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Abstract In this paper, we demonstrate the use of

two-mode clustering for genotype by trait and

genotype by environment data. In contrast to two

separate (one mode) clusterings on genotypes or

traits/environments, two-mode clustering simulta-

neously produces homogeneous groups of genotypes

and traits/environments. For two-mode clustering, we

first scan all two-mode cluster solutions with all

possible numbers of clusters using k-means. After

deciding on the final numbers of clusters, we continue

with a two-mode clustering algorithm based on a

genetic algorithm. This ensures optimal solutions

even for large data sets. We discuss the application of

two-mode clustering to multiple trait data stemming

from genomic research on tomatoes as well as an

application to multi-environment data on barley.

Keywords Two-mode clustering � Biclustering �
Genotype by trait interaction � Genotype by

environment interaction � Metabolomics � Tomato �
Barley � Two-mode k-means � Genetic algorithm

Introduction

Genotype by environment interaction is the phenom-

enon that occurs when genotypes respond differen-

tially to changes in the environment. An attractive

approach to model genotype by environment inter-

action is by the identification of groups of genotypes

and groups of environments that internally exhibit a

certain homogeneity, thereby relegating the genotype

by environment interaction to differences between

the genotypic and environmental groups. A well

know example of this approach is the two-way

(or two-mode) clustering method described in (Cor-

sten and Denis 1990). The same strategy of reducing

the complexity of genotype by environment two-way

tables by grouping genotypes and environments can

also be applied to genotype by trait data matrices,

provided the traits are expressed on a scale that

allows direct comparison, like, for example, when the

traits are all metabolite concentrations.

Clustering methods order objects (genotypes) or

variables (environments, traits) in groups that are

similar with respect to some measure, e.g. Euclidean

distance or the correlation coefficient (Vandeginste

et al. 1998). Clustering is a popular technique due to

its visualization probabilities and ease of use. Regular

clustering, i.e. one-way clustering, aims at finding the

best partitioning in one direction of a two-way table or

data matrix. The best partitioning may be defined as

the clustering that results in the minimum sum of

squared distances across clusters between the data
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assigned to a cluster and the corresponding cluster

center (in other words, the total within cluster distance

is minimal). As opposed to regular, one-way cluster-

ing, two-way, or two-mode, clustering aims to find the

best partitioning of the data in two directions (both

genotypes and environments/traits). The added benefit

in comparison with one-way clustering is that it

becomes immediately clear why certain objects have

been clustered together, since their variables have also

been clustered simultaneously.

There are different algorithms available for two-

mode clustering, one example is two-mode k-means

(Vichi 2001; Rocci and Vichi 2008; van Rosmalen

et al. 2009). Some methods have a tendency to get

stuck in local optima. Other two-mode cluster

algorithms are based on global optimization methods,

such as Simulated Annealing, Tabu Search (van

Rosmalen et al. 2009) and Genetic Algorithms (GA)

(Hageman et al. 2008b; Cavill et al. 2009). Recently,

we have introduced two-mode clustering using a

Genetic Algorithm in metabolomics (Hageman et al.

2008a, b). GAs work on a group of solutions at the

time, using biologically inspired operators such as

mutation and crossover to explore the search space. It

can take large steps in the search space thereby

minimizing the risk of getting trapped in a local

optimum.

Two-mode clustering has shown to be a valuable

tool for the identification of biological meaningful

clusters in metabolomics data (Hageman et al.

2008b). It can clearly identify genotypes that behave

similarly and also show simultaneously in which

environments or for which traits they behave simi-

larly. After two-mode clustering, a careful scrutiny of

the genotypes and corresponding molecular markers

can possibly reveal which markers are responsible for

a particular phenotypic response.

We will demonstrate this by performing a geno-

type by trait and a genotype by environment analysis

using two-mode clustering on tomato and barley data.

Materials and methods

Data

The first dataset is on tomatoes and maintained by the

Center for BioSystems Genomics (CBSG, http://

www.cbsg.nl/). The CBSG is a joint venture in the

field of plant genomics of breeding companies, bio-

tech companies, research institutes and universities in

the Netherlands. The goal of the tomato CBSG pro-

ject is to develop a marker assisted strategy for

quality traits. This dataset consisted of 94 genotypes,

all cultivars provided by five companies involved

with the project, which fell into three major catego-

ries; cherry, round and beef tomatoes. Almost all

cultivars were F1 hybrids. For two-mode clustering,

we used information on the metabolites, and sensory

studies. Metabolic profiles were measured using

GC-MS and LC-MS, more details on this dataset can

be found here (Ursem et al. 2008; van Berloo et al.

2008; Gavai et al. 2009). Traits in this context mean

metabolites and sensory attributes. The data was

range scaled to get all metabolites and sensory attri-

butes at the same level.

The second example dataset is the barley Steptoe

9 Morex doubled haploid population (Kleinhofs

et al. 1993), a well known population from the North

American Barley Genome Mapping Project (http://

wheat.pw.usda.gov/ggpages/SxM/). The data matrix

consisted of yield of 150 genotypes in 10 environ-

ments (Table 1). The genotype by environment

matrix was first column and row-centered. This

means that the focus of the attention of the two-mode

clustering procedure is in describing the patterns in

genotype by environment interaction.

Two-mode clustering

Two-mode clustering tries to find clusters in objects

and variables simultaneously, as opposed to one-way

Table 1 Locations and years for Steptoe 9 Morex doubled

haploid data

Environment Location Year

ID91 Aberdeen, Idaho 1991

ID92 Tetonia, Idaho 1992

MAN92 Brandon, Manitoba 1992

MTd91 Bozeman, Montana (dryland) 1991

MTd02 Bozeman, Montana (dryland) 1992

MTi91 Bozeman, Montana (irrigated) 1991

MTi92 Bozeman, Montana (irrigated) 1992

SKs92 Saskatoon, Saskatchewan 1992

WA91 Pullman, Washington 1991

WA92 Pullman, Washington 1992
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or one-mode clustering, where either objects or

variables are clustered. In this work, we aim to find

the optimal two-mode cluster solution between

genotypes and environments or genotypes and traits.

There are several algorithms available for creating

two-mode clusters. In this paper we will use two

techniques for finding an optimal two-mode parti-

tioning: two-mode k-means and genetic algorithm

based two-mode clustering.

In general, two-mode clustering decomposes

matrix Y (which contains for our purposes genotypes

by environment or genotypes by traits information)

into three parts, as shown in Fig. 1:

Y ¼ RMCT þ E ð1Þ

where

Y (I 9 J): data matrix of I rows and J columns

R (I 9 P): membership matrix for I rows (geno-

types) of matrix of Y, allowing for P row clusters.

M (P 9 Q): matrix containing cluster averages for

P row and Q column clusters

C (J 9 Q): membership matrix for J columns

(environments or metabolites/traits) of matrix Y.

E (I 9 J): matrix of residuals, containing the

difference between each measurement and its

cluster average from matrix M.

Membership or incidence matrices R and C contain

only zeros and a single one on each row and uniquely

assign each genotype by environment or genotype by

trait element of Y to one of the P and Q clusters. The

location of the one indicates membership to that

particular cluster. The quality of the two-mode cluster

algorithm is largely depending on its ability to find

the best solution for the membership matrices R and
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Fig. 1 Schematic

decomposition of matrix Y

for three trial solutions.

Each trial solution has its

own decomposition of

matrix Y and consequently

has its own residuals. Some

trial solution will have

lower residuals and

therefore perform better.

Matrix R and C are filled

with 0’s and 1’s to give an

impression of their contents
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C. The use of global optimizers reduces the risk of

reaching sub optimal solutions and is the reason we

used GAs for obtaining the final solution.

Two-mode k-means and genetic algorithms two-

mode clustering both use the same decomposition of

matrix Y. The difference between the two methods is

how they come to their final solution. Two-mode

k-means works on one single solution and iteratively

recalculates cluster centers and adjusts row and

column cluster memberships to the nearest cluster.

For a detailed discussion of two-mode k-means see

(van Rosmalen et al. 2009).

The inner workings of two-mode clustering with

GAs are also described elsewhere, but repeated here in

short for clarity. For a more detailed discussion on two-

mode clustering, GAs or the combination of the two,

the reader is referred to (Corsten and Denis 1990; Vichi

2001; Hageman et al. 2003; Madeira and Oliveira

2004; Van Mechelen et al. 2004; Turner et al. 2005;

Hageman et al. 2008b; van Rosmalen et al. 2009).

Genetic algorithm

GAs are a special class of global optimization

routines, based on the theory of evolution. GAs

minimize a function by searching the search space for

an optimal solution. For two-mode clustering, GAs

try to find the optimal membership matrices for row

and column objects that result in a minimal within

cluster distance. The GA does not operate on the

membership matrices R and C itself, but rather on a

vector that represents R and C in a condensed form

and that contains the cluster numbers for each data

entry of Y. These data entries are often interaction

residuals resulting from the fit of an additive two-way

analysis of variance model to a two-way table of

means. Figure 2 shows how the vector translates into

the membership matrices R and C. Operations on a

representation vector are more efficient within a GA

than operations on sparse membership matrices.

The basic GA method consists of 6 steps that are

being iterated.

1. Initialization: GAs work on a group of trial

solutions at a time (a group of trial solutions is

called a population). At the start of the GA the

population is filled with random solutions which

are just random assignments of data elements to

clusters.

2. Evaluation: each trial solution in the population

is evaluated. A trial solution is a vector with

cluster number assignments. In GA terminology

a trial solution is called a string. In this case, for

each string the total within cluster sum of

squares (SSres) is calculated as shown in the

Eq. (2).

SSres ¼
XKr

r¼1

XKc

c¼1

Xnrc

j2r;c

yiðrÞðjðcÞ � �y rc

� �2 ð2Þ

Here, Kr and Kc are the numbers of row and

column clusters, nrc is the number of data entry points

in cluster identified by the row index r and column

index c, yi(r)j(c) indicates data entry (i, j) within the

cluster r,c, yrc indicates the mean for the cluster r,c.

3. Stop: a stop criterion is checked, usually a

minimal change in SSres for the last number of

iterations (called generations), otherwise a pre-

defined maximum number of generations.

4. Selection: a fraction of the best strings, that is,

the ones with the smallest SSres, are selected for

the next generation.

5. Recombination: the selected strings are recom-

bined (called crossover) to yield new strings.

6. Mutation: small random changes (called muta-

tion) are applied to the new strings.

Figure 3 shows an example of the 2 point cross-

over (top part) and mutation (bottom part).

An important aspect of GAs is choosing adequate

values for the parameters defining the GA itself

(Hageman et al. 2003). This can be done with trial

and error or with an experimental design. In this case

we used the parameters from our previous study with

metabolomics data (Hageman et al. 2008b).
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Fig. 2 Conversion of GA string ‘4231534123’ into member-

ship matrices R and C. First 6 numbers are used for matrix R,

the last 4 for matrix C. This corresponds to a data matrix of

dimensions I = 6 by J = 4. Maximal numbers of clusters in

this example are 6 and 4
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Numbers of row and column clusters

The decomposition as shown in Eq. 1 requires a

predefined number of row and column clusters

(as indicated with P and Q), which is usually unknown

beforehand. There are a number of methods available

for estimating the optimal number of clusters (e.g. BIC,

GAP statistic, knee/L/scree plots) (Milligan and

Cooper 1985; Salvador and Chan 2004). We used the

knee method, where the number of row and column

clusters are plotted against SSres, the squared within

cluster distance (Hageman et al. 2008b). The point

where the increase in the number of clusters only

marginally decreases SSres is evidenced in the graph by

a knee or L shape. This point is regarded as the optimal

numbers of clusters. Since the creation of the knee plot

requires the calculation of SSres for all possible

combinations of numbers of clusters, to save compu-

tation time, this stage was performed using two-mode

k-means clustering. Although two mode k-means can

get stuck in a local optimum, the global shape and

trends of the knee plot will still show us how many

clusters can be considered optimal. After the choice for

a particular numbers of clusters has been made, the two-

mode clustering is repeated from scratch with the GA

based two-mode clustering using the cluster numbers

obtained with two-mode k-means. The idea is that if

two-mode k-means is stuck in a local optimum, the GA

based two-mode clustering may overcome such a local

optimum due to the nature of its optimization approach,

and find a better two-mode partitioning.

Software

Two-mode k-means clustering and GA based two-

mode clustering were programmed in Matlab 7.1

(Mathworks 2008), the latter using the Genetic

Algorithm and Direct Search toolbox. All GA runs

were performed in five fold to exclude any (un)lucky

starting positions. The settings for the GA and

k-means two-mode cluster algorithms can be found

in Table 2. All calculations were performed on an

Intel Core 2 CPU at 1.86 GHz.

To compare the results from two-mode clustering,

the tomato data set is also analyzed using principal

component analysis. For comparison, an AMMI

model (van Eeuwijk et al. 2005) was fitted to the

barley data. A mixed model multi-environment QTL

mapping was performed following the methods as

described by (Boer et al. 2007), and in a more basic

form presented in (Malosetti et al. 2004). All these

analyses were performed in GenStat 12th edition

(Payne et al. 2009).

Results

Tomato data

To obtain an estimate for the correct number of

clusters in each direction, all possible combinations

of cluster numbers between two and eight were

calculated using two-mode k-means. Figure 4 shows

the knee plot for the tomato dataset (left part). Two-

mode k-means is likely to find a local optimum, but

will nevertheless provide a good idea on the correct

numbers of clusters. When deciding on the numbers

of clusters the biological interpretation of the result-

ing clustering has also been taken into account. The

numbers of clusters for the tomato dataset were

4231534123 4234534123 
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5324521122

4234521123 

5321534122

2 point crossover

mutation
4231534123 4234534123 4231534123 4234534123 

4231534123 
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4234521123 
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2 point crossover

mutation

Fig. 3 Examples for two point crossover (top part) and

mutation (bottom part). The vertical lines in the top part indicate

the cutting locations. At these cutting locations the strings will be

disconnected and some parts will be exchanged (recombined)

with another string. At the bottom part, the cross indicates the

cluster assignment that will be randomly changed (mutated)

Table 2 Settings for two-mode k-means clustering and

genetic algorithm based two-mode clustering

Settings for two-mode

genetic algorithm

Value

Data type Integer

Population size 200

Mutation rate 0.005

Number of generations 4,000

Crossover rate 0.8

Crossover type 2 point

cross over

Settings for two-mode k-means

Number of restarts 50
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chosen as three clusters in the genotype direction and

four clusters in the metabolites/traits direction.

The tomato data set has been clustered using the

two-mode k-means algorithm using three genotype

clusters and four metabolites/trait clusters. The GA

was not able to find a solution with a lower residual

error, indicating that two-mode k-means was also

able to find the same solution. The relative small

numbers of clusters make it probably not too difficult

to find this solution. Figure 5 shows the two-mode

clustering result for the tomato dataset.

The greatest effect in this data set is the difference

between cherry tomatoes and the others varieties. The

clustering on genotype clearly shows the distinction

between the cherry tomatoes and the beef and round.

One of the genotype clusters solely consists of cherry

tomatoes (cluster three). The inspection of the trait

direction can provide insights into what is causing

this separation. Trait clusters three and four give a

clear contrast between cherry tomatoes and the rest

of tomato types. Cluster three shows a higher

than average concentration of glucose, fructose and
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Fig. 5 Results from two-

mode clustering on CBSG

tomato data. Red colors
indicate values above

average, black colors
around the average and

green colors below average

354 Euphytica (2012) 183:349–359

123



sucrose (and corresponding properties like brix and

the sensory attribute taste ‘sweet’). Cluster four

contains sensory attributes ‘mouth feel mealy’, ‘taste

unripe’ and ‘taste watery’ which are all below

average for the cherry tomatoes. Property ‘fruit

weight’ is also below average for the cherry toma-

toes, which is expected as they are smaller in

comparison to the other types. Trait’s cluster one

contains the sensory trait ‘taste tomato’ together with

the metabolite isobutylthiazole, one of the odorants

associated with the smell of tomatoes. None of the

tomatoes types showed a higher concentration of

isobutylthiazole, suggesting that all these tomatoes

taste equally well like tomatoes.

To compare the two-mode cluster results with

other data analyses techniques, we present a PCA plot

in Fig. 6. This figure also clearly shows the distinc-

tion between cherry tomatoes (yellow circles) and the

other ones. The PCA plot also indicates that cherry

tomatoes are more ‘taste sweet’ and ‘scent sweet’.

Beef and round tomatoes (red and blue circles) are

also not separated in the plot. These tomatoes are

more ‘taste watery’, ‘mouth feel mealy’ and ‘taste

unripe’ in comparison with the cherry tomatoes.

Barley data

The right part of Fig. 4 shows the knee plot for the

barley dataset. The numbers of clusters for the barley

data were chosen to be six genotype clusters and four

environment clusters. The GA was able to find a

better solution compared to the k-means solution, the

within cluster distance for the GA solution was 3.4%

lower. Figure 7 shows the GA two-mode clustering

result for the barley data set. The two-way clustering

reflects combinations of genotypes and environments

showing a positive genotype by environment inter-

action, that is, environments where the performance

Fig. 6 Principal component plot of CBSG tomato data.

Circles indicate tomato genotypes (red = round tomatoes,

blue = beef tomatoes, yellow = cherry tomatoes). Sensory

attributes are indicates by a diamond, sensory traits belonging

to the same sensory category have an identical color
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of genotypes deviates upwards from additivity of

environmental and genotypic effects. For example,

the genotypes in group one (upper left corner) had a

positive interaction with environments ID92, MTd91,

and MTi91 (environment group one). The clustering

discriminates between sets of genotypes having

positive interaction in one or more sets of environ-

ments. For example, while genotypes in cluster one

showed a positive genotype by environment interac-

tion with environment group one and two (MTd92,

MTi92, and WA92), genotypes in group two showed

a positive interaction with environment group one

and three (ID91 and WA91). Positive interactions

were observed between genotype’s group three and

environment groups two (MTd92, MTi92, and

WA92) and four (MAN92, and SKs92). Similar

patterns can be observed for the other groups of

genotypes. In summary, the two-mode clustering

allowed to graphically display groups of genotypes

and environments that had a positive interaction.

Since the main effect is not included, a best

performance combination of genotypes and environ-

ments can not be inferred from this graph, but it

would point to favorable interaction patterns poten-

tially pointing to specific adaptation patterns.

We can directly compare the results from the two-

mode clustering with the AMMI biplot in Fig. 8. The

AMMI biplot has been created by performing PCA

on the interaction residuals after row and column

centering of the tomato data. We can easily recognize

groups of genotypes that are close to each other and

clustered together with two-mode clustering. Exam-

ples are the cluster ID91, MTd91, MTi91 and WA92,

MTi92, Mtd92. The only discrepancy between the

AMMI biplot and the two-mode clustering is that

SKs92 and WA92 are close in the biplot but

not clustered together in the two-mode clustering.
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Perhaps SKs92 and WA92 are not that close when

taking higher principal components into account.

Although molecular marker information was not

used during the clustering, the examination of the

correspondence between marker genotypes and geno-

type clusters can reveal some interesting patterns. An

association between molecular marker genotype and

genotypic groups can reveal chromosome regions

linked to specific adaptation. Markers almost fixed

within genotypic groups (81–100% homozygous for a

particular allele) are given in Table 3.

From Table 3, it is remarkable that most of the

markers that were found fixed (or almost fixed) inside the

genotypic groups map to chromosome two (around

30–60 cM), three (around 70–100 cM) and seven

(around 50–70 cM). Chromosome two, three, and seven

have been shown to harbor the most important QTLs

explaining G 9 E, that is, QTL by environment interac-

tion (QTL 9 E). This is also confirmed by the results of

QTL analysis in Fig. 9 which shows the important QTLs

being located on chromosome two, three and seven.

The two-mode clustering could then be seen as a

quick step to sample potentially interesting markers

associated to the patterns of variation in the column

direction (either environment or traits).

Concluding remarks

We have demonstrated the use of two-mode cluster-

ing to explore genotype by trait and genotype by

environment data. We have first examined different

numbers of clusters in the two-mode clustering using

k-means and the knee plot. After deciding on the final

numbers of clusters, a GA based two-mode clustering

was used for finding a better solution than k-means.

The GA only found a better solution for the genotype

by environment data.

Two-mode clustering is able to extract relevant

features from both data sets. It finds genotypes with a

similar response in particular sets of environments

(barley data set) or set of genotypes that share some

common set of characteristics (tomato data set). In the

interpretation of the two-mode clustering, external

information can be useful. For example, in the barley

data set, a closer analysis of the genotype clusters in

relation to molecular markers provided information

about relevant markers associated to the differential

response of genotypes in particular environments.

Table 3 List of markers that were close to fixation in a par-

ticular cluster (frequency higher than 0.81)

Cluster
nr

Marker [ 0.81 in
common

Type Chromosome cM

1 abc162 0.94 AA 2 73.5

abg19 1.00 AA 2 58.8

abg2 1.00 AA 2 41.2

abg459 0.94 AA 2 47.3

adh8 1.00 AA 2 56.0

crg3a 0.82 AA 2 125.2

pox 1.00 AA 2 52.6

rbcs 0.94 AA 2 27.2

abg377 0.82 AA 3 98.4

abg396 0.81 AA 3 73.0

abg453 0.82 AA 3 109.4

abg471 0.82 AA 3 32.7

abg703a 0.82 AA 3 83.6

psr156 0.88 AA 3 91.3

wg622 0.81 AA 4 1.4

abc302 0.82 AA 7 78.2

abg395 0.82 AA 7 45.6

abg473 0.81 AA 7 105.2

abr336 0.82 AA 7 44.2

ale 0.82 AA 7 68.2

cdo57b 0.82 AA 7 92.2

ltp1 0.88 AA 7 52.8

mSrh 0.82 AA 7 97.9

rrn2 0.88 AA 7 48.2

2 abg2 0.86 AA 2 41.2

abg459 0.82 AA 2 47.3

chs1b 0.86 AA 2 16.1

prx2 0.82 AA 2 183.1

rbcs 0.86 AA 2 27.2

nar7 0.82 BB 6 76.0

3 abg2 0.87 BB 2 41.2

rbcs 0.83 BB 2 27.2

abg396 1.00 BB 3 73.0

abg703a 0.96 BB 3 83.0

psr156 0.83 BB 3 91.3

4 abg2 1.00 BB 2 41.2

abg313a 0.83 BB 2 0.0

abg459 0.88 BB 2 47.3

chs1b 0.91 BB 2 16.1

pox 0.83 BB 2 52.6

rbcs 0.92 BB 2 27.2

5 abg396 0.83 BB 3 73.0

abg703a 0.83 BB 3 83.6

6 – – – – –

Marker name, the most frequent allele (A for Steptoe allele, and
B for Morex allele), and chromosome location and position is
given for each marker
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Two-mode clustering as presented in this paper is

an easy to use tool and gives a clear and straight-

forward to interpret graphical overview of a multi-

dimensional data set, capturing the most relevant

features of the data set under study. Our implemen-

tation of two-mode clustering is very similar in

spirit to the two-way clustering algorithm presented

by (Corsten and Denis 1990), but it seems easier to

generalize to other contexts like three-mode cluster

analysis or clustering procedures for generalized

linear models in place of linear models. We are

currently working on such types of extensions to the

two-mode k-means and GA two means clustering

algorithm.
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