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Abstract

Operational management has been gaining increasing importance in the financial
industry and firms make substantial investments in operations management systems to
reduce operational risk. Using a standard model of operational risk, it can be shown that
pair trade profits reveal differences in relative operational performance between firms.
Consequently, pair trade profits have implications for understanding operational per-
formance. Moreover, although operations management systems are well established
sources of firm value creation, their relation to pair trade profits are not well under-
stood. In this paper we investigate the impact of operations management systems upon
firm value in the financial sector. Firstly, we show that relative operational performance
between firms can be evaluated from pair trade returns, providing a new method of
measuring operational performance, and demonstrate this using 11,648 pair trades
data, weekly stock price data and operational event data from 2000 to 2007. Secondly,
we find that pair trade returns and operational risks vary significantly by business line
and event type, implying that operational systems can improve firm performance by
strategically reallocating them. Thirdly, we show that investor risk aversion varies sig-
nificantly with different operational risks, implying firms should manage operational
systems more strategically to reduce firm value losses. Finally, this paper offers an
alternative explanation to pair trade returns compared to current research.

Keywords Operational management systems - Operational risk - Operational risk
management - Risk management - Risk analysis - Pairs trading

1 Introduction

Operational management and operational risk (Papazafeiropoulou and Spanaki
2015) have been gaining increasing importance in industry (Scott and Perry 2009;
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Mukhopadhyay et al. 2017; Silvestro and Lustrato 2014; Reim et al. 2016; Hora and
Klassen 2013; Tazelaar and Snijders 2013) and firms make substantial investments
in operations management systems (from hereon OMS) to mitigate operational risk
(from hereon OR), see for instance Wang et al. (2010) and Dey (2004). The standard
model of OR for firms in the financial sector (Loader 2002) implies that pair trade
profits (where pair trading is defined as buying one stock and short selling another
similar stock) arise due to differences in OR between the 2 firms (see Sect. 2 for a
detailed explanation). Therefore pair trade (from hereon PT) profits have direct impli-
cations for understanding OMS performance between firms and relative firm value
growth between them.

The recognition of the relevance of OMS to firm value is becoming increasingly
important as firms now regard OMS as a strategic resource for competitive advantage;
see for instance Wu et al. (2012), Ulengin et al. (2014), Moormann and Lochte-
Holtgreven (1993) and Zack (2007), moreover (Martinsons et al. 1999) claim that
IT investment is important to achieving business goals. Despite this, there is a lack
of literature on OMS, firm value (or equivalently share price) and PT. This is even
more surprising given that OMS are an accepted source of firm value creation; see for
instance Jiang et al. (2006), Sillince and Sykes (1993), Chircu and Mahajan (2006),
Im et al. (2001) and Dos Santo et al. (1993) to name a few articles.

The lack of literature on OMS and stock prices (and more specifically PT) means
there has been little analysis on the relation of PT profits to OMS, and so it is not well
understood. For instance, do PT profits imply OR and OMS are significant factors in
firm performance differences and to what extent? Do OMS in particular operational
areas impact PT returns and firm value growth more (or less) than in other areas? Is
the degree of risk associated with OR in PT returns too high or low? The fact that firms
do not understand the relation of PT profits to OMS is surprising given that firms are
constantly seeking opportunities for relative firm value growth, and PT returns signal
differences in relative firm value growth (since PT returns arise from difference in firm
value growth or stock prices).

The fact that OMS are sources of firm value growth and yet there are few studies
relating OMS to PT suggest that firms do not fully comprehend the impact of OMS.
This can be attributed to a number of reasons. Firstly, most research relating to OMS
and firm value has focussed on singular aspects of OMS (see for instance Gillet et al.
2010; Kallenberg 2007). Hence the understanding of various aspects of OMS upon
firm value has not been analysed, for instance the various aspects of OMS that lead to
competitive advantages.

Secondly, most OMS literature investigates the firm’s absolute or individual growth
independent of other firms (see for instance Meng and Lee 2007), yet PT profits relate
to relative firm value growths rather than absolute growth. The current literature does
not distinguish between firm growth that is an improvement in comparison to its
peers, or growth that is in line with firms in the same sector. Consequently, the relation
between OMS and its contribution to PT profits are not well understood; this has been
further exacerbated by the view that OMS were not previously viewed as strategic
resources for competitive advantage.

Thirdly, the literature on PT tends to focus on trading strategies (e.g. Huck 2010;
Elliott et al. 2005); these strategies employ quantitative methods to identify and trade

@ Springer



Firm Value and the Impact of Operational Management 63

pairs of stocks based on their historic price patterns. Consequently, the relationship
between PT profits and OMS are not analysed. Hence the impact of OMS upon relative
firm value growth (or PT profits) is not examined.

In the past decade the literature and interest in OMS and OR management (from
hereon ORM) has increased. For instance, models now exist to quantify OR relating to
OMS (Chorafas 2004; Loader 2002) and it is now possible to obtain data on OMS that
catalogue their (operational) losses. We can therefore now quantitatively and more
accurately assess the impact of OMS upon a firm. In particular, we able to investigate
OMS and OR issues with respect to particular operational events and different business
lines.

In this paper we investigate OMS and their relation to PT returns, or equivalently
relative firm value growth. We use data from 11,648 pairs trades, weekly stock price
data and operational event data from 2000 to 2007. We analyse PT returns and OR
during operational events, as well as analyse other statistical properties of interests
such as skewness. We investigate the PT returns and the OMS’s relation with respect
to OR, operational event types and business lines.

This paper makes a number of contributions. Firstly, we show that relative opera-
tional performance between firms can be evaluated from pair trade returns, providing a
new method of measuring operational performance. This is substantiated by empirical
results that show that significant PT returns occur during operational events, implying
that OMS are a significant factor in relative firm value growth or performance. Sec-
ondly, we find that there is significant variation in PT returns and OR by business line
and event type, implying that OMS contribution to relative firm value can be improved
by strategically focussing on particular areas. Thirdly, we show that investor risk aver-
sion varies significantly with different operational event types and business lines, hence
firms should risk manage more strategically to minimise losses in firm value. Finally,
our paper provides a more consistent explanation of PT returns compared to current
financial explanations, by attributing them to OR factors.

The rest of the paper is organised as follows: in the next section we introduce PT,
OR and the motivation of our study, providing a literature review of current research.
We then introduce our methodology, data, discuss our results and analyse them. We
then finally end with a conclusion.

2 Introduction to Pairs Trading, Operational Risk and Motivation
of Study

Pairs trading is a popular investment strategy in finance (Vidyamurthy 2004). The
strategy involves taking a position in a pair of stocks that are chosen to have similar
characteristics, such as the same sector category, geographic market, stock market etc.
The PT is executed by taking a long position in one stock and a short position in the
other stock and the PT profits from the relative differences in share price growth (or
equivalently the relative firm value growth). Hence the PT method is often called a
‘relative value’ trading strategy (Gatev et al. 2006).

Pairs trading is a trading strategy that has a number of attractive advantages. Firstly,
it is a self-financing strategy, that is the short position creates the funds for the long
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position, hence no initial capital is required to execute the trading strategy. Therefore
the trade is unaffected by financing costs (such as interest rates) and leverage (or
borrowing) can be applied to magnify returns. Secondly, PT provide profits that are
independent of the market direction, therefore investors do not need to be good market
timers (which is difficult to achieve) and can make profits during bear markets. Finally,
PT have been shown to provide profits with low volatility, that is they are a source of
stable profits over time, unlike other trading strategies.

The main characteristic of PT is that risk factors that are common to both firms in
the pair do not affect the PT profits e.g. market risk factors (hence PT is often referred
to as a ‘market neutral’ trading strategy (see Valle et al. 2014 for an example). This is
because common factors are cancelled out from the net PT position; the common risk
factor responsible for the long position’s share price growth would be directly offset
by the same common risk factor causing a decline in the short position.

Operational risk, essentially the risk arising from business operations within a firm,
has been gaining increasing interest in literature and OMS directly impact OR. Risk
can be defined as the loss associated with some statistically random event; in the case
of OR the risk is the loss associated with some statistical random operational event.
As risk is associated with some random event, this makes risk analysis non-trivial. A
standard model of OR for financial firms is given by (Loader 2002) and is modelled
by the following equation:

R(A) = Ry (A) + Rc(A) + Ror(A), ey

where R(A) is the total risk of company A, Ry(A), Rc(A) and Rpg(A) are the market,
credit and operational risk, respectively, of company A. Therefore OR is the residual
risk remaining once market and credit risk are removed (Loader 2002). This model
of OR captures all the wide spectrum of factors that contribute to OR (e.g. from
administrative errors to natural disasters). This model of OR is also used in Mitra et al.
(2015) and Allen and Bali (2007) to measure OR from stock prices.

The OR model (Loader 2002) can be applied to a pair of stocks as in a PT. If we
are long stock A and short another stock B, then the overall PT position has risk:

R(A) = R(B) = (Ru(A) + Rc(A) + Ror(A)) — (Ru(B) + Rc(B) + Ror(B)),
= (Ru(A) — Ry (B)) + (Rc(A) — Rc(B)) + (Ror(A) — Ror(B)).

As mentioned previously, in PT similar stocks are chosen (i.e. same sector, market
etc.), hence the market and credit risks will be similar. Consequently in a PT the Ry;(.)
and R¢(.) terms would cancel each other out, therefore we would have:

R(A) — R(B) = Ror(A) — Ror(B). @

Hence the net returns in a PT occur due to the difference in OR in the pair of stocks.
Therefore PT profits relate to OMS performance between firms.

The fact that OR impacts PT is not an unexpected result given that it is known that
operational factors impact firm value growth. In fact in Rappaport (1987) the risk or
“uncertainty in business operations” (Rappaport 1987) are directly related to the firm’s
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competitiveness and so profitability. Moreover, in Rappaport (1987) OR are directly
related to Porter’s 5 forces of competitive advantage (see Johnson et al. 2008 for more
detail), hence we would expect OMS performance to be related to PT profits.

The OMS are a well established source of firm value growth (Prajogo et al. 2018) and
this has been written about extensively in research literature. For example Chai et al.
(2011) show increases in firm value through adopting standard OMS systems; Kohli
et al. (2012) demonstrate that IT (information technology) investment significantly
increases firm value. Chircu and Mahajan (2006) show that OMS impact firm value by
improving operating costs and customer value. Also see Andoh-Baidoo et al. (2010),
Zafar et al. (2015), Hines et al. (2004), Hsu (2013), March and Storey (2008), Pandza
et al. (2003) and Bose and Leung (2013) to name a few examples.

To the best of our knowledge there is no literature on OMS performance, OR and PT
(or equivalently relative firm value growth). Although, there exists extensive literature
on OR and OMS (see for example Garcia-Dastugue and Lambert 2003; Hong and
Lee 2013; Kim et al. 2012) the majority of studies do not focus on PT or relative
firm value, but on individual firm value and on a particular OMS or OR aspects (see
for instance Gillet et al. 2010; Kallenberg 2007; Allen and Bali 2007; Dahya et al.
1996). For example in Chernobai et al. (2011) the operational factors and firm value
relationships are examined, however the operational factors analysed are limited to 2
factors only.

The fact that there exists little literature on the relation between OMS, OR and PT
(or relative firm value) is surprising given that significant incentives exist to understand
such relationships. Firms make significant investments in OMS (Yang et al. 2014) and
managing OR, for example firms spend in the range of millions of dollars on OMS
investments; see Renkema and Berghout (1997), Wittayasooporn et al. (2015) and
Lacity and Hirschheim (2012). Furthermore, an improved understanding of OMS and
OR would enable one to take more profitable trading positions in PT; this would be
useful given that identifying fundamental factors in PT is non-trivial (see Vidyamurthy
2004 for more information).

A potential reason for the lack of research upon OMS, OR and PT (or relative firm
value) is that firstly OMS have only recently been seen as a key resource for competitive
advantage. Previously, OMS and other operational aspects were perceived as purely
contributing to efficiency and production costs. However as business operations have
become more sophisticated their influence on value creation has increased; see for
example Shea et al. (2017), Tian et al. (2009), Ali and Green (2009), Dettenbach and
Thonemann (2015), Chevalier et al. (2015), Fragniere et al. (2010) and Brandenburg
et al. (2014) to name a few.

Secondly, the increasing interest in OMS, OR, the availability of operational data
(Joukhadar and Rabhi 2015) and the creation of (operational) risk measurement
methodologies has only occurred in the past couple of decades. For example, although
models exist in other areas of risk (for instance Mitra and Date 2010; Mitra et al. 2013)
models relating to quantifying OR now exist (Chorafas 2004; Loader 2002) whereas
such quantitative models did not exist 25 years ago (e.g. Mitra 2013a, b). The data on
operational issues (such as the type of operational incident and the losses incurred)
are more easily available now and allow analysis of the direct impact of OMS upon
firm value; previously such data was far less accessible.
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Thirdly, it is now recognised that managing OMS and OR are important to the prof-
itability of firms. For example, Allied Irish Bank lost $750 million from unauthorised
trades (Cummins et al. 2006). In Biener et al. attacks on large firm IT infrastructures
are cited as costing as much as $2.4 million. In Chernobai et al. (2011) the OR in US
financial institutions is examined and the median operational loss is estimated to be
$11.8 million. Moreover ORM can directly impact other important areas of business
e.g. financial risk management (Zhao and Huchzermeier 2015) and market strategies
(Kuthambalayan et al. 2014).

Finally, the current literature on PT typically focusses on identifying trading strate-
gies (see for instance Huck 2010; Elliott et al. 2005; Tourin and Yan 2013). This
typically involves the application of some quantitative analysis or pattern recognition
method (such as neural networks), as well as modelling the entire trading strategy itself
(such as entry points, exit points and stop loss limits). The current trading literature
on PT also covers practical aspects of PT such as trading costs (Broussard and Vai-
hekoski 2012) and portfolio optimisation (Mudchanatongsuk et al. 2008). However
the fundamental operational sources of PT profits (such as OMS) are not typically
investigated, hence the relation of OMS to PT is not analysed.

The literature that is closest to our research is (Meng and Lee 2007); they analyse
the impact on share prices due to the introduction of some IT system. The impact on
firm value due to OMS is quantified, however, the OMS factors that are investigated
are not operational, or specific factors (e.g. industry sector and firm size). Moreover,
the firm value gains relative to another firm are not investigated, hence the relative
value contribution of OMS to firms is not known. Furthermore, the degree of OR in
various OMS is not analysed, hence the OMS’s contribution in terms return and risk
is also not analysed.

Another paper in the current literature that is closest to our research is Allen and
Bali (2007). A quantitative analysis of OR and its relation to firm value is undertaken;
cyclical components are detected in the OR and they discover that OR is strongly
affected by catastrophic events. In Allen and Bali (2007) they also investigate key
factors that impact OR however, their analysis does not relate to OMS specific factors
impacting firm value and OR. For instance they analyse the relation between OR and
generic risk factors such as macroeconomic and systematic factors. Hence the degree
of understanding of the relation of OMS upon OR is limited, additionally no analysis
of the relation with respect to relative firm value is undertaken.

The lack of literature of OMS and OR with respect to PT (or equivalently relative
firm value growth) implies that their relation is not well understood. Moreover, it is
also not understood the particular aspects of OMS and OR management that impact
PT? For example, do OMS in particular business lines or specific operational event
types have any influence on relative firm value growth? Does risk aversion of investors
(that is shareholders) of operational events differ based on the event type (e.g. fraud
vs. IT failure)? This therefore leads us to address the following research questions:

e To analyse the relation between PT returns and OR to determine the impact of OMS
upon firm performance and relative firm value growth?
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e To analyse the relation between PT returns and OR originating from different
operational events, to determine the impact of the OMS’s event type upon firm
performance and relative firm value growth?

e To analyse the relation between the PT returns and OR originating from differ-
ent business lines, to determine the impact of the OMS’s business line upon firm
performance and relative firm value growth?

o Toanalyse the investor risk aversion and ORs by different operational factors, specif-
ically the operational event type and business line?

3 Methodology and Data

In this study we analyse the impact of OMS and OR on PT returns from 11,648
pair trades, using weekly stock price data and operational event data over the period
2000-2007. In this section we explain our methodology, the experiments executed and
the data sample used in our study.

3.1 Methodology

In this study we execute 11,648 pair trades, where each pair trade is constructed by
taking a long position in one firm’s shares and a short position in a similar firm’s
shares simultaneously; at the end of the trade we sell the long position stock and
simultaneously exit the short position. We execute each PT such that we are equally
weighted (or equally invested) in the long and the short position, hence the long
position is funded by the short position and so we do not need to include funding costs
in calculating returns.
The return from the PT position, rpr, is calculated using Eq. (3):

rer = ([(SL(?) — SL(0))/SL(0)] — [(Ss(r) — $5(0))/Ss5(0)]) * 100 3

where Sy (t), Sp.(0) are the long position stock prices at time t and 0, respectively; Ss(t),
Ss(0) are the short position stock prices at time t and 0, respectively.

The return in Eq. (3) is calculated using the closing prices for each stock and t is
set to 1 week for all trades. The trades in the same pair of stocks are conducted in
non-overlapping time intervals, hence a pair in the same 2 stocks are always exited
from the position before the pair are again re-entered for the next pair trade. We do not
take into account any transaction costs and taxes in our trades as the purpose of the
study is to analyse the relation of PT and relative firm value growth, and such costs
can distort such relations.

During each PT we calculate the PT returns using Eq. (3) to obtain a distribution
of PT returns, which enables us to measure the OR (see proceeding sections for more
information). The distribution of PT returns are also analysed in terms of other statis-
tical measures of interest (such as skewness and kurtosis) for additional risk analysis.
We note that we construct the PT positions such that we short the firm that incurs the
operational event and we are long the other stock in the pair. Consequently, the PT
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should result in a net positive return whenever an operational loss event occurs, since
such an event should reduce the firm value of the shorted firm (leading to a positive
return) while the other stock is unaffected.

The specific date of operational events (e.g. IT failure) were obtained from the Fitch
database of operational events (from hereon OE), hence PT during and outside OE
could be identified. Furthermore, the database provides details on the OE themselves,
hence PT returns could be examined in terms of the origin of the OE, in particular the
business line and event type, which would be required for later PT and OMS analysis.

The PT positions were chosen to be held for time intervals of 1 week to enable all
operational information to be fully incorporated within the share prices (shorter time
scales would not necessarily achieve this). The principle of information incorporation
within stock prices is based on the Efficient Market Hypothesis (Malkiel and Fama
1970), whereby a firm’s stock price fully reflects all the current information of the
firm. In the context of OMS, it implies that the stock price quickly responds to new
information upon the firm’s OMS performance (e.g. new IT upgrade or IT error) and
the firm’s stock price adjusts accordingly to take into account the impact upon firm
value (McWilliams and Siegel 1997). We note that the incorporation of information
within stock prices is not a stringent assumption and this assumption is utilised in the
methodology for analysing OR in Moosa and Silvapulle (2012).

We note in passing that the PT executed in our study are not entered or exited based
on some trading rule (e.g. stock price exceeding or declining below a given price level)
as in some PT methods. The PT are consistently held for the same duration of 1 week
for all trades in the study, regardless of the position’s profit or loss. This is because the
purpose of this study is to examine the relation of PT or (relative firm value) to OMS,
rather than PT trading strategies, hence results over the same time periods need to be
maintained.

3.2 Data

The PT stocks were all chosen from the financial sector for three main reasons. Firstly,
financial sector stocks tend to have high similarity in external or market factors, hence
the PT is most likely to eliminate external factors from the net PT position and so
provide better results with respect to OR analysis [see Egs. (1) and (2)]. Secondly, the
OMS and OR play a fundamental role in the competitive advantage of firms in the
financial sector, for instance the international banking regulators Basel Committee on
Banking Supervision are increasingly emphasising OR in performance issues. Hence
the impact of OMS upon stock prices is more likely to be observable, rather than to be
obscured by noise in the data. Thirdly, the stocks were required to be taken from the
same sector to be consistent with the PT methodology (and to ensure that the stocks
all have similar risk characteristics).

The PT were taken from weekly stock price data to calculate PT returns [see Eq. (3)].
The sample period for the stock data and OE data was chosen to be 2000-2007, so that
no data was used prior to the Global Financial Crisis to ensure our methodology was
not invalidated by the Global Financial Crisis. In our methodology we assume Eq. (2)
applies to PT, since similar firms in a PT have similar credit and market risks and so
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the net risk in a PT arises from OR. However, this assumption would not necessarily
have been valid during the Global Financial Crisis when unusual risk factors would
distort relationships between similar stocks (see for instance Bellinia 2013; Allen et al.
2014). Hence our methodology would not necessarily lead to reliable results during
the Global Financial Crisis.

The sample period was taken over 7 years so that we would have a sufficiently
large sample of data points, which would provide a representative distribution of
results; in total 11,648 trades were executed. A representative distribution of results
was also required so that one would obtain reliable OR measurements, which are
based on the result’s distribution (see proceeding sections on OR measurement for
more information). Furthermore the long time period also removed biases in economic
growth and recessions affecting PT results.

The stocks for the PT were taken from the same sector, namely 8 different banks,
giving 28 different pairs in total; we note in passing that the same number of banks
were used in Moosa and Silvapulle (2012) to study OR. The stocks were also chosen
on specific criteria: firstly, stocks were chosen with large market capitalisation because
such stocks tend to be efficiently priced, hence their stock prices would rapidly and
fully incorporate any new OE information into their stock price. Secondly, we chose
stocks that had continuous stock price data during our period of study, as gaps in
data would distort results. Thirdly, we chose high trading volume stocks to ensure PT
results were not distorted by liquidity issues. Finally, we chose stocks with substantial
OE data available (from our database) to enable sufficient operational analysis to be
undertaken.

3.3 Operational Risk Measurement

In order to conduct our experiments we require a measure of OR. The measurement
of OR is a non-trivial task because most OR measures require large amounts of data
or data that is not feasible to obtain. For example, some measures require proprietary
databases (Cummins et al. 2006) that are inaccessible for confidentiality reasons.
Also, some OR measures require large amounts of empirical data, such that practical
implementation problems arise when analysing a large number of PT.

3.3.1 Operational Risk Measure

Currently, there exist general OR measures with less demanding data requirements
(such as the Basic Indicator Approach and Standardised Approach (Chorafas 2004),
however such measures are unsuitable for our experiments. Firstly, such measures are
quite broad measures of OR, in that they would not be able to attribute the risk to a
particular operational event; hence the measure of OR is not specific enough for our
study. Secondly, the OR measures tend to utilise data on a frequency of annual or
quarterly periods, hence such measures would not be able to measure OR on a weekly
basis. Given that our PT are conducted on a weekly basis, such measures would not
be suitable.
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In risk measurement theory one can quantify risk associated with some risk factor
by applying some appropriate statistical measure to the return distribution (Artzner
et al. 1997) attributed to the risk factor; examples are quantiles (or Value at Risk) and
standard deviation (Szego 2005). Consequently we can measure the OR by applying
some statistical measure to the return distribution associated with OR returns:

p = f(D), @

where p is the OR, D is the return distribution due to OR, and f(.) is some statistical
measure applied to D (e.g. quantile).

To measure the OR in PT returns we require the distribution of returns due to OR,
and we then apply some risk measure to the distribution D to obtain the OR, e.g.
VaR (Value at Risk). To obtain the return distribution D (from which one can obtain a
measure of OR), we need to obtain returns due to OR only. This can be obtained from
PT results [from Eq. (2)] where we have shown that PT returns arise from OR, hence
to measure OR we apply a risk measure to the return distribution of PT returns.

The Eq. (4) has significant advantages in measuring OR compared to alternative
measures. Firstly, it is a significantly more tractable method of measuring OR than
competing methods; many OR measures are intractable due to substantial data require-
ments, calibration and implementation issues. Our method does not require substantial
data, only the return distribution from OR, and no calibration or implementation issues
arise other than applying a risk measure to the distribution. Secondly, we can measure
OR over the short time scales required for our study (1 week) by obtaining D for OR
related weekly returns; such a property is not available with other OR measures. For
example the Basic Indicator Approach and the Standardised Approach risk measures
(Chorafas 2004) use data from gross income, which is typically published on an annual
basis, hence OR could only be measured on an annual basis.

3.3.2 Stock Return Components

To analyse the PT returns we must understand the components of stock returns during
an event, and this can be achieved using the Event Study method (MacKinlay 1997).
The Event Study method has been utilised in many studies to determine the impact of
OMS upon firm value, see for instance Agrawal et al. (2006), Dehning et al. (2003),
Chatterjee et al. (2002), Benaroch et al. (2012) and Sabherwal and Sabherwal (2005)
to name a few examples. It is the typical method applied in the extant literature for
studies of OMS impact upon a firm (see for instance Chai et al. 2011).
The stock returns consist of 2 components according to Event Study analysis:

Tse =Te t1n, 5)

where r, is the total stock return, r. (also known as the abnormal returns) is the stock
return component due to the event itself (if an event occurs). The ry, is defined as
the normal returns, or the expected stock return when no event occurs; this can be
determined by some standard model e.g. CAPM (Sharpe 1964). Hence stock returns
consist of the event’s return (if an event occurs) and normal stock returns, thus the
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return during an event is not equivalent to the stock returns due to an event. Hence to
obtain the returns (and risk) due to the event itself we require r. instead of rg.
For PT, the previous equation becomes:

FALL =TE +TINPT (6)

where ray 1 is the overall PT return, rypr is the PT return when there is no operational
event and rg is the PT return due to the operational event itself only (if an event occurs).
For convenience we define

FALL = rpTE, Lf an event occurs @)
where rprr =rg +rypr When an event occurs, and
rALL = YNPT, Lf no event occurs(rg = 0) )

As with the stock return Eq. (5), we see that PT returns during an operational event
are not equivalent to the PT returns due to the operational event itself (rg). To obtain
the OR (and returns) relating to the OE itself we require rg returns, hence we cannot
obtain this by observing PT returns during an event (i.e. »prg)—Wwe require rypr as
well.

To determine rnpt no standard model exists (unlike for individual stocks many
standard models exist such as CAPM). However, we can determine rNpt from empirical
results by determining the PT returns when there are no events [see Eq. (8)]. This also
has the advantage that we do not need to specify a particular model for normal returns,
which in itself can be unreliable and problematic. We also note in passing that we
cannot obtain the risk associated with rg by subtracting the risk difference of rprg and
rypr because the distribution of rg cannot be obtained simply by subtracting or adding
the distributions for rp7rg and rypr (according to standard mathematical properties of
distributions).

As aside point, we expect PT to have non-zero returns even if no OE occur because
we expect investors to be rewarded for bearing OR, even if no OE occur. This is directly
analogous to stock returns being attributed to credit risk even if no credit event occurs,
such as an announcement of default (see Allen and Bali 2007; Friewald et al. 2014 for
examples).

4 Results and Analysis

In this section we present our results and analyse them.
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4.1 Results
4.2 Analysis

Tables 1,2, 3,4,5,6,7,8,9, 10 and 11 provide the results of the PT conducted for
our study. The Table 1 figures give the PT results categorised into 3 groups: the ‘All’
results relate to all 11,648 PT results regardless of the occurrence of any OE during
a PT; the ‘PTE’ group relates to PT returns during OE only, and ‘Event’ relates to rg
(that is PT return due to the event itself). In Table 1 the Mean row provides the mean
return for each PT category over the duration of one position (i.e. 1 week) and the
Annualised Mean row is the mean return converted to the annual equivalent return. It
is worth noting in passing that to calculate Table 1 results for rg we require 477 and
rypr [see Eq. (6)] and the mean rypr return was calculated to be —0.05% per trade.

Table 1 Returns for all pair trades (r47y,), pair trades during an operational event (rp7g), and event returns
(re)

Return Pair trade Event (rg)
All (raL) PTE (rprE)*

Mean (%) 0.04 0.12 0.17

Annualised mean (%) 2.28 6.19 8.79

4PTE denotes PT during an operational event for all tables

Table 2 Risk results for all pair

trades (r41;.) and pair trades Risk measure Pair trade

during an operational event All PTE

(rpTE)
Variance (%) 13.29 10.70
VaR 99% (%) —10.22 —8.51
VaR 95% (%) —5.84 —5.06
VaR 90% (%) —-3.99 —3.85
Kurtosis 4.25 1.81
Skewness -0.20 0.15

Table 3 Risk results for events Risk measure Result

returns (rg)
Variance (%) 10.70
VaR 99% (%) —8.46
VaR 95% (%) —5.01
VaR 90% (%) —3.80
Kurtosis 1.81
Skewness 0.15
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Table 4 Pair trade return (rp7E) by operational event type
Pair trade Event type?
measure
ONB IF EF EDPM EPWS DPA CPBP
Mean (%) 4.35 —0.82 0.43 0.49 —2.76 0.69 —0.69
Annualised 226.20 —42.64 —22.36 25.48 —143.52 3588 —35.88
mean
(%)
4See Tables 12 and 13 for abbreviations of event type and business line categories
Table 5 Operational event return (rg) by operational event type
Return Event type®
ONB IF EF EDPM EPWS DPA CPBP
Mean (%) 4.40 —-0.77 0.48 0.54 —2.71 0.74 —0.64
Annualised 228.80 —40.04 24.96 28.08 —140.92 3848 —33.28
mean
(%)
4See Tables 12 and 13 for abbreviations of event type and business line categories
Table 6 Pairs trade return rp7g risk results by operational event type
Risk Event type?
measure
ONB IF EF EDPM EPWS DPA CPBP
Variance 7.68 13.91 13.51 2.33 20.01 10.81 6.56
(%)
VaR 99% —0.15 —11.48 —9.42 —1.40 —10.18 —6.17 —6.59
(%)
VaR 95% 0.43 —5.88 —541 —1.39 —9.63 —-3.72 —4.24
(%)
VaR 90% 0.87 —5.14 —2.78 —0.85 —8.95 —2.74 —343
(%)
Skewness 0.23 —0.89 —-0.36 1.10 —0.84 —0.56 0.41
Kurtosis —-0.72 1.58 1.74 0.59 —0.98 —0.29 2.42

The OR associated with the results in Table 1 were calculated using measures such
as VaR (Value at Risk) and other statistical measures and are presented in Tables 2
and 3. The Tables 2 and 3 figures are based on the weekly PT results; the ‘All’ results
relate to the OR calculation from including all PTs. The OR for ‘PTE’ results are given
in Table 2; the OR for rg results are given in Table 3. We note that the difference in
Table 2 PTE results and Table 3 results can be understood from Egs. (6) and (7). The
equations imply that Table 3 results include the risk of the event itself (from the rg

@ Springer



74 S. Mitra, A. Karathanasopoulos

Table 7 Event return rg risk results by operational event type

Risk Event type?

measure ONB IF EF EDPM EPWS DPA CPBP

Variance 7.68 13.91 13.51 2.33 20.01 10.81 6.56
(%)

VaR 99% —0.10 —1143 —9.37 —1.35 —10.13 —6.12 —6.54
(%)

VaR 95% 0.48 —5.83 —5.36 —1.34 —9.58 —3.67 —4.19
(%)

VaR 90% 0.92 —5.09 —2.73 —0.80 —8.90 —2.69 —3.38
(%)

Skewness 0.23 —0.89 —0.36 1.10 —0.84 —0.56 0.41

Kurtosis —-0.72 1.58 1.74 0.59 —0.98 -0.29 2.42

4See Tables 12 and 13 for abbreviations of event type and business line categories

Table 8 Pairs trade return (rp7E) by business line

Return Business line?

EC DFM C CT CF CB AM AONB

Mean —1.36 —0.59 2.48 0.85 0.97 —-0.97 1.80 —0.70
(%)

Annualised —70.72 —30.68  128.96 44.20 50.44 —50.44  93.60 —36.40
mean
(%)

4See Tables 12 and 13 for abbreviations of event type and business line categories

Table 9 Event return (rg) results by business line

Return Business line?

EC DFM C CT CF CB AM AONB

Mean —1.34 —0.54 2.53 0.90 1.03 —0.92 1.85 —0.65
(%)

Annualised —69.68 —28.08 131.56 46.8 53.56 —47.84 962 —33.8
mean
(%)

4See Tables 12 and 13 for abbreviations of event type and business line categories

term), whereas Table 2 PTE results include the risk of the event itself and the OR in

the firm when there is no OE.

The PTE results of Table 1 are analysed further by OE type and business line in
Tables 4 and 8, respectively; the PTE results of Table 2 are also analysed further by OE
type and business line in Tables 6 and 10, respectively. Similarly, for the rg results in
Table 1, the results are also analysed further by OE type and business line in Tables 5
and 9, respectively; the Table 3 results are also analysed further by OE type and
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Table 10 Pairs trade rp7E risk results by business line

Risk Business line?

measure EC DFM ¢ CT CF CB AM AONB

Variance 1.83 2.90 25.21 1.22 3.95 9.12 6.43 6.54
(%)

VaR 99% —3.78 -3.17 —3.95 —1.15 —3.36 —8.33 —-3.92 —6.05
(%)

VaR 95% —-3.27 —-3.07 —3.73 —0.81 —2.20 —-5.37 —1.69 —5.04
(%)

VaR 90% —2.75 —-2.93 —3.49 —0.37 —1.04 —4.75 0.18 —4.24
(%)

Skewness 0.22 0.50 0.03 0.07 —0.31 —0.23 —-0.97 —1.01

Kurtosis 0.98 0.69 —1.25 0.52 0.37 0.53 2.49 0.13

4See Tables 12 and 13 for abbreviations of event type and business line categories

Table 11 Event return rg risk results by business line

Risk Business line?

measure EC DFM C CT CF CB AM AONB

Variance 1.85 2.90 25.21 1.22 4.15 9.12 6.43 6.54
(%)

VaR 99% -3.77 —-3.12 —-3.90 —1.10 —3.33 —8.28 —3.87 —6.00
(%)

VaR 95% —3.26 —-3.02 —3.68 —-0.76 —-221 —5.32 —1.64 —4.99
(%)

VaR 90% —2.74 —2.88 —3.44 —-0.32 —1.01 —4.70 0.23 —4.19
(%)

Skewness 0.25 0.50 0.03 0.07 —-0.32 —-0.23 —-0.97 —1.01

Kurtosis 1.03 0.69 —1.25 0.52 0.22 0.53 2.49 0.13

4See Tables 12 and 13 for abbreviations of event type and business line categories

Table 12 Categories for operational event types and abbreviations

Abbreviation Event type

CPBP Clients products and business practices

DPA Damage to physical assets

EDPM Execution delivery and process management
EF External fraud

EPWS Employment/workplace practices

IF Internal fraud

ONB Other operational events
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Table 13 Categories for business

lines and abbreviations Abbreviation Business line
AONB All other business lines
AM Asset management
C Custody
CB Commercial banking
CF Corporate finance
CT corporate trust
DFM Discretionary fund management
EC External clients

business line in Tables 7 and 11, respectively. The table categories and abbreviations
are given in Tables 12 and 13.

In Table 1, the mean returns for different PT groups are presented. The returns vary
substantially by group: the mean PT returns are 2.28%/year for All trades, 6.19%/year
for PTE and 8.79% p.a. (per annum) for rg. Hence PT returns more than double
during OE and the OFE’s return itself accounts for almost 3 times the mean PT return
during All trades. Additionally, the 8.79% p.a. return in itself is a high annual growth
contribution to firm value, given that this is almost equal to the average annual return
on the stockmarket.

The results of Table 1 demonstrates that PT profits are strongly related to OMS
performance and OR management (from hereon ORM), hence OMS contribution to
firm value growth is significant. As mentioned in the literature discussed in the earlier
sections, operational issues were not previously considered critical aspects of firm
performance until recent decades, and our results demonstrate that such factors are
core elements of a firm’s performance. Additionally, the high returns from rg also
demonstrate that firms can improve their relative performance compared to their rivals
by investing in their OMS and ORM.

In Tables 2 and 3, the OR is measured by applying some statistical measure to the
PT returns (as explained in the previous sections). The OR associated with the OMS is
important to quantify in order to determine the quality of the contribution of OMS to
firm value. This is because firms are not just interested in the firm value contribution
from OMS (or any investment) but also the risk incurred (see for instance Volkov and
Smith 2014; Brown et al. 2012). In fact many operations can be typically improved to
increase firm value but they incur higher OR and so are not implemented. For example,
one could reduce fraud checks to reduce business costs (and so improve firm value)
but this would be at the expense of increasing the risk of fraud. Hence we need to
determine the quality of OMS contributions to firm value by taking into account the
associated OR.

The Table 2 results have significant implications. Firstly, in Table 2 we notice that
OR is significant in magnitude, for example, for All trades at the VaR 99% level we
have — 10.22% over a period of 1 week; given that the average annual return on stock
market indexes is approximately 10% p.a., a —10.22% loss can therefore eliminate
a firm’s average annual share price growth in just 1 week. Secondly, the magnitude
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of the losses or risk values in Table 2 imply that OR is not a negligible risk and that
ORM is an important factor in firm risk. This can be attributed to operations becoming
increasingly important to firm performance (e.g. IT systems).

Thirdly, if we analyse Tables 1 and 2 in terms of return to risk, as is done in Basu and
Nair (2015), by computing a ratio similar to the Sharpe ratio in investment we obtain
interesting results. The PTE results provide far higher returns for a given level of risk
compared to All trades. This implies that return-to-risk in non-OE focussed OMS and
ORM investments will not return as much to firm value as OE focussed OMS and
ORM investments. This may also justify the high investment made in particular OMS
(see for instance (Lacity and Hirschheim 2012).

We notice in Table 2 that the difference in risk between All trades and PTE is
approximately 10%. Given that All trade returns (and therefore risks) include returns
during OEs and not during OEs [see Eq. (6)], this implies that the majority of PT
returns and risks arise during OEs. If we examine Table 2 PTE results further, we can
see that the results are the same or higher risk than the results in Table 3 on all risk
measures (this is an expected result because the returns (and therefore the risk) of
PTE include rg, therefore PTE’s OR will always be greater than or equal to the OR of
the OE itself). The difference in Table 3 and Table 2 PTE results is approximately a
10-20% decrease in value, hence the key source of OR during an OE is due to the event
itself. This is useful for ORM because it implies firms can strategically improve ORM
by focussing on OE based risks, rather than risks that do not cause any significant
events.

The kurtosis results for Table 2 differ between All trades and PTE, however PTE
and Table 3 results are identical, which imply that kurtosis risk does not differ for all
ORs during an OE. This is useful to know for ORM as it means kurtosis risk will not
impact operations differently (for instance underestimation of particular risks), hence
this facilitates risk management of operations. In Table 2 the skewness values of PTE
and All trades are close to 0, therefore both distributions are fairly symmetric. Hence
skewness risk (which can lead to underestimating OR) is not a significant factor for
OR. We note that the positive skewness in PTE implies the PTE distribution is shifted
more towards negative values, whereas the All trades distribution is shifted towards
positive values.

Within Table 2 the All trade kurtosis is more than double that of PTE’s kurtosis;
given that the All trade distribution consists of the PTE and non-PTE distributions,
this implies the non-PTE distribution kurtosis must be lower than the PTE distribution
kurtosis. The consequence of lower kurtosis mean that non-PTE returns tend to con-
centrate more around the mean, and so are more predictable in value. However, PTE
returns are more unpredictable, implying that OE lead to more unpredictable changes
in firm value; this is to be expected because OE can have a varying impact on firms
due their nature. For example, a simple I.T. error that incorrectly reports a number
can lead to minor or major losses. The greater variation in PTE returns highlights the
importance to manage ORs effectively to minimise losses.

Tables 4 and 6 break down the PTE results by event type in terms of returns and risk
respectively; similarly Tables 5 and 7 break down the rg results by events type in terms
of returns and risk respectively. If we compare the values of Tables 4 and 5, both are
very similar with little difference in value, implying the majority of stock returns during
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an OE is due to the event itself. However, the magnitude of the returns in Tables 4 and
5 demonstrate the importance of operational factors and OMS in relative firm value
growth; given that the average return on the stock market is approximately 10% p.a.
the annualised returns demonstrate the considerably large changes that occur through
OMS and ORM. A similar pattern is reflected between Tables 6 and 7, implying that
the majority of OR during an OE is due to the event’s OR itself.

In Tables 4 and 5 an important observation is obtained in that there is significant
variation in return and risk dependent on the event type: ONB has the highest return
(4.35%) whilst EPWS has the lowest (-2.76%), with the average of the PT returns at
0.12%. In all cases the returns represent significant changes on an annualised basis
(as shown in Table 4) and so imply a significant dependence between operational
factors and PT returns. Hence relative firm value growth and competitive advantage
is significantly influenced by the type of OE. Hence firms can improve firm value and
relative firm value growth further by focussing on particular operational issues, rather
than managing all operational issues with equal importance.

Similar to Tables 4 and 5, in Tables 6 and 7 we observe there is significant variation
in OR by event type, hence OR is significantly dependent on the event type. Intuitively,
we would expect OR variation upon the event type itself (e.g. the risk associated with
fraud would be significantly higher than the risk of administration errors). Additionally
the degree of variation in OR is an unexpected result, for example EPWS has almost
9 times the risk of EDPM on a variance risk measure basis; the risk of all PTE trades
is 10.70 on a variance risk measure basis (from Table 2), while EDPM has almost
one fifth of this risk (2.33) and EPWS has almost double this level of risk (20.01).
Consequently, these results also reinforce the importance of strategic or focussed ORM
to minimise overall OR.

On arelative firm value basis, Tables 4 and 6 provide interesting results. If one takes
the Sharpe ratio equivalent or return to risk ratio (by using Table 4 and the variance
figures in Table 6), ONB has the highest Sharpe ratio (due to one of the lower OR
figures and the highest mean returns), EPWS has the lowest Sharpe ratio (due to its
low mean return and high risk). Thus, although EPWS is high risk it does not lead
to significant losses on a loss per risk basis, in other words reducing risk on EPWS
would not be as beneficial as reducing ONB risk. Hence in order to take into account
OR and firm value, firms should also manage OR strategically, in this case it would
be better for OMS to target ONB rather than EPWS events.

In Table 6 there exist wide variation in skewness and kurtosis values; in Table 2
they are only positive whereas in Table 6 there are positive and negative values (for
skewness from — 0.89 to 1.1 and for kurtosis —0.98 to 2.42). We notice that ONB,
EDPM and CPBP are right skewed distributions giving more positive PT returns,
whereas IF, EF, EPWS and DPA are negatively skewed and so have more negative PT
returns. Similarly, IF, EF, EDPM, CPBP have positive kurtosis giving more peaked
distributions around the mean for PT returns, whereas ONB, EPWS, DPA have negative
kurtosis and so have less peaked distributions.

The wide variation in kurtosis and skewness in Table 6 compared to Table 2 has
implications for ORM and OMS. The variation in skewness and kurtosis implies
that under or over-estimation of risk can vary significantly depending on the OE.
Therefore to manage OR more strategically (that is to focus on specific OR types) also
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must involve careful risk estimation to prevent skewness and kurtosis risks impacting
ORM, which in turn impacts OMS.

Tables 8 and 9 give the PT results by business lines during OE. We observe that the
magnitude of the returns are significant along all business lines, hence OMS and ORM
play an important role in all business lines in contributing to relative firm value and
risk management. We expect all OMS and ORM to have a significant impact across
all business lines because OMS play a critical role across all areas of the entire firm
nowadays.

In Tables 8 and 9 it can be seen there is significant variation in values depending on
each business line; for example we notice that C has the highest PT return (2.48%),
while EC has the lowest return (-1.36%). This implies that OMS and ORM impact on
relative firm value growth and risk management is substantially influenced by business
line. Consequently, OMS and ORM need to be strategically resourced and allocated
along particular business lines, and not just take into account OE types, to maximise
their impact on firms. We note that we would expect significant variations in results
across business lines (from hereon BL) because different BLs have differing levels of
exposure to operational losses and risks.

From Table 8 we observe that the variation in mean PT returns is lower between
business lines (3.84%), compared to the variation in OEs in Table 3 (7.11%)—the
difference is almost half. Hence although BL affect relative firm value losses, the
variation in such losses is more dependent on OE type. Consequently OMS and ORM
resource allocation should carefully take into account the OE type rather than the BL
to maximise their impact on firm value.

In Table 8 we calculate the Sharpe ratios on BLs using Table 10, to provide infor-
mation on the risk management of OR. We observe that EC has the lowest Sharpe
ratio of — 1.49 due to its low mean return, while AM has the highest ratio of 0.45 due
to its high mean return (even though its variance is quite high). Thus although AM
may not be the highest risk BL, it would lead to the greatest firm value loss for each
unit of risk (on a variance risk measure basis). This supports the need for strategic or
focussed resourcing of OMS and ORM as it would be better to reduce the AM BL risk
in terms risk reduction per firm value loss, rather than any other BL.

In Table 10 the most riskiest BL is C on all risk measures, however the least riskiest
BL is somewhat unclear to discern as it is dependent on the risk measure; it is EC using
VaR (at all quantiles) or CT using variance. In Table 11 we observe that the results
obtained are similar in value and pattern to Table 10 with respect to risk, skewness and
kurtosis; in fact the difference in all values between Tables 10 and 11 is approximately
1%. This implies that practically all the OR arises from the event itself during an OE,
even when results are analysed along BLs. Hence our results are consistent with OE
results discussed previously in Tables 6 and 7.

In Table 10 we notice that there is significant variation in OR between BLs and
the variation in OR is greater than in Table 6; for instance the variance of C (25.21%)
is approximately 21 times greater than that of CT (1.22%). Hence the variation of
OR is significantly more dependent on BL than event type. This result is important
for OMS and ORM implementation because it implies some BLs should be managed
more carefully than others to reduce overall firm risk.
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In Table 10 the skewness of BLs varies between — 1.01 (for AONB) to 0.50 (for
DFM), which is less than the variation in skewness for OEs (from — 0.89 to 1.10).
Hence skewness risk is less significant in BLs than in OEs, hence this risk does not
need to be addressed as much in ORM and OMS for BLs. The kurtosis of BLs varies
from — 1.25 (for C) to 2.49 (for AM) and so is considerably more than in OEs (which
is from —0.98 to 2.42). Additionally, the kurtosis is positive for all BLs except C,
whereas 3 of the 7 categories in Table 6 are negative. This suggests that negative
kurtosis is more dependent on the OE rather than the BL, which is useful information
in managing kurtosis risk for OMS and ORM.

The Sharpe ratios calculated can also be used to determine investor risk aversion,
in that investor risk aversion increases with the Sharpe ratio (Bodie et al. 2002). The
risk aversion of individuals has important implications for risk management and OR
(see Chen et al. 2007; Wang and Hsu 2009 for examples). The differing investor risk
aversions are also important for managers to understand, so that managers can address
investor perceived risks. This is because investors’ wealth management and views
are becoming increasing important, for instance value-based management (Hahn and
Kuhn 2012) is becoming more popular. From a relative firm value perspective, it is
important to be aware of differing investor risk aversion to ensure the share prices are
not disproportionately affect by any ORs and OEs.

The differing Sharpe ratio values for the results reflect the differing investor risk
aversions associated with different event types and BLs. In other words, our results
imply investors are more risk averse to some operational factors than others, based on
the event type or BL. In terms of event type, EPWS has the lowest investor risk aversion,
whilst ONB has the highest risk aversion. This means that investors perceive EPWS
related issues with less risk, perhaps because EPWS risks are easier to understand than
ONB which could arise from any OR. In terms of OMS and ORM it would suggest that
fewer resources should be allocated to EPWS issues, and this would possibly explain
the reason that firms invest more in other areas for OMS and ORM.

In terms of BLs, the EC has the lowest investor risk aversion while AM has the
highest risk aversion. We may expect the AM BL to be perceived as the highest
risk BL because this BL tends to be exposed to large funds and has been subject to
large operational losses in the past. Similarly, EC has not been exposed to as many
operational losses in the past and so may be perceived by investors as a lower OR
area. Again, this may account for higher investment in OMS and ORM in AM BLs
compared to other BLs.

The issue of investor risk perception has important implications for ORM in that
risk communication is becoming an increasingly important part of risk management;
in fact Kallenberg (2007) concludes that risk communication is a more significant
factor in firm value loss rather than the operational loss itself. Our results therefore
imply that ORM and OMS need to be communicated on a strategic basis to reduce
firm value loss, that is risk communications of OEs in particular BLs and OE need to
be managed more effectively to reduce firm value losses.
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5 Conclusion

In this paper we investigated the relation between relative firm, PT, OMS and ORM.
Firstly, we showed that relative operational performance between firms can be eval-
vated from pair trade returns, providing a new method of measuring operational
performance. This was substantiated by empirical results that show that significant
PT returns occur during operational events only. In our paper we investigated 11,648
PT, using weekly stock price data, OE data, and analysed the impact on relative firm
value growth, OR, OMS and ORM. We have found that profitable PT returns are
mainly accounted by the occurrence of OE, highlighting the importance of OMS and
ORM to relative firm value growth and performance. We have also shown that OE
result in significant relative firm value growth, and so highlight the importance of OR
as a significant risk factor to firms.

We have found that PT returns, and therefore OMS and ORM performance, is
significantly impacted by the type of OE and the BL, implying that firm performance
and risk management can be improved by strategically re-allocating resources. In other
words, OMS and ORM resources should focus on particular OE and BL that cause
greater firm losses and risks. Our results also show that OR return to risk ratios, OE
losses and ORs themselves all vary by BL and OE type, hence OMS and ORM need to
take into account all operational factors in order to appropriately manage operations.

Our results show that investor risk aversion varies by BL and event type and hence
this needs to be taken into account in organising OMS and ORM to reduce firm value
losses. Moreover, the issue of investor risk perception has important implications for
ORM in terms of risk communication, which is becoming an increasingly important
part of risk management. In fact Kallenberg (2007) concludes that risk communication
is more important to firm value losses than the event itself.

Our paper is the first to provide a trading application of OR, in that it can be shown
to demonstrate the role of OR and OE in profitable PT, whereas the majority of liter-
ature on OR is focussed on risk measurement and management. Moreover, our paper
provides an alternative explanation of PT profits compared to current explanations.
For example, current explanations of PTs include market inefficiencies whereas we
have demonstrated that PT profits arise from operational factors.

In terms of future directions of work, one should investigate additional factors that
may influence OR and PT returns, such as industry based factors. Also, there should
be further development of risk factor models to incorporate operational factors (such
as business line and event type) to determine the impact of such factors on firms,
which is currently missing in most models. Finally, there should be investigations into
potential methods of hedging OR, such as developing new hedging models, derivative
models or other hedging instruments, as this is currently not possible with any financial
instrument and OR represents an important risk factor to firms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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