weatherall’s overall conclusion, we feel that their
reasoning leaves a few more things to be said—both formally and in substance. In
particular, they don’t attend to the question whether the spacetime setting makes a
difference to the status of gravitational energy in NG. Furthermore, as Dewar and
Weatherall (op.cit, p. 13) expressly acknowledge, their reasoning is predicated on a
particular view of what counts as a gauge transformation. According to this view,
Newton–Cartan Theory just is a gauge-invariant reformulation of NG. We explore the
consequences of a different understanding gauge—one which, we contend, is closer
to orthodoxy in the philosophy of physics literature (for better or worse).

We proceed as follows. Section 2 clarifies some preliminaries about gauge-
invariance and models (Sect. 2.1), and then reviews three non-geometrised classical
spacetime settings for Newtonian Gravity: Newtonian spacetime (Sect. 2.2), Galilean
spacetime (Sect. 2.3), andMaxwell-Huygens spacetime (Sect. 2.4); for each, the status
of gravitational energy is assessed in detail. Section 3 focuses on Newton–Cartan The-
ory (NCT). Section 3.1 outlines NCT’s basics. In Sect. 3.2, we explain why Dewar and
Weatherall’s objections against gravitational energy in NCT are specious. In Sect. 3.3,
we try to fill the gap in their reasoning. Section 4 discusses the results achieved, and
their relation to Dewar and Weatherall’s own conclusions.
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2 Gravitational Energy in Classical Spacetimes

Dewar and Weatherall raise a deep question about the status of gravitational energy
in Newtonian Gravity (NG): Is it a well-defined physical quantity? An answer isn’t
straightforward: Depending on which space–time setting one adopts, different vari-
ants of NG ensue [21, 43, 74]. As a result, the status of gravitational energy shouldn’t
be expected to be the same ab initio. After preliminaries about gauge-invariance
(Sect. 2.1), this section reviews NG within the three non-geometrised classical
space–time settings: Newtonian space–time (Sect. 2.2), Galilean space–time
(Sect. 2.3) and Maxwell-Huygens space–time (Sect. 2.4), respectively.

2.1 Models and Gauge-Invariance

In this section, we clarify two concepts germane to the subsequent analysis: the classes
of models relevant for us, and the notion of gauge equivalence.

Consider a given classical (non-quantum) theory T . Its associated models consist
of n-tuples of geometrical objects, defined on a space–time manifold M (for details,
see [2, 70]). Some of these represent matter variables, e.g. particle positions or field
configurations. The remaining objects represent space–time structure, encoding e.g.
chronogeometric or inertial structure.1

The various space–time settings correspond to different choices for the space–time
structure. Each choice ought to conform to Earman’s adequacy condition: The space-
time symmetries should match the dynamical symmetries [19]. That is: The maximal
group of diffeomorphisms under which the dynamical matter variables are invariant
should coincide with those under which the spacetime structures are invariant.2 These
matter variables are introduced as follows.

A theory’smost general class ofmodels is called its “kinematically possiblemodels”
(KPMs). According to Curiel [9], they specify two things.

1. A specification of the theory’s ontology (in the sense of [55]): The KPMs individ-
uate possible kinds of objects to which the theory T is applicable—e.g. a viscous
fluid or an electromagnetic field;

2. a specification of the theory’s ideology (in the sense of Quine, ibid.): The KPMs
enumerate (without determining) the degrees of freedom that form the complete
state of possible objects of that kind at a point in time.

The laws which according to T relate the entities in the KPMs are given by dynamical
equations. In particular, these laws fix their law-like interrelations (e.g. diachronic
evolution). They pick out of the KPMs the dynamically possible models (DPMs).
(One may conceive of the KPMs as representing T ’s metaphysically possible worlds,
say, of viscous fluids or electromagnetic fields. The DPMs describe nomologically
possible worlds; in them, the laws of nature prescribed by T hold.Models representing

1 We needn’t embroil ourselves in the question of whether such a matter/space–time dichotomy can be
upheld categorically (e.g. [6, 29, 35, 40, 42, 58, 60, 62]).
2 The transformation isn’t to be applied to fixed fields in the theory. Here, a field is called ‘fixed’, if it is
identically the same in every kinematically possible model (to be defined further below), cf. [4], fn 137.

123



Foundations of Physics (2019) 49:1086–1110 1089

particularworlds—e.g. the actual onewe inhabit—are obtained, if one further restricts
the DPMs by boundary (or initial) conditions.)

Occasionally, one may wish to interpret a multiplicity of DPMs as representing the
same world. This constitutes a gauge redundancy. On a mainstream view (which we
won’t call into question in this paper),3 for an object to represent ameaningful physical
quantity, it must be gauge-independent. Else, it lacks intelligible identity conditions:
The properties of an object violating gauge-independence are unclear.

The present paper isn’t concerned with discussing the criteria of when to physi-
cally identify two models (cf. e.g. [12, 13, 27, 40, 45])—nor with the pondering on
the question when to identify two theories (cf., for instance, [57]). While we won’t
critically discuss different positions on these matters, we’ll nonetheless adopt a cau-
tious stance. Regarding the identification of twomodels, we’ll followMøller-Nielsen’s
“motivational approach” (see below). Regarding the identity of gravitational theories,
Dewar andWeatherall adopt the latter’s own criterion [75]: Two empirically equivalent
theories are merely reformulations of the same theory if they are categorically equiv-
alent to one another. This stands in opposition to a more traditional view of theory
equivalence, such as Glymour’s [24, 25]. When discussing the variants of NG in the
various space–time settings, we’ll side with the received view: Contrary to Dewar and
Weatherall, we’ll treat them as different theories. To our minds, the absence of any
consensus on such conundrums about theory equivalence (cf. [10, 32]) commends cau-
tious conservatism. A given formalism can be interpreted in multiple ways. Whether
it’s to be regarded as equivalent to a theory couched in a different formalism depends
on this interpretation.

Dewar and Weatherall aver that gravitational energy density in NG lacks gauge-
independence. This claim deserves scrutiny in each of the canonical non-geometric
space–time settings. The remainder of the section will tackle this.

2.2 Newtonian Spacetime

Let’s first consider NG set in Newtonian space–time (NST), NGNST. Its KPMs consist
of the 7-tuple

〈M, tab, h
ab, σ a,∇, ϕ, ρ〉.

Here, M denotes the smooth, 4-dimensional differentiable manifold of events in
space–time.

tab and hab are smooth, symmetric tensor fields onM, of signature (1, 0, 0, 0) and

(0, 1, 1, 1), respectively. That is (see [39]): ∀p ∈ M : ∃
(
ξa(b)

)
b�0,...,3

∈ TM such

that tabξa(c)ξ
b
(d) � δc,dδc,0.

Analoguously, for the spatial metric, ∀p ∈ M : ∃
(
σ

(a)
b

)
a�0,...,3

∈ T ∗M such

that habσ (c)
a σ

(d)
b � δc,d

(
δc,1 + δc,2 + δc,3

)
. The two fields represent a temporal and a

spatial “metric”, respectively. Due to their degeneracy, they aren’t metrics proper. In

3 Cf., however, Rovelli [61] for a discussion and a contrary position.
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particular, whilst being able to raise indices with hab, we can’t lower them with an
inverse metric. For these two metrics, the following three conditions hold (“orthogo-
nality” and “temporal” and “spatial metric compatibility”, respectively):

habtbc � 0

∇ch
ab � 0 & ∇ctab � 0.

Given a vector field ξa , its temporal length is defined via
(
tbcξbξ c

)1/2
. The vector

field is called time-like or space-like, if its temporal length is positive or zero, respec-
tively. (For the analogous spatial “metric” we refer to [39]. The details subsequently
play no important role.)

The vector field σ a is time-like (in the sense that tabσ a 
� 0). Its integral curves
represent the persisting points of absolute space. It grounds a standard of absolute
rest/motion.

∇ is a flat derivative operator on M4:

Ra
bcd � 0.

It supplies the geodesic/inertial structure—loosely speaking: a standard of
straightness-in terms of which inertial motion is defined.5

The gravitational potential and its source, the mass density, are represented by the
smooth scalar fields ϕ and ρ. (For simplicity, we’ll ignore in the following trivial
gauge transformations of the potential, ϕ �→ ϕ + ϕ0, for constant ϕ0.6)

Throughout,we’ll assume that classical space–times are temporally orientable. That
is: There exists a continuous, globally defined covector field ta such that tab � tatb.
A time-like vector ξa is future-directed, if ξata > 0. Otherwise, it’s past-directed. In
conjunction with the orthogonality and metric compatibility conditions, orientability
allows us to slice up a spacetime into simultaneity hypersurfaces (see [39]).

In DPMs of NGNST, the gravitational potential ϕ obeys the Newton–Poisson Equa-
tion,

hab∇a∇bϕ � 4πρ.

Consider now Galilean (static and kinematic) shifts7:

Γ :

{
t
xi

�→
{

t + t0
x0 + Ri

j x
j + vi t

.

4 Recall that this means that the concatenation of parallel transporting a vector ξa commutes:

∇[a∇b]ξ
c ≡ Rc

dabξ
d � 0.

5 It deserves to be underlined that the role of inertial structure isn’t exhausted by explaining (or grounding)
inertial motion (see e.g. [54], Sect. 5.2).
6 Strictly speaking, in order for this shift to be regard as trivial, one must embrace a form of anti-quidditism
about properties. See Martens and Read [41], for details.
7 This terminology follows Huggett [31].
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They comprise uniform time (t0) and space translations (x0), time-independent
spatial rotations (Ri

j ), and constant velocity boosts (tv
i ) in absolute space. In geometric

terms this translates into linear transformations of the type σ a �→ Sabσ b + σ a
0 for a

constant vector field σ a
0 and a constant orthogonal matrix Sab with det

(
Sab

) � 1 ([19],
Ch. 2).

InNGNST, kinematic shifts reflectmeaningful differences. (Throughout,we’ll adopt
the position known as sophisticated substantivalism, see e.g. [54]. It denies that static
shifts—uniform time and space translations—correspond to physically distinct possi-
bilities.) They describe distinct, velocity-boosted worlds. Amaterial reference body in
kinematically shifted models moves at different velocities vi relative to the persisting
points of absolute space.

Already Newton himself, in his Corollary V,8 acknowledged the symmetry of mod-
els of NGNST under Galilean shifts: Its laws remain invariant under them; with respect
to the laws, Galilei-shifted models are indistinguishable.

Dynamical shifts generalise kinematic ones. They allow for an arbitrary time-
dependent translation �d(t), concomitant with a re-scaling of the potential:

	 :

{ �x
ϕ

�→
{ �x + �d(t)

ϕ − �̈d ·�x + f (t).

In a dynamical shift, one subjects the system to a uniform acceleration, �̈d(t), and
adds a force that remains constant on simultaneity surfaces. (The question of how
to translate this into the coordinate-free language of differential geometry needn’t
distract us here; we’ll return to it in Sect. 3.1). A fortiori, dynamical shifts mediate
meaningful differences: They represent universes in which some material reference
body moves at different (uniform) accelerations with respect to the persisting points
of absolute space.

Two models of NGNST, related via dynamical shifts, thus also represent distinct
worlds.9 (We’ll see presently that they are nonetheless observationally indiscernible.)

According toDewar andWeatherall, dynamical shifts threaten the gauge-invariance
of gravitational energy. To see how, let’s first introduce the energy density of the gravi-

8 “The motions of bodies included in a given space are the same among themselves, whether that space is
at rest, or moves uniformly forwards in a right line without any circular motion” (Newton 1729).
9 We’ll set aside here the question of whether dynamically shifted models still constitute solutions of
NGNST. Potential doubts might arise from the fact that the “sourceless sources“, driving such shifts, are
inimical to the Newtonian framework. At least as it stands, this argument doesn’t sway us. First, the
historical Newtonian framework has no direct bearing on the systematic question at hand. Secondly, and
more importantly, to assess the question from a systematic angle, one must spell out what one means
by, and what is included in the “Newtonian framework“. An explicit argument must then be given why
“sourceless sources“ are indeed prohibited within it. (For instance, it’s not obvious that the Newton’s
Third Law is applicable: It refers only to forces—and one may deny that dynamical shifts constitute forces
proper.With forces being arguably causes,we have hereby touched on a subtle question in themetaphysics of
causationwithin Newtonian physics.) Given the lack of a robust consensus on the details of themetaphysical
framework appropriate to Newtonian physics—and the ineluctable disputes concomitant with metaphysical
frameworks quite general—we deem it prudent to remain neutral onwhether dynamical shifts don’t preserve
solutions of NGNST. We thank an anonymous referee for pressing us on this important subtlety.
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tational potential ϕ as the Noether-current associated with time-translation invariance
of the NG Lagrangian,

E (NGNST ) � − 1

8π
hab∇aϕ∇bϕ.

It’s easily verified to be invariant exactly under Galilei-shifts: Static and kinematic
shifts don’t alter the gravitational energy density. By contrast, due to the scaling in the
gravitational potentials, dynamical shifts do:TwoNGNST models relatedvia dynamical
shifts differ on their gravitational energy density.

Should this disconcert us? Clearly—no: The twoNSTmodels, related via kinematic
(Γ ) or dynamic shifts (	) describe distinct worlds. Consequently, gravitational energy
density, set within NST, isn’t a gauge-quantity—contra Dewar and Weatherall. That
gravitational energy doesn’t vary between such worlds is irrelevant.

In conclusion: NST has sufficient structure to ward off the spectre of gauge-
dependence for gravitational energy density.

To be sure, NST is an objectionable space–time setting for NG. Via its unobserv-
able absolute standard of rest, its dynamical and space–time symmetries don’t align.
This flouts Earman’s adequacy conditions. Yet, one mustn’t conflate the flaws of a
space–time setting with the (alleged) shortcomings of a quantity-gravitational ener-
gy—defined within this space–time setting.

How does the situation look in space–time settings that amend this defect of NST?
We next discuss Galilean space-time.

2.3 Galilean Space–Time (GST)

GST ameliorates (some of) NST’s shortcomings: It drops the assumption of absolute
rest, i.e. the vector field σ a . Thereby, one can pare down redundant structure. The
points of space in GST no longer persist: Their diachronic identity is jettisoned. In
NGGST, one identifies all DPMs ofNGNST that differ only throughGalilean shiftsΓ .10

Thus, GST retains an absolute standard of straightness of paths between two events:
Whether a path is straight—a geodesic with respect to the flat derivative operator
∇b—is an absolute matter of fact. (In modal language: Those DPMs of NGNST in
which the spatio-temporal paths of all possible test matter are parallel are identified
as describing the same world.)11 Contrariwise, as in NST, dynamically shifted DPMs
remain distinct: In NGGST, dynamical shifts aren’t gauge-transformations.

10 In the case of static shifts, as discussed above, one may invoke sophisticated substantivalism, i.e. the
denial that worlds are distinct that differ only with regard to which spacetime points exhibit which metrical
properties (cf., for instance, Pooley ([54], Sect. 7).

In the case of kinematic shifts, the symmetry arguably only motivates the search for a more perspicuous
ontology that canmetaphysically elucidate the identity of kinematically shiftedworlds [46]. This is provided
by GST’s transition from a 3-dimensional to the 4-dimensional picture of reality (cf., for instance, [43],
pp. 54).
11 This follows from the fact that the totality of geodesics on a manifold uniquely determine a derivative
operator.
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What does this imply for gravitational energy density? The expression for gravita-
tional energy density for NGGST carries over from Sect. 2.3:

E (NGGST ) � − 1

8π
hab∇aϕ∇bϕ.

It didn’t depend on σ a , anyway. Under dynamical shifts it changes.
But as before, this is harmless: Dynamically shifted DPMs describe distinct worlds.

Hence, that they differ on their gravitational energy, doesn’t render the latter gauge-
variant. (To be sure, dynamically shifted DPMs are empirically indistinguishable. All
relational quantities remain unaltered. So, an observer in one of several dynamically
shifted worlds couldn’t ascertain which is hers. This predicament may be metaphysi-
cally lamentable—but it’s not a shortcoming of gravitational energy.)

As in the NGNST case, Dewar and Weatherall’s diagnosis of the gauge-dependence
of gravitational energy is therefore unfounded in NGGST.

The rebuttals of Dewar and Weatherall’s claim so far may appear trivial. After all,
GST—and a fortiori NST—arguably aren’t the most perspicuous space–time settings
for NG.12 The analysis becomes more interesting for the two possible improvements
on NGGST, Maxwell-Huygens Gravity (NGMHST) and Newton-Cartan Theory (NCT),
respectively. We’ll conclude this section with the former, before turning to the latter
in Sect. 3.

2.4 Maxwell-Huygens Spacetime (MHST)

In light of his Corollary VI,13 Newton may be credited with recognising the empirical
indistinguishability ofmodels ofNG related via uniformaccelerations, �x �→ �x ′ � �x+ �d
(t) [64].Here, �d is a twice-differentiable function, representing an accelerational boost.
Nonetheless, Newton persevered in his belief in absolute space. In rational (albeit
historically incorrect, see Hoefer and Huggett [30], Sect. 6; [63]) reconstructions,
he is frequently (e.g. [43], Ch. 2) imputed an invocation of an inference to the best
explanation for inertial effects. Consider, for instance, the surface of a water-filled
pail. It’s (observably!) concave, if and only if the bucket is rotating. Is this rotation
best conceptualised as rotation in absolute space, with the latter understood at least at
the level of NGGST? At first blush, it might appear so. But in fact, NGMHST further
whittles down NGGST’s structure by exploiting the symmetry of the Poisson Equation
under uniform accelerations. NGGST only preserves an absolute sense of non-linear
acceleration (equivalently14: rotation), evinced in inertial effects, such as in the above
bucket experiment.

12 It’s all the more surprising that GST is the only space–time setting (apart from NCT) for NG which
Dewar and Weatherall explicitly consider.
13 “If bodies, anyhow moved among themselves, are urged in the direction of parallel lines by equal
accelerative forces; they will all continue to move among themselves, after the same manner as if they had
been urged by no such forces” (Newton 1729).
14 To be sure: A time-dependent linear acceleration—a linear acceleration that is still an arbitrary function
of time, i.e. of the form ξb∇bξ

a � αa(t) + β(t)ξa—isn’t equivalent to a rotation. But any non-linear
acceleration is.
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In NGMHST, as we understand it (see below), one identifies NGGST models related
via uniform accelerations15: One stipulates that they describe the same world. In
contrast to uniform accelerations in NST and GST, in MHST they are gauge-
transformations.

Recall that within the geometric framework of classical space–times, derivative
operators encode inertial structure. Hence, they define standards of accelerations. For
MHST, one must thus identify those derivative operators that correspond to the same
standards of non-rotational acceleration, up to uniform-accelerational transformations.
This translates into the following condition for any two such standards of acceleration
∇ and ∇′, and all unit, time-like vector-fields ξa (see [39] for details):

∇[aξb] � 0 ⇔ ∇′[aξb] � 0.

One can envision this condition as the requirement that the verdict whether tra-
jectories of free particles in those space–times are not twisted be independent of the
choice of the standard of acceleration. Such space–times are rotationally equivalent,
with rotation understood as the twisting of possible free-fall trajectories.

Formally, one can now quotient out those of NGGST’s KPMs which differ only by
uniform accelerations (for details, see [73]). A KPM in NGMHST thus takes the form
of the following 6-tuple:

〈M, ta, h
ab, [∇], ϕ, ρ〉.

The only novel object, unfamiliar from GST is [∇], the “standard of rotation”. It’s
the equivalence class of flat, metrically compatible, rotationally equivalent derivative
operators in GST16:

[∇] �
{
∇′ : R’abcd � 0 &∇′

atb&∇′
ch

ab � 0&
[∣∣ξata

∣∣ � 1 ⇒
(
∇′[aξb] � 0 ⇔ ∇[aξb] � 0

)]}

Here, R
′a
bcd is the Riemann tensor associated with ∇′.17

It’s straightforward to show that the Newton-Poisson Equation in GST,
hab∇a∇bϕ � 4πρ, remains invariant under changes of rotationally equivalent deriva-
tive operators [14]. DPMs in NGMHST can thus be obtained by identifying rotationally
equivalent, but otherwise identical, DPMs of NGGST.

To invest NGMHST with empirical content, we still need equations of motion for
matter under the influence of gravity. They group together the equations of motion
for NGGST within a standard of rotation, such that their (time-like, unit) solutions

15 Again, considering the Poisson equation only. Particle equations of motion will be considered below.
16 Speaking of an equivalence class of derivative operators, rather than (e.g.) defining a primitive standard
of rotation (as does e.g. Weatherall [73]), invokes Dewar’s ‘sophistication’ about symmetries [14]. A recent
skeptical attitude towards said ‘sophistication’ can be found in Martens and Read [41]. Since we share the
latters’ skepticism, ultimately we would find it preferable to work with Weatherall’s standard of rotation,
rather than an equivalence class of operators. Nevertheless, for continuity with the literature, we set such
concerns aside in the remainder of this article.
17 Two rotationally equivalent derivative operators ∇ and ∇′ in this class are related via ∇′ � (∇, ηatbtc

)
for some spacelike vector field ηa , satisfying ∇bηa � 0 [14].
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ξ, ξ ′ ∈ TM define accelerations (with respect to the same derivative operators) that
differ only by linear accelerations18:
{
ξ ∈ TM : ∃∇′ ∈ [∇]such that ξb∇′

bξ
a + ∇′aϕ � 0

}
�

⋃
∇′∈[∇]

{
ξ ∈ TM : ξb∇′

bξ
a + ∇′aϕ � 0

}
.

The (class of) equations of motion picking out this solution set,{
ξb∇′

bξ
a + ∇aϕ � 0 : ∇′ ∈ [∇]

}
, is trivially invariant under uniform accelerations.

What might be candidates for gravitational energy in NGMHST, E (NGMHST)? The
most natural one is defined as the equivalence class of all gravitational energy densities
of rotationally equivalent NGGST models. As the action of two derivative operators
upon a scalar is the same, ∇ϕ � ∇′ϕ, this equivalence class is well-defined: The
gravitational energy densities of two Galilean spacetimes with rotationally equivalent
derivative operators ∇′ and ∇ coincide,

E ′ � − 1

8π
hab∇′

aϕ∇′
bϕ � − 1

8π
hab∇aϕ∇bϕ � E .

Consequently, within a model of NGMHST, gravitational energy density is a well-
defined quantity. It’s not gauge-dependent.19 (Note that while uniform accelerations
are gauge transformations in NGMHST, dynamical shifts, which also include a trans-
formation of the potential, aren’t.)

Again, Dewar and Weatherall’s proclamation of the gauge-dependence of gravita-
tional energy doesn’t apply to NGMHST. Like in NGGST, that dynamically shifted
models of NGMHST differ in their gravitational energy densities is benign: They
describe distinct worlds.

Onemay, however, repudiate this formulation of NGwithinMHST for two reasons:
its implausible conceptual prerequisites and its radicalness, respectively.

Firstly, it’s unsatisfactory that in order to define MHST via an equivalence class of
derivative operators ofGST, onedrawson structure that ultimately onedoesn’t attribute
to the space-time (cf. Dewar [13], Martens and Read [41], Weatherall [73]).20

Compare the transition from NST to GST: There, the standard of absolute rest,
represented by the time-like vector field σ a , could simply be excised: It played only
an otiose role in the formulation of NG.) Indeed, elsewhereWeatherall [73] proffers an
alternative characterisation ofMHSTwithout reference to derivative operators. Absent

18 We wish to underscore that, given our cautious approach to theory identity, our version of NGMHST
differs from the ones, primarily considered in the literature (e.g. [14]; Weatherall [73]). Our version’s
ontology includes a gravitational field ∇aϕ. By contrast, in Weatherall’s [73] treatment, “we (do not) need
to interpret the gravitational potential or corresponding gravitational field, ∇ϕ, as representing facts about
force or a field-like entity” (p. 88). Similarly, in Dewar’s treatment there is also no (privileged) choice of
gravitational potential or gravitational field.

We thank an anonymous referee for pressing us on this.
19 Note that on Dewar’s version of NGMHST the gravitational energy densitywould count as gauge-variant,
as the potential would change.
20 One could also rephrase this objection in terms of physical degrees of freedom. Concepts natural to
a theory reflect these, as it were, carving nature at its joints. For NCT, the true physical quantities are U
(1)-invariants—rather than boosts, parameterized by U (1) [68].
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a derivative operator, though, how to define gravitational energy density? Evidently,
the standard definition is no longer available in that case.

Gravitational energy density could well turn out not to be definable at all (as
Dewar and Weatherall themselves admit)! That would certainly be grist to Dewar and
Weatherall’s mills—but for reasons other than those they cite. (It would be desirable
to investigate whether gravitational energy density could be defined without derivative
operators. We’ll not pursue this, here, though.)

Elsewhere, Weatherall ([73], Sect. 5) draws attention also to a second blemish of
MHST: It’s more revisionary than at first blush it appears. Forces as they figure on the
l.h.s. of Newton’s 2nd Law are absolute: They are formulated in terms of one derivative
operator. It’s unclear whether all of (non-gravitational) physics can be reformulated
on MHST. Think, for instance, of the Abraham–Lorentz–Dirac force, describing the
recoil force of accelerated charged particles due to radiation (see [59]): It’s manifestly
not invariant under uniform accelerations. Hence, adopting MHST as the space-time
setting for Newtonian physics necessitates a revision of the mathematical and concep-
tual foundations of much of classical physics. This may seem gratuitously radical.21

Another response to NGGST’s redundancy is therefore appealing. In conjunction
with the equivalence of inertial and gravitational mass, its symmetry under dynamical
shifts motivates a geometrisation of NG: Like in General Relativity, gravitational
effects are absorbed into the space-time’s non-flat inertial structure. The result is
known as Newton-Cartan Theory (NCT). To this we turn next.

3 Newton–Cartan Theory

We’ll now investigate Dewar and Weatherall’s claim that gravitational energy isn’t
well-defined in NCT. This section first (Sect. 3.1) reviews the basics of NCT. Next
(Sect. 3.2), we expound why Dewar and Weatherall’s arguments are specious. In
Sect. 3.3, we try to fill the gap in their reasoning.

3.1 Geometrised NG

In this section, we review the basics of NCT, as contained in Trautman’s Geometrisa-
tion Lemma and its converse Recovery Theorem (for all details, see [39], Ch. 4.2).

In NCT, the gravitational potential of NG is absorbed into NCT’s (non-flat) deriva-
tive operator. This is encapsulated in Trautman’s Geometrisation Lemma.

Let 〈M, ta, hab,∇a〉 be aGalilean (henceforth: “classical”) spacetime. (The deriva-
tive operator ∇a is assumed to be flat; its associated Riemann tensor vanishes,
Ra
bcd � 0.) Let furthermore ϕ and ρ be smooth, real-value scalar fields on M which

21 The revisionary nature of MHST also crops up with respect to its interpretation. Recall that (considering
the gravitational field equations only) twoGSTmodels correspond to the sameMaxwell-Huygens spacetime,
if and only if they differ merely up to uniform accelerations. Consequently, two DPMs of GST that, albeit
rotationally equivalent, differ merely in their potentials, count as distinct. That raises the question of how
to interpret the scalar in MHST: What is its ontological status? Is it a real physical field, on a par with, say,
the electromagnetic one? On which space does it live?
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obey thePoissonEquation,hab∇a∇bϕ � 4πρ. Finally, let ∇̃a � (∇,−ta tbhcd∇dϕ
)
.22

Then, the following three propositions hold:

1. 〈M, ta, hab, ∇̃a〉 is a classical spacetime.
2. ∇̃a is the (unique) derivative operator such that for all time-like curves onMwith

4-velocity ξa : ξa∇̃aξ
b � 0 ⇔ ξa∇aξ

b � −hbc∇cϕ.

3. The Riemann curvature R̃
a
bcd associated with ∇̃a satisfies the

a. the “geometrised” Poisson Equation R̃ab := R̃
c
acb � 4πρtata ,

b. and the curvature conditions R̃
a b
c d � 0 & R̃

a c
b d � R̃c a

d b.

The second proposition states an equivalence between geodesic/un-
accelerated/inertial motion with respect to one derivative operator, and particular
accelerated/non-inertial motion with respect to another: Exactly those curves are
geodesics with respect to ∇̃a that describe accelerated motion that is the result
of the Newtonian gravitational force, with respect to ∇a . In this sense gravity is
geometrised—or rather “inertialised” (cf. [47], Ch. 9; [38], esp. §4): The deviation
from inertial trajectories, defined via ∇a , due to the gravitational force is recon-
ceptualised as a manifestation of (non-flat) inertial structure, defined via ∇̃a . (The
interpretation of the curvature conditions shan’t concern us here. Instead, we refer to
[39], Ch. 4.3.)

Via the Recovery Theorem, we can re-translate geometrised NCT gravity back into
non-geometrised NGGST.

Let the classical spacetime 〈M, ta, hab, ∇̃a〉 satisfy the geometrised Poisson Equa-
tion R̃ab � 4πρtata for some smooth scalar fieldρ onM, and theTrautmann curvature

conditions R̃
a b
c d � 0 & R̃

a c
b d � R̃c a

d b. Then, in the neighbourhood of any point a real-
valued scalar ϕ and a derivative operator ∇ exist, such that the following propositions
hold:

1. ∇ is compatible with ta and hab.
2. ∇ is flat. (Its associated Riemann tensor vanishes, Ra

bcd � 0.)
3. For all time-like curves on M with 4-velocity ξa : ξa∇̃aξ

b � 0 ⇔ ξa∇aξ
b �

−hbc∇cϕ.

4. ϕ satisfies the Poisson Equation: hab∇a∇bϕ � 4πρ.

Via the Recovery Theorem, we can “de-geometrise” NCT spacetimes:
Geodesic/inertial motion with respect to ∇̃, which was force-free, is now re-
conceptualised as accelerated/non-inertial motion with respect to ∇, subject to the
gravitational force.

The de-geometrisation isn’t unique. A second pair ϕ′ and ∇′ for which

hab∇a∇b
(
ϕ − ϕ′) � 0 & ∇′ �

(
∇, ta tbh

cd∇d
(
ϕ − ϕ′))

also satisfies the conditions 1–4 of the Recovery Theorem.

22 That is (see [39], Ch. 1.7): Let ∇ and ∇′ be two derivative operators on a manifold M. Then, they
are uniquely related via a symmetric tensor field Ca

bc: For any tensor α
a1...ar
b1...bs

of rank (r , s) on M,
(∇′

m − ∇m
)
α
a1...ar
b1...bs

� α
a1...ar
nb2...bs

Cn
mb1

+ α
a1...ar
b1nb3...bs

Cn
mb3

+ · · · − α
da2...ar
b1...bs

C
a1
md − α

a1da3...ar
b1...bs

C
a2
md − · · ·.
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The transformations between any pair (ϕ,∇) and
(
ϕ′,∇′) that each satisfies the two

non-uniqueness conditions are the dynamical shifts, mentioned in Sect. 2.2. Conse-
quently, two models of NGGST related via dynamical shifts are “de-geometrisations”
of the same NCT spacetime. It has therefore been argued—e.g. by Pooley ([54],
Sect. 6.1.1) or Knox [34]—that the gravitational scalar and the derivative oper-
ator of ungeometrised NG—i.e. NGGST—are merely gauge-dependent quantities;
geometrised NG—i.e. NCT—provides a gauge-free formulation of NG. With its
dynamical symmetries matching its spacetime symmetries, and hence conforming
to Earman’s adequacy conditions, NCT is a satisfactory theory of gravity.

In summary: NCT allows us to re-conceptualise gravitational effects as manifes-
tations of non-flat spacetime geometry (inertial structure). Models of NGGST related
via dynamical shifts can be identified as the same NCT spacetime.

3.2 Dewar andWeatherall on Gravitational Energy in NCT

Let’s now assess Dewar and Weatherall’s principal argument against gravitational
energy in NCT. Its logical form can be reconstructed as follows:

(1) The natural expression for gravitational energy in NGGST isn’t invariant under
dynamical shifts.

(2) In NCT, one identifies those DPMs of NGGST that are related via dynamical shifts
as physically equivalent; they are gauge.

(3) Therefore, gravitational energy in NCT isn’t gauge-invariant.

Our authors correctly observe (1) and (2). However, their conclusion—(3)—is
objectionable for a simple reason: Nowhere do Dewar andWeatherall explicitly define
the object that is supposed to most naturally represent gravitational energy in NCT.

This is a crucial shortcoming. It renders their argument both formally and
substantively incomplete. After all, Trautman’s Geometrisation Lemma and Recov-
ery Theorem (Sect. 3.1) only equip us with a translation between the 6-tuple
〈M, ta, hab,∇a, ρ, ϕ〉 of non-geometrised NGGST quantities, and the 5-tuple
〈M, ta, hab, ∇̃a, ρ〉 of geometrised NCT quantities; both are silent on any other quan-
tities.

For Dewar and Weatherall’s above syllogism to formally go through, premise (1)
needs to be superseded by

(1’) The (most natural) NCT counterpart of the Galilean gravitational energy isn’t
invariant under dynamical shifts.

With this, the conjunction of all three premises entails the conclusion:

(
1′)&(2) → (3).

But why believe that (1’) is true? It’s far from clear—as Dewar andWeatherall con-
cede themselves—whether the NCT counterpart of Galilean gravitational energy even
exists—and if it does, whether it indeed fails to be invariant under dynamical shifts.
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(To be sure, if either could be negated, this would be grist to Dewar and Weather-
all’s mills. Their conclusion would remain intact. But it would follow from different
reasons: namely those against the existence of the most natural NCT counterpart of
Galilean gravitational energy, rather than the gauge-dependence of an actually existing
NCT gravitational energy.) In short: It’s one thing to doubt the definability of gravita-
tional energy; it’s another to doubt its physical meaningfulness (or well-definedness).
Dewar and Weatherall focus on the latter.

Even if one charitably grants that the meaning of “most natural candidate” is clear,
one may impugn the very existence of an NCT counterpart of Galilean gravitational
energy. As the Geometrisation Lemma discloses, Galilean gravitational energy con-
tains terms absent in NCT. In the latter’s DPMs, a gravitational potential doesn’t
appear; it has been absorbed by NCT’s non-flat connection. Furthermore, Galilean
gravitational energy is defined via the (flat) derivative operator of GST. Which deriva-
tive operator should then enter the NCT counterpart of Galilean gravitational energy?
An intuitive choice would, of course, be NCT’s (non-flat) derivative operator. But this
is scarcely compelling.

If thus gravitational energy in NGGST essentially hinges on terms absent in NCT,
then why assume that it can be defined at all in NCT?

In conclusion: Unless the possible candidate for NCT’s gravitational energy is
explicitly defined, Dewar and Weatherall’s criticism of the latter’s (alleged) gauge-
dependence forfeits much of its force.

To fill this lacuna, we’ll now discuss various concrete options.

3.3 Candidates for Gravitational Energy in NCT

In the preceding section, we argued that Dewar and Weatherall’s criticism of gravita-
tional energy in NCT is vitiated by their lack of an explicit definition of gravitational
energy in NCT. Here, we’ll examine a number of natural candidates: 1. Pseudotensors,
2. Komar energy, 3. Lorentz and Levi–Civita’s proposal, 4. The Bel-Robinson tensor.
5. Pittsification. Rather than suffering from gauge-dependence, these proposals will
be argued to be either not well-defined, or to yield trivial gravitational energy.

Dewar and Weatherall ([15], fn. 30) enjoin such an examination of explicit propos-
als. It has two kinds of merits. After all, in empirically equivalent theories, radically
different objects can play the same role. (Think of Starobinski’s original model of
cosmic inflation (see, e.g., [11], Sects. 2, 3 for details.) In one formulation, the latter is
driven by a scalar, hence arguably a matter field on spacetime. In an equivalent formu-
lation, inflation is merely a manifestation of spacetime curvature deviating from what
it should be according to GR). Furthermore, comprehending the various possibilities
in which a conceptually rich theory such as NCT can fail to exhibit a certain feature
considerably enhances our understanding of it. In particular, this broadening of our
repertoire of instruments is likely to pay off in comparing NCT to other theories in its
theoretical vicinity, such as GR. (In the apt terms of Pitts [52]: Spacetime philosophy
should aspire to “modal cosmopolitanism”—rather than “modal provincialism”.)
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3.3.1 Pseudotensors

In this subsection, we evaluate the natural NCT counterparts of the general-relativistic
pseudotensors as possible candidates for gravitational energy. They are found to triv-
ialise the latter.

The standard approach to gravitational energy in GR proceeds via the Noether the-
orems.23 The absence of a (tractable, natural) Lagrangian or Hamiltonian formulation
of NCT encumbers this road, though.24 It’s straightforward to find a Lagrangian with
suitable multipliers. But the latter are, of course, under-determined. Canonical gravita-
tional energy–momentum for (i.e. the Noether current attributed to) the (non-flat) NCT
metric would depend on the Lagrange multipliers, and hence would be ill-defined.

One might, however, take the definitions of pseudotensors, as familiar from GR,
and just stipulate their formal NCT analogues. What encourages such a procedure
is that pseudotensors—at least in GR—arguably satisfy natural desiderata for local
gravitational energy, e.g. a conservation law, the dependence only on first derivatives
of the field variables, or the reduction to the familiar Newtonian potential energy in
the weak-field limit ([17], Sect. 3.2).

Following Goldberg [26], an infinitely large class of pseudotensor densities (of
arbitrary weights n+1, n ∈ N

≥0) can be constructed as follows. (We restrict ourselves
to mixed indices—one up, one down.)

ϑ(n)ν
μ � |g| n2

{
ϑν

μ +
n

2
U [νσ ]

μ ∂σ ln|g|
}

Here, |g| denotes the modulo of the determinant of GR’s metric. U [νσ ]
μ denotes a

so-called super-potential. (The details needn’t detain us here.)
For n � 0, we obtain the weight-one density of the Einstein-pseudotensor tνμ

25:

ϑ(0)ν
μ � √|g|tνμ :� 2

√|g|Gν
μ + ∂σ

(
|g|− 1

2 gμλ∂ρ

(
|g|gλ[νgσ ]ρ

))
.

Together with the matter energy–momentum tensor |g| n+12 Tμ
ν , (of weight n+1), the

pseudotensors—representing gravitational energy–momentum—form the system’s

total energy–momentum T (n)ν
μ :=|g| n+12 Tμ

ν + ϑ
(n)ν
μ . The latter satisfies the continuity

equation:

∂νT (n)ν
μ � 0.

Albeit not a tensor equation, this continuity equation holds in all coordinate systems.
Hence, total energy–momentum can be said to be (locally/differentially) conserved.

For the NCT counterparts to the general-relativistic pseudotensors, it’s tempting to
replace the general-relativistic metric in the above expressions by NCT’s spatial or

23 Historically too, this was Einstein’s route—avant la lettre (Brading [5]).
24 In private correspondence,NicTeh has conjectured that the non-existence of aLagrangian orHamiltonian
formulation without Lagrange multipliers of NCT is even provable (cf. [28]).
25 Alternate formulations can be found in e.g. Dirac ([16], Ch. 31, 32) or Ohanian and Ruffini ([49], A5).
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temporal pseudo-metric, hab and tab � tatb respectively. In fact, it can be shown [3]
that NCT doesn’t admit of a non-degenerate metric with which the NCT connection
is compatible. Hence, the subsequent discussion is without loss of generality.

However, due to their degeneracy, i.e. vanishing determinant, this is a non-starter:
One can easily verify that the resulting NCT pseudotensors either are trivial or nor
defined at all. The latter is the case for ϑ

(0)ν
μ , i.e. n � 026; the former is the case for

ϑ
(n)ν
μ s for n > 0.
In conclusion: The natural NCT counterparts to GR’s standard pseudotensor

weights either are either ill-defined, or they yield a trivial notion of gravitational
energy. While consonant with Dewar and Weatherall’s conclusions, this result has
nothing to do with a lack of gauge-invariance.27

3.3.2 Komar Mass

This section is devoted to a plausible definition of total energy of NCT spacetimes via
the Komar integral. Like pseudotensors, it trivialises gravitational energy.

The most natural path to a global notion of gravitational energy in GR proceeds
via the Noetherian route or, equivalently, the Hamiltonian formalism. As mentioned
in the preceding section, for NCT this path is blocked. For static spacetimes in GR,
an alternative exists: the Komar integral. (In GR, it coincides with the Hamiltonian
definition, see e.g. [53], Ch. 4.3.)

Consider a static spacetime, i.e. one with a(n asymptotically normalised) time-like
Killing field ξ , satisfying ∇(aξb) � 0. For such a spacetime, there exists a natural
definition of “holding an object in place” via ξ ’s orbit (see [71] for details). This gives
rise to a likewise natural notion of acceleration with respect to this orbit. Via this
acceleration, a force can be defined that an observer at infinity must exert in order
to keep a unit mass in place. Analogously to the characterisation of the total energy
of the electrostatic field in terms of its asymptotic properties, we thus arrive—after
various manipulations, for which we refer to the literature (ibid.)—at the following
expression for the energy enclosed in the topological 2-sphere St in the hypersurface
orthogonal to ξ :

E � −8π lim
St→∞

∮

St

dσ ab∇aξb.

Here, dσ ab denotes the surface element onSt . This integral can serve as a definition
of total energy in general-relativistic static spacetimes. It turns out to be conserved.

26 Dirac’s affine form of the weight-1 Einstein pseudotensor density also yields a vanishing result for a
singular metric.
27 GR’s pseudotensors are usually regarded as tainted by the problem of coordinate dependence (cf., for
instance, Weyl [77], p. 273). By contrast, NCT’s pseudotensors are free from that evil: Whenever they are
defined, the NCT pseudtensor densities vanish coordinate-independently. In the same vein, they are—albeit
trivially—invariant under dynamical symmetries.
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Given that NCT spacetimes are static in a natural sense,28 it’s now tempting to
stipulate the NCT counterpart of the Komar integral as a candidate for the total energy
of NCT spacetimes as well. To that end, one plausibly replaces the Killing field in the
Komar expression’s integrand by NCT’s time covector, ξa → ta . This already suffices
to trivialise the proposal: Due to the compatibility condition of NCT’s time pseudo-
metric, ∇atb � 0, the NCT counterpart of the Komar integral vanishes. Consequently,
the total energy of a NCT spacetime would be zero. Gravitational energy—understood
as the energy left after subtracting the energy contributions of ordinary matter—would
then always exactly counterbalance matter energy. This is implausible for reasons that
we’ll explain in the next subsection, in which we’ll discuss Lorentz and Levi–Civita’s
proposal.

3.3.3 Lorentz and Levi–Civita’s Proposal

Lorentz and Levi–Civita proposed the Einstein tensor, Gab � Rab − 1
2 Rgab (or, for

reasons of dimensionality, − 1
2κGab, with κ:=4πG

c4
) as a representation of gravitational

energy in GR (for details, see [8], Sects. 5–11). Is this convincing for the NCT case?
For reasons again both general and specific to NCT, we argue that this isn’t the case.

Three facts commend Lorentz and Levi–Civita’s proposal. (1) In contrast to pseu-
dotensorial approaches, the Einstein tensor is a bona fide tensor. (2) It obeys a bona fide
covariant conservation law: the contracted Bianchi identity, ∇bGab ≡ 0. The atten-
dant total energy–momentum (LLC)T

ab:= − 1
2κ G

ab + Tab, satisfies both an ordinary

and covariant continuity equation, ∂b
(
(LLC)T

ab
) � ∇b

(
(LLC)T

ab
) � 0. (3) The Ein-

stein tensor is the exact gravitational counterpart of the matter energy–momentum
tensor: Whereas the latter is defined variationally as Tab � − 2√|g|

δ
δgab

(√|g|L(m)

)
,

one obtains the Einstein tensor (up to a proportionality factor) by replacing the matter
Lagrangian by the purely gravitational Einstein-Hilbert Lagrangian,

Gab ∝ 1√|g|
δ

δgab

(√|g|R
)
.

The first two features carry over to NCT. The third one, however, doesn’t: The
absence of a natural Lagrangian formulation of NCT’s full gravitational sector (cf.
[28])—including the two Trautmann conditions imposed on curvature—weakens the
analogy between the Einstein tensor and the matter energy–momentum tensor.

But there are stronger reasons to question Lorentz and Levi–Civita’s proposal:
physical implausibility and vacuity, respectively (cf. [50], fns 180–181). Firstly, con-
sider the Einstein Equations in vacuum. This, on Lorentz and Levi–Civita’s proposal,
yields vanishing gravitational energy, Gab � 0. But that’s counterintuitive: Since the
Einstein tensor is constructed from traces of the Riemann tensor, a solution of the
vacuum Einstein Equations has in general non-vanishing Weyl structure.29 The lat-
ter encapsulates gravitational radiation. Prima facie, one would expect it to possess

28 That is: Its defining partial differential equations are elliptic. Hence, information about variations in a
region propagates instantaneously.
29 Dewar andWeatherall ([15], Sect. 4) show that for NCT spacetimes, one can indeed define a (non-trivial)
Weyl tensor (cf. [18, 20, 72]).
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gravitational energy—contrary to Lorentz and Levi–Civita’s proposal (cf. [17] for a
critique). Equally implausibly, it purports that there are no differences between grav-
itational energy in the exterior of a static and, say, rotating black hole, respectively:
In either case, gravitational energy would be zero. For NCT, the objection needs to be
slightly adapted. NCT’s Poisson Equation is elliptic. Hence its solutions can’t propa-
gate. In that sense, there is of course no gravitational radiation. Still, one would expect
different NCT spacetimes with non-vanishing Weyl structure—i.e. different homoge-
nous solutions of the Poisson Equation—to differ in their gravitational energy. (Recall
that the Weyl tensor measures tidal deformations in the shape of extended spacetime
regions.)

Besides such doubts regarding its physical plausibility, it seems mysterious and
contrived that, on Lorentz and Levi–Civita’s proposal, any matter energy–momentum
is exactly counterbalanced by gravitational energy (in the GR case): In all possible
spacetimes, the total energy always vanishes, − 1

2κ Gab + 2κTab � 0. It’s elusive what
positing such an entity would help explain. As Levi–Civita conceded in a letter to
Einstein, the proposal is sterile in that “[…] the energy principle would lose all its
heuristic value, because no physical process (or almost none) could be excluded a
priori. In fact, [in order to get any physical process] one only has to associate with it a
suitable change of the [gravitational field]”. For NCT, this sterility is exacerbated by
the fact that the Einstein tensor reduces to the Ricci tensor, and that the latter vanishes
for mixed indices,

(NCT )Gb
a ≡ (NCT )Rb

a ≡ 0.

In otherwords: Lorentz andLevi–Civita’s proposal yields only a trivial gravitational
energy–momentum flux along some direction ξa : (NCT )Gb

aξ
a ≡ 0.

In conclusion: The Einstein tensor isn’t suited for representing gravitational energy
in both GR and NCT; it lacks physical informativeness and plausibility. The issue of
gauge-dependence under dynamical shifts doesn’t arise in any form.

Let’s turn next to another tensorial proposal, Bel andRobinson’s superenergy tensor.

3.3.4 The Bel–Robinson Tensor

In this subsection, we examine the NCT counterpart of the Bel–Robinson tensor as a
candidate for NCT’s gravitational energy.

Recall the energy–momentum tensor of electrodynamics:

4πTμν

(em) � Fμ
λ Fλν − 1

4
gμν ∗ (

Fκλ
) ∗ (Fκλ),

with the Faraday tensor Fμν � ∂μAν − ∂ν Aμ, and its dual ∗(Fμν) � εμνκλFκλ.
(We use the latter—rather than the non-dual—in the second term of the energy–mo-
mentum tensor to render its structural similarity with the Bel-Robinson Tensor more
transparent.) In an analogous manner, one can construct a tensor from the Riemann
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tensor,30 mimicking the symmetric electromagnetic energy–momentum tensor (see
Garecki [22] for details). The result is the so-called “superenergy tensor”:

T abcd :=Raef c Rb d
e f + ∗

(
Raef c

)
∗

(
Rb d

ef

)
� Raef c Rb d

e f + Raef d Rb d
e f − 1

2
gabRef gc R d

e f g .

(Here, ∗ denotes the usual dual operation: ∗(Rabcd) � 1
2εabe f R

e f
c d .) Bel andRobin-

son proposed it as a candidate for gravitational energy in GR.
As a consequence of theBianchi identities (and hence, independently of theEinstein

Equations), its covariant divergence vanishes:

∇aT
abcd ≡ 0.

Note that due to the Einstein Equations, in vacuum the Riemann tensor can be
replaced by the Weyl tensor. The latter encodes gravitational degrees of freedom that
can propagate through vacuum. In light of this, the Bel-Robinson tensor seems apt for
describing energy associated with gravitational radiation.

What makes it of particular interest is that the Bel-Robinson tensor appears in the
expansion of the Einstein pseudotensor at a point, when evaluated in normal coordi-
nates for some other point (see So, Nester and Chen [65] for details).

Due to the flatness of NCT spacetimes (in the sense of Rab
cd � 0, Sect. 3.1), a

non-trivial Bel-Robinson tensor in NCT must be defined as a tensor of rank (1,3):

(NCT )T i
klm :=R

i
abl R

b a
mk + ∗

(
Ri
abl

)
∗

(
Rb a

mk

)
,

with the Riemann tensors (and their duals), associated with the NCT connection. As
the Bianchi identities also hold in NCT, also ∇i

(NCT )T i
klm ≡ 0 obtains.

However, (NCT )T i
klm isn’t a convincing proposal for gravitational energy in NCT

for reasons both general and specific to NCT.
Generally (and like in GR), it has the dimensions length−4. So, neither the Bel-

Robinson tensor nor any of its powers have the right dimension, unless one introduces
a novel constant of nature. But this seems ad-hoc.

Moreover, the Bel-Robinson tensor is linked to differences in pseudotensorial gravi-
tational energy (andhence, on a standard interpretation of pseudotensors: to differences
in gravitational energy simpliciter), rather than to the latter directly (ibid.). So, its
physical interpretation would presuppose a non-trivial notion of pseudotensorial grav-
itational energy. But as we saw in Sect. 3.3.2, the most immediate NCT counterparts
to pseudotensors are vacuous.

In conclusion: As a proposal for gravitational energy in NCT, the Bel-Robinson
tensor is both formally, as well as in absence of its connection to non-vacuous
pseudotensorial gravitational energy, unsuitable. ContraDewar andWeatherall, gauge-
variance isn’t the issue here, though.

30 This may bemotivated by Synge’s suggestion that GR’s gravitational field is represented by the Riemann
curvature tensor (cf. [36] for a critical discussion). That is:According to Synge, one should view theRiemann
tensor as the GR counterpart to the Faraday/field strength tensor—a view backed up by the perspective from
the fibre bundle formalism [76].
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We conclude our perusal of candidates for gravitational energy in NCT with a
non-tensorial proposal, due to Pitts.

3.3.5 Pittsification

Pitts [51] has recently propounded an astute solution to the problem of
coordinate/gauge-dependence of pseudotensors in GR: Take your favorite pseudoten-
sor, say the Einstein pseudotensor ϑb

a , and declare the totality of its values in all
possible coordinate systems (at neighbourhood of a point) one object. Symbolically:

{
(∀ coordinate systems CS)

(
ϑν

μ

)
CS

}
.

It has (uncountably) infinite components. Each corresponds to the pseudotensor’s
value in one possible coordinate system.

There are two ways to transfer this idea to NCT. The first one takes the NCT
counterparts of pseudotensors, and “Pittsifies” them as in Pitts’ original proposal for
GR. But this is of little interest, as the NCT counterparts of pseudotensors are either
trivial or not defined (Sect. 3.3.1).

More auspicious is another option. It starts from NGGST ’s gravitational energy. As
described in Sect. 3.2, a DPM in NCT M can be de-geometrised into an equivalence
class of GST models GSTα(M) for some index set α ∈ A. For any two α, α′ ∈ A,

the models GSTα(M) and GSTα′(M) differ only up to dynamical shifts. Now Pittsify
the gravitational energies of all these GSTα(M)s. This yields the (Pittsified) NCT
gravitational energy, symbolically:

E(M):={(∀α ∈ A)E[GSTα(M)]}.

Each component of this object corresponds to one possible GST de-
geometrisation. By construction, it’s gauge-invariant under dynamical shifts. (Recall:
De-geometrisations of an NCT spacetime are all related via dynamical shifts.)

Pittsification welds together into one well-defined, formal object the gravitational
energies of those GST spacetimes that correspond to the same NCT spacetime. It’s not
obvious, though, that it provides a satisfactory representation for gravitational energy
in NCT: Firstly, its conceptual prerequisites seem alien to NCT; secondly, one may
have qualms about its physical meaningfulness.

The Pittsified NCT gravitational energy is constructed from the gravitational ener-
gies of those NGGST spacetimes the geometrisation of which yields the same NCT
spacetime. On the one hand, this yields a formally well-defined object—even a geo-
metric one.31 On the other hand, one may wonder: Is it legitimate to introduce into
a theory quantities built from terms that belong to, and are meaningful only within,
a different theory? That is: Are we allowed to use quantities prima facie intelligible
only in NGGST in order to define a quantity supposedly meaningful in NCT?

31 If one is willing to extend the standard meaning of geometrical objects to objects with infinitely many
components ([51], Sects. 1–2).
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Perhaps such a worry might be allayed by the thought that the individual de-
geometrised NGGST spacetimes lack meaning in NCT; only their totality accrues it.
Consider the gauge-quantities of electromagnetism, the 4-potentials. By themselves,
they don’t possess physical significance, either (perhaps setting aside potential sub-
tleties for the Aharonov–Bohm effect); only a suitable combination of them—i.e. the
Faraday tensor—does. By analogy, one might argue that only the Pittsified NCT grav-
itational energy as a whole is meaningful; its individual components—the NGGST
quantities—aren’t. One could counter by questioning the whole procedure: Isn’t
Pittsification too cheap a trick to procure gauge-invariant quantities? Finding gauge-
invariant quantities is a formidable task in ongoing research in (non-Abelian) gauge
theories. One would like more than a merely formal object: How to ensure that the
Pittsified gravitational energy actually possesses physical significance?32 (Consider,
by analogy, the Pittsification of the electromagnetic 4-potentials, i.e. the infinite-
component object made up of all 4-potentials in all possible gauges. In a formal
sense, it’s evidently gauge-independent. One would baulk, however, at attributing it
physical content, as expressed in the electromagnetic fields.)

In conclusion: Via Pittsification, we can define a formal candidate for gravitational
energy of a NCT spacetime from the gravitational energies of its correspond-
ing NGGST de-geometrisations. Reasons to object to this proposal don’t include
gauge-dependence; rather, they consist in doubts about its physical significance and
conceptual adequacy.33

4 Discussion

Dewar and Weatherall [15] conclude their paper with “an important lesson for how to
understand energy in geometrized theories. […] (T)here is a deep relationship between
the classical notions of energy, work, force, and inertia. Energy is a measure of the
ability to do work […] But in theories in which gravitation is ‘geometrized’ in the
sense that gravitation is understood as an inertial effect in curved spacetime, we should
not think of gravitation as a force at all—and so, in particular, it is not the sort of thing
that does work. To the contrary, work makes sense only as a measure of the deviation
from inertial motion over some distance.”

Our discussion illustrates this insight in slightly more detail.34 It shows explicitly
that non-geometrised variants of NG in the above sense—NGNST and NGGST—do
allow for a well-defined notion of gravitational energy. Contrariwise, for NG in
spacetime settings where inertial structure has absorbed gravity—MHST and NCT—-

32 This is squarely related to the question of inferences from symmetries to reality: Declaring the physical
equivalence between symmetry-related models of a theory remains merely formal and verbal, unless a
metaphysically perspicuous explication of the corresponding ontological picture is forthcoming [46].
33 This criticism mirrors the one mounted against Pittsification of pseudotensors in GR ([17], Sect. 3.3).
34 We plan to complement our and Dewar and Weatherall’s results by an investigation from the view-
point of teleparallisation (for a conceptual introduction, see [33]). Recently, Teh and Read [69] have shown
that the Trautman Recovery Theorem is an instance of teleparallelisation. It will be interesting to study
whether further illuminating insights into gravitational energy in NCT and NG can be gained by applying
the machinery of teleparallelisation.
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gravitational energy faces several obstacles.35 The status of a prima facie central
concept such as the energy associated with Newtonian gravitational degrees of free-
dom crucially depends on how Newtonian Gravity is interpreted.

Dewar and Weatherall make a farther-reaching suggestion: “[…] (W)e should
understand the energy density of Yang-Mills fields [including electromagnetism, the
authors] as relative to some background structure—namely, the inertial structure deter-
mined by the spacetimemetric in general relativity” (p. 27, their emphasis).We concur
with this. But it’sworthwhile stressing that it implies aminor rectification ofDewar and
Weatherall’s conclusion, cited above: It’s less the geometrisation of gravity itself—the
absorption of gravitational effects by inertial structure—that is responsible for the dif-
ficulties in defining gravitational energy. Rather, it’s the existence of (sufficiently rich)
inertial structure simpliciter that seems to be a prerequisite for a meaningful (or at
least, robust, cf. [56]) definition of field energies.36 In fact, one may construe the main
problem diagnosed in Sect. 2.4 for gravitational energy for NGMHST as a violation of
this requirement: MHST’s inertial structure is too impoverished to even allow us to
define gravitational energy; for that, the derivative operator had to be imported from
GST.

Our discussion also emphasised an additional difficulty for gravitational energy for
NCT: the absence of a natural Lagrangian (or Hamiltonian) formulation. Despite the
similarities with respect to geometrizing gravity, this makes its statusmore precarious
than in GR. Energy is arguably a cluster concept. But it wouldn’t be too much of a
stretch, either, to regard the definition of energy within the Lagrangian/Hamiltonian
framework as the primary meaning of energy in field theories. Hence, we propose,
not only will the comparison with Yang-Mills theories be rewarding, as Dewar and
Weatherall suggest; it will likewise be illuminating to investigate the status of field
energies in non-Lagrangian theories.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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