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Abstract
Effective collecting area represents one of principal parameters of optical systems.
The common requirement is to obtain as large effective collecting area as it is possi-
ble. The paper presents an analytical method of calculating effective collecting length
and its maximization for lobster eye optics. The results are applicable for a Schmidt
as well as for an Angel lobster eye geometry used in an astronomical telescope where
the source is at infinity such that the incoming rays are parallel. The dependence of
effective collecting area vs. geometrical parameters is presented in a form of a sim-
ple compact equation. We show that the optimal ratio between mirrors depth and
distance (effective angle) does not depend on other geometrical parameters and it is
determined only by reflectivity function, i.e. by mirrors (or their coating) material
and photon energy. The results can be also used for approximate but fast estima-
tion of performance and for finding the initial point for consequent optimization by
ray-tracing simulations.
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1 Introduction

Lobster eye (abbreviation LE) X-ray optics was proposed a long time ago in two
basic concepts: Schmidt[12] and Angel[2].

Schmidt lobster eye[12] can be one-dimensional or two-dimensional. The basic
one-dimensional Schmidt lobster eye stack is schematically drawn on Fig. 1. In a real
case, grazing angles are much smaller and mirrors are closer one to other.

The system is composed of flat rectangular mirrors (plates). These mirrors form
an uniform pattern around of a virtual cylinder of centre C and radius r . Point F
represents the focus of the system. Focal length of the optics equals f = r/2 if
it is composed of mirrors of negligible thickness. A two-dimensional Schmidt sys-
tem is composed of two stacks of different radii r1, r2 perpendicularly arranged.
Angel lobster eye optics[2] is composed of square pores. It can be viewed as a spe-
cial case of the Schmidt system, where both stacks lay in the same position and they
have the same radii r = r1 = r2. In such case, two stacks of mirrors form square
pores.

The LE optics was used and it is proposed to be used in plenty of astronomical
instruments, e.g. [1, 3, 5–8, 11, 18]. It is being used also in other applications, e.g.
neutron imaging [21].

For numerical simulations of lobster eye optics, a general ray-tracing approach
is possible, see e.g. [13] or its simplified procedures [20, 21]. Analytic models
represents another type of computation. They are useful for approximate but fast
estimation of performance. Analytic models are also useful for finding the initial
point for consequent optimization by ray-tracing simulations. In addition, analyti-
cal models give an understanding of how the results depend of initial parameters.
Some analytical equations for lobster system were presented in sources [2, 10, 12]
but they do not include all parameters, e.g. zero mirror thickness is supposed. Paper
[4] presents a comprehensive analytical analysis but the source is taken to be at a
finite distance and the source is on the concave side of LE optics. This configuration
is relevant for e.g. a microscope and the configuration is different for telescopes. For
application on telescopes, the source must be placed at infinite distance on the con-
vex side of LE optics. Paper [17] presents analysis of focussing efficiency depending
on X-ray wave length but the final results are based on ray-tracing simulations of

Fig. 1 Lobster eye geometrical parameters
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specific examples. Papers [14, 15] present analytical calculations for X-ray optics
composed of mirror shells, particularly Wolter optics.

This paper follows previous work of some authors [19] in which equation for cal-
culation of effective collecting area (length) including all geometric parameters are
presented however the method for taking the mirror reflectivity into account is only
covered in outline. In this paper, an equation for calculation of effective collecting
area/length is modified into a compact form. The equation contains all geometrical
parameters and requires a model of mirror reflectivity. The system is supposed in
a telescope configuration, i.e. incoming rays are parallel and an image is acquired
in the focus of the optics. The equation is applied using three models of reflectivity
incorporating a wide selection of materials. For these models, the maximum possible
effective collecting area/length is found.

2 Decomposition of dimensions and effective length

The simplified drawing of Schmidt lobster eye is seen on Fig. 2. There are two stacks
of mirrors: vertical stack of width b1 and height a1 and horizontal stack of width a2
and height b2.

The mirrors of the first stack (the right one on Fig. 2) act on reflection on its full
height b1. However, because some mirrors fully or partially lays in shades of other
mirrors, effectively, the collection size of the stack in horizontal dimension is limited.
This reduced size we call effective collecting length L1. The effective collecting area
(as it is usually defined) of first stack (if it is alone) equals L1b1.

By analogy, the mirrors of the second stack act on reflection on its full width b2.
The collection length in vertical dimension a2 is reduced to a length L2. The effective
collecting area (as it is usually defined) of the second stack (if it is alone) equals
L2b2.

In the entire system of both stacks as it drawn on Fig. 2, it is supposed that outer
dimensions of stacks are similar, i.e. a1 ≈ b2 and a2 ≈ b1, while L1 is significantly
less than a1 and L2 is significantly less than a2. Therefore, the vertical size of first
stack a1 does not affect the collecting size of second stack in vertical dimension or
vice versa and the effective collecting area of entire system composed of both stacks
equals L1L2.

If the system is of Angel type, composed of square pores, it is possible to approxi-
mately model it as a system of two identical orthogonal stack of mirrors laying at the

Fig. 2 Dimension decomposition



164 Experimental Astronomy (2019) 47:161–175

same position. If L is effective collecting length of one of such stack, the effective
collecting area of entire system equals L2.

3 Effective collecting length - general equation

The derivation of the equation for the effective collecting length is made in a similar
way as it is done in the paper [12]. Moreover, we added reflectivity as it is outlined
in the paper [19]. As in papers [4, 12, 17, 19, 20], the problem of one-dimensional
lobster eye stack is analysed in cross-section and the geometry becomes just two-
dimensional.

The geometry of the stack of mirrors is described by parameters (Fig. 1): radius
of the system r , size of space between centres of surfaces of adjacent mirrors (pore
width) a, plate thickness (or width of wall of pore) t , plate (or pore) depth h and
number of plates (number of pores in one dimension) N . Variable β represents the
angular position of a mirror. The incoming rays are considered to be parallel with
line CF and therefore β = θ , where θ is a grazing angle.

The effective angle ζ of the lobster eye system, we define as the maximal possible
grazing angle when the mirror does not lay in a shade of the adjacent mirror. see
Fig. 3a [10, 12, 19]. At this angle, the mirror is fully illuminated and only one ray
can theoretically go through the optics directly between the illuminated mirror and
the adjacent mirror. Because radius of the system is usually much bigger than the
mirror dept h, for the purpose of definition, adjacent mirrors are considered to be
approximately parallel. Evidently, ζ ≈ arctan(a/h) ≈ a/h.

The limiting angle ν of the lobster eye system, we define as the maximal grazing
angle when a single reflection is theoretically possible for a ray, see Fig. 3b [10, 12,
19]. Evidently, ν ≈ arctan(2a/h) ≈ 2a/h = 2ζ .

If a grazing angle θ is less or equal to the effective angle ζ then a mirror is fully
illuminated. The mirror contributes to the total effective collecting length by the
length equal to the orthogonal projection l1(θ) of its total length to the ray direction,
see Fig. 4a.

The equation for the length l1(θ) equals [12].

l1(θ) = h sin θ ≈ hθ . (1)

Fig. 3 Definition of Effective angle ζ and limiting angle ν
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Fig. 4 Effective collecting lengths of individual mirrors

If a grazing angle θ is greater than the effective angle ζ but less than the limiting
angle 2ζ then the active area of the mirror is limited by the adjacent mirror, see
Fig. 4a. The equation of the orthogonal projection l2(θ) of the active part to ray
direction equals[12]:

l2(θ) = 2a cos θ − h sin θ ≈ 2a − hθ (2)

The total effective collecting length L equals to the sum of effective lengths of all
active mirrors. Moreover, the effective collecting length is decreased by reflectivity
R(θ) of the mirror surface at grazing angle θ , i.e.

L =
∑

i

l1 (θi)R (θi) +
∑

j

l2
(
θj

)
R
(
θj

)
. (3)

Here, θi is a grazing angle of i-th mirror. Index i comes through all mirrors fulfilling
0 ≤ θ ≤ ζ and index j comes through all mirrors fulfilling ζ < θ < 2ζ . Similarly
to [12], an approximation of the sums by integrals is used. The source is assumed to
be at infinite distance but it may not be on-axis. The calculations are valid also for
off-axis source positions if there exist mirrors at all angles between ±ν.

L ≈ 2

[∫ ζ

0

l1(ζ )

ε
R(ζ )dζ +

∫ 2ζ

ζ

l2(ζ )

ε
R(ζ )dζ

]
. (4)

The value ε denotes the angle pitch of mirrors, i.e.

ε ≈

a + t

r
. (5)

The approximation by the integrals is eligible if ε << ζ , which is usually the case.
The factor 2 preceding the square bracket in (4) is there because of the symmetry. It
is supposed that mirrors are placed at least in all angle positions between ±2ζ , i.e.
their number N fulfils

N > 4
a

a + t

r

h
. (6)

After substitution (1)–(2) to (4), it is obtained

L ≈

2r

a + t

[∫ ζ

0
hθR(θ)dθ +

∫ 2ζ

ζ

(2a − hθ)R(θ)dθ

]
, (7)

Integration by parts reads
∫ q

p

θR(θ)dθ = [
θR̄(θ)

]θ=q

θ=p
−
∫ q

p

R̄(θ)dθ, (8)
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where R̄(θ) is an arbitrary first antiderivative of R(θ), i.e. R̄(θ) = ∫
R(θ)dθ and

h = a/ζ , Eq. 7 can be modified to a form

L = 2r

a + t

{
a

ζ

[
θR̄(θ)dθ

]θ=ζ

θ=0 − a

ζ

∫ ζ

0
R̄(θ)dθ − a

ζ

[
θR̄(θ)

]θ=2ζ

θ=ζ

+a

ζ

∫ 2ζ

ζ

R̄(θ)dθ +2a

∫ 2ζ

ζ

R(θ)dθ

}
, (9)

consequently

L = 2ra

(a + t)ζ

[∫ 2ζ

ζ

R̄(θ)dθ −
∫ ζ

0
R̄(θ)dθ

]
. (10)

Equation 10 can be modified to a compact form

L(r, a, t, ζ ) = 2r
a

a + t

R̃(2ζ ) − 2R̃(ζ ) + R̃(0)

ζ
, (11)

where R̃(θ) := ∫ ∫
R(θ)dθdθ = ∫

R̄(θ)dθ is an arbitrary second antiderivative of
R. The last fraction in (11) we denote as

K(ζ) := R̃(2ζ ) − 2R̃(ζ ) + R̃(0)

ζ
(12)

Equation 11 allows us to calculate the effective collecting length of a lobster eye of
given geometrical parameters and given model of reflectivity.

Equation 11 clearly shows the dependence of the performance with respect to
the parameters. First, it is seen that effective collecting length is proportional to the
radius of the system. Next, the effective collecting length is proportional to a/(a+ t).
This term can be interpreted as a ratio between the total size of input aperture and
the fraction that is shaded by thickness of mirrors[10, 19]. For a system composed of
ideal mirrors of zero thickness, this fraction would equal 1.

The last fraction in (11), i.e. the function K depends on effective angle and reflec-
tivity function only. Because integration of R is not possible to do in a general way,
calculation of K and its maximization is demonstrated in following sections using
approximate but reasonable physical models.

Note that if the mirrors are ideal (having 100% reflectivity), then R(ζ ) = 1,

K(ζ) = ζ and consequently L = 2r a
a+t

ζ = 2r a2

(a+t)h
. This result is equivalent to

equations presented in [10, 12, 19] where 100% reflectivity is supposed. For ideal
mirrors, larger ζ leads to larger effective input length and there is no optimal value.

In following sections, it is proven that for real mirrors, there exists an optimal value
of ζ , i.e. there exists an optimal ratio between mirror spacing a and depth h when the
function K (and consequently the effective collecting length/area) is maximised.
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4 Single stepmodel

As the first example, the method is applied for single step model. Here, the
reflectivity is approximated by the function

R(θ) =
{

Q ∀0 ≤ θ < κ

0 ∀θ > κ
(13)

Here, θ is the grazing angle and κ is a constant known as the critical angle. 0 < Q ≤ 1
is a constant, usually Q = 1. The second antiderivative of the reflectivity defined by
(13) equals

R̃(θ) =
∫ ∫

R(θ)dθdθ = Q

{− θ2

2 − κθ + θ2

2 ∀0 ≤ θ ≤ κ

0 ∀θ ≥ κ
(14)

The function K is evaluated by substituting (14) to (12). After manipulation we
obtain

K(ζ) = Q

⎧
⎪⎨

⎪⎩

ζ ∀0 ≤ ζ ≤ κ
2

−ζ + 2κ − κ2

2ζ
∀ κ

2 ≤ ζ ≤ κ

κ2

2ζ
∀κ ≤ ζ

(15)

An example of function K vs. ζ is shown in Fig. 5, parameters Q = 1 and κ =
100 mrad were chosen.

The final equation for the effective collecting length is obtained substituting (15)
into (11) and equals

L(r, a, t, ζ ) =

⎧
⎪⎨

⎪⎩

2r a
a+t

Qζ ∀0 ≤ ζ ≤ κ
2

2r a
a+t

Q
(
−ζ + 2κ − κ2

2ζ

)
∀ κ

2 ≤ ζ ≤ κ

2r a
a+t

Qκ2

2ζ
∀κ ≤ ζ

(16)

The function K(ζ) has one maximum on ζ ∈ [0, ∞), that is

ζoptimal =
√

2

2
κ

.= 0.707κ (17)

Fig. 5 Example of function K vs. effective angle ζ for single step model
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If ζ = ζoptimal, then the effective collecting length is maximised. This result is pre-
sented also in paper [4], where a similar model of reflectivity is supposed for a
microscope configuration.

5 Linear model

In this section, the reflectivity is approximated by the function

R(θ) =
{

Q
(
1 − θ

κ

) ∀0 ≤ θ ≤ κ

0 ∀θ ≥ κ
(18)

Here, θ is the grazing angle and κ > 0 and 0 < Q ≤ 1 are constants. Example
of proper linear approximation is shown in Fig. 6a for gold surface and unpolarized
X-rays of energy 1 keV. Here, κ = 84.3 mrad and Q = 1. Reflectivity data were
acquired from [9]. Another example is Iridium at unpolarised X-rays of energy 3 keV
of microroughness 1nm, here κ = 32 mrad as shown in Fig. 6b.

The corresponding equation for K equals

K = Q

⎧
⎪⎪⎨

⎪⎪⎩

− ζ 2

κ
+ ζ ∀0 ≤ ζ ≤ κ

2
ζ 2

3κ
− ζ − κ2

6ζ
+ κ ∀ κ

2 ≤ ζ ≤ κ

κ2

6ζ
∀κ ≤ ζ

(19)
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Fig. 6 Examples of relevant approximations (dashed line) of reflectivity data (solid line)
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Graph of K vs. ζ for mentioned example is shown in Fig. 7. The final equation for
the effective collecting length equals

L =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2r a
a+t

Q
(
− ζ 2

κ
+ ζ

)
∀0 ≤ ζ ≤ κ

2

2r a
a+t

Q
(

ζ 2

3κ
− ζ − κ2

6ζ
+ κ

)
∀ κ

2 ≤ ζ ≤ κ

2r a
a+t

Q
(

κ2

6ζ

)
∀κ ≤ ζ

(20)

The function (19) is maximised and therefore the system has the maximal effective
collecting length if

ζoptimal = κ

2
(21)

This result is presented also in paper [4], where a similar model of reflectivity is
supposed for a microscope configuration.

6 Smoothed stepmodel

Other model of wide usage is

R(θ) =
⎧
⎨

⎩

Q ∀0 ≤ θ ≤ ρ

Qκ−θ
κ−ρ

∀ρ ≤ θ ≤ κ

0 ∀θ ≥ κ

(22)

Here, θ is the grazing angle and 0 < ρ < κ and 0 < Q ≤ 1 are constants.
The model represents the typical shape of a reflectivity function. Example of the

approximation is shown in Fig. 6c for titanium and unpolarized X-rays of energy

Fig. 7 Example of function K vs. effective angle ζ for linear model
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2 keV. Here, Q = 0.9, ρ = 17 mrad and κ = 23.5 mrad. Reflectivity data were
acquired from [9].

After the substitution ρ = κσ , where 0 < σ < 1 and after modifications, the
function K equals

K(ζ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QJ1(ζ ) ∀0 ≤ ζ ≤ σκ/2
QJ2(ζ ) ∀σκ/2 ≤ ζ ≤ σκ

QJ4(ζ ) ∀σκ ≤ ζ ≤ κ/2
QJ5(ζ ) ∀κ/2 ≤ ζ ≤ κ

QJ6(ζ ) ∀ζ ≥ κ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

if σ ≤ 1/2

QJ1(ζ ) ∀0 ≤ ζ ≤ σκ/2
QJ2(ζ ) ∀σκ/2 ≤ ζ ≤ κ/2
QJ3(ζ ) ∀κ/2 ≤ ζ ≤ σκ

QJ5(ζ ) ∀σκ ≤ ζ ≤ κ

QJ6(ζ ) ∀ζ ≥ κ .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

if σ ≥ 1/2

(23)

Where

J1 = ζ (24)

J2 = 4ζ 2

3κ(σ − 1)
− 2ζ

σ − 1
− ζ − σ 3κ2

6(σ − 1)ζ
+ σ 2κ

σ − 1
(25)

J3 = −ζ − κ2(σ 3 − 1)

6(σ − 1)ζ
+ κ(σ 2 − 1)

σ − 1
(26)

J4 = ζ 2

κ(σ − 1)
− ζ

σ − 1
+ σ 3κ2

6(σ − 1)ζ
(27)

J5 = − ζ 2

3κ(σ − 1)
+ ζ

σ − 1
+ κ2(σ 3 + 1)

6(σ − 1)ζ
− κ

σ − 1
(28)

J6 = κ2(σ 3 − 1)

6(σ − 1)ζ
. (29)

Fig. 8 Example of function K vs. effective angle ζ for smoothed step model
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Graph of K vs. ζ for mentioned example is shown in Fig. 8.
Searching for maximum of function (23) is described in the Appendix. We con-

clude that the function K(ζ) and consequently the effective collecting length is
maximised when

ζoptimal =
{ {

cos
[

1
3 arccos

(
σ 3
)+ π

3

]
+ 1

2

}
κ if σ ≤ σc√

6(σ 2 + σ + 1) κ
6 if σ ≥ σc,

(30)

where σc = 1+√
21

10
.= 0.558. As in previous cases, the effective collecting length

equals L(r, a, t, ζ ) = 2r a
a+t

K(ζ ).

7 Comparison to ray-tracing simulation

7.1 Example 1

Smoothed step model shown in Fig. 6c with parameters mentioned in the previous
section was chosen to be compared with results of numerical simulations based on
simplified ray-tracing algorithm (SRTA) [20]. This simulation method is exact. The
only approximation was usage of tabulated reflectivity data acquired from [9].

Two different configurations were chosen: a) r = 524 mm, a = 0.3 mm, t =
0.1 mm, N = 100; b) r = 880 mm, a = 1.7 mm, t = 0.3 mm, N = 120. Calculations
were performed for different values of ζ with step 1 mrad. Results are shown on
Fig. 9. Optimal value of ζ calculated by (30) is 14.4 mrad. Analytical calculations
show maximum at 14 mrad for both configurations.

7.2 Example 2

As an another example, Angel micropore lobster eye of following parameters was
chosen: radius r = 800 mm, pore width a = 26 μm, wall width t = 4 μm. Calcula-
tions were performed for different values of ζ with step 1 mrad. Number of pores in
each dimension was set individually for each value of ζ . Minimal number of pores
was calculated by (6), the value was rounded up and 10 pores were added. Because
the system is two-dimensional, its effective collecting area S equals to square of (11),
i.e.

S(r, a, t, ζ ) =
[

2r
a

a + t

R̃(2ζ ) − 2R̃(ζ ) + R̃(0)

ζ

]2

. (31)

Pore walls are supposed to be covered by iridium of microrougness 1 nm and pho-
ton energy of 3 keV is assumed. The linear approximation presented in Section 5 was
used. Results of analytical model compared to results of simplified ray-tracing algo-
rithm (SRTA) [20] are shown in Fig. 10. Optimal value of ζ calculated by (21) equals
16 mrad. The analytical as well as the ray-tracing calculations show maxima at this
value.
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Fig. 9 Comparison of results of ray-tracing simulations (solid line) and presented analytical method
(dashed line) for the single Schmidt stack. Graphs of effective collecting length L vs. effective angle ζ
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Fig. 10 Comparison of results of ray-tracing simulations (solid line) and presented analytical method
(dashed line) for the Angel micropore system. Graph of effective collecting area S vs. effective angle ζ
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8 Conclusions

General (11) for calculating the effective collecting length of one-dimensional lob-
ster systems or the effective collecting area of two-dimensional lobster systems
is presented. The equation is simple and compact and gives an understanding of
the dependence of effective collecting area (length) versus lobster eye geometrical
parameters. It has been proven that optimal ratio between mirrors depth and distance
(effective angle) does not depend on other geometrical parameters and it is deter-
mined only by reflectivity function, i.e. by mirrors (or their coating) material and
photon energy. The entire system is supposed in telescope configuration, i.e. an X-ray
source is at infinity.

The general (11) was applied to three reflectivity models that are applicable to
wide range of materials. Formulae for effective collecting length (area) for these
models were derived: Eq. 16 for single step model, Eq. 20 for linear model and (23)–
(29) for smoothed step model. Equations for optimal value of ζ were derived: Eq. 17
for single step model, Eq. 21 for linear model and (30) for smoothed step model.
The presented equations can be used for approximate but fast estimation of perfor-
mance and for finding the initial point for consequent optimization by ray-tracing
simulations.

Numerical results are compared to results of ray-tracing simulations and they show
excellent accordance.
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Appendix : Searching for optimal value of ζ in smoothed stepmodel

Analysis of first derivatives showed that K ′(ζ ) = Q for all ζ ∈ [0, σκ/2] and

K ′(ζC) < 0, where ζc := 3
√

4σ 3+4
2 κ . The apostrophes denote derivatives by ζ .

Brackets [ ] denote a closed interval while ( ) are used for an open interval.
Analysis of second derivatives showed that K ′′(ζ ) = 0 for all ζ ∈ [0, σκ/2] and

K ′′(ζC) = 0. In addition, K ′′(ζ ) < 0 for all ζ ∈ (σκ/2, ζc) and K ′′(ζ ) > 0 for all
ζ ∈ (ζc, +∞).

Function K has continuous second derivatives and there does not exist a point ζ ,
where K ′(ζ ) = K ′′(ζ ) = 0. Therefore, the maximum of function K can lay only
at border point 0 (that is not a maximum evidently) or at points, where K ′ = 0 and
K ′′ < 0. Because the interval (σκ/2, ζC) represents the only set of points, where

http://creativecommons.org/licenses/by/4.0/


174 Experimental Astronomy (2019) 47:161–175

K ′′ < 0, the function K has only one maximum and the maximum lies in interval
(σκ/2, ζc).

A) Let us analyse

J ′
3 = κ2(σ 3 − 1)

6ζ 2(σ − 1)
− 1. (32)

It equals zero at points ±√6(σ 2 + σ + 1)κ/6. The negative point does not rep-
resent a searched solution. The function J3 is to be applied only on interval
[κ/2, σκ] and if σ ≥ 1/2. Therefore, it is necessary to check if ζoptimal =√

6(σ 2 + σ + 1)κ/6 belongs to this interval. It does, if σ ≥ σc, where σc =
(1 + √

21)/10.
B) Let us analyse

J ′
5 = κ2(σ 3 + 1)

6ζ 2(1 − σ)
+ 2ζ

3κ(1 − σ)
− 1

1 − σ
. (33)

Searching for points, where J ′
5 = 0 leads to an equation

ζ 3 − 3κ

2
ζ 2 + κ3(1 + σ 3)

4
= 0. (34)

The cubic (34) was solved by method given in [16]. The determinant of (34)
equals � = κ6(σ 6 −1)/64 < 0. Therefore, Eq. 34 has three different real roots.
After substitutions ζ = t + κ/2, t = y + κ2/(4y), the following equation for
unknown y ∈ C is obtained

y6 + σ 3κ3

4
y3 + κ6

64
= 0. (35)

This is a quadratic equation for y3 having six solutions

yn = κ

2

3
√

−σ 3 ±
√

σ 6 − 1 exp (ı 2nπ/3) ; n ∈ {0, 1, 2} (36)

After backward substitutions, three possible solutions for ζ ∈ R are obtained. It
does not make a difference if + or − before the square root in (36) is chosen.

ζn =
{

cos

[
1

3
arccos

(
−σ 3

)
+ 2nπ

3

]
+ 1

2

}
κ ; n ∈ {0, 1, 2}. (37)

The function J5 is being applied only if ζ ∈ [κ/2, κ] and σ ≤ 1/2 or ζ ∈ [σκ, κ]
and σ ≥ 1/2. Moreover, the root must belong to interval (σκ/2, ζc). These
conditions are possible to fulfil only if σ ≤ σc and the desired root is ζ2 only. It
equals

ζoptimal =
{

cos

[
1

3
arccos

(
σ 3
)

+ π

3

]
+ 1

2

}
κ (38)

For each 0 < σ < 1, a maximum of function K(ζ) has been found. Because it was
proved that the function K(ζ) has only one maximum, this is the global maximum.
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