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Abstract. Application of mechanics of multi-phase porous media for modeling
cement based materials at high temperature is presented. The considerations are
based on the mathematical model of mechanistic type, developed by the authors
within recent years. The model has been previously experimentally validated and suc-
cessfully applied for analyzing performance of various concrete structures at high
temperature. Physical phenomena in a concrete element heated during a fire are
described and analyzed, confirming multi-phase nature of concrete in these condi-
tions. Main stages of the mathematical model development by means of hygro-
thermo-mechanics of porous media are briefly presented. The mass, energy and linear
momentum conservation equations at micro-scale are given and averaged in space to
obtain the macroscopic form of the equations. Some main key-points in modeling
cement-based materials at high temperature are discussed. Final form of the model
equations and method of their numerical solution are presented. The model is vali-
dated by comparison with some published results of experimental studies. Two exam-
ples of the model application for numerical simulation of concrete structures exposed
to fire conditions, including also a cooling phase, are analyzed.

Keywords: Cement based materials, High temperature, Poro-mechanics of multi-phase media,
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1. Introduction

When concrete is exposed to high temperature a rather complex analysis is
required to deal with the coupled heat and mass transfer that can occur, involving
both liquid mass transfer and vapour mass transfer and related mechanical effects
[1-5].

In such severe conditions in terms of temperatures and pressures, assessment of
concrete performance is of great interest in nuclear engineering applications, in
safety evaluation in tall buildings and in tunnels [3, 5]. In particular as far as
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Figure 1. Some examples of spalling occurred in concrete structures.
a Spalling of a tunnel vault due to a fire (UPTUN project—[49]).
b Corner spalling of a concrete column (HITECO project—[50]).

tunnels are concerned, recent major fires in key European tunnels (Channel,
Mont-Blanc, Great Belt Link, Tauern) emphasised the serious hazards they pres-
ent in human and economic terms. In these accidents, in the affected sections, tun-
nels presented extensive damage to the concrete elements. Part of the concrete
lining was almost completely removed by spalling.

Spalling is the violent or non-violent breaking off of layers or pieces of concrete
from the surface of a structural element when it is exposed to high and rapidly
rising temperatures. It can result in significant loss of section leading to reduction
in load-bearing capacity, see Figure 1 for two examples of spalling.

For example, up to 75% of the concrete segment thickness was lost in multiple
layered explosive spalling in the 1994 Great Belt tunnel fire. In the 1996 Channel
tunnel fire, up to 100% of the segment spalled off explosively.

Spalling, which may be explosive, is mainly due to different coexisting coupled
processes, such as thermal (heat transfer), chemical (dehydration of cement paste),
hygral (transfer of water mass, in liquid and vapor form) and mechanical pro-
cesses (release of the elastic energy stored during heating and buckling effects in
the external layer).
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In general, moisture transport in concrete structures during fire may include air-
vapor mixture flow due to forced convection, free convection, and infiltration
through cracks and pores, vapor transport by diffusion, flow of liquid water due
to diffusion, capillary action, or gravity, and further complications associated with
phase changes due to condensation/evaporation, ablimation/sublimation, and
adsorption/desorption.

Movement of air and water through the concrete is accompanied by significant
energy transfer, associated with the latent heat of water and the heats of hydra-
tion and dehydration. At temperature largely above critical point of water impor-
tant chemical transformations of components of concrete take place.

These situations are much more dangerous in the case of High Performance
(HPC) and Ultra High Performance (UHPC) concrete. The compressive strength
of the high performance concretes used in the tunnels mentioned above exceeded
100 MPa at the time of the fire.

At ambient temperature these kinds of concrete present much better features
than a normal concrete because of their lower permeability, lower porosity and
higher compactness. This means greater mechanical strength, in particular as far
as the compression strength is concerned, and an improved durability. At normal
ambient temperatures, in fact, the cement matrix increases the strength of high
performance concrete, because of its higher density and homogeneity, involving a
better distribution of the stresses than a traditional concrete. At higher tempera-
ture this matrix becomes the weak point of the materials showing low mechanical
strength. With the temperature increase the aggregates progressively expand as
long as they are not chemically altered, while the cement matrix, after an initial
expansion, is subject (over 150°C) to a progressive shrinkage. These two opposite
phenomena induced a micro-cracking process which involve damaging of the
material microstructure. Further, low permeability inhibits water mass transfer
causing high gas pressure values, crack-opening and then an increase of intrinsic
permeability.

Hence, for concrete, particularly at high temperature, one cannot predict heat
transfer only from the traditional thermal properties: thermal conductivity and
volumetric specific heat.

The majority of models used for the analysis of the effect of high temperature
on concrete can be classified as thermo-mechanical. Most of these essentially con-
sist of two separate thermal and mechanical models used in sequence that the
temperature field obtained from the thermal model is input into the mechanical
model at every time step of simulations to produce the resulting strains and stres-
ses. Such models are capable to predict reasonably the overall deflections of
beams and columns exposed to fire, although discrepancies between experiment
and model appear at the lower temperatures of 100°C to 200°C because the influ-
ence of evaporable moisture cannot be properly incorporated. For such applica-
tions, the relatively simple thermo-mechanical models offer a reasonably accurate
and cost effective solution of predicting, for example, fire resistance of beams and
columns in terms of total deformations after one or 2 h of exposure to fire. But
they are totally unreliable in spalling prediction.
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To predict reliably the behavior of a concrete structure in such conditions, in
particular evolutions of temperature, moisture content, gas pressure, and first of
all degradation processes, rather complex and sophisticated mathematical models
are required.

Several mathematical and numerical models, usually based on extensive labora-
tory tests, have been developed for this purpose, e.g. [1-24]. Some main features
of the models are summarized in [25].

Mechanics of multi-phase porous media proved to be a theory enabling an effi-
cient modeling of cement-based materials at high temperature. It allows for con-
sidering the porous and multiphase nature of the materials, their chemical
transformations, water phase changes and different behavior of moisture below
and above the critical temperature of water, mutual interactions between the ther-
mal, hygric and degradation processes, as well as several material nonlinearities,
especially those due to temperature changes, material cracking and thermo-chemi-
cal degradation.

In this paper we explain how mechanics of multi-phase porous media can be
applied for modeling cement based materials at high temperature. Our consider-
ations are based on the mathematical model developed within the recent years by
the authors [9, 11, 12, 16]. This model is based on the Hybrid Mixture Theory
[26-30]. It considers the deformations which are characteristic for heated concrete,
i.e. load free thermal strain (LFTS) and load induced thermal strain (LITS called
also ‘thermal creep’) [16], as well as cracking and thermo-chemical degradation of
concrete [12] and related changes of the material properties, like for example per-
meability and strength properties [10, 11, 13, 14]. The model has been validated
against results of several available experimental tests [12, 22, 31], showing its use-
fulness for better understanding and predicting concrete performance at high tem-
perature.

The paper is organized in such a way that its’ structure follows the main stages
of a mathematical model development by means of hygro-thermo-mechanics of
porous media. First, physical phenomena in heated concrete and development of
conservation equations at micro- and macro-scale are presented in Sects. 2 and 3.
Then, main key-points in modeling cement-based materials at high temperature
are discussed in Sect. 4. The final form of the model equations and their numeri-
cal solution are described in Sect. 5. Finally, the model validation and two exam-
ples of its application for analysis of a 1-D concrete structure exposed to the
standard ISO-834 fire conditions and a 2-D structure during a parametric fire,
including a cooling phase, are presented in Sect. 6.

2. Physical Phenomena in Heated Concrete

During fire the surface of a concrete element is heated both by a convective heat
flux from the surrounding air of higher temperature and by a radiation heat flux,
which can be direct (from the flames) or mutual (from other heated surfaces). The
heating results in a gradual increase of the element temperature, starting from the
surface zone. Due to this process the temperature gradients in the zone are high
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because before a further temperature increase almost all moisture must evaporate
in the temperature range of 100°C to 200°C, what requires considerable amounts
of heat. For this reason, even after several tens of minutes of fire duration the
temperature of the inner part of wall remains almost unchanged [15].

Due to moisture evaporation, the water content in the surface zone decreases to
a very low value and a sharp front, separating the moist and dry material, moves
slowly inwards, see Figure 2. At this front intensive evaporation takes place,
increasing considerably the vapor pressure. The maximum values of vapor and gas
pressures increase initially, [32], then they remain constant as the surface tempera-
ture increases and the front moves inwards [15].

The maximum value of gas pressure usually occurs at the position where the
temperature equals ~160°C to 220°C, [15]. In the region with lower temperatures,
below about 130°C, the gas pressure increase is caused mainly by a growth of the
dry air pressure due to heating. In the regions with higher temperature the effects
of a rapid increase of vapor pressure due to heating and temperature-dependence
of the saturation vapor pressure predominate. At temperatures 160°C to 350°C
the gas in the material pores consists mainly of water vapor [15]. The gradients of
vapor pressure (and related gradients of vapor concentration) cause the vapor
flow (due to advection and diffusion) both towards the surface and inwards. The
latter mass flow results in vapor condensation when the hot vapor inflows the
colder, internal layers of concrete, and in an increase of the pore saturation with
liquid moisture above the initial value, usually referred as the so called “moisture
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clog” phenomenon, [4]. An additional increase of the liquid water volume in the
pores is due to the liquid thermal dilatation, which is particularly important above
the temperature of about 160°C, [11]. These effects cause a significant decrease of
the gas permeability, because the space available for the gas is decreased.

Increasing temperature causes the material dilatation which in part is due to
concrete dehydration (products of the thermal dissolution of concrete components
have greater volume than their initial volume), in part due to the material crack-
ing and progressive cracks opening [33], and finally due to ‘normal’ thermal dila-
tation of the material skeleton. The concrete cracking during heating is caused by
an incompatibility of thermal dilatation of the aggregate and the cement paste,
resulting in high traction stresses and development of local micro-cracks. Due to
these cracks and chemical transformations of concrete (generally called dehydra-
tion), the concrete strength properties degrade gradually [12, 13].

A thermal dilatation of the external layers of a heated element is constrained by
the core material which has visibly lower temperature. This causes a considerable
macro-stress in the external layers of the element (traction in the direction perpen-
dicular to the surface) and accumulation of elastic strain energy. Development of
the cracks, both of thermo-chemical origin and the macro-stress induced ones,
causes a considerable increase of the material intrinsic permeability [10, 13], and
thereupon gas pressure decreases in the external layers where high temperatures
are observed. The highest values of gas pressure usually correspond to the temper-
atures 170°C to 280°C [32], and this is also the range where thermal spalling of
concrete occurs. Physical causes of the phenomenon, and in particular a role
played by elastic strain energy of a constrained thermal dilatation accumulated in
the surface layer and by a high value of gas pressure, are discussed in detail in
[15].

The description presented above shows clearly that moist concrete should be
modeled as a multi-phase porous material.

3. Mathematical Model Development

Development of the mathematical model proposed by the authors for analyzing
concrete performance at high temperature will be presented in this section. The
model is based on the mechanics of multiphase porous media [29] and considers
most important mutual couplings and material nonlinearities, as well as different
physical behavior of water above the critical point of water [11, 12, 15]. It was
extensively validated [12, 16, 22], and its’ constitutive relationships were experi-
mentally determined [9, 12, 13, 16]. Main stages of the model development will be
presented in successive subsections.

3.1. Basic Assumptions of the Model

In modeling it is usually assumed that the material phases are in thermodynamic
equilibrium state locally. In this way their thermodynamic state is described by
one common set of state variables and not by separate sets for every component
of the material, what reduces the number of unknowns in a mathematical model.
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Figure 3. Schematic representation of the moist concrete as a multi-
phase porous material.

In this way we have, for example, one common temperature for the multi-phase
material, and not different temperatures for the skeleton, liquid water, vapor and
dry air, etc. When fast hygro-thermal phenomena in a material at high tempera-
ture are analyzed, the assumption is debatable, but it is almost always used in
modeling, giving reasonable results from the physical point of view and in part
confirmed by the available experimental results. We also apply this assumption in
development of the present model.

Concrete is here considered to be a multiphase medium where the voids of the
solid skeleton could be filled with various combinations of liquid- and gas-phases
(Figure 3). In the specific case the fluids filling pore space are the moist air (mix-
ture of dry air and vapor), capillary water and physically adsorbed water. The
chemically bound water is considered to be part of the solid skeleton until it is
released on heating.

Below the critical temperature of water, 7.,, the liquid phase consists of physi-
cally adsorbed water, which is present in the whole range of moisture content, and
capillary water, which appears when degree of water saturation S, exceeds the
upper limit of the hygroscopic region, S, (i.e. below S, there is only physically
adsorbed water). Above the temperature T, the liquid phase consists of the adsor-
bed water only. In the whole temperature range the gas phase is a mixture of dry
air and water vapor (condensable constituent for 7' < T,,).

3.2. Microscopic Conservation Equations

In the present approach the mathematical model is formulated by using two dif-
ferent scales starting from micro level, i.e. from a local form of the governing
equations at the pore scale. The microscopic situation of any n phase of the con-
sidered medium is described by the classical equations of continuum mechanics.
At the interfaces with other constituents, the material properties and thermody-
namic quantities may present step discontinuities.
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Table 1
Thermodynamic Properties for the Microscopic Mass Balance
Equations

Quantity 4 iy by Gy
Mass 1 0 0 0
Momentum r tn g 0
Energy E+0.5rF tyF—q gr+h 0
Entropy A (0] N 103

For a thermodynamic property, W, the balance equation within the 7 phase
may be written as follows,

I(p¥)
ot

+div (p¥ V") = divig + pby + pGy, (1)

where v" is the local value of the velocity field of the n phase in a fixed point in
space, iy is the flux vector associated with ¥, by the external supply of ¥ and Gy
is the net production of ¥. Fluxes are positive as outflows.

Equation 1 can be interpreted that the rate of (p'¥)-variation (including volu-
metric deformation) is equal to the difference between inflowing and outflowing
fluxes of iy, diviy, and sum of the sources of ¥ due to its external supply, by,
and net production of ¥, Gy.

The thermodynamic quantity ¥ to be introduced into Equation 1 can be mass,
momentum, angular momentum, energy or entropy. The relevant thermodynamic
properties W for the different balance equations and values assumed by iy, by and
Gy are listed in Table 1.

In Table 1, E is the specific intrinsic energy, A the specific entropy, t,, the micro-
scopic stress tensor, q a heat flux vector, ® entropy flux, g external momentum
supply related to gravitational forces, / intrinsic heat source, S an intrinsic
entropy source and ¢ denotes an increase of entropy. The constituents are
assumed to be microscopically non-polar, hence the angular momentum balance
equation has been omitted here. This equation shows however that the stress ten-
sor is symmetric.

3.3. Volume Averaging Procedure and Macroscopic Conservation Equations

The final form of the macroscopic balance equations is obtained by applying
appropriate space averaging operators (for the so called Representative Volume
Element—RVE) to the equations at micro-level, while the constitutive laws are
defined directly at the upper scale, according to the so called Hybrid Mixture The-
ory (HMT) originally proposed by Hassanizadeh and Gray [26-28].

The chosen procedure does not exclude the use of a numerical multi-scale
approach (i.e. numerical averaging in RVE) in the formulation of the material
properties, which nowadays is often used for solving problems involving multi-
physics aspects in material mechanics.
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For the sake of brevity, only the final form of the macroscopic conservation
equations is given below. The full development of the model equations, starting
from the local, microscopic balance equations with successive volume averaging, is
presented in [12, 29, 34, 35].

The general form of the macroscopic, volume averaged mass conservation equa-
tion of the n-phase is, [29]:

T
Dp,
Dt

+ prdivv" = pre"(p), (2)

where p, is apparent density (related to the whole volume of the medium), v* the
velocity and p,e"(p) the volumetric mass source, super or subscript n refers to the
n-phase.

This mass balance equation has the following form for the solid skeleton, [12]:

S

Dp . .

Dts + Py divy’ = —Mdehydr (3)
where n1,, , is mass source of liquid water (and corresponding skeleton mass sink)

related to the material dehydration process.

After application of the relation between the phase averaged density, p, (aver-
aged in the whole RVE), and the intrinsic phase averaged density, p™ (averaged in
the volume occupied by n phase contained in RVE), [29]:

Pr=1"p", (4)

with #”™ being the volume fraction occupied by the m-phase, and after some simple
transformations, Equation 3 can be rewritten as, [12]:

S N
1_ s L ehydr
(L=n)Dp f@+(lfn)divvszfimd}fyd

5
p* Dt Dt ps (5)

The volume averaged mass conservation equation for liquid water (capillary and
physically adsorbed) has the following form, [12]:

Bpw

Dt

LW . .
+ PwdlUV = Mdehydr — Myap, (6)

where m,,, is the vapor mass source caused by the liquid water evaporation or
desorption (for low values of the relative humidity inside the material pores). It is
worth to underline that for the liquid water we have two source terms, in the
whole temperature range due to dehydration process and at temperatures 7' < T..,
due to water phase changes.
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By introducing the water relative velocity and material derivative of water den-
sity, with respect to the skeleton, and application of (4) with " = nS,,, we have,
[12]:

N

N N
w
Dn | LDP + DSy + : div(nS,p"v") + n divv*
Dt  pv Dt S, Dt  S,p” (7)
_ mdehydr - muap
=
where v means the n-phase relative velocity with respect to the skeleton.
In order to eliminate the time derivative of porosity, 2%, from the latter equa-

tion, we sum it up with (3) and obtain the mass conservation equation of liquid
water and solid skeleton as follows [12]:

(lfn)ﬁps . n bpw anw
ZF 4 divy + — -
o D Y T o s e @)
1 . ) n;ldeh dr — mva mdeh dr
T div nSWpWsz — 24 P 24
Swp" ( ) Sy p" P’

The macroscopic volume averaged mass conservation equation of dry air, [29]:

+ pgadivv?® =0, 9)

after introducing the material time derivative with respect to the gas phase and
decomposition of the dry air velocity into the diffusional, u/* = v — v9, and ad-
vectional (i.e. related to the centre of gravity of the whole gas phase), v¢, compo-
nents, [29], can be transformed in a similar way as done for the liquid water
balance (with #*“ = nS,) giving the following equation, [12]:

n BSg n Bpg” . [
n Doy n d Jga d S ga,gs
s, Dt o D +quga ivJY +quga iv (nS,p?v?)
y ) ¢ ¢ (10)
1- i Ldehydr
nDp +divv' =  Dldelyd
o5 Dt p*
where
Jza _ pgauga — nsgpé]au.tla (1 1)

is the diffusive mass flux of dry air molecules in the gas phase.
The macroscopic mass balance of the water vapor, [29],
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gw
Dp gw
Dt

+ 0 gy diVV"" = Hitygp, (12)

can be presented and transformed, similarly to the equation for the dry air, result-
ing in the following equation, [12]:

n ng n b pIv n
Sy Dt~ p9” Dt §,p9

1
divd9" + 5 pgwdiv (nSyp?"v?)
g

. (13)
+ ! ;S " %[: +divy® = —m;ﬁydr S?;?w'
where the diffusive mass flux of vapor molecules in the gas is defined as, [29],
JZW = pgwugw = nSyp"u?" = —Jga. (14)

in which the gas phase is assumed as ideal binary gas mixture of dry air and water
vapor.

We do not have any constitutive relationship for the mass source term, g,
appearing in the latter equation and in (7), but we can use one of the two mass
balance equations to eliminate this source term from the another one. The macro-
scopic, volume averaged enthalpy balance equation for the m-phase, after neglect-
ing some terms related to viscous dissipation and mechanical work, has the
following general form, [29]:

nBTﬂ n . n n n
pncpwzpnh _dluqﬂ+anH_pne (p)H ) (15)

where Cj is the specific isobaric heat, q" the heat flux, p A" the volumetric
heat sources, p,R}, the term expressing energy exchange with the other phases,
H™ the specific enthalpy, of the =m-phase. In concrete at high temperature all
heat sources, except those related to phase changes and dehydration process,
can be neglected.

Having assumed here that all phases of the material are locally in thermody-
namic equilibrium, their temperatures are the same, 7% = T (n = s, w, g). These
temperatures may however vary throughout the domain.

Summing up the enthalpy balances for all the phases of the medium, one
obtains the following enthalpy balance equation for the whole medium, [12]:

ls) T W, WS S L od
(pCp)effE + (prpv "+ p,Cov? )grad T —divq (16)

= _mvapAHvap - mdehydrAHdehydra
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where

(pCP)eff =Gy + Gy + p,C,
Q=+ d
AH,,y = H™ — H",
AI_Idehydr =H"—H"™.

(17)

Above, H" is the specific enthalpy of the capillary (or physically adsorbed) water,
H®" the specific enthalpy of water vapor, H" the specific enthalpy of the chemi-
cally bound water, AH,,, the specific enthalpy of evaporation and AH.. the
specific enthalpy of dehydration.

Hygro-thermal phenomena in concrete, even at high temperature, are relatively
slow, hence inertial forces can be neglected. For such a case the macroscopic, vol-
ume averaged linear momentum balance equation (i.e. the mechanical equilibrium
equation) for the m-phase has the following, general form, [29]:

divt™ + p,g + p.[e"(pF) + €] =0, (18)

where t* is the macroscopic stress tensor in the n-phase, g the acceleration of
gravity, pﬂf7T the volumetric exchange term of linear momentum with other phases
due to mechanical interaction, and p,e"(pr) that due to phase changes or chemi-
cal reactions. After summing up the macroscopic linear momentum balances for
all the phases and introducing the total stress tensor, [36]:

ttotal —t =+ t” =+ tg7 (19)
one obtains, [29]:
divt““! 1 [(1 — n)p® +nS,p* +n(l —S,)g =0, (20)

where the term in the square parenthesis is the averaged apparent density of the
medium.

The volume averaged angular momentum balance equation shows that for non-
polar media, as moist concrete is assumed in this work, all macroscopic partial
stress tensors are symmetric, [29]:

" = (t)", (21)

4. Key Points in Modeling Cement-Based Materials at
High Temperature

Following the procedure briefly described in Sect. 3, the macroscopic balance
equations can be formulated for any porous material. However, dealing with
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cement-based materials at high temperature introduces some additional physical
and theoretical difficulties, which should be overcome to formulate a mathematical
model giving reliable results for the material. These key points are discussed in the
following subsections.

4.1. Choice of State Variables

A proper choice of state variables for description of materials at high temperature
is of particular importance. From a practical point of view, the physical quantities
used, should be possibly easy to measure during experiments, and from a theoreti-
cal point of view, they should uniquely describe the thermodynamic state of the
medium. They should also assure a good numerical performance of the computer
code based on the resulting mathematical model. As already mentioned in Sect.
3.1, the necessary number of the state variables may be significantly reduced if
existence of local thermodynamic equilibrium at each point of the medium is
assumed. In such a case physical state of different phases of water can be descri-
bed by use of the same variable.

Having in mind all the aforementioned remarks, we will briefly discuss now the
state variables chosen for the present model. Use of temperature (the same for all
constituents of the medium because of the assumption about the local thermody-
namic equilibrium state) and solid skeleton displacement vector is rather obvious,
thus it needs no further explanation. As a hygrometric state variable various phys-
ical quantities, which are thermodynamically equivalent, may be used, e.g. volu-
metric- or mass moisture content, liquid water saturation degree, vapor pressure,
relative humidity, or capillary pressure. Analyzing materials at high temperature,
one must remember that at temperatures higher than the critical point of water
(i.e. 374.15°C or 647.3 K) there is no capillary (or free) water present in the mate-
rial pores, and there exists only the gas phase of water, i.e. vapor. Then, very dif-
ferent moisture contents may be encountered at the same moment in a heated
cement-based materials, ranging from full saturation with liquid water (e.g. in
some nuclear vessels or in so called “moisture clog” zone in a heated concrete, see
[3]) up to almost completely dry material. Moreover, some quantities (e.g. satura-
tion or moisture content) which can be chosen as primary variable are not contin-
uous at interfaces between different materials.

For these reasons apparently it is not possible to use, in a direct way, one single
variable for the whole range of moisture contents.

Hence the moisture state variable selected in the model is capillary pressure,
[11], that was shown to be a thermodynamic potential of the physically adsorbed
water and, with an appropriate interpretation, can be also used for description of
water at pressures higher than the atmospheric one, [37]. The capillary pressure
has been shown to assure good numerical performance of the computer code, [9,
11, 12, 14, 15], and is very convenient for analysis of stress state in concrete,
because there is a clear relation between pressures and stresses, [36, 38].

Hence, the chosen primary state variables of the present model are the volume
averaged values of: gas pressure, p®, capillary pressure, p, temperature, 7, and
displacement vector of the solid matrix, u.
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For temperatures lower than the critical point of water, 7' < T.,, and for capil-
lary saturation range, S,, > S,(7) (S is not only the upper limit of the hygro-
scopic moisture range as mentioned in Sect. 3.1, but also the lower limit of the
capillary one), the capillary pressure is defined as:

pF=p-p" (22)

where p" denotes water pressure.
For all other situations, and in particular 7'> T, when condition S,, < S, is
always fulfilled (there is no capillary water in the pores), the capillary pressure

only substitutes formally the water potential ¥, defined as, [11]:

RT. [ p™
\PC = Eln gWS) 5 (23)

ws

where M,, is the molar mass of water, R the universal gas constant and f*
the fugacity of water vapor in thermodynamic equilibrium with saturated
film of physically adsorbed water, [11]. For physically adsorbed water at lower
temperatures (S < Sy, and T < T,) the fugacity f*"* should be substituted in
the definition of the potential W., Equation 23, by the saturated vapor pressure
p*". Having in mind the Kelvin equation, [39], valid for the equilibrium
state of capillary water with water vapor above the curved interface (meniscus):

P RT’

gws

we can note, that in the situations, where (23) is valid, the capillary pressure may
be treated formally as the water potential multiplied by the density of the liquid
water, p", according to the relation, [11]:

pc = —\Pcpw, (25)

Thanks to this similarity, it is possible to use “formally” during computations the
capillary pressure even in the low moisture content range, when the capillary
water is not present into the pores, and capillary pressure has no physical mean-
ing.

4.2. Modeling Passing the Critical Point of Water

In a concrete structure exposed to fire conditions temperatures higher than critical
point of water can be encountered in a part of the structure after a period of
heating. Above this temperature the liquid water and gaseous water phase (water
vapor) cannot be distinguished and only the gas phase exists. As a result, there
are no phase changes of the pore water (condensation—evaporation) and capillary
pressure has not any physical meaning.
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Hence, after reaching in a part of moist porous material temperatures higher
than the critical point of water, we deal with a kind of Stefan’s problem, where
two regions, with the temperatures below and above the critical point of water,
are separated by the moving interface boundary.

Gawin et al. [11] presented a method which formally allows us to avoid direct
tracing of the boundary position in the space. It consists in giving formally differ-
ent physical meaning to the capillary pressure (as discussed in Sect. 4.1) and using
it still for description of the hygrometric state of concrete in the zone, where tem-
perature exceeds the critical point of water. Then, a special ‘switching’ procedure
is applied for a finite element, where this temperature is encountered, from the
below- to the above- critical temperature description of the medium, using still the
governing equations of the same form, but with different physical meaning.

4.3. Water and Material Properties at High Temperature

The density of water vapor calculated by means of the Clapeyron equation, often
used in simulations at ambient temperature, differs significantly from the results of
the laboratory tests for the temperatures higher than ~433.15 K (i.e. 160°C). For
better coherence with the experimentally measured values, the following formula
can be used in computations [11]:

: , , , M, ,
pb = pb(T,pb) = |:pL ﬁ + APL:| s for Tief <T < Tipit (26)

where T, i1s the reference temperature (around 160°C) and the correcting term,
Ap’, is exclusively function of temperature, taking into account the real behavior
of water vapor in the range 160°C to 374.15°C. The first term on the RHS of (26)
is related to ideal gas behavior.

The water vapor saturation pressure p” in the Kelvin equation (24) depends
only on temperature 7 and may be calculated with sufficient accuracy (for
T < T,,) from the formula of Hyland and Wexler [40].

The state equation of liquid water should take into account a considerable,
non-linear decrease of water density in temperature range close to the critical
point of water. The following formula gives a reasonable coherence with experi-
mental results and assures a good numerical performance of the computer code
[11]:

P =(bo + 1T + byT? + b3T® + byT* + bsT)

+ (Pwi —pwr)(ao+a1T+a2T2+a3T3+a4T4+a5T5) @)
where: p,; = 10 MPa, p,, = 20 MPa, ay = 4.89 x 1077, a; = —1.65 x 107°,
a =186 x 10712 a3 = 243 x 107", a4 = —1.60 x 10715, a5 = 3.37 x 10718,
bo =102 x 1073, by = =774 x 107", by = 8.77 x 1073, by = —9.21 x 1072,
by = 335 x 1077, bs = —4.40 x 107!, In this formula it was assumed that the
liquid water is incompressible.
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The enthalpy of water evaporation depends upon the temperature and may be
approximated by the Watson formula, [12]:

AH,,, = 2.672 x 10° (T — T.,)", (28)

where T,.. = 647.3 K is the critical temperature of water. Above the temperature
free water can exist only as a gas, hence no phase changes and the related heat
effects are physically admissible, so formally AH,,, = 0.

Several physical properties of cement-based materials at high temperature, like
for example thermal conductivity, thermal capacity, intrinsic permeability, Young
modulus of elasticity, compressive and tensile strength etc., are dependent upon
temperature, gas pressure, moisture content and damage parameter. They play a
role of the constitutive relationships for the mathematical model and should be
determined experimentally. The exact formulae describing them were discussed in
detail elsewhere [9-12, 15] and will be not given here.

4.4. Effective Stress Principle

Cement-based materials are treated as multi-phase porous media, hence analyzing
the stress state and the deformation of the material it is necessary to consider not
only the action of an external load, but also the pressure exerted on the skeleton
by fluids present in its voids. Hence, the total stress tensor t**“ acting in a point
of the porous medium may be split into the effective stress 5’t*, which accounts
for stress effects due to changes in porosity, spatial variation of porosity and the
deformations of the solid matrix, and a part accounting for the solid phase pres-
sure exerted by the pore fluids, [36, 38, 41]:

tmtal _ ns,cs _ O(.PCI, (29)

where I is the second order unit tensor, o is the Biot coefficient and P’ is some
measure of solid pressure acting in the system, i.e. the normal force exerted on the
solid surface by the surrounding fluids.

Taking into account several simplifications [36, 41], Equation 38 can be rewrit-
ten in the following manner, [38, 41]:

7't = glotal | (pg _ x;”pc)l- (30)

where x}* is the fraction of skeleton area in contact with the water. This form of,
the so called “effective stress principle”, Equation 30, takes into account the
effects of the ““disjoining pressure” in the definition of the capillary pressure, [16].

4.5. Thermo-Chemical and Mechanical Degradation at High Temperature

During heating concrete structures deteriorate both due to stresses caused by
mechanical load and due to thermo-chemical degradation of concrete at high tem-
perature. These unfavorable effects can be described by means of the so called iso-
tropic damage theory [42]. The total damage parameter D in the evolution
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equations accounting for the thermo-chemical and mechanical deterioration
processes, is defined on the base of the following multiplicative combination,
[11, 16, 43]:

1-D=

=(l-d)(1-7), (31)

where d and V are the mechanical and thermo-chemical damage components. The
latter ones are identified on the basis of the experimentally determined stress—
strain profiles at various temperatures as follows [11, 16, 43]:

(32)

where the subscript ‘o’ refers to the elastic behavior.

The Young’s modulus of a sound material at temperature 7" is hence given by
equation: E,(T) = [l — V(T)]E,(T,), where E,(T,) is the Young’s modulus at the
reference (i.e. ambient) temperature 7,, and function V(T) is determined experi-
mentally.

We consider that only the elastic properties of the material are affected by the
total damage parameter D, i.e. the material is supposed to behave elastically and
to remain isotropic and that the dependence on damage is introduced through the
stiffness tensor, A = A(D) = (1 — D)Ay, [42]:

't = A(D) : &, (33)

in which €’ is the strain tensor for infinitesimal deformations of the solid phase
and Ay is the stiffness tensor at ambient temperature for an undamaged material.
The effective stress tensor is then given by:

't =AD):&=(1-d)(1-V)Ay:¢. (34)

Some experimental studies show that the value of intrinsic permeability of deterio-
rated concrete k£ can be related directly to the value of damage parameter D and
actual values of temperature and gas pressure, [13]:

. 9\ A
k =k, x 10/ (ﬁ—,,) 1070 (35)

0

where k, is the value of sound concrete at ambient temperature, f(7) is a function
determined experimentally, 4, and A, are material constants.

4.6. Strains of Cement-Based Materials at High Temperature

An unloaded sample of plain concrete or cement stone, exposed for the first
time to heating, exhibits considerable changes of its chemical composition, inner
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Figure 4. Decomposition of total strains in heated concrete (C90)
[ ‘ 6].

structure of porosity and changes of sample dimensions (irreversible in part), [44,
45]. The concrete strains during first heating, called load-free thermal strains
(LFTS) are usually treated as superposition of thermal and shrinkage components,
and often are considered as almost inseparable. LFTS are decomposed in three
main contributions [16], see Figure 4:

— Thermal dilatation strains,

dey = P,(T)dT1, (36)

where f, is thermal dilatation coefficient, which for concrete can usually be
approximated by a linear function of temperature,

ﬁs(T) = ABI(T — To) + Apo. (37)

— Capillary shrinkage strains,
o e
degy = — (dx?*p° + x7dp° )], (38)
Kr

where K7 is the bulk modulus of the porous medium,
— Thermo-chemical strains

dichem = ﬁtchem ( V)dVIa (39)

where f,m (V) = Da’”gf’;w) is obtained from experimental tests and usually it can be

approximated by a linear function of thermo-chemical damage, V:

ﬂchem( V) = AV (40)



An Overview of Modeling Cement Based Materials 771

Shrinkage strains are modeled by means of the effective stress principle, in the
form derived in Equation 30, see Figure 5. In this way the contribution of the
term related to the capillary pressure in Equation 30 can be interpreted as a sort
of “internal” load for the skeleton of the material. Hence, the associated shrinkage
strains are not computed directly in the strain decomposition as it is usual in the
classical phenomenological approaches.

During first heating, mechanically loaded concrete exhibits greater strains as
compared to the load-free material at the same temperature. These additional
deformations are referred to as load induced thermal strains (LITS), [44, 45]. Part
of them originates just from the elastic deformation due to mechanical load, and
it increases during heating because of thermo-chemical and mechanical degrada-
tion of the material strength properties. The time dependent part of the strains
during transient thermal processes due to temperature increase is generally called
thermal creep. The results of transient thermal strain tests, usually performed at
constant heating rate equal to 2 K/min, for the C-90 concrete are presented and
compared to numerical results in Figure 6.

The strains can be modeled with the formulation originally proposed by The-
landersson [46] and modified by using the effective stresses instead of total stresses
[16]:

_ BV,
dstr - WQ .

nsts
1-D

dv. (41)

The normalized transient strain f3,.(V) was identified as a bi-linear function of
thermo-chemical damage V, [16]:

By (V) =AnV + Apa  for V < Vim,

i (42)
ﬁtr(V) = Atr}(V - Viim) + Atrl Vlim + Atr2 for V> I/iim-
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The value V), of thermo-chemical damage is dependent on the composition of a
concrete, e.g. for the C-60 concrete analyzed in [16] it corresponds to the tempera-
ture at which starts decomposition of the calcareous aggregate.

Due to application of the effective stresses in Equation 41, the thermo-chemo-
mechanical damage and capillary shrinkage model are coupled with the thermal
creep model, [16, 41].

In Equation 41 Q is a fourth order tensor and f, is the compressive strength of
the material at 20°C.

The final decomposition of the mechanical strains, acting on the solid phase,
used in the present model is the following one:

S
& = 8100 — & — Schem — Eurs (43)

in which the various components of strains are described by means of Equa-
tions 36-42.

The state of cement based materials at high temperature is described by four pri-
mary state variables, i.e. gas pressure, p®, capillary pressure (in its generalized
meaning, see Sect. 4.1), p¢, temperature, 7, and displacement vector, u, as well as
three internal variables describing advancement of the dehydration and deteriora-
tion processes, i.e. degree of dehydration, I' 44, chemical damage parameter, V,
and mechanical damage parameter, d.

The mathematical model describing the material performance consists of seven
equations: 2 mass balances (continuity equations of water and dry air), enthalpy
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(energy) balance, linear momentum balance (mechanical equilibrium equation)
and three evolution equations. For convenience of the Reader, the final form of
the model equations, expressed in terms of the primary state variables, are listed
below. The full development of the equations is presented in [12].

Mass balance equation of dry air takes into account both the diffusive (described
by the term L.44.7) and advective air flow (L.44.8), the variations of the satura-
tion degree with water (L.44.1) and air density (L.44.4), as well as the variations
of porosity caused by: dehydration process (L.44.5), temperature variation
(L.44.2), skeleton density changes due to dehydration (L.44.6) and by skeleton
deformations (L.44.3). The mass balance has the following form:

DSSW DT S nDSp mdeh dr
— — S,div v’ + -2 - =27,
D ﬁs( ) D + + pqa Dt ps g
~—— ———

L.44.1 L.44.2 L.44.3 L.44.4 L.44.5

7 (l B I’l)Sg aps Dsrdehydr
ps 81—‘dehydr Dt
L.44.6 L.44.7 L.44.8

1 . yaga 1 . a.gs
+?de; Jrﬁdw(nSgpg V) =0

Mass balance equation of gaseous and liquid water considers the diffusive
(L.45.6) and advective flows of water vapor (L.45.7) and water (L.45.8), the
mass sources related to phase changes of vapor (evaporation—condensation,
physical adsorption—desorption) (the sum of those mass sources equals to zero)
and dehydration (R.45.1), and the changes of porosity caused by variation of:
temperature (L.45.3), dehydration process (L.45.10), variation of skeleton
density due to dehydration (L.45.9) and deformations of the skeleton (L.45.2),
as well as the variations of: water saturation degree (L.45.1) and the densities
of vapor (L.45.4) and liquid water (L.45.5). This gives the following equa-
tion [12]:

DYSW W D’T D p9"
(P _P ) i ( wS _|_pg Sq)OCdZUV ﬁswq Di +Sgl’l Di
———
L.45. 1 L.452 L453 L.454

D’
+Sn Dp + div 39" + div (nSyp?v¥*) + div (nS,,p"v*")

L.45.5 L.45.6 L.45.7 L.45.8
(1 - ”) aps Dsrdehvdr mdehydr
—(p"S,, + p?"'S, ydr
(p * P g) ps al—‘dehydr Dt (

L.45.9 L.45.10 R.45.1
(45)

YSy + pg S ) = - mdehydr

with f,,, defined by:

Bowg = By(1 = n)(Syp™ + Sup™) +n B, Sup" (46)
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Enthalpy balance equation of the multi-phase medium, accounting for the conduc-
tive (L.47.3) and convective (L.47.2) heat flows, the heat effects of phase changes
(R.47.1) and dehydration process (R.47.2), and heat accumulation by a material
(L.47.1), can be written as follows [12]:

orT -
(pCP)e/fE + (pWC;VVW + pyCI-‘jv-"> grad T — div(qy) =

L47.1 L.47.2 L.47.3 (47)

= - mvapAHvap + n:ldehydrAHdehydr
—_——— — —

R.47.1 R.47.2

where qis the conductive thermal flux,

(06,).gy= 1:Cy + PGy + 1,C] (49)

p)

and the vapor mass source is given by, [12]:

aS,, oT
Moap = = ”W— Sy oudivv +ﬁsw§— div (nS,,p"v")
~——
L.49.1 R.49.1 R.49.2 R.49.3 R.49.4
(1 B )prW ap° ardehydr i &4» ;o (49)
p* or dehydr ot dehydr 0° dehydr
R.49.5 R.49.6 m/
with:

Equation 49 is obtained from the water mass conservation equation, considering
the variations of water saturation degree (R.49.1), the advective flow of water
(R.49.4), the mass sources related to dehydration (R.49.7) and the changes of
porosity caused by: variation of temperature (R.49.3), dehydration process
(R.49.6), as well as variation of skeleton density due to dehydration (R.49.5) and
deformations of the skeleton (R.49.2).

The dehydrated water source is proportional to the dehydration rate, [12]:

Hidenydr = K Tdenyar (51)

kp is a material parameter related to the chemically bound water and dependent
on the stoichiometry of the chemical reactions associated to dehydration process.
Linear momentum conservation equation of the multi-phase medium has the follow-
ing form [12]:
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div [(1 — d)(l - V)AO : (gmt — &th — Sichem — 8tr) - “(Pg - x};vspc)l]

L.52.1 L.52.2
+[(1=n)p* +n(Sep? +S,p")] g =0.

(52)

L.523

Equation 52 was obtained by neglecting inertial forces and considering mechanical
and thermo-chemical material degradation (L.52.1), stresses due to pore pressure
(L.52.2) (with effective stress principle), and the gravity forces (L.52.3).

The evolution equation for dehydration process can be obtained from the results
of thermo-gravimetric (TG or DTA) tests, and considering its irreversibility, has
the form [12]:

rdehydr(t) = rdehydr(Tmax(t))7 (53)

where T,,,(7) is the highest temperature reached by the concrete up to the time
instant ¢. Hence the dehydration rate I'gpya is given by

. OT denyar(T) OT
1—‘d(f;'hydr = dg%()g for T(t) > Tmax(t)7

l—"dehydr =0 for T(t) < Tmax(t)~

(54)

The dehydration degree should be determined experimentally from the mass chan-
ges during concrete heating, [12]:

Cienyar(T) = (55)

where m(7) is mass of concrete specimen measured at temperature 7 during
TG tests, T, and T.. are temperatures when the dehydration process starts and
finishes (usually 7, = 105°C and T7.. = 1000°C are assumed). The evolution
equations for mechanical and thermo-chemical damage parameters, d(t) = d(&(t))
(¢ is the equivalent strain given by equations of the classical non-local, isotro-
pic damage theory [42]) and V(¢) = V(Ta(f)), should be determined from rela-
tions (32) using the data concerning Young’s modulus changes, obtained from
the “‘stress—strain curves” measured for concrete at ambient temperature after
previous heating to different temperatures (i.e. giving so called residual proper-

ties).

5.1. Initial and Boundary Conditions

For the model closure we need the initial and boundary conditions. The initial
conditions (ICs) specify the values of primary state variables at time instant
t = 0 in the whole analyzed domain (and on its boundary I', (I'=T,UIY,
n=g0ct u:
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pP=pl,p=p, T=T,,u=u, on(QUT), (56)

The boundary conditions (BCs) describe the values of the primary state variables
at time instants r > 0 (Dirichlet’s BCs) on the boundary I';:

) (57)

or heat and mass exchange, and mechanical equilibrium condition on the bound-
ary I'? (the BCs of Cauchy’s type or the mixed BCs):

(nSgp9vs + J5')m = ¢%, on I'?

(nSwp™ V"™ + nSyp?"ve* + 9" )m = ¢ + ¢ + B.(p™ — p2'), on T
(nSywp" V" AHyap + Q)0 = g7 + (T — Tos) + €0, (T* — T2), on I
[t|n =t, on I'Y

(58)

where n is the unit normal vector, pointing toward the surrounding gas, ¢%¢, ¢%”,
¢" and ¢ are respectively the imposed fluxes of dry air, vapor, liquid water and
the imposed heat flux, and t is the imposed traction, p?” and T.. are the mass con-
centration of water vapor and the temperature in the far field of undisturbed gas
phase, e is emissivity of the interface, g, the Stefan-Boltzmann constant, while o,
and f. are convective heat and mass exchange coefficients.

The boundary conditions, with only imposed fluxes given, are called Neumann’s
BCs. The purely convective boundary conditions for heat and moisture exchange
are also called Robin’s BCs.

5.2. Numerical Solution

The variational or weak form of the model equations, including the ones required
to complete the model, was obtained in [12, 34, 35] by means of Galerkin’s
method (weighted residuals). The governing equations of the model are then dis-
cretized in space by means of the finite element method, e.g. [47]. The unknown
variables are expressed in terms of their nodal values as,

PO =Np(0), p() =N, p°(0),

T(t) 2N, T(t), wu(t)=N,u(r).

(59)
The resulting system of equations can be written in the following concise discret-
ized matrix form,

X,

Cii (x))5,"+ Ki (x))%; = fi(x)), (60)
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with

ng CgC C!Jf Cg” Ijg
0 Ccc Cct Ccu _ ﬁc

C[j = y X = = )
0 C. Cp Cyu T
0 0 0 0 u

. (61)

Ky Ko Ky 0 f,
ch ch Kct 0 fc

Kij = ‘ ) fi = )
th Ktc Ktt 0 fl
Kug Kuc Kut Kuu fu

where the non-linear matrix coefficients Ci(x;), K;(x;) and f(x;) are defined in
detail in [12].

The time discretization is accomplished through a fully implicit finite difference
scheme (backward difference),

Xot1 — Xn

Wi(Xpi1) = €y (X )= Kij (%) %ur = fi(x,10) =0, (62)

where subscript i (i = g,c,t,u) denotes the state variable, n is the time step number
and At the time step length.

The equation set (62) is solved by means of a monolithic Newton—Raphson type
iterative procedure [12, 29]:

oY,

. <k —_ —
‘l’,(x ) ox |

-k ck+1 _ Gk ok
Axn+]7 Xn+] - Xn+1 + Axn+17 (63)

1

where k is the iteration index and %—‘i’ is Jacobian matrix.

More details concerning numerical techniques used for solution of the model
equations can be found in [12, 15, 16].

A two-stage solution strategy has been applied at every time step to take into
account damage of concrete. First an intermediate problem, keeping the mechani-
cal damage value constant and equal to that obtained at the previous time step, is
solved. Then, the ‘“final” solution is obtained, for all state variables and total
damage parameter, by means of the modified Newton—Raphson method, using the
tangential or Jacobian matrix from the last iteration of the first stage. This
allowed us to avoid differentiation of the K; matrix with respect to the damage
and to obtain a converging solution, [12, 15, 16].

Because of different physical meaning of the capillary pressure p¢ and different
nature of the physical phenomena above the temperature 7., we have introduced
a special ‘switching’ procedure (for physical explanation see Sect. 4.2), [11]. When
in an element part of its nodes have temperature above T.,, the capillary pressure
is blocked at the previous value, until the temperature in all the nodes passes the
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critical point of water. Then equations valid for temperature range 7 > T, are
applied in all nodes of this element.

6. Simulation Results

In this section three examples of application of the mathematical model, described
in previous sections, for the model validation and numerical analyses concerning
performance of concrete structures during fire are presented. The first example
shows the experimental validation of the present numerical model and computer
software based on it, called COMES-HTC, developed by the authors. The simula-
tions concern the experiments performed by Kalifa et al. [32] who measured the
temperature and gas pressure evolution in several points of a concrete slab heated
from one side to three different target temperatures. The second example deals
with a concrete wall exposed to the standard ISO-834 fire. The simulation results
illustrate behavior of concrete structures during a fire and allow us to understand
better the degradation phenomena accompanying it. The third example concerns a
concrete column exposed to a parametric fire, including also a cooling phase,
according to the Eurocode 1, part 1 to 2, [48]. The simulations show a typical, for
2D structures, evolution of concrete deterioration due to increase of temperature
and pore pressure in the corner zone, as well as further progress of the material
degradation during the cooling phase of fire.

6.1. Validation of the Model

The COMES-HTC software output was compared with the results of tests carried
out by Kalifa et al. [32]. He monitored temperature and pore pressure (with
respect to the atmospheric pressure) in six locations at different distances from the
specimen surface. They were measured with thermocouples and pressure gauges
installed during casting. The prismatic specimens (30 x 30 x 12 cm®) were made
of two types of concrete, C30 and M100 HPC. Here, the results concerning the
temperature and vapor pressure fields in the C30 specimens, heated to different
target temperature, 450°C, 600°C or 800°C, were compared with the output from
the numerical simulation. The comparison for the HPC specimens heated to
600°C is presented elsewhere [11, 22].

The thermal load was applied on one face of the specimen, whereas the lateral
faces of the specimen were heat-insulated with porous ceramic blocks. Heating
was provided by means of a radiant heater (up to 5 kW and the target tempera-
ture) that covered the surface of the specimen, placed 3 cm above it.

The main parameters of the C30 concrete at ambient temperature, used in our
simulations, are shown in Table 2. Initial conditions are as follows: gas pressure
equal to atmospheric pressure, p$ = 101325 Pa, temperature 7, = 298.15 K
(25°C) and relative humidity ¢, = 70% RH. Considering the way of the concrete
surface heating, mixed radiative-convective boundary conditions for heat exchange
and purely convective conditions for mass exchange have been employed [11]. The
average values for heat and mass exchange coefficients, supposed constant during
simulation, have been assumed as follows: for the heated side—ax, = 18 W/m’K
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Table 2
Main Properties of Dry Concrete (at T = 20°C), Assumed in the
Simulations

Material property C80 C60 C30
Porosity, n [%] 5.12 8.25 13.7
Water intrinsic permeability, k, [m?] 2:107" 210718 3.2:10718
Young modulus, E [GPa] 36.7 344 33
Compressive strength, f,. [MPa] 80 60 30
Thermal conductivity, A [W/m K] 1.67 1.67 1.67
Specific heat, C, [J/kg K] 855 855 855

and f. = 0.019m/s, and for the not heated side—o, = 8.3 W/m’K and
. = 0.009 m/s. The heated surface emissivity is e = 0.9.

The heat flow is unidirectional, so the discretization applied, i.e. 133 eight-node
elements (133 x 1) with 673 nodes, corresponds to a 1D problem. The simulations
are performed for the first 6 h of the heating, using a time step Az = 1 s.

The simulation results concerning time development of temperature and vapor
pressure for the three considered cases of heating temperature are compared with
experimental values, [32], in Figures 7 8, 9, 10a, 11 and 12a. Additionally, the
results concerning evolutions of relative humidity in the analyzed heating tempera-
tures are presented in Figures 10b, 11, and 12b, showing gradual specimen drying
starting from the surface layers. For the heating temperature of 600°C so called
‘moisture clog’” phenomenon is visible, Figure 11b, which has not been observed
for the temperatures of 450°C and 800°C, Figures 10b and 12b.

The experimental results clearly show that during the tests rather high peak val-
ues of pore pressure, up to 9.3 bar at 7 = 450°C, Figures 7a, 18 bar at
T = 600°C, Figures 8a, and 11 bar at 7" = 800°C, Figure 9a, have been reached.
Slightly lower values of the peak pressure and similar time evolutions of gas pres-
sure have been obtained in the numerical simulations, Figures 7b, 8, and 9b. In
some cases, at advanced stages of the process analyzed, unexpected low values of
pressure were registered during the tests, probably due to the localized fracturing
around the pressures gauges, causing a leakage of gas. In the simulations the mate-
rial cracking and its effect on the permeability is modeled by means of non-local
isotropic damage theory, which is not suitable for description of localized frac-
tures. In general, the gas pressures at advanced stages of the process, obtained
from the simulations, were decreasing slower than during the tests, but their maxi-
mal values and time of its occurrence are predicted quite accurately. Then, the tem-
peratures in the numerical simulation are slightly higher than the measured ones,
Figures 10a, 11, and 12a. This is probably due to the choice of boundary condi-
tions and the conductivity of the material, which may not be well set. However,
numerical results present a good agreement with experimental ones, in terms of
both temperature and pressure. This shows that the numerical model proposed can
be a useful tool for analyses of performance of concrete structures during a fire.
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Figure 7. Evolutions of gas pressure in a concrete specimen heated
according to [32] for target temperature of 450°C: (a) experimental
results [32], and (b) numerical results.

6.2. Concrete Wall Exposed to ISO-834 Fire

In this section a 60-cm concrete wall, made of a C-80 concrete, exposed to the
convective-radiative heating from both sides, is analyzed. The heating rate of sur-
rounding air corresponds to the standard 834 ISO fire. Due to symmetry, one half
of the wall is modeled by a mesh of 100 (100 x 1) isoparametric, 8-noded ele-
ments of equal size (0.3 cm x 1.0 cm), involving 503 nodes and 2515 DOFs. The
initial values of relative humidity and temperature are equal to ¢, = 50% RH
and Ty = 293.15 K (20°C).

The simulations are performed for the first 60 min of the fire, using a time step
At = 1 s, which is automatically halved by the computer code when some numeri-
cal problems are encountered, like for example when temperature reaches value of
about 200°C or when it is passing the critical point of water. The main material
data of the C-80 concrete and the boundary conditions, used in our simulations,
are given in Tables 2 and 3.
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Figure 8. Evolutions of gas pressure in a concrete specimen heated
according to [32] for target temperature of 600°C: (a) experimental
results [32], and (b) numerical results.

The time histories of some the most characteristic variables describing the evo-
lution of hygro-thermal and degradation processes in heated concrete, i.e. temper-
ature, water saturation degree, gas and vapor pressures, total- and thermo-
chemical damage parameters, obtained from the simulations performed with the
model described in previous sections, are presented and briefly discussed.

The results are plotted as a function of time in four characteristic points at dif-
ferent distance from the heated surface: 3 mm (in a surface zone), 2.4 cm (in a
zone where thermal spalling usually occurs), 6 cm (in a zone with a temperature
increase of about 200 K at the end of simulations) and 10 cm (in a deeper zone,
but with a temperature increase of about 80 K at the end of simulations).

After 60 min of the standard 834-ISO fire heating, the temperature reached at a
surface layer about 830°C (~1100 K), at a distance of 6 cm —~200°C, while in a
core zone it remained below 100°C, Figure 13. During heating, at temperatures
below ~100°C, vapor condensation was observed, causing a visible increase of
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Figure 9. Evolutions of gas pressure in a concrete specimen heated
according to [32] for target temperature of 800°C: (a) experimental
results [32], and (b) numerical results.

moisture content (AS,, = 0.1) in the so called ‘moisture clog’ zone. The phenome-
non is followed by a rapid water evaporation in the temperature range between
~100°C and ~200°C, Figure 13. The latter process was accompanied by a gas
pressure increase up to about 7 to 9 bars, Figure 14, which was induced at tem-
peratures below 100°C mainly by heating of dry air and then, up to ~200°C, by a
rapid evaporation of water what caused that up to the temperature of ~300°C the
gas phase was composed mainly of vapor. During heating process concrete was
exposed to a gradual thermo-chemical degradation (reaching in a surface layer
value of ~90%), Figure 15, and additionally high gas pressure and compressive
stress due to constrained thermal dilatation of a surface layer induced material
cracking (described here as an increase of mechanical damage). As a result perme-
ability of concrete was gradually increasing what caused a decrease of gas pressure
down to the atmospheric pressure value, Figure 14.
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Figure 10. Simulation results of a concrete specimen heated accord-
ing to [32] for target temperature of 450°C: (a) temperature com-
pared to the experimental values [32] (indicated with the broken
lines) and (b) relative humidity.

The presented results allow us for better understanding of physical phenomena
and in particular evolution of degradation processes in the considered concrete
structure during standard 834-ISO fire. One can conclude that in these conditions
thermal spalling is not expected to occur in the considered structure because the
phenomenon is accompanied by a rapid increase of mechanical damage parameter
(as showed our previous analyses, see e.g. [15]) which is not observed here.

6.3. Concrete Column Exposed to Parametric Fire and Fast Cooling

In this section a concrete column exposed to a fire described by a parametric heat-
ing profile, following the Annex A of the Eurocode 1 [48], is analysed. The profile
differs significantly from the nominal fire curves (e.g. standard 834-ISO fire curve
used in Sect. 6.2) because after a heating stage formulated on experimental basis,
it defines also a cooling stage.
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Figure 11. Simulation results of a concrete specimen heated accord-
ing to [32] for target temperature of 600°C: (a) temperature com-
pared to the experimental values [32] (indicated with the broken
lines) and (b) relative humidity.

The heating profile 7),...(f) selected for the calculation is the following:

Thear(t) = 293.15 + 1325(1 — 0.324¢™ 007" — 0.204¢ 096" — 0.472¢70734)
(64)

and that corresponds, for the chosen material, to the minimum value of the open-
ing coefficient allowed in the European rules (i.e. 0.02 m'/?).

The heating stage is followed by a cooling phase, corresponding to a rapid
intervention of firemen (calculated for the same case as the heating one), described
as follows:

Teooi(t) = 709.532 — 20.5681(¢ — 4920) (65)



An Overview of Modeling Cement Based Materials 785

=

720

620

520

320

220

TEMPERATURE [°C]

120

TIME [hours]

— 10 mm
—— 20 mm |
|| ===30mm
===40mm

] =50 mm

REL. HUM. [-]

TIME [hours]

Figure 12. Simulation results of a concrete specimen heated accord-
ing to [32] for target temperature of 800°C: (a) temperature com-
pared to the experimental values [32] (indicated with the broken
lines) and (b) relative humidity.

This is a fast cooling with the environmental temperature decrease within 20 s
from the maximum value (i.e. 709.532 K reached after 80 min) down to the initial
value, after a stationary stage at the maximum temperature for 2 min.

As far as the boundary conditions are concerned, mixed convective-radiative
heat exchange has been assumed with the convective heat exchange coefficient
a, = 20 W/m> K and the emissivity e = 0.9. The convective mass exchange
between the surface of the concrete element and the environment is assumed, with
mass exchange coefficient equal to /. = 0.025 m/s and constant water vapor pres-
sure p®" = 1300 Pa. During heating this corresponds to a rapid decrease of the
ambient relative humidity down to a value close to zero.

Due to symmetry, one-fourth of the cross section of the analysed square col-
umn under consideration (30 x 30 cm) is modelled with the FE mesh (Figure 16).
The main properties of the material (C60) assumed in the simulation are listed in
Table 2.
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Table 3
Boundary Examples for the Simulation of a Wall During Exposed to
Heating
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Figure 13. A concrete wall heated according to the standard ISO 834
fire-curve—the evolutions of temperature and saturation degree at
four different distances from the heated surface, obtained from simu-
lations with the present model.
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Figure 14. A concrete wall heated according to the standard ISO 834
fire-curve—the evolutions of gas- and vapor pressure at four different
distances from the heated surface, obtained from simulations with the
present model.
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Figure 15. A concrete wall heated according to the standard ISO 834
fire-curve—the evolutions of total- and thermo-chemical damage
parameter at four different distances from the heated surface,
obtained from simulation with the present model.

Figure 17 shows the temperature evolution in six different points located at var-
ious depths from the heated surfaces of the column. The sharp decrease of envi-
ronmental temperature, due to the cooling, leads to a rapid decrease of the
temperature in these points, especially those close to the lateral sides of the cross



788 Fire Technology 2012

150 mm

R N N NN

A AV . R S R 4
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Figure 17. Temperature histories in the environment (solid blve
line), and in points: A, B, C, D, E and F at the depths of: 15 cm, 10 cm,
5cm, 3 cm, 1 cm and 0.05 cm from the heated sides (see Figure 16).

section. The inversion of thermal fluxes has important consequences not only
from the thermo-hygral point of view, but also for the mechanical behavior of the
material.

In Figure 18a one can observe the distribution of temperature at ¢+ = 80 min,
corresponding to the time instant of maximum heating. Figure 18b represents the
temperature distribution at the end of the computation (i.e. ~100 min). The sur-
face temperature decrease of about 200 K is observed.

Vapor pressure distribution at 80 min and at the end of calculation is depicted
in Figures 19a, b. In this case it is worthy to notice the influence of the
damage on the pressure value: the pressure peaks are concentrated in the zones
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Figure 18. Distributions of the temperature [K] at 80 min (a) and at
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Figure 19. Distributions of the vapor pressure [Pa] at 80 min (a) and
at the final time of simulations (b).

characterized by a lower value of damage parameter, see Figure 20a. The pressure
is lower where the material is more damaged (i.e. close to the corner). At the end
of the process the pressure is almost uniformly distributed throughout the cross
section of the column and its values are no higher than 1 bar, Figure 19b.

Finally, in Figures 20a, b one can observe the distribution of damage parame-
ter. Unlike temperature and other thermo-hygral quantities, the damage is contin-
uously increasing because of an additional damaging of the material even during
the cooling phase. In Figure 20b it is clearly visible that the zone of damaged con-
crete close the element surface is larger than the one in Figure 20b, (i.e. before the
cooling stage).
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Figure 20. Distributions of the mechanical damage d [-] (Equa-
tion 32) at 80 min (a) and at the final time of simulations (b).

7. Conclusions

Application of mechanics of multi-phase porous media for modeling cement based
materials at high temperature has been presented and explained. The consider-
ations were based on the mathematical model of mechanistic type, developed by
the authors within the recent years. The model has been previously experimentally
validated and successfully applied for analyzing performance of concrete struc-
tures at high temperature.

Physical phenomena in a concrete wall heated during a fire have been described
and analyzed, showing clearly a multi-phase nature of concrete in these condi-
tions. Main stages of a mathematical model development by means of hygro-
thermo-mechanics of porous media have been briefly presented. First, the mass,
energy and linear momentum conservation equations at micro-scale have been
given and then averaged in space to obtain the macroscopic form of the equa-
tions. Some main key-points in modeling cement-based materials at high tempera-
ture have been discussed. Final form of the model equations and method of their
numerical solution have been briefly summarized. The model validation and two
examples of its application for numerical simulation and analysis of concrete
structures exposed to fire conditions, including also a cooling phase, have been
presented and analyzed. Mechanics of multi-phase porous media has proved its
usefulness for better understanding and predicting concrete performance at high
temperature. Obviously, due to the complexity of the model it is aimed at the
analysis of single structural elements, like for example columns, beams, slabs etc.
Then, it is a powerful tool for predicting thermal spalling [15] and the simulation
results can be used for the development of a database, an expert system could be
based on. Such an approach has been already successfully followed in the frame-
work of UPTUN project [49]. The model validity was confirmed by comparison
with some published experimental results at laboratory scale, where the model
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predicted the elements’ performance with reasonable accuracy which is sufficient
for engineering applications. To the knowledge of the authors there are not avail-
able any experimental results suitable for the model validation at the whole struc-
ture scale thus the model accuracy at this scale could not be confirmed.
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