Empirical Software Engineering (2024) 29:58
https://doi.org/10.1007/510664-023-10425-5

®

Check for
updates

Taxonomy of inline code comment smells

Elgun Jabrayilzade® - Ayda Yurtoglu® - Eray Tiiziin'

Accepted: 14 November 2023 / Published online: 3 April 2024
© The Author(s) 2024

Abstract

Code comments play a vital role in source code comprehension and software maintainability.
It is common for developers to write comments to explain a code snippet, and commenting
code is generally considered a good practice in software engineering. However, low-quality
comments can have a detrimental effect on software quality or be ineffective for code under-
standing. This study aims to create a taxonomy of inline code comment smells and determine
how frequently each smell type occurs in software projects. We conducted a multivocal
literature review to define the initial taxonomy of inline comment smells. Afterward, we
manually labeled 2447 inline comments from eight open-source projects where half of them
were Java, and another half were Python projects. We created a taxonomy of 11 inline code
comment smell types and found out that the smells exist in both Java and Python projects with
varying degrees. Moreover, we conducted an online survey with 41 software practitioners to
learn their opinions on these smells and their impact on code comprehension and software
maintainability. The survey respondents generally agreed with the taxonomy; however, they
reported that some smell types might have a positive effect on code comprehension in certain
scenarios. We also opened pull requests and issues fixing the comment smells in the sampled
projects, where we got a 27% acceptance rate. We share our manually labeled dataset online
and provide implications for software engineering practitioners, researchers, and educators.

Keywords Code comments - Comment smells - Inline code comments - Dataset -
Taxonomy - Multivocal literature review

Communicated by: Simone Scalabrino, Rocco Oliveto, Felipe Ebert, Fernanda Madeiral and Fernando
Castor

This article belongs to the Topical Collection: Special Issue on Code Legibility, Readability, and
Understandability.

Bd Elgun Jabrayilzade
elgun1999 @ gmail.com

Ayda Yurtoglu
ayda.yurtoglu@ug.bilkent.edu.tr

Eray Tiiziin
eraytuzun @cs.bilkent.edu.tr

Bilkent University, Ankara, Turkey

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10425-5&domain=pdf
http://orcid.org/0000-0003-2932-4976
https://orcid.org/0000-0002-5550-7816

58 Page2of53 Empirical Software Engineering (2024) 29:58

1 Introduction

Code comments are one of the primary sources helping software maintenance. They are the
most used documentary artifact after the code itself (de Souza et al. 2005). Commenting has
been generally recognized as a good practice in software engineering (Tenny 1988; Jiang
and Hassan 2006), and developers usually write them to explain a particular code snippet.
Code comments can generally be categorized into two: documentation and inline comments
(Nielebock et al. 2019). Documentation comments are written above methods or classes to
describe the functionality of the method or class. Documentation comments help developers
easily understand how the method or class should be used, what are the parameter types, what
is the return type, etc. Inline comments, on the other hand, are written inside a method or class
body; thus, their scope is usually smaller than documentation comments. Inline comments
can be written for a wide range of reasons, including code explanation, the reason behind a
specific decision, etc.

Several studies in the literature analyzed the effect of code comments on program com-
prehension and software maintainability. Woodfield et al. (1981) conducted an experiment
on 48 experienced developers by showing them different types of modularized codes with
and without comments. The follow-up 20-question quiz revealed that the subjects whose
code contained comments were able to answer more questions correctly. In agreement to this
finding, 66% of software practitioners who responded to our survey in this study agreed that
comments help them understand the code better. Similar to the findings of studies conducted
by Ko et al. (2006) and LaToza et al. (2006), our survey results (see Section 4) reveal that
developers spend as much time reading the code as writing it. Thus, having high-quality
comments is crucial for software as they improve the legibility, readability, and understand-
ability of code. Hartzman and Austin (1993) concluded that comments are a key factor in
maintaining software in the long term in their case study on a large software system. Misra
etal. (2020) found out that the lack of relevant comments in a project leads to a higher average
issue resolution time in their empirical study on 625 GitHub repositories.

Since code comments contain abundant information about the software, researchers have
also incorporated them into various tools for solving software engineering tasks, such as
automated testing (Goffi et al. 2016; Wong et al. 2015), specification inference (Blasi et al.
2018; Pandita et al. 2012; Zhong et al. 2009), and code synthesis (Allamanis et al. 2015;
Gvero and Kuncak 2015; Zhai et al. 2016). Having high-quality comments may improve the
performance of such tools.

Because the compilers ignore comments and developers can write them in various ways,
researchers have observed quality issues (smells) in comments (Louis et al. 2018; Khamis
et al. 2010; Tan et al. 2007; Misra et al. 2020; Rani et al. 2021; Wang et al. 2019), such as
being redundant or inconsistent with the code. Our study focuses on the analysis of inline
code comment smells. In this context, smell refers to comments that can degrade software
quality or comments that do not actually help readers much in terms of code comprehension.
Although there have been studies on various categorizations of code comments and quality
issues in them (discussed in Section 2), to the best of our knowledge, there is no previous
work on the taxonomy and thorough analysis of inline code comment smells. This study
extends our prior work on the analysis of inline code comment smells (Jabrayilzade et al.
2021), where we defined the following research questions:

— RQ1. What types of inline comment smells are there?
— RQ2. How often does each smell type occur in practice?

@ Springer

Empirical Software Engineering (2024) 29:58 Page30of53 58

To answer the RQ1, we conducted a multivocal literature review (MLR) on academic
(white) and gray literature and collected a set of inline comment smells written by developers.
We proposed a taxonomy of 11 inline comment smells. For addressing the RQ2, we manually
categorized a subset of inline comments from three open-source Java projects and found out
that smells exist in the projects with varying degrees.

In this study, in order to make the results of RQ2 in the previous study [45] more gen-
eralizable, we added one more Java and four Python open-source projects to our analysis,
increasing the total number of projects to eight. We found out that the smells exist in Python
projects as well. Moreover, to gather practitioners’ views on our defined taxonomy of inline
comment smells as well as their impact on code comprehension and software maintainability,
we added the following research question to this study:

— RQ3. What is the perception of software practitioners about inline code comment
smells?

To answer this research question, we conducted an online survey with 41 software practi-
tioners. The respondents generally agreed with our taxonomy; however, there were smells for
which respondents indicated that their existence might not be considered a smell in specific
situations.

Finally to investigate the developer’s perception of inline comment smells and whether
or not they find them useful to code comprehension, we included a new research question in
our study:

— RQ4. Do developers of open-source projects accept pull requests or issues to remove
inline comments smells?

We submitted 53 pull requests and/or issues to the projects we labeled to answer this
question. We obtained an acceptance rate of 27%. Although removing inline comment smells
is inherently beneficial to the code base, open-source project developers tend to reject pull
requests that do not directly fix bugs and resist altering functional source code.

The extensions in this study over our previous work (Jabrayilzade et al. 2021) are as
follows:

— Updated the methodology and scope of MLR results.

— Enhanced our evaluation by adding five new projects.

— Added a new research question (RQ3) to gather practitioners’ views on our taxonomy of
inline comment smells.

— Added a new research question (RQ4) to investigate the developers’ acceptance of inline
comment smells in eight OSS projects.

The main contributions of the study can be summarized as follows:

— Proposed a novel taxonomy of inline code comment smells based on a multivocal liter-
ature review and manual analysis of sample Java and Python projects.

— Manually analyzed four Java and four Python projects to determine how commonly the
smells occur in open-source projects.

— Published the labeled dataset of inline comments consisting of 2447 comments based on
the manual analysis process on the selected projects.

— Gathered practitioners’ opinions about the inline comment smells through an online
survey.

— Investigated developers’ opinions about removing the inline comment smells from open-
source projects with pull request submissions.

@ Springer

58 Page4of53 Empirical Software Engineering (2024) 29:58

The rest of the paper is organized as follows. Section 2 presents the prior work on the
analysis of code comments from different perspectives. Section 3 details our methodology for
answering the research questions. Section 4 presents the results of the multivocal literature
review, manual analysis process, and the practitioners’ survey. Section 5 revisits the research
questions, compares the results of the manual analysis process and survey responses, and
provides implications for researchers, practitioners, and educators. Section 6 discusses the
threats to the validity of the study. Finally, Section 7 concludes the work and presents the
future directions of the study.

2 Related Work

We discuss the related works under three categories: general comment quality analysis,
taxonomies of comments, and studies focusing on the detection of single code comment
smell type.

2.1 Quality Analysis of Code Comments

In this section, we discuss works done previously about analyzing the quality of code com-
ments from different perspectives.

Khamis et al. (2010) developed the tool JavadocMiner that can analyze the quality of
Javadoc comments. The tool uses various heuristic metrics to assess the quality of the language
used in comments and the consistency between source code and comments. The authors
evaluated the tool on two Java projects (ArgoUML and Eclipse) by correlating the number
of bugs in the modules of the projects and the metric scores. They report that modules with
the highest quality had the lowest number of reported defects. Similarly, Tan et al. (2007)
explored the feasibility and benefits of automatic analysis of comments to detect bugs and
bad comments in source code. Their heuristic analysis on lock-related comments in the Linux
kernel detected 12 bugs, two of which were confirmed by the kernel developers. The authors
also examined various open-source bug datasets and found that bad or inconsistent comments
introduced various types of bugs.

Rani et al. (2021) conducted a study on whether developers follow commenting guide-
lines in open-source projects. According to the results of the manual analysis done on 700
class comments from 13 Java and Python projects, they concluded that, in both languages,
developers follow the writing style (e.g., grammar, punctuation) and content-related com-
ment guidelines more often than syntax (denoting a specific type of a comment) and structure
(e.g., subsections in comments) types of comments.

Misra et al. (2020) explored the correlation between code comments and issues in
open-source Python projects from GitHub. They first extracted 20,000 comments from 625
repositories and then semi-automatically classified 600 of those comments into relevant and
auxiliary comments. Relevant comments included header, method, inline, task, and section
comments. On the other hand, auxiliary comments consisted of comments such as copyright,
license, or information about authors. The authors also extracted the closed and open issues
from the repositories as well as calculated the average time taken (in days) to resolve the
issues. Statistical analysis showed that there exists a correlation between the number of rele-
vant comments and the number of closed issues in a repository. Moreover, repositories with
a higher number of relevant comments had a lower issue resolution time.

@ Springer

Empirical Software Engineering (2024) 29:58 Page 50f53 58

2.2 Taxonomies of Code Comments

This section describes studies on the categorization of code comments.

Steidl et al. (2013) used machine learning techniques on Java and C/C++ projects to auto-
matically categorize comments into seven different categories, namely copyright, header,
member, inline, section, code, and task comments. Their classification algorithms were nearly
95% precise. Then they assessed four quality criteria, namely, coherence, usefulness, com-
pleteness, and consistency, to determine the quality of the comments. They first proposed
two metrics for the coherence of comments and then evaluated both metrics by a survey of
experienced developers.

Haouari et al. (2011) aimed to categorize comments by their position and frequency in the
code with an automated approach. Then, they used 49 programmer subjects to classify the
comments via their content and relevance. The subjects classified comments by their object,
type, style, and quality. The study did not emphasize code comment smells and only included
a quality metric that can tell whether a comment can increase code comprehension or not.

Pascarella and Bacchelli (2017) created a taxonomy of Java comments consisting of 6 top
and 16 inner categories. Then, they manually analyzed six Java projects to determine how
often the categories occur in practice. They found that the metadata and purpose comments
were the most prominent ones. They trained supervised machine learning models for the
automatic classification of comment types and achieved an average of 0.95 true positive
rate for top-level categories and 0.85 rate for inner categories. However, this study only
categorized comments according to their purposes and did not include a qualitative analysis.

Zhang et al. (2018) investigated seven Python open-source projects and created a tax-
onomy for code comments consisting of 11 categories. The authors manually labeled 330
comments, which were randomly sampled from the selected projects to create a dataset of
Python comments. Usage type was the most predominant category covering almost 80%
of the labeled comments. They also applied machine learning classifiers to the dataset for
classifying the code comments automatically. Their results showed that the Decision Tree
classifier was superior to the Naive Bayes classifier in terms of accuracy (87% compared to
81%) and runtime efficiency.

Shinyama et al. (2018) focused on identifying and classifying local comments thatled to 11
distinct categories for code comments. With a manual annotation experiment, they verified the
relevance of their comment categories and found out that preconditional and postconditional
comments were dominant in their selected projects. They also used a decision-tree-based
classifier to automatically analyze the code comments, which had 60% precision and 80%
recall scores.

Khan et al. (2021) focused on the classification and automatic detection of API documen-
tation smells. Firstly, they created 5 smell categories by consulting the literature, and then
they created a benchmark with 1000 API documentation units where at least 778 documen-
tation units belong to one of the smell categories. A survey with 21 professional software
developers validated the catalog of API documentation smells by reporting that 95% of them
think those smells impact their productivity negatively. Lastly, they used machine learning
models to detect the five smells automatically, where the BERT (Devlin et al. 2019) classifier
had the highest F1 scores.

Wen et al. (2019) conducted a study on code-comment inconsistencies to investigate how
different code changes trigger comment updates and what types of code-comment inconsis-
tencies are fixed by developers. Authors manually labeled 500 commits from Java projects and
created a taxonomy composed of 6 root categories related to code-comment inconsistencies,

@ Springer

58 Page6of53 Empirical Software Engineering (2024) 29:58

which are Application Logic, Code Design/Quality, Maintenance, Formatting/Readability,
Copyright/License, and Others.

Padioleau et al. (2009) manually labeled 1050 comments from three operating system
projects (Linux, FreeBSD, OpenSolaris), where the authors analyzed the comments in four
dimensions: what is inside the comment, and for whom, where, and when they are written,
and created a taxonomy for each dimension.

Zhai et al. (2020) studied automatic propagation and association of comments to code
entities using program analysis. To effectively apply propagation, they created a taxonomy
of comments under four entities, namely, class, method, statement, and variable. For each of
these entities, they analyzed the comments from five perspectives: what, why, how-it-is-done,
property (e.g., pre/post-conditions), and how-to-use. The authors also experimented with var-
ious machine learning algorithms for automatically classifying the comments into the defined
categories, where random forest and decision tree algorithms had the best performance.

Table 1 provides categories defined for code comments for the studies discussed above.
The studies conducted by Pascarella and Bacchelli (2017); Zhang et al. (2018) and Khan
et al. (2021) are the most relevant ones to our study. The difference between our study and
the former two studies is that we focus on classifying comment smells, i.e. bad practices in
commenting, whereas they focus on the general classification of comments. The latter study
focuses on smells on documentation smells in contrast to inline code comment smells that
we investigate in this study.

2.3 Detection of Code Comment Smells

Although there is no previous study that considers inline code comment smells from a general
perspective, there are various studies on analyzing and detecting smelly comments.

Louis et al. (2018) developed a deep learning model based on a long-short term memory
network (Hochreiter and Schmidhuber 1997) to detect redundant (comments that restate
the code) method-level comments. The model was trained in an unsupervised manner by
measuring the predictability of the given comment sentence under the language model. In an

Table 1 Prior work on the taxonomy of code comments

Study Categories

Steidl et al. (2013) copyright, header, member, inline, section, code, task

Haouari et al. (2011) object, type, style, quality

Pascarella and Bacchelli (2017) summary, expand, rationale, deprecation, usage, exception, todo,

incomplete, commented code, directive, formatter, licence, owner-
ship, pointer, auto-generated, noise

Zhai et al. (2020) metadata, summary, usage, parameters, expand, version, develop-
ment notes, todo

Shinyama et al. (2018) postcondition, precondition, value description, instruction, guide,
interface, meta information, comment out, directive, visual core,
uncategorized

Khan et al. (2021) tangled, fragmented, lazy, bloated, excess structual information

Wen et al. (2019) application logic, code design/quality, maintenance, format-
ting/readibility, copyright/licence, others

Padioleau et al. (2009) what, who, where, when

Zhai et al. (2020) what, why, how-it-is-done, property, how-to-use

@ Springer

Empirical Software Engineering (2024) 29:58 Page 7 of 53 58

experiment on Java comments, the authors found out that the Javadoc tags had a predictability
score two times more than other comments.

Blasi et al. (2021) created a tool called RepliComment for identifying comment clones in
code. The tool can report instances of copy-and-paste errors in comments as well as poorly
written comments. The tool achieved 79% precision in finding critical clones according to
the manual analysis done by the authors on 412 issues reported by the tool from various Java
projects.

There are also studies on detecting which part of the code needs comment. Louis et al.
(2020) developed a deep learning-based model that achieved 74% precision in finding
comment-worthy locations in code. The authors created the evaluation dataset by extracting
codes that were already commented. However, the approach assumed that the existing com-
ments had high quality, which may bias the trained model in the case of smelly comments.
A similar study was conducted by Huang et al. (2019), where they applied machine learning
techniques to code context-related features. The effectiveness of the approach was evaluated
via a survey of practitioners. The overlapping rate was 0.72 between the comment locations
predicted by the model and the practitioners.

There have been multiple studies on identifying code-comment inconsistencies (mislead-
ing comments) in the literature. The models/tools either predict such comments statically by
analyzing the relations between code and the corresponding comment (Sridhara 2016; Rabbi
and Siddik 2020; Iammarino et al. 2020; Corazza et al. 2018; Wang et al. 2019; Ratol and
Robillard 2017) or during a change (i.e., commit) (Panthaplackel et al. 2021; Liu et al. 2020,
2021; Stulova et al. 2020), which can also take change-related features into account.

3 Methodology

In this section, we describe the mixed-methods research design for answering the research
questions. Specifically, we present the MLR stages and elaborate on the quantitative analysis
performed on sample projects.

3.1 RQ1. What Types Of Inline Comment Smells Are There?

To answer RQ1, we first reviewed two books written by expert software practitioners, Clean
Code by Martin (2009) and The Art of Readable Code (Boswell and Foucher 2011) by Dustin
Boswell and Trevor Foucher to get an initial idea about bad practices followed by developers
when writing code comments. We encountered various types of comments that affect the
readability and maintainability of source code. Due to the lack of research in academia and the
abundance of gray literature materials (e.g., blog posts) published by software practitioners
on this topic, we decided to carry an MLR according to the guidelines provided by Garousi
et al. (2019). The activities conducted during the MLR are given in Fig. 1. The execution of
search queries, applying inclusion/exclusion criteria, and extracting relevant smell data were
conducted by two authors independently. Conflicting cases were resolved in an additional
online meeting between the two authors. The MLR was conducted between 4 - 18 March
2021.

Search Strategy Google Scholar and Scopus were used for searching the academic litera-
ture as they include major publication databases (Neuhaus et al. 2006). For gray literature, the
authors utilized the Google Search engine according to the suggestions of Godin et al. (2015).

@ Springer

58 Page8of53 Empirical Software Engineering (2024) 29:58

Snowballing
(9)

Two authors executed independently

Execute on
engines

Initial pool
(383)

Initial pool
(16)
Initial pool
(144)

Define
search
query

Inclusion/Exclusion
criteria (84)

Google
Search

Extract data

Resolve conflicts O

Fig.1 Flow diagram of the MLR stages

We defined the following search query string to retrieve materials relevant to the research
question.

“Code Comment” AND (“Guideline” OR “Smell” OR “Bad Practice” OR “Anti-
pattern”)

The search query was defined according to previous MLR studies on identifying various
anti-patterns in software engineering and we selected keywords that can capture relevant
sources (Garousi and Kiiciik 2018; Qamar et al. 2022; Dogan and Tiiziin 2022). All the
results provided by the search engines were analyzed thoroughly. The authors applied inclu-
sion/exclusion criteria to only include sources related to the code comment smells. After
creating the initial pool of sources, we also manually conducted backward and forward
snowballing (checking references and citations of papers) on the academic papers not to
miss any related studies, as suggested by Keele et al. (2007). Backward snowballing is the
application of inclusion/exclusion criteria to the references of a paper that is already in the
pool of sources. In forward snowballing, we applied the inclusion/exclusion criteria for the
studies citing a paper that is already in the pool of sources. We iteratively applied backward
and forward snowballing until there were no more primary studies to be added.

Inclusion/Exclusion Criteria We carefully designed the inclusion/exclusion criteria to
incorporate relevant and high-quality sources. We included the sources (both white and gray)
that answered “yes" to all the following questions:

— Does the source discuss bad or good practices about code comments?

— Is the source in English, and is it fully accessible?

— Does the source contain author information?

— Does the source contain non-duplicate information? (not restating another source)

Is the source published in a peer-reviewed conference or journal? (only white literature)

Final Pool of Sources Applying the search query returned 383 sources from Google
Scholar, 16 from Scopus, and 144 from Google Search. To avoid missing any studies,
the two authors performed separate searches on the selected databases and applied inclu-
sion/exclusion criteria to the search results. When there was a disagreement on the selection
of the primary studies, the third author was consulted, and the problems were discussed until
we came to a consensus. Additionally, we found nine sources from white literature as a result

@ Springer

Empirical Software Engineering (2024) 29:58 Page9of53 58

of backward and forward snowballing. The final list consisted of 84 relevant resources. Out
of those sources, 55 of them were retrieved from gray literature and 29 from white literature.

Data Extraction After we compiled a list of 84 studies identified in the previous phase,
two authors independently analyzed these studies. We used a shared spreadsheet to encode
the specific smell type we encountered in the studies by giving it a name. Upon adding the
smell type to the spreadsheet, each author could either use one of the previously defined
categories or add a new one. After we achieved the initial set of categories, we merged the
related categories. The categories were finalized after a few rounds of discussions among
the autlllors. The table of the sources and discussed smell types in those sources is available
online.

3.2 RQ2. How Often Does Each Smell Type Occur In Practice?

To answer how frequently code comment smells appear in software engineering practice, we
manually analyzed inline comments of four Java and four Python projects from GitHub. The
following sections describe the project selection, comment sampling, and manual labeling
processes.

Project Selection Because there was a large number of projects to choose from, we
filtered them first. We selected the top 1000 Java and top 1000 Python projects according
to the number of GitHub stars to include popular projects used by the community. Next,
in order to remove personal or small projects, we filtered out projects that had less than
ten contributors. We then randomly selected projects having heterogeneous domains (e.g.,
mobile applications) and different project sizes (in terms of lines of code). While choosing
the projects, we also checked if the projects were in English (according to README files)
and if they were real-life projects (e.g., non-education related). Moreover, we only included
active projects - projects that had at least one commit in the last month. In the end, we selected
Anki-Android (a flashcard memorization app),> Jitsi (video conferencing service),> Moshi
(JSON library),* and Light-4j (microservices framework)’ projects for Java, and Requests
(HTTP library),® Scrapy (web crawling framework),” Kivy (UI framework),? and Scikit-learn
(machine learning framework)” projects for Python. The selected projects with their GitHub
stars, the number of contributors, and the lines of code (LOC) are shown in Table 2. LOC
shows only code lines (non-empty, non-comment) written in the project’s main language
(either Java or Python).

Comment Sampling We used a comment parser tool' to find the comment locations in
the Java source files of the projects. We filtered out documentation comments (beginning with
"/**") to include only inline comments. For Python, we located the comments by searching

I https://doi.org/10.6084/m9.figshare.19640886.v9
2 https://github.com/ankidroid/ Anki- Android

3 https://github.com/jitsi/jitsi

4 https://github.com/square/moshi

5 https://github.com/networknt/light-4;j

6 https://github.com/psf/requests

7 https://github.com/scrapy/scrapy

8 https://github.com/kivy/kivy

9 https://github.com/scikit-learn/scikit-learn

10 https://github.com/jeanralphaviles/comment_parser

@ Springer

https://doi.org/10.6084/m9.figshare.19640886.v9
https://github.com/ankidroid/Anki-Android
https://github.com/jitsi/jitsi
https://github.com/square/moshi
https://github.com/networknt/light-4j
https://github.com/psf/requests
https://github.com/scrapy/scrapy
https://github.com/kivy/kivy
https://github.com/scikit-learn/scikit-learn
https://github.com/jeanralphaviles/comment_parser

Empirical Software Engineering (2024) 29:58

58 Page 10 0of 53

60-20-220C SLE w S96v1 1992 L¥TT T 6 UIBS[DIOS

11-10-2202 1€ 8T 7807 198 444 biaal Aary

S0-CI1-120T 96T o v6Tl Ay 44 6T Adeiog

61-11-120C L¥T Ll 809 38 909 ALY s)sonboy uoyAd

11-01-1202 6LT 99 €201 8L S¢ JE'€ [p-ySr]

$T-90-120¢T SL1 1T 1€ JET 99 L IYSON

L1-90-120¢C 69¢€ LE) T8¢ 65 e SN[

10-90-120T s 4! 6vLY N6Tl 8T N6'E proIpuy-njuy eARf
Q)ep [BAILNY syjuowwod pajdwes so[y pordures SIUAWIWOD duI[u D071 $10)nqQINUOD) s1eg

s100fo1d pajooas oy Jo s[rele g 3|qel

pringer

As

Empirical Software Engineering (2024) 29:58 Page 11 0of 53 58

for hash symbols in the source code. The number of inline comments extracted from each
project is presented in Table 2. Due to the large number of inline comments in the selected
projects, we found it infeasible to analyze all of them manually. Instead, we randomly sampled
a statistically significant subset of the comments from the selected eight projects and analyzed
them. The sample size was determined via Cochran’s sample size formula (Cochran 2007):

L _ZxEpxd—p)e

2 _
1+ (Z p:Z(IIV P))

The sampling was done with a 95% confidence level and 5% margin of error. We chose p =
0.5 as it is unknown which proportion of comments are smell or not. The number of sampled
files and comments for each project is shown in Table 2. For each project, we randomly
sampled code files (ending with “java” or “.py”) and selected all the inline comments from
that file. The files were sampled until the required sample size was satisfied. The reason for
using file granularity was to make it easier for the authors to label the comments with high
confidence as the context of comments can be difficult to understand.

Comment Labeling Process We developed a web-based tool to label the sampled com-
ments manually. A sample snapshot of the tool is shown in Fig. 2. The tool is user authenticated
so that the labelers cannot see each others’ labels. The tool presents one comment at a time
and requires the labeler to categorize it into one of the smell types. Labelers are able to
scroll through the code snippet, see the number of labeling they have done, edit previous
labels and see the available smell categories. The tool also has a section for labelers to add
their opinions about the given comment if there is something that needs to be taken into
consideration. Additionally, users are required to provide information about their confidence
in categorization as well as the related code part that the comment was pointing to.

Labeled Comments: 300 | /AnkiDroid/src/main/java/com/ichi2/anki/CardBrowser.java Category*
2728 private void recenterListView(@NonNull View view) { o .
3 2729 final int position = mCardsListView.getPositionForView(view); Obvious ¥
Go to Previous Label 2730 // Get the current vertical position of the top of the selected view
2731 final int top = view.getTop(); Confi .
2732 final Handler handler = new Handler(); onfidence in
Go to Current Comment |~ 2733 // Post to event queue with some delay to give time for the UI to update t categorization*
2734 handler.postDelayed(() -> {
2735 // Scroll to the same vertical position before the layout was changed High %
2736 mCardsListView.setSelectionfromTop(position, top); 19
2737 }, 10);
2738 3} =
2739 Related code snippet
2740 e location:
2741 * Turn on Multi-Select Mode so that the user can select multiple cards at onc
2742 *7 Line begin Line end
2743 private void loadMultiSelectMode() {
2744 if (mInMultiSelectMode) {
2745 return; 2749 2749
2746 3}
2747 Timber.d("loadMultiSelectMode()"); ; —_—
2748 // set in multi-select mode Confidence in localization
2749 mInMulliSeleciMode - true; 5
2750 // show title and hide spinner High v
2751 mActionBarTitle.setVisibility(View.VISIBLE);
2752 mActionBarTitle.setText(String.valueOf (checkedCardCount()));
2753 mDeckSpinnerSelection.setSpinnervisibility(View.GONE); Your comments
2754 // reload the actionbar using the multi-select mode actionbar
2755 supportInvalidateOptionsMenu();
2756 3}
2757
2758 /**
2759 * Turn off Multi-Select Mode and return to normal state
2760 e 4
2761 private void endMultiSelectMode() {
2762 Timber. d("endMultiSelectmode()"};
2763 mCheckedCards.clear();
2764 mInMultiSelectMode = false;
2765 // If view which was originally selected when entering multi-select is vis
2766 View view = mCardsListView.getChildAt(mLastSelectedPosition - mCardsListVi
2767 if (view != null) { .
2768 recenterListView(view); Go to Categories
2769 }
2770 7/ update adapter to remove check boxes
2771 mCardsAdapter .notifybataSetChanged(); =

< »

Fig.2 Snapshot of the tool developed for labeling the comments

@ Springer

58 Page 12 0f53 Empirical Software Engineering (2024) 29:58

The labeling process was executed by two authors independently. The authors then con-
ducted a meeting to resolve the conflicts. In the case of disagreement, the third author was
asked to provide categorization, and the final labels were determined by voting.

Before labeling the selected projects, we sampled a hundred comments from Hive'! project
to test the application and determine the average labeling time for a single comment (which
was about a minute). During this process, we found an additional smell type (vague com-
ments) that was not encountered during the MLR. The details of this smell type are discussed
in Section 4.

3.3 RQ3. What is the Perception of Software Practitioners About Inline Comment
Smells?

We have conducted an online survey through Google Forms to answer this research question.
The survey’s goal was to determine whether software practitioners agree with our taxonomy
of inline comment smells and to gather their opinions about the effect of the smells on code
maintainability or comprehension.

Survey Protocol Our survey consisted of two parts. In the first part, we asked demographic
questions as well as the proportion of their daily work time spent on code writing, reading,
and reviewing activities. Specifically, we asked the following questions:

1. What is your current job title? [Text]

. For how many years have you been working in the software industry? [Likert scale]

. What percentage of your daily work time do you spend on writing code? [Likert scale]

. What percentage of your daily work time do you spend on reading code? [Likert scale]
. What percentage of your daily work time do you spend on reviewing code? [Likert scale]

AW N

In the second part, we first asked whether they agreed that inline code comments help
them understand the code better (Likert scale). Afterward, for each smell type, we showed
its description with a sample example and asked whether they agreed that the given type of
inline comment is a smell or not, alongside their reasoning. We also asked how often they
see such kind of comment and their opinion about its impact on software maintainability and
code comprehension. Questions asked in the second part of the survey for each smell type
are listed below:

1. Do you agree that the given type of comment is a smell and should not be written in the
source code? [Likert scale]

2. Can you please explain your reasoning? [Text]

3. How often do you encounter this type of comment? [Likert scale]

4. In your opinion, how does this comment type impact the software maintainability/code
comprehension? [Likert scale]

At the end of the survey, we had an open-ended section asking whether they had anything
else to say about the smells or a new smell category they would like to add.

Recruitment We recruited participants through the networks of the authors and posted
the survey on Twitter and LinkedIn platforms. Respondents participated in a raffle consisting
of a $100 Amazon Gift Card. Before publishing the actual survey, we conducted a pilot
test with five engineers from the authors’ network to ensure that the survey was clear and
understandable. During the pilot test, we got feedback on the completion time (*12 minutes

1 https://github.com/apache/hive

@ Springer

https://github.com/apache/hive

Empirical Software Engineering (2024) 29:58 Page 13 0f53 58

on average) of respondents and some survey parts being ambiguous. We addressed ambiguous
parts in the actual survey. We did not include the responses to the pilot test in the survey
results.

3.4 RQ4. Do Developers Of Open-Source Projects Accept Pull Requests Or Issues To
Remove Inline Comments Smells?

We manually submitted a total number of 53 pull requests and issues to the eight projects
that we used during labeling. Before submitting any pull requests, we first checked the
contribution guidelines of each chosen project to make sure we did not violate the pull request
structure.

For each chosen project, we opened pull requests and issues to fix the comment smells.
The smells were chosen from the comments that we manually labeled in a way that we had at
least one smell from each category (except attribution smell type since we did not encounter
it in our labeled projects). The comments in the categories, on the other hand, were sampled
randomly. By randomly choosing comments from different projects, we aimed to ensure that
the comment smells represent a diverse set of scenarios found in real-world software projects.
This approach helped us to capture various types of inline comment smells, including both
straightforward and complex cases, which may require different degrees of understanding
and effort to fix.

In each pull request, we suggested removing or shortening a comment smell. We explained
the smell type and our reasoning for such a change. The pull requests we submitted consisted
of different types of comment smells. However, we had different approaches while removing
each type of comment. For obvious, beautification, commented-out code, and irrelevant
comments, we proposed to remove the whole comment whereas comments with too much
information were shortened considerably. Misleading comments were handled by creating a
pull request that fixed the comment to be aligned with the code. For task smells, we opened
a pull request to remove the comment from the code and created an issue in GitHub instead
regarding that task. For vague comments, we opened pull requests if we understood the issue
and the fix was trivial. Otherwise, we opened issues by asking the developers to elaborate
and explain the comment. For non-local information smells, we opened pull requests where
we moved the comment to its correct place in the code. The pull requests and issues that we
opened are available in our replication package.

It is unconventional to modify different parts of the codebase at the same time, hence; we
submitted our pull requests for each smell separately. Generally, modifying the unrelated parts
of the codebase in a single pull request is also not welcomed by the developers. Additionally,
the developers of open-source projects are likely to reject pull requests that do not fix a certain
issue, so we avoided submitting too many pull requests to one project [4]. After pull request
submissions, we counted the number of accepted and rejected pull requests and the ones that
did not receive any feedback to report the results.

4 Results

This section discusses our findings as a result of the multivocal literature review, the manual
labeling process of eight projects, and the practitioner’s survey.

@ Springer

Empirical Software Engineering (2024) 29:58

58 Page 14 0f 53

VN dun™ysey /7 «dn = pegduyser JqepuelsIopun A[Ie3[0 JOU AL Jey) SJUSWUWO)) angep
{
£11049ssouWY = 110JaSSWY 1Y)
7808 03 sjnejo("UnI P[nom 9SSAUIY YOIym UO 310J Ieau Jou SI Jey) 9pod UonuwW
¢ // } (31049ssouly UI)1I0JassauIJ1as proa drqnd 1O UOTBULIOJUT 9PIMWAISAS op1aoid ey sjuouruio)) [e90[-UON
sk sk sk sk sk ok sk ok sk sk ok sk ok sk sk ok ok ok sk sk k)
9 SHTAVIIVA // * s s s sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok // 9po9 oy Jo sured oy YsSIIurSIp 0 Wie Jey) SJUSWWo)) uonesynnedgq
9pod
L /+ oY Aq POpPYV / 9} 910IM OYM JNOQE UOTIRULIOJUT JAIS JeT[) SJUSWWO)) uonnquIy
{(UT'WIQISAS) IOUUBIS MU = IS
IoUUEBDS "POIOJUD Sey IOsn Y JJnIs eye ‘Ssuayo) 10 //
YOO[SN S39] JOUULDS SY T, "UI'WAISAS T8 pajedo] ‘NIALS
8 // WIOIJ PEal Ued YOIym ‘IOUUBIS MU B SIyew SIY) // SJUQIIOD 9S0QIoA A[IOAQ UONEWLIOJUI YOnu 00,
pa1o[dwiod Apeaife seam 1o 2Injny ur aUOp
6 1018] 9p0o sty azrundo pue 1.0 :0JOL // 9q p[noys/prnos jey sgom oy Surure[dxa sjuswWwo)) yser,
/%-o11qnd oY) 0jur pasesar s3as 1 9ouo Sop 9y pue
URIP[IYD Ino pue ow oddns 0] 9Ly [[Im OYMm ‘QUILIR(]
01 ‘Qnm Aw 03 Som A [[e 9pod SIY) [[8 9)edIpap [4/ 9poo ay) ure[dxa 0) puAUI JOU OP JBY) SJUSWWO)) JUBAQ[OLI]
81 {()AX0I1J19SS Y PUNOS MAU) KX0IJI9)SISAI-0peIR]// INO-PAJUAWIWOD ST ey} 9991d 9p0od v 9pO9 INO-PAJUIWWOD)
9T { ~*} (0L > UN02 2929 GG < UNOJ) JI JUSWILIOD B JNOYNIM 3JI[ST 9p09 JO 9931d SNOIAGO-UON 9pPOJ SNOIAGO-UOU UO JUSWOD ON
JoUUBW SNO
v 0 Jo onjeA e junod Jurugisse // {() = JUNOd -1AQO UE UI SQ0P 9P0J oY) Jeym 9)BISal Jey) SJUSWWo)) snoraqQ
{
‘K + X uImnax
K - X sumay //
SO0p 9p0od
St }(& qur “x Jur)ppe jur orjqnd A Jeym Judsardar A[oreInooe JoU Op Jey) SJUAWWO)) Surpes|sIN
$90IN0S ordwrexyg uonduosoq ad£) [owg

S[[QWS JUSWWOD IPOd SUI[UT Jo AWOUOXe], € d|qel

pringer

As

Empirical Software Engineering (2024) 29:58 Page 150f53 58

4.1 Final Taxonomy (RQ1)

The multivocal literature review led to ten types of source code commenting practices that
are considered as a smell by the practitioners. We also found an additional smell type called
vague comments during the labeling process of Java projects and observed this type of smell
occurring in Python projects as well. We did not receive any other smell type suggestions
from the practitioner’s survey. Table 3 shows the final taxonomy of these 11 smell types
alongside their description, an example, and the number of sources that they were mentioned.
Misleading and non-local smell types were mentioned the most and the least in our MLR
sources, respectively. We present each smell type in the subsections below. We also provide
example smells from the projects we labeled.

Misleading Comments that do not accurately represent what the code does are considered
misleading comments. This type of smell usually happens after a developer makes a code
change but forgets to update its related comment, which creates code-comment inconsisten-
cies and could misguide the readers. This can also occur when the author forgets to update
comments of a copy-pasted code. Figure 3 shows an example of a misleading comment
(mentioning the removal of a file named test.json, however, the file is named differently in
the following code piece).

Obvious Comments that restate what the code does without giving additional information
are considered obvious comments. Such comments decrease the readability and clutter the
source code. An example of obvious smell is given in Fig. 4, where the comment restates the
error message in the line below.

No Comment on Non-Obvious Code According to the practitioners, it is generally a
good practice to write comments to state the reasoning behind the code instead of what it
does. Lack of comments on complex parts of the source code decreases understandability
and affects software maintenance. We do not present an example for this smell type since we
ignored such smells during the labeling process.

Commented-out code A code piece that is commented out is referred to as a commented-
out code. Developers usually comment out code snippets for debugging purposes. However,
such comments should not be pushed to the codebase as they clutter the source code and are
generally ignored by the readers. An example of this smell from the Light-4j project is given
in Fig. 5.

Irrelevant Irrelevant comments are unnecessary comments that do not intend to and do
not, provide any information on the code or project. Figure 6 shows a sample irrelevant
comment from the Requests project.

Task Task comments explain the potential future work or the work that was already
completed. These are often “TODO” or “FIXME” types of comments. Task comments can
also include comments written without such keywords (e.g., “should we optimize this?”).

// Remove the test.json from home directory
File configFile = new File(homeDir + "/info.yml");

configFile.delete();

Fig.3 Example of misleading smell from the Light-4j project

@ Springer

58 Page 16 of 53 Empirical Software Engineering (2024) 29:58

make sure flags list is shallow copied

assert ril.flags is not r2.flags, "flags must be a shallow copy, not identical"

self.assertEqual(ri.flags, r2.flags)

Fig.4 Example of obvious smell from the Scrapy project

Although most modern code editors highlight task comments with keywords, developers
sometimes forget to remove them even if the task is completed Storey et al. (2008). They
often pile up and litter the source code. It is generally suggested to define such tasks in a
project/issue management tool. Figure 7 shows an example fask comment about optimizing
a piece of code.

Too much Information This type of comment smell happens when a comment is overly
verbose. Such comments often contain historical information or are very detailed but do not
provide meaningful insights, which decreases readability. An example of this smell type is
given in Fig. 8.

Attribution Comments that give information about who wrote the code are referred to as
attribution comments. Such comments are unnecessary as this information can be retrieved
from most version control systems such as Git.'> We did not find an occurrence of attribution
smell in our labeled projects.

Beautification Sometimes, developers want to distinguish parts of a source code. They
usually use a sequence of arbitrary characters to indicate those parts. These are also often
called separators. Such comments may create distractions and are generally considered unnec-
essary. An example of beautification smell from the Anki-Android project is presented in
Fig. 9, where the comment is used for indicating the location of class methods.

Non-Local Comment should describe the code near to it so that the readers can easily
understand the source code. We call comments that give systemwide details or mention code
part that is far away from the comment location as non-local comments. Figure 10 shows an
example of this smell, where the comment mentions a call to a procedure during a specific
event, which is not related to the code nearby.

Vague One of the reasons behind writing code comments is to make readers easily under-
stand the code. Thus, comments should also be intelligible. We label comments that are
difficult to comprehend as vague comments. An example of vague comment from the Kivy
project is presented in Fig. 11.

4 3\
Summary of RQ1: What types of inline comment smells are there?

We identified 11 categories of inline comment smells, which are misleading, obvi-
ous, no comment on non-obvious code, commented-out code, irrelevant, too much
information, task, attribution, non-local, vague and beautification smells through
a multivocal literature review and a practitioner survey.

12 https://git-scm.com/

@ Springer

https://git-scm.com/

Empirical Software Engineering (2024) 29:58 Page 17 of 53 58

latch.await();

// final ClientResponse response = reference.get();
Assert.assertNotNull(reference.get().getAttachment(Http2Client.BUFFER_BODY));

Assert.assertEquals(false, connection.isOpen());

Fig.5 Example of commented-out code smell from the Light-4j project

4.2 Empirical Results (RQ2)

We discuss the results of the manual labeling process on eight Java and Python projects in
this section. In the first stage of the process, two authors independently labeled the sampled
comments followed by a conflict resolution meeting. The initial agreement was 0.53 between
the two authors according to Cohen’s kappa score (Cohen 1960) and increased to 0.94 after the
meeting. The remaining conflicts were resolved in an additional meeting with the third author.
Table 4 shows the number of comments we found for each smell type. We excluded the smell
type no comment on non-obvious code during our labeling process as it requires analyzing
the code files line by line, and determining whether a given code piece needs comment is
not a trivial task. The distribution of comments and smells are shown in Figs. 12 and 13,
respectively. The labeled inline comment smell dataset is available online.!

The manual analysis of eight projects led to a considerable number of comment smells in
the selected projects, and the most observed smell type was obvious comments. This smell
type occurred the most out of all smells in all eight projects. Task comments had the second
highest number of occurrences in seven out of eight projects. It only ranked third in Jitsi, a
Java project, where it was surpassed by commented-out code comments.

We have observed all types of smells, except for attribution which had no occurrences
at all, in at least two projects. After this smell type, the irrelevant and non-local comments
had the least occurrences by only occurring in two out of eight projects. Comments with
too much information occurred only in four projects. Hence, these four types of comment
smells were observed considerably less than other types. The other smell types were observed
occasionally, although their ratio differs from project to project.

The projects with a higher contributor count (>400) have a higher ratio of proper comments
(comments that are not smells) than other projects. These projects also have higher star counts
(>40.000) than the others. We also observed that all three projects (Requests, Scrapy and
Scikit-learn) were developed in Python. Hence, the Python projects that we analyzed had
lower percentages of comment smells than Java projects.

There are some smell types whose ratio differs significantly in projects (e.g., task). To
investigate this, we analyzed GitHub repositories of the projects to see if there were guide-
lines about code commenting. We found instructions about writing task and beautification
comments in Anki-Android guidelines,14 as shown in Fig. 14. Moreover, Jitsi guidelines15
points to the old Java code conventions that reference commented-out code. On the other
hand, Scikit-learn has a different approach in its code guidelines'® where it encourages
avoiding obvious, vague, and irrelevant comments and adding comments where necessary.

13 https://doi.org/10.6084/m9.figshare.19640886.v9

14 https://github.com/ankidroid/ Anki- Android/wiki/Code-style
15 https://desktop.jitsi.org/Documentation/CodeConvention

16 https://scikit-learn.org/stable/developers/contributing.html

@ Springer

https://doi.org/10.6084/m9.figshare.19640886.v9
https://github.com/ankidroid/Anki-Android/wiki/Code-style
https://desktop.jitsi.org/Documentation/CodeConvention
https://scikit-learn.org/stable/developers/contributing.html

58 Page 18 0f 53 Empirical Software Engineering (2024) 29:58

target = chardet.__name__
for mod in list(sys.modules):
if mod == target or mod.startswith(target + '.'):
sys.modules['requests.packages.' + target.replace(target, 'chardet')] = sys.modules[mod]
Kinda cool, though, right?

Fig.6 Example of irrelevant smell from the Requests project

According to its code review guidelines, the questions that should be asked during code
review are as follows: “Is the code easy to read and low on redundancy? Should variable
names be improved for clarity or consistency? Should comments be added? Should comments
be removed as unhelpful or extraneous?”. Also, all the Python projects refer to the PEP 8
code style guide!” in their contribution guidelines. Figure 15 shows a snapshot from the PEP
8 guidelines mentioning comments should not contradict the code (misleading smell), should
be easily understandable (vague smell), and should not state the obvious (obvious smell).
Although there is a resource on Java code conventions published by Oracle,!8 it was not
mentioned in the contribution guidelines of the selected Java projects.

4 3\
Summary of RQ2: How often does each smell type occur in practice?

We manually labeled sample comments from four Java and four Python projects
and found out that nearly 44% of comments are smells with the obvious type of
comment smell having the most occurrences. On the contrary, we did not find any
occurrence of attribution smell.

4.3 Survey Results (RQ3)

Initially, we got 66 responses to our survey. Since this is an online survey with anony-
mous respondents, we filtered out potentially unrelated / low-quality responses and kept
the responses whose job title was related to software engineering. For those that have non-
software engineering titles, we also analyzed their responses and observed that they have
consistently not answered the open-ended questions. Figure 16 shows the roles of the respon-
dents. The majority of them were software engineers (we combined engineer and developer
roles). We also got responses from practitioners with positions such as head of product,
intern, postdoc, etc. The distribution of software engineering experience of the respondents
can be seen in Fig. 17, where the majority had middle to senior-level engineering experience.
Respondents’ activities related to writing, reading, or reviewing code are shown in Fig. 18.
They mostly spend their daily work on writing and reading code rather than conducting code
reviews.

We asked a general question in the survey to practitioners on whether inline code comments
help them understand the code better. The distribution of the responses is given in Fig. 19,
where 66% of the respondents agreed that they are helpful for code comprehension.

We further evaluate the perceptions of the practitioners in three categories: smell taxonomy,
smell occurrences, and impacts of smells.

17 https://peps.python.org/pep-0008/

18 https://www.oracle.com/java/technologies/javase/codeconventions-contents.html

@ Springer

https://peps.python.org/pep-0008/
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html

Empirical Software Engineering (2024) 29:58 Page 19 0f 53 58

if (nearest != null) {
// Micro-optimization: avoid polymorphic calls to Comparator.compare().
@SuppressWarnings("unchecked") // Throws a ClassCastException below if there's trouble.
Comparable<Object> comparableKey =
(comparator == NATURAL_ORDER) ? (Comparable<Object>) key : null;

while (true) {
comparison =
(comparableKey != null)
? comparableKey.compareTo(nearest.key)

: comparator.compare(key, nearest.key);

Fig.7 Example of task smell from the Moshi project

4.3.1 Perceptions on Smell Taxonomy

In our survey, we asked practitioners “Do you agree that the given type of comment is a smell
and should not be written in the source code?” and their answer’s reasoning for every smell
type. They could choose an answer from the following options: strongly disagree, disagree,
neutral, agree and strongly agree (Fig. 20).

We saw that practitioners mostly disagreed with fask comments (51.2%) being considered
as smells. Some of the reasoning behind zask comments not being smells was that these type
of comments can be useful during the development process as it reminds the engineer what
task to do but should not be there in the final product. Others who agreed with it mentioned
that rask comments should be in the issue tracking software instead of the code. A couple of
respondents made the following remarks about task comments:

def test_url_encoding_nonutf8_untouched(self):
percent-escaping sequences that do not match valid UTF-8 sequences

should be kept untouched (just upper-cased perhaps)

See https://tools.ietf.org/html/rfc3987#section-3.2

"Conversions from URIs to IRIs MUST NOT use any character encoding
other than UTF-8 in steps 3 and 4, even if it might be possible to
guess from the context that another character encoding than UTF-8 was
used in the URI. For example, the URI
"http://www.example.org/r%E9sum®E9. html" might with some guessing be
interpreted to contain two e-acute characters encoded as iso0-8859-1.
It must not be converted to an IRI containing these e-acute
characters. Otherwise, in the future the IRI will be mapped to

"http://www.example.org/r%C3%A9sum%¥C3%A9.html", which is a different

F* o O #H H o H H H H O W R

URI from "http://www.example.org/r¥%E9sum®%E9.html".
r1 = self.request_class(url="http://www.scrapy.org/price/%a3")
self.assertEqual(ri.url, "http://www.scrapy.org/price/%a3")

Fig. 8 Example of too much information smell from the Scrapy project

@ Springer

58 Page 20 0f53 Empirical Software Engineering (2024) 29:58

public static Intent getPreferenceSubscreenIntent(Context context, String subscrg
Intent i = new Intent(context, Preferences.class);
i.putExtra(android.preference.PreferenceActivity.EXTRA_SHOW_FRAGMENT, "com.1i
Bundle extras = new Bundle();
extras.putString("subscreen", subscreen);
i.putExtra(android.preference.PreferenceActivity.EXTRA_SHOW_FRAGMENT_ARGUMENT
i.putExtra(android.preference.PreferenceActivity.EXTRA_NO_HEADERS, true);
return i;

}

private void initSubscreen(String action, PreferenceContext listener) {

Fig. 9 Example of beautification smell from the Anki-Android project

“In big codebases, these todos never get done. It is better to create a ticket etc. But this
can help the reader see incapabilities of the code which I think helps comprehensibil-
ity.”

“It’s usually used to grab the attention of the developer as a reminder to complete this
part of the project code.”

“TODO comments are helpful if they 're used properly and maintained (handled). They
can help other developers understand how the code will be evolving, or they can be
helpful as reminders.”

Beautification types of comments were also disagreed by a number of respondents for
being considered as a smell. Some reasons include that they help with organizing the code by
making it more comprehensive visually. Most practitioners agreed that it makes the code more
readable in cases where the code is too long or complex. However, one participant mentioned
that these comments were necessary when IDEs were not sufficient at syntax highlighting, but
since IDEs improved in the previous years, beautification comments are not needed anymore.
The following comments are made by the respondents about the beautification smell:

//first store the account and only then load it as the load generates
//an osgi event, the osgi event triggers (through the UI) a call to the
//ProtocolProviderService.register() method and it needs to acces
//the configuration service and check for a stored password.

this.storeAccount(accountID, false);

accountID = loadAccount(accountProperties);

Fig. 10 Example of non-local smell from the Jitsi project

@ Springer

Empirical Software Engineering (2024) 29:58 Page 21 0of 53 58

if words is not None and len(words) > 1:
space = type(line)(' ')
words: every even index is spaces, just add 1ltr n spaces
for i in range(n):
idx = (2 * 1 + 1) % (len(words) - 1)
words[idx] = words[idx] + space

Fig. 11 Example of vague smell from the Kivy project

“This is a nice thing to do when your code is seen by starters who just started coding,
but in industry, there should not be a need to see this comment to understand variables
are declared there, etc.”

“If there are styling rules (i.e., variables first, then constructors, functions, helpers,
etc.), then it is not needed. But it may be helpful if the file is too long.”

“When the class or respective file is too large, which could also be another code smell
(God class), then it might be okay to use such comments.”

Respondents who disagreed with the non-local information type of comment being smell
mentioned that they may help unfamiliar developers understand how code works. On the
other hand, we got responses pointing out that this type of comment should be written in the
documentation, not in the source code, and may contain sensitive information.

For other types of smells, such as commented-out code and too much information, some
practitioners argued that these comments might be helpful for developers. For commented-out
code comments, some argued that they are useful during debugging but should not be there in
the final product whereas some said they are not necessary because they can be retrieved from
version control systems. For comments with foo much information, some arguments said that
they can be beneficial for people by making the explanation of code very clear. One response
pointed out that such comments can be useful in open-source applications where there is no
space to store documentation and historical information. However, many practitioners agreed
that these comments are hard to maintain and should be put in the documentation.

Another smell type that received interesting responses was irrelevant. While 73.1% of
the practitioners agreed that this is a smell, there were responses indicating that they can be
entertaining sometimes. We got such remarks about irrelevant smells:

”Does not contain any information regarding development and is distracting.”

[think it is a code smell but I personally would like to see these kinds of uplifting
comments if they occur only in a few places.”

The respondents generally agreed with the other types of smells according to the number
of agree and strongly agree responses. The statistics of the respondents’ agreement on the
comment smells are shown in Table 5.

4.3.2 Perceptions on Smell Occurrences

For every smell type in our taxonomy, practitioners were asked “How often do you encounter
this type of comment?” in the survey. They were expected to choose an answer from the given

@ Springer

Empirical Software Engineering (2024) 29:58

58 Page220f53

L¥¥T SLE 193 96¢ L¥T 6LT SLI 69¢ 493 [e30L,
(%977 €9 (%6 D L (%€ 8 (%¥P) €1 (%0 S %D ¥ (%97) 8 (%1'D ¥ (%69 ¥1 angeA
(%T0) ¥ (%50 (%0°0) 0 (%0°0) 0 (%0°0) 0 (9%0°0) 0 (9%0°0) 0 (%S0T (%0°0) 0 [90[-UON
(%0727) 08 (%L 01 (%67 01 (%0°€) 6 T € (CAa0NY (%0°0) 0 (9%0°0) 0 (%6°¢) ¥1 uoneoynneag
(%T0) ¥ (%0°0) 0 (%0°0) 0 (%0°0) 0 »TD € %10) 1 (%0°0) 0 (%0°0) 0 (%0°0) 0 JueAd[RLI]
(%0°0) 0 (%0°0) 0 (%0°0) 0 (%0°0) 0 (%0°0) 0 (%0°0) 0 (%0°0) 0 (%0°0) 0 (%000 uonnquNy
(%€£0) 9 (%€0) 1 (%90) T (%€0) 1 (%000 (%¥0) 1 (%0°0) 0 (%0°0) 0 (%€0) 1 UONEBWLIOJUT YoNUI 00],
(%€°6) 0€1 (%S°L) 8¢C (%EP) ST (%¥°€) 01 (%€°9) €1 (BLY) €1 (%¥€)9 (%¥0) 6 (%1°01) 9¢ Jsel,
(%9°'1) 8¢ [CAY)K4 (%0°0) 0 (%0°0) 0 %101 (%9°¢) 01 (%0°0) 0 (%99) L1 (%€ 8 9p0J JNO PAUIWWOD)
(9%1°0€) 8SL @r T ¥8 (%1°62) T01 (%S91) 6% (%L92) 99 (%S1€)88 (BI'Sk) 6L (%ETS) €61 (%E°LD) L6 SnoIAqQO
(%8°0) 61 (%S0T (%0°0) 0 (%E0) 1 (%80) T (1D € (%0°0) 0 (%0 8 (%6°0) € SuIpes[sIA
(%T9S) SLET (BLEY) 65T (%019 ¥1T (%OTL) €1T (BETI) ST (%9SS) SST (%697 T8 (%6'9¢) 9¢€1 (%€19) T8I [12us v JON

UIE[-1YI0§ Aaryp Aderg sisonboy f-1usr1 IYSOIN SN ploipuy-puy

[e10L uoylhd BAR(

s109fo1d pa3oo[as oy ur sad4£) [[ows ay) JO SOUALINIOQ § d|qe]

pringer

As

Empirical Software Engineering (2024) 29:58 Page 23 of 53 58

1400 -
1200
1000
1]
C
@
1S
£ 800
S
[&]
5 I Not a smell
g 600 [7] Obvious
[S B Task
z "] Vague
400 B Beautification
[l Commented-out code
[Misleading
200 [71 Too much information
[Irrelevant
I Non-local info
0 I Attribution

Comment Types

Fig. 12 Distribution of comment types (all projects combined)

options: never, rarely, sometimes, often, and nearly always. The distribution of responses can
be seen in Fig. 21. According to their answers, we took the weighted average by giving the
following weights respectively for each option: 0.0, 0.25, 0.5, 0.75, and 1. Then we ranked
the smell types (see Table 6) according to their weighted average starting with the most
encountered one. We omitted no comment on non-obvious code smell type from the table as
we do not have data from our labeling process to compare to.

Non-local info
%0.373

Irrelevant
%0.373

Too much information
%0.56
Misleading

%1.772 N\

Commented-out code
%3.545

Obvious
7 %70.709

Beautification ,
%4.664

© Obvious

© Task

@ Vague

@ Beautification

@ Commented-out code
Task @ Misleading

%12.127 © Too much information

@ Irrelevant

@ Non-local info

@ Attribution

Vague 7
%5.877

Fig. 13 Distribution of smells (all projects combined)

@ Springer

58 Page 24 0f53 Empirical Software Engineering (2024) 29:58

For separation comments within differents parts of a file, the following forms should be used
(depending on its level of importance):

J/RRARRR AR R A RN AR RN AN
//
J/RRARR AR R AR AR AR AR

TODO and FIXME must be written all in capitals and followed by a colon.

e // TODO: Calculate the new order // NOT: 4 FOBO—>Caleulate-the-new-order
e // FIXME: Fix the synchronization algorithm // NOT: fixmeFix-the-synchronization-algerithm

The TODO comment should be used to indicate pending tasks, code that is temporary, a
short-term solution or good enough but not perfect code.

The FIXME comment should be used to flag something that is bogus and broken.

Fig. 14 A segment of Anki-Android code guidelines

Comments

Comments that contradict the code are worse than no comments. Always make a priority of keeping the comments up-
to-date when the code changes!

Comments should be compleze sentences. The first word should be capitalized, unless it is an identifier that begins
with a lower case letter (never alter the case of identifiers!).

Block comments generally consist of one or more paragraphs built out of complete sentences, with each sentence
endingin a period.

You should use two spaces after a sentence-ending period in multi- sentence comments, except after the final
sentence.

[Ensure that your comments are clear and easily understandable to other speakers of the language you are writing in. |

Python coders from non-English speaking countries: please write your comments in English, unless you are 120% sure
that the code will never be read by people who don’t speak your language.
Block Comments

Block comments generally apply to some (or all) code that follows them, and are indented to the same level as that
code. Each line of a block comment starts with a # and a single space (unless it is indented text inside the comment).

Paragraphs inside a block comment are separated by a line containing a single #.

Inline Comments
Use inline comments sparingly.

An inline comment is a comment on the same line as a statement. Inline comments should be separated by at least two
spaces from the statement. They should start with a # and a single space.

Inline comments are unnecessary and in fact distracting if they state the obvious. Don’t do this:

X=x+1 # Increment x

Xx=x+1 # Compensate for border

Fig. 15 PEP 8 guidelines on code comments

@ Springer

Empirical Software Engineering (2024) 29:58 Page 250f53 58

Ph.D Student
Software Engineer
Intern

Postdoc
Working Student
Head of Product
Engineering Manager
Team Lead
Enterprise Architect
CTO

Head of Research Lab
General Manager

Co-Founder

0 5 10 15 20 25

Fig. 16 Roles of survey respondents

6-8
3-5
24.4%
0-2
31.7%
Fig. 17 Respondents’ years of software engineering experience
0-20% o — 2o
22.0% nem
21-40% o020
415% 7s
61-80% 4reo%
(a) Writing code (b) Reading code (c¢) Reviewing code

Fig. 18 Percentages of respondents’ daily work activities related to coding

@ Springer

58 Page 26 of 53

Empirical Software Engineering (2024) 29:58

Disagree

Neutral

17.1%

Agree

17.1%

Strongly Agree

43.9%

Fig. 19 Distribution of responses to the survey question: Do you agree that inline comments help you under-

stand code better?

When we compared the results of our labeling process to the survey results, we saw
some differences and similarities. We have encountered obvious comments the most, but
according to practitioners this type of smell ranked lower, where the majority (73.1%) said
they encounter such comments rarely or never. On the other hand, fask comments were the
most frequently encountered smell type according to practitioners with the highest weighted
average. This smell type ranked as the 2"¢ most encountered smell type during labeling.

While labeling the projects, we never encountered an attribution comment. Similarly, this
type was the 2"¢ least encountered smell type according to the practitioners. In addition,
irrelevant comments ranked the lowest as the least encountered smell type by practitioners.

Strongly Disagree

Obvious

Misleading
Commented-out code
Task

Irrelevant

Attribution

Too much information
Beautification
Non-local information

Vague

No comment on non-
obvious code

0%

Disagree M Neutral B Agree B Strongly Agree

N
[N}
o
N
@

o
N
©

@
@

® @
N

©
=)

N
|

o

12

~

© ©
3} 3

w
©

25%

50% 75% 100%

Fig. 20 Distribution of responses to the survey question: Do you agree that the given type of comment is a
smell and should not be written in the source code?

@ Springer

Empirical Software Engineering (2024) 29:58 Page 27 of 53 58

Table 5 Statistics of the

Smell Type Mean SD Median
occurrences of the smell types
observed by the survey Task 0.60 023 0.5
respondents
Commented-out code 0.59 0.22 0.75
Too much information 0.40 0.24 0.5
Vague 0.37 0.21 0.5
Beautification 0.35 0.25 0.25
Non-local info 0.32 0.25 0.25
Obvious 0.27 0.18 0.25
Misleading 0.26 0.18 0.25
Attribution 0.25 0.26 0.25
Irrelevant 0.08 0.16 0

The comparison of labeling and survey results suggests that task, vague and beautification
comments occur more frequently than other smell types whereas irrelevant and attribution
comments occur less frequently.

4.3.3 Perceptions on Impacts of Smells

Figure 22 shows the distribution of responses to the survey question about the effects of
different smell types on software. In general, survey respondents found misleading comments
negatively affecting software maintainability or code comprehension the most, as indicated
by 90% of the respondents. The practitioners also found irrelevant, vague, and no comment
on non-obvious code smells to have negative effects on software. On the other hand, task,
beautification, too much information, and non-local information types of comments could

Never Rarely @ Sometimes M Often M Nearly Always

Misleading 9 22

=
o
©

Commented-out code

Obvious 8 2
2
3

Task 5 17

Irrelevant 30 9
Attribution 18 10
Too much information 6 1

Beautification 8 13

Non-local information 10 15

No comment on non-]
obvious code

0% 25% 50% 75% 100%

Fig. 21 Distribution of responses to the survey question: How often do you encounter this type of comment?

@ Springer

58 Page 280f53 Empirical Software Engineering (2024) 29:58

Table 6 Comparison of smell ranks obtained from the labeling process and practitioners’ survey

Rank Labeling (Total Number of Smells) Survey (Weighted Average of Survey Results)
1 Obvious (758) Task (0.60)

2 Task (130) Commented-out code (0.59)
3 Vague (63) Too much information (0.40)
4 Beautification (50) Vague (0.37)

5 Commented-out code (38) Beautification (0.35)

6 Misleading (19) Non-local information (0.32)
7 Too much information (6) Obvious (0.27)

8 Irrelevant (4) Misleading (0.26)

9 Non-local information (4) Attribution (0.25)

10 Attribution (0) Irrelevant (0.08)

positively impact software as argued by the practitioners. The other types of smells were
found to have negligible effects.

4 N\
Summary of RQ3: What is the perception of software practitioners about

inline code comment smells?

We surveyed 41 practitioners with varying levels of software engineering experi-
ence. They mostly agreed with the smell types we introduced except task comments,
where some responded that they could actually be helpful. The respondents also
mentioned that the misleading types of comments are the most harmful to software
projects.

4.4 Acceptance of Pull Requests and Issues

In total, we opened 40 pull requests and 13 issues for the projects. Some developers accepted
the changes as it is, some were rejected due to keeping task comments in the code or not
accepting minor changes to the code and some did not receive any feedback. Since we opened
both a pull request and an issue for task smells, we counted the smell being fixed if either the
pull request or the issue was approved. Thus, in total, we had 45 fix attempts (by combining
eight task smells fixes). Out of these 45, we had 11 approved, 4 ignored, and 30 rejected pull
requests or issues. Our acceptance rate was 27% based on approved fixes over the approved
and rejected fixes (excluding ignored cases).

The average response rate of the project maintainers’ feedback was around 4.5 days. In
Kivy project, three of the requests were rejected almost two months after we created them,
which has a great effect on the response rate. The rate without including those three requests
is around 9 hours. The responses we received from the project maintainers can be summarized
as follows:

— Scikit-learn rejected all PRs and issues without reasoning.

— Requests project accepted only one issue. They provided an explanation for an issue
regarding a vague smell. They rejected the other PRs as developers replied saying that
they do not accept minor changes.

@ Springer

Empirical Software Engineering (2024) 29:58 Page 29 of 53 58

Impacts Negatively Impacts Slightly Negatively B Has No Impact B Impacts Slightly Positively
B Impacts Positively

Misleading 27 10
Commented-out code 7 21
Task |1 10 14 9
Irrelevant 18 10
Attribution 11 9

©

I
~

N

Too much information 4 15

Beautification 4 1

©
©

(2]
IS

Non-local information 9 11

=
N

o
=
N
o
N
N

Vague 15

No comment on non-
obvious code

0% 25%

o
S
B

75% 100%

Fig.22 Distribution of responses to the survey question: In your opinion, how does this comment type impact
the software maintainability/code comprehension?

— The eight requests we submitted for the Light-4j project were all accepted. In one of the
issues for this project, we pointed out a vague comment and asked them to provide more
detail. They explained that the comment was in fact misleading and removed it later on.

— Moshi project accepted to remove an obvious comment but rejected the issues on task
comments as they preferred the keep their tasks in the code.

— Jitsi project accepted to remove a comment that was misleading. However, they also
rejected task comments as they preferred to have them in the code.

— Anki-Android project either ignored or rejected the PRs we submitted to the project with
no explanation.

— Kivy project ignored three and rejected three of the six PRs we submitted.

— Scrapy project rejected all of the PRs and issues for no reason except for one, as they
found another related issue in our PR that suggested removing a task comment.

Overall, our PR acceptance rate was 27%. The number of accepted, ignored, and rejected
pull requests/issues is given in Fig. 23.

r

J

Summary of RQ4: Do developers of open-source projects accept pull requests
or issues to remove inline comments smells?

To get the developers’ reactions to fixing the comment smells in their projects, we
opened 53 pull requests and issues in the GitHub repository of the selected projects
and achieved a 27% acceptance rate. Some of the pull requests got rejected without
any reason and some were due to the nonacceptance of minor changes in their
project.

r
\\

@ Springer

58 Page300f53 Empirical Software Engineering (2024) 29:58

B Accepted Ignored [Rejected

Task

Obvious

Vague

Beautification

Too much info

Smell type

Commented-out code

Misleading

Non-local 1 -

Irrelevant -

0 2 4 6 8

Fig. 23 Acceptance of pull requests and issues for each smell type

5 Discussion

This section discusses the potential reasons behind the results we obtained from labeling
comment smells and the survey, as well as gives implications for researchers, practitioners,
and educators.

5.1 Revisiting Research Questions

We revisit each of the research questions that we defined in the Introduction section to further
discuss our findings and their possible explanations.

5.1.1 RQ1. What Types Of Inline Comment Smells Are There?

We have identified 11 inline comment smell types as a result of a multivocal literature review
and manual analysis done on open-source Java and Python projects. We also got practitioners’
points of view on these smells through a survey. Although the practitioners generally agreed
with the taxonomy, there could be cases where comments we defined as smells might not be
considered a smell in certain circumstances. Practitioners indicated that task comments might
be helpful to grab the attention of developers. For beautification smell, they pointed out that
these comments can ease reading a code. We also encountered supportive guidelines about
writing task and beautification comments in the Anki-Android project. Survey respondents
also mentioned that too much information and the comment giving non-local information
might help newcomers understand the project better.

Since most of the survey respondents agreed with our smell taxonomy (except task com-
ments), we included those types in our final smell taxonomy. For fask comments, because we
got a reasonable amount of responses saying they are generally forgotten, we also considered
it as a smell and added it to our final taxonomy.

@ Springer

Empirical Software Engineering (2024) 29:58 Page 31 0f53 58

Although we have conducted an MLR, analyzed Java and Python projects, and carried out a
practitioner survey, there might be additional smell types we are unaware of in these languages
as well as in other languages. More specifically, different languages might require different
commenting practices depending on their ability to express (Koornhof 2015). Considering
that the languages we manually analyzed are easy to read, the possibility of different smell
types occurring in languages that have lower expressiveness should not be overlooked. We
should also mention that our taxonomy is based on the semantics of comments. Structural
smells may also exist in projects with guidelines on comment structure. For instance, PEP
8 guidelines state that the first letter of the comment should be capitalized, there should be
two spaces after sentence-ending periods in multi-sentence comments, etc.

We have encountered various types of comments that could be considered smells; how-
ever, we decided to label them as not a smell due to our labeling procedure. One such case is
an inline comment restating the documentation comment (duplication). Because we ignored
documentation comments from labeling, such comments were labeled as not a smell. Dupli-
cate comments may lead to code-comment inconsistencies, as indicated in the study of Blasi
et al. (2021). In Python, some comments referred to what type of object should be assigned
to a variable. Although we labeled them as not a smell, they could be considered a smell
if a project requires type hinting. Comments referring to common language keywords (e.g.,
__name__ in Python) could be considered as obvious smells since developers with enough
experience would know them, and they could be easily found by an online search. However,
we labeled them as not a smell since they might be helpful to novices.

5.1.2 RQ2. How Often Does Each Smell Type Occur In Practice?

There can be various reasons why a smell type occurs frequently or rarely in practice. We
came up with several possible reasons to explain this:

— During labeling, we did not encounter any attribution comments in any of the projects.
We encountered all the other smell types at least in two projects. This might be because
version control systems such as GitHub are being used, and there is no longer a need to
have attribution comments.

— We inspected the comment guidelines of the projects, which might have an impact on
which smell type occurs more or less. We have observed that Anki-Android has the
highest percentage of task and beautification comments. This might have been caused
by its comment guidelines regarding these smell types, which encourage contributors
to use them. Jitsi’s code conventions regarding commented-out code might have led to
Jitsi having the highest percentage for this smell type. Scikit-learn’s guidelines imply
that obvious or vague comments should be pointed out during code review, which might
be the reason why it has lower percentages of these smell types. Although the Python
projects included guidelines on avoiding specific types of comments, we have observed
that developers did not comply with them fully. The reason may be related to developers
avoiding comment guidelines, which was also observed in the study of Rani et al. (2021)
on comment styles.

— We have observed that all four Python projects have fewer percentages of comment smells
than all four Java projects. This might be due to the number of stars and contributors
of the projects. We observed that all Python projects have a higher number of stars and
a higher number of contributors than all Java projects, which might be the reason why
we encountered fewer smells in Python projects. Additionally, we also found out that
the guidelines of all four Python projects include statements regarding avoiding obvious,

@ Springer

58 Page32o0f53 Empirical Software Engineering (2024) 29:58

vague, and misleading comments in contrast to guidelines of all four Java projects that
do not (see Table 7). Having guidelines that encourage avoiding these types of comment
smells might also be another reason why we encountered fewer smells when we labeled
Python projects. Since Python and Java are two different programming languages, lan-
guage pragmatics might also have played a role in these results. However, to confirm this
statement further research and studies of the two languages should be conducted.

5.1.3 RQ3. What is the Perception Of Software Practitioners About Inline Comment
Smells?

Our survey results indicate that there are differing opinions on whether a comment type
should be considered a smell and how often this smell type is encountered. This can be due
to several reasons:

— Practitioners who completed our survey had varying levels of software engineering expe-
rience. This difference might have affected the practitioners’ views on the smells. For
example, a practitioner with 13+ years of experience is more likely to encounter a certain
type of smell than a practitioner with one year of experience.

— Practitioners are more likely to work in different sectors and workplaces. Considering
that each workplace and sector can come with different work cultures, this might affect
their answers in the survey. For example, task and beautification comments received an
almost equal number of agreements and disagreements regarding whether they should
be counted as smells. Some workplaces might be encouraging these types of comments,
whereas others might not. Hence, practitioners have different views regarding these smell
types.

— All eight projects we have labeled are open-source projects. Practitioners who participated
in our survey do not have to necessarily work with open-source projects, so this might have
caused differences in the survey and empirical results. For example, the most encountered
smell type is commented-out code according to the practitioners. Our empirical research
showed that obvious comments are the most common smell type in the labeled projects.

5.1.4 RQ4. Do Developers Of Open-Source Projects Accept Pull Requests Or Issues To
Remove Inline Comments Smells?

Due to the manual submission of pull requests and issues, we could not submit hundreds
of them. In addition, we observed that developers respond negatively to the high number of
requests that deal with similar issues as they see them as spam. Hence, we chose to attempt
fixing only at most one comment from each smell type for each project. We attained an
acceptance rate of 27%. On average, the acceptance of pull requests to open-source projects
is 29% Medeiros et al. (2019). Although it is low, we obtained a very close result to the
average.

Our results indicate that the acceptance of removing inline comment smells heavily relies
on the preferences of individuals and teams. In total, we had 11 accepted pull requests or
issues. 7 of them were accepted by the developers of Light-4j. This suggests that some
individuals and teams are more welcoming toward these types of requests that remove an
inline comment smell. 30 of the requests we opened were rejected. The fact that four of
them (13.5%) were rejected due to developers preferring to maintain task comments in the
code base highlights that some teams may prioritize the inclusion of tasks in the code base

@ Springer

Page 33 0f 53 58

Empirical Software Engineering (2024) 29:58

2
«/

w/

«/
«/

w/

x/
v

x

x/
x/

anSep

[e90[-UON

uoneoynNEIg

uonnquNy

UOTJBUWLIOJUT YN 007,

AseL

JUBAQALI]

QP02 JNO-PIJUIWWO))

QP09 SNOTAGO-UOU UO JUSUWIIOD ON
snoraqQ

SuIpea[SIA

WIRS[-IIY198

Aary

Adeiog

sjsanbay]

[p-1y3ry

TYSON

IS

plolpuy-Bjuy

uoykg

eAR[

(S90UQI0JaI JOAIIPUT 0) JJAI SYSLIASE) PAPIOAL 2q P[NOYS S[[AWS Jo sadA) Yorym Suruonuaw sauraping uonnqriuod yim sydeloig /ajqel

pringer

Qs

58 Page34o0f53 Empirical Software Engineering (2024) 29:58

over the potential threats of inline comment smells. Furthermore, 8 requests were rejected
(26.5%) due to developers not accepting minor changes. This indicates that some teams may
be resistant to changing code that is already working even if removing the comment smell
would be beneficial but a minor adjustment. Lastly, 18 requests were rejected (60%) as the
developers did not provide any information regarding their decision. It is likely that they saw
our PRs as spam or decided to not consider them since the PRs were not fixing a bug or
adding a new functionality.

Two of the projects that we submitted requests to explained that they prefer keeping task
comments in the code base. We observed a similar case in our survey where some developers
mentioned that they do not consider task comments as smells. The results indicate that the
definition of comment smells of programmers may not align with that of the literature due to
the preferences of individuals and teams. However, according to the feedback to our requests
and survey results, the comment smell types that are most likely to receive inconsistent
opinions are task and beautification smells. Thus, the alignment of definitions of comments
smells among programmers and in the literature can change depending on the smell types.

In general, the acceptance of removing inline comment smells is largely determined by
the preferences of individuals and teams, which may be the reason for the low acceptance
rate that we obtained. Although removing comment smells is inherently valuable for the code
base, developers of open-source projects generally do not prefer pull requests that propose
such a change. Thus, our acceptance rate indicates that removing comment smells can be
beneficial for the code base though it is not a priority for the developers.

5.2 Implications for Researchers

There are various ways our findings can be utilized by researchers. In this subsection, we
explain how and what type of research can be conducted about comment smells in relation
to our findings.

— We have established a taxonomy of comment smells and labeled 2447 comments. The
dataset we published can be referenced by researchers to develop tools that can be used
to detect comment smells and identify their types, which will contribute to increasing the
readability and writability of code. The taxonomy and labeling of the comments can be
utilized as a reference point to identify comment smells that occur. Understanding which
types of comment smells occur the most and why can enhance the comment quality of
code.

— The eight manually labeled projects of two different languages, Java and Python, imply
that there are differences in the number of smells they have. It is recommended that
researchers conduct similar labeling processes for different languages to see if there are
differences in the number of smells in correlation to the language. This can improve our
understanding of comment smells in terms of why they occur and how their numbers can
be decreased. Additionally, through the labeling of more projects, the taxonomy can be
extended to include more types.

— How our understanding of this taxonomy of comment smells can play a role in comment
quality is a question that is still unanswered. Case studies can be conducted to answer this
question. Software engineers who have been exposed and not exposed to the taxonomy
can be compared in terms of the number of comment smells they can identify or have in
their code.

— We have conducted a survey for practitioners to validate our taxonomy. We observed that
some participants did not view some of the types in our taxonomy as smells. For example,

@ Springer

Empirical Software Engineering (2024) 29:58 Page 350f53 58

task and beautification comments improved the quality of the code according to some
practitioners. Hence, approaches from people with different backgrounds or experience
levels in the software industry can be further investigated.

— Comment smells can occur at different stages of the software development cycle. For
example, smells can be overlooked during code reviews. These stages can be inspected
to identify which smells occur at which stages. Acquiring this knowledge can lead to
finding new ways of avoiding comment smells.

5.3 Implications for Practitioners

We observed that out of eight projects, only three of them had guidelines regarding how
the comments should be written. These guidelines only hinted at one to three smell types
identified in this paper and did not cover writing comments as detailed as in other sections.
This suggests that projects have a low number of comment guidelines.

Although these guidelines regarding the comments are relatively limited in terms of the
smell types they mention, the observations imply that guidelines on comments can have an
impact on the comment quality, as we have discussed in the previous section. Hence, it can
be recommended that practitioners include comment guidelines in their projects to increase
comment readability and writability.

Furthermore, a model can be implemented by practitioners to detect inline comment
smells automatically in their projects. This would facilitate the reviewing process and help
code reviewers detect comment smells. Ultimately, this would lead to an increase in the
quality of the comments on the projects.

5.4 Implications for Educators

In the software engineering education curriculum, there is a lack of training in code comment
writing. The proper way of using inline comments can be overlooked in the lectures.

We tried to find lecture notes regarding code comments by Google Search, which yielded
results that were scarce in number. Even though we found sources that give guidelines for
comments, most of them lacked detailed information regarding distinct comment and smell
types. These sources include lecture notes from Stanford University (Ousterhout 2015),
University of Utah (Commenting 2023), and University of Puget Sound (Chun et al. 2023)
that encourage commenting on non-obvious code and avoiding obvious comments.

In introductory courses, instructors often encourage students to write too many comments,
to the extent that their projects include many obvious comments that explain basic code. For
example, a source from the University of Washington (of Washington 2023), specifically
gives a definition for inline comments in contrast to the above-mentioned sources. However,
this source does not give a direct guideline for writing an inline comment and even gives an
example that can be labeled as an obvious comment. This inline comment example and the
lack of guidelines can lead a student to explain obvious code, which causes the number of
smells to increase in code.

This claim can further be supported by blog entries of two senior software engineers
(Spertus 2021; Kunk 2011). Both blog entries agree that students feel like they must write
a lot of comments for a good grade. Without the required training in comment writing, this
can lead many students write comments for the sake of writing them. While this might be
beneficial for extreme beginners to understand coding, it might cause a habit of explaining
obvious code.

@ Springer

58 Page360f53 Empirical Software Engineering (2024) 29:58

The taxonomy of comment smells can be introduced in lectures to software engineering
candidates. Educators can use our study to organize a session that focuses on comment smells
and their importance on code comprehension. This can raise awareness of code readability
and writability, which can lead to projects having comments of better quality.

6 Threats to Validity

In the following, we discuss potential threats to the internal and external validity of the study.

Internal Validity: There are various validity threats to the design of our study. First of all,
our search query defined for MLR may not capture some works on comment smells, and we
may miss important sources. We mitigated this threat by deciding the keywords based on
previous similar MLR studies. Execution of the defined query in Google Search (for grey
literature) was conducted by two authors for the mitigation of the filter bubble. Secondly,
we analyzed the sources provided by Google Search and Google Scholar. There could be
academic or gray literature materials related to the study that were not indexed by these
engines. To minimize the risk of any subjectivity in the MLR process, we followed the MLR
guidelines of Garousi et al. (2019). During the primary study selection and data extraction,
all steps were completed by two of the authors independently. When there was any conflict,
the third author was consulted in the decision process.

The documentation comments in Java were filtered out by checking whether a given
comment starts with “/**”. However, in some cases, there were method-level comments
starting with “//”” or “/*”, which were filtered out manually during the labeling process and
replaced with inline comments. We also ignored the license and linter-disabling (e.g., #noqa
in Python) comments during the labeling process. Thus, the number of inline comments
shown in Table 2 is not exact.

We sampled the comments with file granularity, which led to 266 comments being dupli-
cates due to the same piece of code being written in multiple places in a source file (especially
in test codes). This could potentially create a bias in the analysis. However, we believe that
file-level sampling helped us to label the comments with higher confidence.

Although two authors labeled the comments, there could still be a possibility of mislabeled
comments. For instance, annotating a comment as misleading requires understanding the
related code part completely. Moreover, distinguishing vague and non-local comments from
not a smell was sometimes difficult as they required a decent amount of domain knowledge.

Furthermore, there are several threats to the validity of the survey results. To give an
incentive for participation, we promised $100 Amazon Gift card to one of the participants
who would be chosen randomly. Even though this helped us recruit developers from different
backgrounds, it might also have created a sampling bias in the survey by attracting people
who are completing it for its prize.

The survey had 52 questions that included multiple choice and open-ended questions,
which are estimated to take 15-20 minutes to complete. The length of the survey might also
cause biased answers because the attention span of a participant decreases after spending
10 minutes on a survey (Sen 2023). This increases the likelihood of a participant answering
without thinking carefully or picking a random response.

Another potential threat to the survey is that the respondents may misunderstand the
smell definitions. To mitigate this issue, we provided a description and an accompanying
example for each smell type. We also conducted a pilot test with five software engineers
from the authors’ network before sending the survey to the practitioners to make sure that
the questions were understandable. We adjusted the questions according to their feedback to
make sure that the questions and smells presented in the survey were comprehensive.

@ Springer

Empirical Software Engineering (2024) 29:58 Page 37 0of 53 58

External Validity: An external validity threat related to the analysis of only eight projects
is the limited generalizability of the study’s findings to other software projects or contexts.
Because the sample size is small and may not be representative of the broader population
of software projects, the results obtained from these eight projects may not be applicable
to other projects with different characteristics, development processes, team structures, or
technologies.

Lastly, we submitted 53 pull requests and/or issues, which is relatively small to make a
general statement about the developers’ perception of removing code smells from open-source
projects. Moreover, the pull requests were open to the personal opinions of the developers
who are reviewing them as we encountered such cases. All developers have different priorities
regarding the code; thus, it is difficult to generalize the results to all developers of open-source
projects.

7 Conclusion and Future Work

Code comments are valuable items when it comes to documenting and explaining source
code. Having low-quality comments negatively affects source code comprehension and dete-
riorates software quality. In this study, we present a taxonomy of inline code comment smells
consisting of 11 categories. Our manual analysis of eight open-source Java and Python
projects revealed that inline comment smells exist in projects, and the majority of them are
obvious comments. We also published the manually labeled smell dataset online. Moreover,
we conducted a survey with software practitioners to get their opinions on the inline com-
ment smells and their effects on program comprehension and maintainability. The majority
of respondents agreed with the smells defined in our taxonomy except for zask comments and
they found misleading comments to be the smell type that negatively affects code compre-
hension and maintainability the most. We submitted 53 pull requests and/or issues to remove
comment smells from open-source projects in order to better understand their significance
for developers, where we achieved an acceptance rate of 27%. Despite the indication that
removing comment smells is beneficial, we received a low acceptance rate as developers of
open-source projects tend to reject pull requests that do not necessarily fix issues and oppose
changing working source code.

There are several implications of the study for software practitioners, researchers, and
educators. First, researchers can build automated models to recognize comment smells in a
project using our published dataset. Second, our taxonomy can be used as a baseline to be
extended by researchers. Third, practitioners can include our smell taxonomy in their project
contribution guidelines on code comments. Lastly, educators can raise awareness of code
comprehension by having lectures about our smell taxonomy.

In future work, we plan to develop a model for automatically detecting smell types by
utilizing natural language processing and machine learning techniques. Another challenge
that we would also like to undertake is to investigate no comment on non-obvious code smell
type and develop algorithms to find the occurrences of that smell automatically.

Appendix

The list of sources we gathered from grey and white literature during MLR is given in Tables 8
and 9.

@ Springer

Empirical Software Engineering (2024) 29:58

2

Ke1n
Kelny

Ke1ny

» Kein
M Aein
Ke1ny
Keiny

Ke1n

Kelny

Ke1ny

» Kein

(€102) [930A ©ap]
ped e [IDS S] 9poD Sunuour
-wo) AUpN uawwo) ON

(€207) uuewyoy
9po) UuoyIAd Sunuswwo))

(€20T) sueyz
uoyIAd Ul SJUSWWo)) SUNLIA

(L107) your
-191(J (PPO)) INOX JUWWOD)
0]} ABp\ 199110D) B QIY][, S]

(6107) IPRALLL, 3T ILIMY
9pod INOK JuUSWIWOd J U0

(9102) yorIg
[[PWS VY S judwo)) 9po)

(€200
Sunuowwo) Sunuowwo))

(6107) uruoI) jHuswwo)
9poD PpooD B SONEIN JBUM
(6107) U019y s1qeH poon
puE sao1oe1d 159 01 B oNI']
9p0oD) INOX JUSWWO)) 0} MOH
(L107) Inoog "A[3n

Ay) pue ‘peq 9y} ‘pood Y
19p0d Ul Sjueunuod Jumng
(6007) unIeiy

diysuewsyjerd aremijos 9[ide
Jo Yoogpuey Y :9pod ued[)

QP09 SNOTAQO-UOU
UO JUSWWOD ON UONNqLIIY

9pooIN0 UOTEWLIOJUT
[BOO[UON PRJUSWIUIO))

sno1aqO

Suipes[siy 2dAJ,

90In0S

58 Page38o0f53

(1 1red) synsax YN Jo Arewwing g a|qel

pringer

As

Page 39 0f 53 58

M

Ke1n

Kelny

Ke1ny

Keiny

Kelny
Ke1n

Kelny

Ke1ny

Ke1n

Kelny

(L107) uor[[uunog pue
«Cu>=®m QE&EEOU 0] JON 10

juouwIwio) OJ, :YIBIH 9po)d

(ST0D)
Sppo(§ 9pod N0 PIJUdW
-WOd JIWUWO0D] Uop ‘9sed[d

(9000
poomIy AYA\ NOX [[AL sjuow
-wo) ‘MOH NOox S[[AL 9poD

(L107) 1os10D
9po) Juowwo) M AYm

(6100
1[[9] 9PO2 INOA Ul SJUSWIOD
Q)LIM 0} MOY U0 saonoead 1sag

(020T) AO[[ON sHudUIWO))
SNSIOA 9pO)) - 9pOD UBI[D
(6107) Jopue[IoON Sjuduw
-wo) 9po) Junup doisg
(€202) ureny

9poD) ++D pue D Sunuow
-wo)) Jo SAYA pue SMOY Y],
(€200)

ISIOI], WY} 9SBId 0] MOy
S,QIOH °SMIIAAI 9pOd InoA
uml ued SJUSWWOD SSI[AS()

(0T07) swepy juswwo)
9p0) POOD) B JJLIA\ 0} MOY

3P0 SNOTAQO-UOU
UO JUSWWOD ON

9po2IN0 UOHBULIOJUT
[EOOJUON PRIUAWIUIO))

odAy,

201n0§

Empirical Software Engineering (2024) 29:58

panunuod g ajqel

pringer

Qs

Empirical Software Engineering (2024) 29:58

58 Page 40 0f53

(8107) [[ows 9pod
B SJUQUITIOD 9POI ALY ([[PWS

2 Ke1ny 9poD Y SIUWWO)) 9pO)) oIy
(8107) unieoH
werSold INox Ul SJUSUIo))
2 M M M A A Aeln peg pue sUdWWO) PoOOD)
(S1027) Joyuiooy
2 2 A Aeln sor] QIe SJUAUIIO)) 9POD)
(L107) vredd0g
uonsonb oy st Jey) // (Juow
N A Aeln -w0d 0} 10U IO JUSUIOD OF,
(¥107) U
M A A AelD S)USWILIOD PEq ILIM 0) SABM /
(8107) SndJeA Judw
2 N A Aeln -wod peq UOWIWIOd POOD)
(1102) 1500M
M 2 M M KelH (9pod INOA JUAWIWOD) U0
(L102) sHnyos
POpIOAR 9q PINOYS SjudW
2 M N A Kein -wod jo sadA) yomym ureo|
(810¢) bInAeN 9pod
M KeID) INO-PAJUSWIWOD OIBYS I, UO(]
(0202) 12201
M M M el s)juo Sunuawwio) 9po) ¢
(2T107) eysnuef [[op suow
M A fe1n -woD 9po) AUM O] MOH
(1100)
Xan] 9poo-INoL-Junuowod
2 M M Kelny -10J-s9o10e1d-1599-G
9pOJ SNOIAQO-UOU uoneULIOJUI 9p0o% N0 UOT)EBULIOJUI
JSe], JUBAQ[OI] UOWEBOUNNEdg U0 JUSWIWIOD ON UONNquiy [eOO[UON PAIUOWILIO) YONW 00], SNOIAQQ Surpes[sijy odA[, 90In0S

panunuod g ajqel

pringer

Ns

Page 41 0of 53 58

Empirical Software Engineering (2024) 29:58

M

Ke1ny

Ke1ny

Keiny
Kelny

Kein

Ke1n

Kelny

Kelny

Kein

Kelny

(€207) uosIe]
941§ Jueuwo) pue Surpo)

(0207) Teyseted Aem WSTY
Sy} SIUSUILIOY) ILIAN 0} MO

(0207) Aou

-SBI SJUAWWOD JO pLI Furjes
Kq Ayiqepear apod aaoxduy
(1102) yuny uow

-wo)) 03 JON JO JudWwWo)) o,
(0207) UeAn3N sjuowrwo))
POAN 3, U0(J S9POD) POOD) AU
(L100)

UOI[IOJA] 9SBqopO)) INOX UJ
yun(] 9poD) INQ PAUWOD)
(8102

AUOH sjudWWO) PO
PN 9M Aym suosedy 4
(8100

UIMHTOIA A1IOS JON W,] pue
) Suipedy moypm 9pod
pajuawIwIo)) Inox A9 1.1
(8107) NeZOUOL] (,U00S

QA NOX S[TB SunuowIo))
9po)) 159331g Y ATy IBYM
(£207) Siuawwod 9pod Jur
-JIIA\ SIUSWITIIOD 9POO SUTILIA

JSeL

JUBAQ[RLI]

uoneoynNedg

P09 SNOIAQO-UOU
U0 JUSWIWOD ON UONNquUNy

uonewLIojul
[EOOJUON PRIUAWIUIO))

9po2INO UOTBULIOJUT

Jonur 0QJ,

SnoIAqQ SUIpea[SIA

odAy,

201n0§

panunuod g ajqel

pringer

Qs

Empirical Software Engineering (2024) 29:58

58 Page420f53

(¥102) uoy

M Ae1D sjUAWWOD Poo3 JO spury ¢

(£202) eyes

{PpP0D INOX O} SJUSUWIWOD)

v v A A Ae1n ppy nox pinoys udym
(1202) JAnng uon

-sanb ® oq jou prnoys i1 Jou

M A Keln 10 SJUSUILLIOD 9POD LM O,

(1200)

smIedg syuowwod 9pod Jur

M Aeiny -um 10 sdonoead Isog
(6107) Aesy apod

ut sjuewwod Jo (soxd Apysowr

M Keiny Inq) suod pue soid oyf

(0207) yresoy Kem poon e
ur sjuawwo)) SunLpy :po))
M M Ke1n ue9[D Qjowold Jey], sdif, 6

(L107) suatog
sjuauwIuIo)) Uuo - sjudwrwo)

» N » A, S Aein :9po) mog ur [1ag Sunysig
(6102) PIBUOQOIN Iuau
2 2 M Aeln -wOO 0} JOU JO JUIWWOD O,
(8007) Ye[m3y 9po)
M M Kein Inogx juowwo)) o3 sdif, €]
(1207) e syusw
-wo) dpo) SUDLIA I
M M Ke1D MO[[0] 0} seonoeld 1sg 01
AP0 SNOTAQO-UOU uoneuLIOJul 9poo N0 UOT)BULIOJUT
JSBL, JUBAJ[RLI uoneoynneayq U0 JUSWIWOD ON uonnquny [BOO[UON PAIURWILIOD) yonw 00J, snoiaqQ Jurped[siy 2dAL, 90IN0S

(7 1red) synsax YN Jo Arewwing 6 a|qel

pringer

As

Page 43 0of 53 58

M

AYM

M

M

AM

AMYM

Kelny

(8100)
‘[e 30 eweAurys uorsuayard
-wo) weidold 31soog o)
sjuaWIWIO)) 9po)) SulzAeuy

(£00D)
‘819 URL /4 ¢SIUSWILIOD)
peq 1o s3ng :judwwio)! ./

(100
‘e 3o ue], SII0UIISISUOIUT
9pOD-IUAWWO)) 10910
0] SjuoWwwio)) Jd0peAef
Sunsay, JUAWOD)) @)

(L007) Te 10
1N} saguryD JUSWWo)) pue
9p0) 20INOS UIMIQE Uuon
-B[oY 9Y) UQ (PA[OAH-0D
sjuawIwio)) pue dpo) o q

(0107) & 12 stureyy]
JOUTJAOOpRARL QU] :Sjuow
-WO0D) 9p0) 2IN0S JO JuUdW
-ssassy Ajfend) onewony

(€100

“[2 19 [PIRIS SIUSWILIO)) 3P0
Q0In0§ Jo sIsA[euy Afend)
(1202) AnH 9poD) nox
WOL] SJUSWWO)) JAOWNY
SBA[J MAIADY dpoD)

3P0 SNOTAQO-UOU

JUBAS[OI] UOTEOYNNEdg U0 JUSWWOD ON Uonnquiy [EOOTUON PRIUAWIUIO)) SNOTIAQQ SUIPe[STIA

odAy,

201n0§

Empirical Software Engineering (2024) 29:58

panunuod g 3jqeL

pringer

Qs

Empirical Software Engineering (2024) 29:58

2

AYM

AMYM

MM

M

M

M

M

(02020) e 19 BAOIMS
A[reonewio)ny 9po)) 29In0§
BAR[ULl SJUSWIWIO)D) JUIISIS
-uodu] JunodlR(Spremoy,

(0200
‘[& 39 SO SHUSWUIOD PASU
Jey) suonedo] Junoipaid 1oy
[opouwl pue Jasejep Y (9pod
AUIuQUIUIOd T PNOYSs 913y A

(6107) Te 10
Sueny suoneOOT JUSWWOD)
10Ipald 01 uoneuLIojuf
1XoJuo) 9po) Jurureo|

(L002)
‘Te 390 ue], ([NJOs() QION
sjuowwo) weisold e\
0] MOH ‘SJU_UWIWOIOH

(S000)
up[sey opo) ueyy, uey
-10dW] QIOA] 91y SIUSWIWOD)

(6100)
‘Te 19 U9A\ SQIOUQ)SISUOOU]
JUAUIIO)-Ip0) U0 ApmS
eondwyg o[eos-a81e] VY

(0202) T8 19 [oe]
-deyjueq se3uey) 9po) uo
paseq sjuawwo)) afendue|
[eaneN epdn 01 Surured|

3P0 SNOTAQO-UOU

JUBAS[OI] UOTEOYNNEdg U0 JUSWWOD ON Uonnquyy [EOOTUON PRIUAWIUIO))

SNOTIAQQ SUIPe9[STIA

odAy,

201n0S

58 Page 44 0f53

panunuod g 3jqeL

pringer

As

Page 45 0of 53 58

M

M

M

M

M

M

M

(0202) AIPPIS Pue 1qqey
JTOMION JUSLINIY 9SIWEIS
Suisn Koudysisuoou] juowr
-wo) 9po) Junoddeq

(9102) erRUPLIS
SweIS01 AR UT SJUSUITIIO))
0do], jo smels eq-ol-dn
) Sunodre(A[eonewony

(1102) T8 10
uenoey sweISold eAef ul

s)uaWIWo)) Jo Apmys y /juou
-wo) oA SI poor MOY

(8000
‘T2 32 YI[BJA JUSWWO) S,U0T}
-oung e Sunepdn Ioj 9reu
-oney oy Surpuejsispun

(6107) ‘T& 12 Suepp Juowr
-$$9SSY pue SuIpuelsiopun)
JUSWWO)-3POD) daaq

(€100

‘e 19 3Suop\ UONEIdUAD
juawIwIo) dnrwWoNy Ioj
S9)IS JOMSUY pue uonsang)
Surury JUOWWO)OINY
(6100) Te R

Suepy saImeo) [eIMIONNSs Uuo
Paseq POYIoW UOISIOAP Juaul
-wod 9pod e Jo ApmgS

3P0 SNOTAQO-UOU

JUBAS[OI] UOTEOYNNEdg U0 JUSWWOD ON Uonnquiy [EOOTUON PRIUAWIUIO)) SNOTIAQQ SUIPe[STIA

odAy,

201n0§

Empirical Software Engineering (2024) 29:58

panunuod g 3jqeL

pringer

Qs

Empirical Software Engineering (2024) 29:58

M

MM

M

M

M

M

M

(0T07) "Te 10 ouLrewwE]
9p0D) 901n0§ O, KoU)SISUOD)
sjuoWIWIo)) AL, Aen[eaq of,
yoeoiddy Surjepo oidoy, v

(0200) e R
nr] Supepdn juswwo)
QwIL-uf-snf Sunewoiny

(1202) 'Te 32 [oxyoe[deyiued
QPO 90INOS PUE SJUSWIWOD)
UIIMIOE UONIA)I(] AOUS)SIS
-uoou] owip-upsng dea(g

(L100)
PIB[[IqOY pue [0Jey SIUAW
-wo) 9oder] Sunodeg

(6000) 'Te 10 neAo
-iped opo) wIsAS Sune
-1odQ ur syuamwIo)) JO SANSI
-I0)0BIRY) PUE SIIWOUOXE],
- s1owweI3old o) Suru)sr|

(9002)
uessey pue Juerf TOSI3

-1S0J Ul SJUAWIWO)) JpoD
Jo uonnjoaq 9y} Surunuexyq

(8002) '[& 10 K2101§
$10d0[oAd(] 21BMIJOS JO SI01)
-ovId IOA\ 9U) UI 90y ®
Keld suonejouuy se], MOH
Suuordxy :3ng o, 10 0QOL

3P0 SNOTAQO-UOU

JUBAS[OI] UOTEOYNNEdg U0 JUSWWOD ON Uonnquyy [EOOTUON PRIUAWIUIO)) SNOTIAQQ SUIPe9[STIA

odAy,

201n0S

58 Page 46 of 53

panunuod g 3jqeL

pringer

As

Page 47 of 53 58

Empirical Software Engineering (2024) 29:58

(0z02)

‘Te 10 reyZ sisA[euy weisold

BIA sjuowwio)) agenJue] [ex

-njepN Sunededoid pue Suikjy

S OgA -Isse[D) A[ednewomny (Dd0

(8107) "T& 19 SO sjuduwt
-wo) POYIRIA JUBPUNPIY
M M Auypm 10919 03 Surured] doog

3P0 SNOTAQO-UOU uorewLIojul 9pooINO UOHBULIOJUT
JSBL, JUBAQ[OI] UONEOYNNEdE UO JUSWWOD ON UONNQUIY [EOO[UON PIUAWIWIO) YONW 00J, sNotaqQ Suipeo[stiy 2dAL, 201n0§

panunuod g 3jqeL

pringer

Qs

58 Page480f53 Empirical Software Engineering (2024) 29:58

Funding Open access funding provided by the Scientific and Technological Research Council of Tiirkiye
(TUBITAK).

Data Availability The labeled inline comment smells dataset and MLR sources are available at https://doi.org/
10.6084/m9.figshare.19640886.v9.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Commenting (2023) https://www.cs.utah.edu/~germain/PPS/Topics/commenting.html. Accessed 10-04-2022

Writing code comments (2023) https://web.archive.org/web/20210327171829/https://developers.google.
com/tech-writing/two/code-comments. Accessed 28-04-2022

Are code comments a code smell? (2018). https://steemit.com/programming/ @beggars/are-code-comments-
a-code-smell. Accessed 28-04-2022

Adams T (2020) How to write a good code comment. https://www.pullrequest.com/blog/how-to-write-a-
good-code-comment/. Accessed 28-04-2022

Aguilar JM (2008) 13 tips to comment your code. https://www.devtopics.com/13-tips-to-comment-your-
code/. Accessed 28-04-2022

Allain A (2023) The hows and whys of commenting ¢ and c++ code. https://www.cprogramming.com/tutorial/
comments.html. Accessed 28-04-2022

Allamanis M, Tarlow D, Gordon A, Wei Y (2015) Bimodal modelling of source code and natural language.
In: International conference on machine learning, PMLR pp 2123-2132

Asay M (2019) The pros and cons (but mostly pros) of comments in code. https://www.techrepublic.com/
article/the-pros-and-cons-but-mostly-pros-of-comments-in-code/. Accessed 28-04-2022

Atwood J (2006) Code tells you how, comments tell you why. https://blog.codinghorror.com/code-tells-you-
how-comments-tell-you-why/. Accessed 28-04-2022

Blasi A, Goffi A, Kuznetsov K, Gorla A, Ernst MD, Pezzé M, Castellanos SD (2018) Translating code comments
to procedure specifications. In: Proceedings of the 27th ACM SIGSOFT international symposium on
software testing and analysis, pp 242-253

Blasi A, Stulova N, Gorla A, Nierstrasz O (2021) Replicomment: identifying clones in code comments. J Syst
Softw 182:111069

Boccara J (2017) To comment or not to comment? // that is the question. https://www.fluentcpp.com/2017/
05/02/to-comment- or-not-to-comment-that-is-the-question/. Accessed 28-04-2022

Boswell D, Foucher T (2011) The Art of Readable Code: Simple and Practical Techniques for Writing Better
Code. O’Reilly Media. https://books.google.com.tr/books?id=RPryrfuliP4C

Brack F (2016) Code comment is a smell. https://fagnerbrack.com/code-comment-is-a-smell-4e8d78b0415b.
Accessed 28-04-2022

Chun C, O’Neil K, Young K, Christoph JN (2023) Writing code and code comments. https://soundwriting.
pugetsound.edu/pugetsound/subsection-code.html. Accessed 03-10-2022

Cochran WG (2007) Sampling techniques. John Wiley & Sons

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37-46

Corazza A, Maggio V, Scanniello G (2018) Coherence of comments and method implementations: a dataset
and an empirical investigation. Software Qual J 26(2):751-777

@ Springer

https://doi.org/10.6084/m9.figshare.19640886.v9
https://doi.org/10.6084/m9.figshare.19640886.v9
http://creativecommons.org/licenses/by/4.0/
https://www.cs.utah.edu/~germain/PPS/Topics/commenting.html
https://web.archive.org/web/20210327171829/https://developers.google.com/tech-writing/two/code-comments
https://web.archive.org/web/20210327171829/https://developers.google.com/tech-writing/two/code-comments
https://steemit.com/programming/@beggars/are-code-comments-a-code-smell
https://steemit.com/programming/@beggars/are-code-comments-a-code-smell
https://www.pullrequest.com/blog/how-to-write-a-good-code-comment/
https://www.pullrequest.com/blog/how-to-write-a-good-code-comment/
https://www.devtopics.com/13-tips-to-comment-your-code/
https://www.devtopics.com/13-tips-to-comment-your-code/
https://www.cprogramming.com/tutorial/comments.html
https://www.cprogramming.com/tutorial/comments.html
https://www.techrepublic.com/article/the-pros-and-cons-but-mostly-pros-of-comments-in-code/
https://www.techrepublic.com/article/the-pros-and-cons-but-mostly-pros-of-comments-in-code/
https://blog.codinghorror.com/code-tells-you-how-comments-tell-you-why/
https://blog.codinghorror.com/code-tells-you-how-comments-tell-you-why/
https://www.fluentcpp.com/2017/05/02/to-comment-or-not-to-comment-that-is-the-question/
https://www.fluentcpp.com/2017/05/02/to-comment-or-not-to-comment-that-is-the-question/
https://books.google.com.tr/books?id=RPryrfu1iP4C
https://fagnerbrack.com/code-comment-is-a-smell-4e8d78b0415b
https://soundwriting.pugetsound.edu/pugetsound/subsection-code.html
https://soundwriting.pugetsound.edu/pugetsound/subsection-code.html

Empirical Software Engineering (2024) 29:58 Page 49 of 53 58

Cronin M (2019) What makes a good code comment? https://itnext.io/ what-makes-a-good-code-comment-
5267debd2c24. Accessed 28-04-2022

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for
language understanding. In: NAACL

Dietrich E (2017) Is there a correct way to comment your code? https://blog.ndepend.com/correct-way-
comment-code/. Accessed 28-04-2022

Dodds KC (2015) Please, don’t commit commented out code. https://kentcdodds.com/blog/please-dont-
commit-commented-out-code. Accessed 28-04-2022

Dogan E, Tiiziin E (2022) Towards a taxonomy of code review smells. Inf Softw Technol 142:106737

Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? on the relation between source code
and comment changes. In: 14th working conference on reverse engineering (WCRE 2007), IEEE pp
70-79

Fronczak S (2018) What are the biggest code commenting fails you’ve seen? https://blog.submain.com/biggest-
code-commenting-fails/. Accessed 28-04-2022

Fuex J (2011) 5 best practices for commenting your code. https://improvingsoftware.com/2011/06/27/5-best-
practices-for-commenting-your-code/. Accessed 28-04-2022

Garousi V, Felderer M, Méntyld MV (2019) Guidelines for including grey literature and conducting multivocal
literature reviews in software engineering. Inf Softw Technol 106:101-121

Garousi V, Kiigiik B (2018) Smells in software test code: A survey of knowledge in industry and academia. J
Syst Softw 138:2-81

Geiser M (2017) Why we comment code. https://dzone.com/articles/why-we-comment-code-yet-another-
code-commenting-ar. Accessed 28-04-2022

Godin K, Stapleton J, Kirkpatrick SI, Hanning RM, Leatherdale ST (2015) Applying systematic review search
methods to the grey literature: a case study examining guidelines for school-based breakfast programs in
canada. Syst Rev 4(1):1-10

Goffi A, Gorla A, Ernst MD, Pezzé M (2016) Automatic generation of oracles for exceptional behaviors. In:
Proceedings of the 25th international symposium on software testing and analysis, pp 213-224

Gvero T, Kuncak V (2015) Synthesizing java expressions from free-form queries. In: Proceedings of the
2015 ACM SIGPLAN international conference on object-oriented programming, systems, languages,
and applications, pp 416432

Haouari D, Sahraoui H, Langlais P (2011) How good is your comment? a study of comments in java programs.
In: 2011 International symposium on empirical software engineering and measurement, IEEE pp 137-146

Hartzman CS, Austin CF (1993) Maintenance productivity: Observations based on an experience in a large
system environment. In: Proceedings of the 1993 conference of the centre for advanced studies on
collaborative research: software engineering-vol 1, pp 138-170

Heartin (2015) Good comments and bad comments in your program. https://www.javajee.com/good-
comments-and-bad-comments-in-your-program. Accessed 28-04-2022

Henke M (2018) 4 reasons why we need code comments. https://blog.submain.com/4-reasons-need-code-
comments/. Accessed 28-04-2022

Herath P (2020) 9 tips that promote clean code: Writing comments in a good way. https://javascript.plainenglish.
io/clean-code- writing-comments-in-a- good-way-8203c7d80c65/. Accessed 28-04-2022

Hilton P (2014) 3 kinds of good comments. https://hilton.org.uk/blog/3-kinds-of- good-comments. Accessed
28-04-2022

Hilton P (2014) 7 ways to write bad comments. https://hilton.org.uk/blog/7-ways-to-write-bad-comments.
Accessed 28-04-2022

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735-1780

Hofmann F (2023) Commenting python code. https://stackabuse.com/commenting-python-code/. Accessed
28-04-2022

Huang Y, Hu X, Jia N, Chen X, Xiong Y, Zheng Z (2019) Learning code context information to predict
comment locations. IEEE Trans Reliab 69(1):88—-105

Huy NVK (2021) Code review: Please remove comments from your code. https://levelup.gitconnected.com/
code-review-please-remove-comments- from-your-code-2c4de8cf9b13. Accessed 28-04-2022

Tammarino M, Aversano L, Bernardi ML, Cimitile M (2020) A topic modeling approach to evaluate the com-
ments consistency to source code. In: 2020 International joint conference on neural networks (IICNN),
IEEE pp 1-8

Jabrayilzade E, Giirkan O, Tiiziin E (2021) Towards a taxonomy of inline code comment smells. In: 2021
IEEE 21st International working conference on source code analysis and manipulation (SCAM), IEEE
pp 131-135

Januska A (2012) How to write code comments well. https://web.archive.org/web/20191223045018/https://
antjanus.com/blog/daily- gibberish/best-comment-separator/. Accessed 28-04-2022

@ Springer

https://itnext.io/what-makes-a-good-code-comment-5267debd2c24
https://itnext.io/what-makes-a-good-code-comment-5267debd2c24
https://blog.ndepend.com/correct-way-comment-code/
https://blog.ndepend.com/correct-way-comment-code/
https://kentcdodds.com/blog/please-dont-commit-commented-out-code
https://kentcdodds.com/blog/please-dont-commit-commented-out-code
https://blog.submain.com/biggest-code-commenting-fails/
https://blog.submain.com/biggest-code-commenting-fails/
https://improvingsoftware.com/2011/06/27/5-best-practices-for-commenting-your-code/
https://improvingsoftware.com/2011/06/27/5-best-practices-for-commenting-your-code/
https://dzone.com/articles/why-we-comment-code-yet-another-code-commenting-ar
https://dzone.com/articles/why-we-comment-code-yet-another-code-commenting-ar
https://www.javajee.com/good-comments-and-bad-comments-in-your-program
https://www.javajee.com/good-comments-and-bad-comments-in-your-program
https://blog.submain.com/4-reasons-need-code-comments/
https://blog.submain.com/4-reasons-need-code-comments/
https://javascript.plainenglish.io/clean-code-writing-comments-in-a-good-way-8203c7d80c65/
https://javascript.plainenglish.io/clean-code-writing-comments-in-a-good-way-8203c7d80c65/
https://hilton.org.uk/blog/3-kinds-of-good-comments
https://hilton.org.uk/blog/7-ways-to-write-bad-comments
https://stackabuse.com/commenting-python-code/
https://levelup.gitconnected.com/code-review-please-remove-comments-from-your-code-2c4de8cf9b13
https://levelup.gitconnected.com/code-review-please-remove-comments-from-your-code-2c4de8cf9b13
https://web.archive.org/web/20191223045018/https://antjanus.com/blog/daily-gibberish/best-comment-separator/
https://web.archive.org/web/20191223045018/https://antjanus.com/blog/daily-gibberish/best-comment-separator/

58 Page 50 0f53 Empirical Software Engineering (2024) 29:58

Jiang ZM, Hassan AE (2006) Examining the evolution of code comments in postgresql. In: Proceedings of
the 2006 international workshop on mining software repositories, pp 179—-180

Keele S, et al. (2007) Guidelines for performing systematic literature reviews in software engineering. Tech
rep, Technical report, Ver 2.3 EBSE Technical Report. EBSE

Keeton B (2019) How to comment your code like a pro: Best practices and good habits. https:/www.
elegantthemes.com/blog/wordpress/how- to-comment- your-code-like-a-pro-best-practices-and-good-
habits. Accessed 28-04-2022

Khamis N, Witte R, Rilling J (2010) Automatic quality assessment of source code comments: the javadocminer.
In: International Conference on application of natural language to information systems, Springer pp 6879

Khan JY, Khondaker MTI, Uddin G, Igbal A (2021) Automatic detection of five API documentation smells:
Practitioners’ perspectives. In: 2021 IEEE International conference on software analysis, evolution and
reengineering (SANER), IEEE pp 318-329

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how developers seek, relate, and
collect relevant information during software maintenance tasks. IEEE Trans Software Eng 32(12):971-
987

Koornhof P (2015) Code comments are lies. https://www.codeproject.com/Articles/872073/Code-Comments-
are-Lies. Accessed 28-04-2022

Krasnov M (2020) Improve code readability by getting rid of comments. https://everyday.codes/best-practices/
improve-code-readability-by-getting-rid-of-comments/. Accessed 28-04-2022

Kunk J (2011) To comment or not to comment. https://visualstudiomagazine.com/articles/2011/01/06/to-
comment-or-not-to-comment.aspx. Accessed 10-04-2022

Kunk J (2011) To comment or not to comment. https://visualstudiomagazine.com/Kunk0211. Accessed 28-
04-2022

Larson D (2023) Coding and comment style. https://mitcommlab.mit.edu/broad/commkit/coding-and-
comment-style/. Accessed 28-04-2022

LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: a study of developer work habits. In:
Proceedings of the 28th international conference on software engineering, pp 492-501

Lelli F (2019) Best practices on how to write comments in your code. https://francescolelli.info/programming/
best-practices-on-how-to-write-comments-in-your-code/. Accessed 28-04-2022

LiuZ, XiaX,LoD, Yan M, Li S (2021) Just-in-time obsolete comment detection and update. IEEE Transactions
on Software Engineering pp 1-1. https://doi.org/10.1109/TSE.2021.3138909

Liu Z, Xia X, Yan M, Li S (2020) Automating just-in-time comment updating. In: Proceedings of the 35th
IEEE/ACM International conference on automated software engineering, pp 585-597

Louis A, Dash SK, Barr ET, Ernst MD, Sutton C (2020) Where should I comment my code? a dataset and
model for predicting locations that need comments. In: Proceedings of the ACM/IEEE 42nd international
conference on software engineering: new ideas and emerging results, pp 21-24

Louis A, Dash SK, Barr ET, Sutton C (2018) Deep learning to detect redundant method comments. arXiv
preprint arXiv:1806.04616

Malik H, Chowdhury I, Tsou HM, Jiang ZM, Hassan AE (2008)Understanding the rationale for updating
function’s comment. In: 2008 IEEE International conference on software maintenance, IEEE pp 167—
176

Marcus R (2018) Good comment, bad comment. https://rmarcus.info/blog/2018/11/05/good-bad-comment.
html. Accessed 28-04-2022

Martin RC (2009) Clean code: a handbook of agile software craftsmanship. Pearson Education

McDonald JC (2019) To comment or not to comment? https://dev.to/codemouse92/to-comment-or-not-to-
comment-3f7h. Accessed 28-04-2022

McEwen M (2018) I'1l delete your commented code without reading it and i’m not sorry. https://blog.submain.
com/delete-commented- code- without-reading/. Accessed 28-04-2022

Medeiros F, Lima G, Amaral G, Apel S, Kistner C, Ribeiro M, Gheyi R (2019) An investigation of misun-
derstanding code patterns in ¢ open-source software projects 24(4). https://doi.org/10.1007/s10664-018-
9666-x. https://doi.org/10.1007/s10664-018-9666-x

Misra V, Reddy JSK, Chimalakonda S (2020) Is there a correlation between code comments and issues?
an exploratory study. In: Proceedings of the 35th Annual ACM symposium on applied computing, pp
110-117

Molloy S (2020) Clean code - code versus comments. https://nebulaconsulting.co.uk/insights/code-over-
comments/. Accessed 28-04-2022

Morlion P (2017) Commented out code is junk in your codebase. https://blog.submain.com/commented-out-
code-junk-codebase/. Accessed 28-04-2022

Nayuki (2018) Don’t share commented-out code. https://www.nayuki.io/page/dont-share-commented-out-
code. Accessed 28-04-2022

@ Springer

https://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits
https://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits
https://www.elegantthemes.com/blog/wordpress/how-to-comment-your-code-like-a-pro-best-practices-and-good-habits
https://www.codeproject.com/Articles/872073/Code-Comments-are-Lies
https://www.codeproject.com/Articles/872073/Code-Comments-are-Lies
https://everyday.codes/best-practices/improve-code-readability-by-getting-rid-of-comments/
https://everyday.codes/best-practices/improve-code-readability-by-getting-rid-of-comments/
https://visualstudiomagazine.com/articles/2011/01/06/to-comment-or-not-to-comment.aspx
https://visualstudiomagazine.com/articles/2011/01/06/to-comment-or-not-to-comment.aspx
https://visualstudiomagazine.com/Kunk0211
https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-style/
https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-style/
https://francescolelli.info/programming/best-practices-on-how-to-write-comments-in-your-code/
https://francescolelli.info/programming/best-practices-on-how-to-write-comments-in-your-code/
https://doi.org/10.1109/TSE.2021.3138909
http://arxiv.org/abs/1806.04616
https://rmarcus.info/blog/2018/11/05/good-bad-comment.html
https://rmarcus.info/blog/2018/11/05/good-bad-comment.html
https://dev.to/codemouse92/to-comment-or-not-to-comment-3f7h
https://dev.to/codemouse92/to-comment-or-not-to-comment-3f7h
https://blog.submain.com/delete-commented-code-without-reading/
https://blog.submain.com/delete-commented-code-without-reading/
https://doi.org/10.1007/s10664-018-9666-x
https://doi.org/10.1007/s10664-018-9666-x
https://doi.org/10.1007/s10664-018-9666-x
https://nebulaconsulting.co.uk/insights/code-over-comments/
https://nebulaconsulting.co.uk/insights/code-over-comments/
https://blog.submain.com/commented-out-code-junk-codebase/
https://blog.submain.com/commented-out-code-junk-codebase/
https://www.nayuki.io/page/dont-share-commented-out-code
https://www.nayuki.io/page/dont-share-commented-out-code

Empirical Software Engineering (2024) 29:58 Page 51 0f53 58

Neuhaus C, Neuhaus E, Asher A, Wrede C (2006) The depth and breadth of google scholar: An empirical
study. Portal Libraries and the Academy 6(2):127-141

Nguyen N (2020) Why good codes don’t need comments. https://towardsdatascience.com/why-good-codes-
dont-need-comments-92f58de19ad2. Accessed 28-04-2022

Nielebock S, Krolikowski D, Kriiger J, Leich T, Ortmeier F (2019) Commenting source code: is it worth it for
small programming tasks? Empir Softw Eng 24:1418-1457

Norlander B (2019) Stop writing code comments. https://medium.com/@bpnorlander/stop-writing-code-
comments-28fef5272752. Accessed 28-04-2022

Ousterhout J (2015) Writing comments. https://web.stanford.edu/~ouster/cgi-bin/cs190-spring15/lecture.
php?topic=comments. Accessed 10-04-2022

Padioleau Y, Tan L, Zhou Y (2009) Listening to programmers-taxonomies and characteristics of comments in
operating system code. In: 2009 IEEE 31st international conference on software engineering, IEEE pp
331-341

Pandita R, Xiao X, Zhong H, Xie T, Oney S, Paradkar A (2012) Inferring method specifications from natural
language api descriptions. In: 2012 34th international conference on software engineering (ICSE), IEEE
pp 815-825

Panthaplackel S, Li JJ, Gligori¢ M, Mooney RJ (2021) Deep just-in-time inconsistency detection between
comments and source code. In: AAAI

Panthaplackel S, Nie P, Gligoric M, Li JJ, Mooney RJ (2020) Learning to update natural language comments
based on code changes. arXiv preprint arXiv:2004.12169

Parashar A (2020) How to write comments the right way. https://levelup.gitconnected.com/how-to-write-
comments-the-right-way-8d13b24804bd. Accessed 28-04-2022

Pascarella L, Bacchelli A (2017) Classifying code comments in java open-source software systems. In: 2017
IEEE/ACM 14th international conference on mining software repositories (MSR), IEEE pp 227-237

Paul J (2021) 10 best practices to follow while writing code comments. https://javarevisited.blogspot.com/
2011/08/code-comments-java-best-practices.html#axzz7RIqtwW2w. Accessed 28-04-2022

Qamar KA, Siiliin E, Tiiziin E (2022) Taxonomy of bug tracking process smells: Perceptions of practitioners
and an empirical analysis. Inf Softw Technol 150:106972. https://doi.org/10.1016/j.infsof.2022.106972,
www.sciencedirect.com/science/article/pii/S0950584922001094

Rabbi F, Siddik MS (2020) Detecting code comment inconsistency using siamese recurrent network. In:
Proceedings of the 28th international conference on program comprehension, pp 371-375

Rani P, Abukar S, Stulova N, Bergel A, Nierstrasz O (2021) Do comments follow commenting conventions?
a case study in java and python. In: 2021 IEEE 21st International working conference on source code
analysis and manipulation (SCAM), IEEE pp 165-169

Raskin J (2005) Comments are more important than code: The thorough use of internal documentation is
one of the most-overlooked ways of improving software quality and speeding implementation. Queue
3(2):64-65

Ratol IK, Robillard MP (2017) Detecting fragile comments. In: 2017 32nd IEEE/ACM international conference
on automated software engineering (ASE), IEEE pp 112-122

Reuveni D, Bourrillion K (2017) Code health: To comment or not to comment? https://testing.googleblog.
com/2017/07/code-health-to-comment-or-not-to-comment.html. Accessed 28-04-2022

Saha K (2023) When should you add comments to your code? https://www.kinkarsaha.com/when-should-
you-add-comments-to-your-code/. Accessed 28-04-2022

Schults C (2017) Learn which types of comments should be avoided. https://carlosschults.net/en/types-of-
comments-to-avoid/. Accessed 28-04-2022

Sen A (2023) Optimal survey length: How long survey lengths can affect data quality. https://medium.com/
think-cult/optimal-survey-length-how-long-survey-lengths-can-affect-data-quality-f0d6398d25¢ee.
Accessed 03-10-2022

Shinyama Y, Arahori Y, Gondow K (2018) Analyzing code comments to boost program comprehension. In:
2018 25th Asia-Pacific software engineering conference (APSEC), IEEE pp 325-334

Sorens M (2017) Fighting evil in your code: Comments on comments. https://www.red- gate.com/simple-talk/
opinion/opinion-pieces/fighting-evil-code-comments-comments/. Accessed 28-04-2022

Sourour B (2017) Putting comments in code: the good, the bad, and the ugly. https://www.freecodecamp.org/
news/code-comments-the-good- the-bad-and-the-ugly-be9cc65fbf83/. Accessed 28-04-2022

de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential to software
maintenance. In: Proceedings of the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, pp 68-75

Spertus E (2021) Best practices for writing code comments. https://stackoverflow.blog/2021/12/23/best-
practices-for-writing-code-comments/. Accessed 10-04-2022

@ Springer

https://towardsdatascience.com/why-good-codes-dont-need-comments-92f58de19ad2
https://towardsdatascience.com/why-good-codes-dont-need-comments-92f58de19ad2
https://medium.com/@bpnorlander/stop-writing-code-comments-28fef5272752
https://medium.com/@bpnorlander/stop-writing-code-comments-28fef5272752
https://web.stanford.edu/~ouster/cgi-bin/cs190-spring15/lecture.php?topic=comments
https://web.stanford.edu/~ouster/cgi-bin/cs190-spring15/lecture.php?topic=comments
http://arxiv.org/abs/2004.12169
https://levelup.gitconnected.com/how-to-write-comments-the-right-way-8d13b24804bd
https://levelup.gitconnected.com/how-to-write-comments-the-right-way-8d13b24804bd
https://javarevisited.blogspot.com/2011/08/code-comments-java-best-practices.html#axzz7RlqtwW2w
https://javarevisited.blogspot.com/2011/08/code-comments-java-best-practices.html#axzz7RlqtwW2w
https://doi.org/10.1016/j.infsof.2022.106972
www.sciencedirect.com/science/article/pii/S0950584922001094
https://testing.googleblog.com/2017/07/code-health-to-comment-or-not-to-comment.html
https://testing.googleblog.com/2017/07/code-health-to-comment-or-not-to-comment.html
https://www.kinkarsaha.com/when-should-you-add-comments-to-your-code/
https://www.kinkarsaha.com/when-should-you-add-comments-to-your-code/
https://carlosschults.net/en/types-of-comments-to-avoid/
https://carlosschults.net/en/types-of-comments-to-avoid/
https://medium.com/think-cult/optimal-survey-length-how-long-survey-lengths-can-affect-data-quality-f0d6398d25ee
https://medium.com/think-cult/optimal-survey-length-how-long-survey-lengths-can-affect-data-quality-f0d6398d25ee
https://www.red-gate.com/simple-talk/opinion/opinion-pieces/fighting-evil-code-comments-comments/
https://www.red-gate.com/simple-talk/opinion/opinion-pieces/fighting-evil-code-comments-comments/
https://www.freecodecamp.org/news/code-comments-the-good-the-bad-and-the-ugly-be9cc65fbf83/
https://www.freecodecamp.org/news/code-comments-the-good-the-bad-and-the-ugly-be9cc65fbf83/
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/

58 Page520f53 Empirical Software Engineering (2024) 29:58

Sridhara G (2016) Automatically detecting the up-to-date status of todo comments in java programs. In:
Proceedings of the 9th India software engineering conference, pp 16-25

Steidl D, Hummel B, Juergens E (2013) Quality analysis of source code comments. In: 2013 21st International
conference on program comprehension (ICPC), IEEE pp 83-92

Storey MA, Ryall J, Bull RI, Myers D, Singer J (2008) Todo or to bug. In: 2008 ACM/IEEE 30th International
conference on software engineering, IEEE pp 251-260

Struyf E (2021) To write code comments or not, it should not be a question. https://techcommunity.microsoft.
com/t5/microsoft-365-pnp-blog/to- write-code-comments- or-not-it-should-not- be-a-question/ba-p/
2178622. Accessed 28-04-2022

Stulova N, Blasi A, Gorla A, Nierstrasz, O (2020) Towards detecting inconsistent comments in java source
code automatically. In: 2020 IEEE 20th International working conference on source code analysis and
manipulation (SCAM), IEEE pp 65-69

Tan L, Yuan D, Krishna G, Zhou Y (2007) /* icomment: Bugs or bad comments?*. In: Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles, pp 145-158

Tan L, Yuan D, Zhou Y (2007) Hotcomments: how to make program comments more useful? HotOS 7:49-54

Tan SH, Marinov D, Tan L, Leavens GT (2012) @ tcomment: Testing javadoc comments to detect comment-
code inconsistencies. In: 2012 IEEE Fifth international conference on software testing, verification and
validation, IEEE pp 260-269

Tenny T (1988) Program readability: Procedures versus comments. IEEE Trans Software Eng 14(9):1271

Tozzi C (2020) 5 code commenting don’ts. https://www.itprotoday.com/development-techniques-and-
management/5-code-commenting-donts. Accessed 28-04-2022

Trivedi D (2019) Don’t comment your code, rewrite it! https://devdeejay.medium.com/dont-comment-your-
code-rewrite-it-a145d655f87b. Accessed 28-04-2022

Troisi M (2023) Useless comments can ruin your code reviews. here’s how to erase them. https:/
techbeacon.com/app-dev-testing/useless-comments-can-ruin-your-code-reviews-heres-how-erase-
them. Accessed 28-04-2022

Vogel P (2013) No comment: Why commenting code is still a bad idea. https://visualstudiomagazine.com/
articles/2013/07/26/why-commenting-code-is-still-bad.aspx/. Accessed 28-04-2022

Wang D, Guo Y, Dong W, Wang Z, Liu H, Li S (2019) Deep code-comment understanding and assessment.
IEEE Access 7:174200-174209

Wang R, Wang T, Wang H (2019) Study of a code comment decision method based on structural features.
In: 2019 International conference on intelligent computing, automation and systems (ICICAS), IEEE pp
570-574

of Washington U (2023) Commenting. https://courses.cs.washington.edu/courses/cse142/21su/quality/
commenting/. Accessed 03-10-2022

Wen F, Nagy C, Bavota G, Lanza M (2019) A large-scale empirical study on code-comment inconsistencies.
In: 2019 IEEE/ACM 27th International conference on program comprehension (ICPC), IEEE pp 53-64

Wong E, Yang J, Tan L (2013) Autocomment: Mining question and answer sites for automatic comment
generation. In: 2013 28th IEEE/ACM International conference on automated software engineering (ASE),
IEEE pp 562-567

Wong E, Zhang L, Wang S, Liu T, Tan L (2015) Dase: Document-assisted symbolic execution for improv-
ing automated software testing. In: 2015 IEEE/ACM 37th IEEE International conference on software
engineering, vol 1, IEEE pp 620-631

Woodfield SN, Dunsmore HE, Shen VY (1981) The effect of modularization and comments on program
comprehension. In: Proceedings of the Sth International conference on software engineering, pp 215—
223

Woost A (2011) Don’t comment your code! https://apdevblog.com/comments-in-code/. Accessed 28-04-2022

Zhai,J.,Huang J,Ma S, Zhang X, Tan L, Zhao J, Qin F (2016) Automatic model generation from documentation
for java api functions. In: 2016 IEEE/ACM 38th International conference on software engineering (ICSE),
IEEE pp 380-391

Zhai J, Xu X, Shi Y, Tao G, Pan M, Ma S, Xu L, Zhang W, Tan L, Zhang X (2020) Cpc: Automatically
classifying and propagating natural language comments via program analysis. In: Proceedings of the
ACM/IEEE 42nd International conference on software engineering, pp 1359-1371

Zhang J, Xu L, Li Y (2018) Classifying python code comments based on supervised learning. In: International
conference on Web information systems and applications, Springer pp 3947

Zhané J (2023) Writing comments in python (guide). https://realpython.com/python-comments-guide/#
python-commenting-best-practices. Accessed 28-04-2022

Zhong H, Zhang L, Xie T, Mei H (2009) Inferring resource specifications from natural language api docu-
mentation. In: 2009 IEEE/ACM International conference on automated software engineering, IEEE pp
307-318

@ Springer

https://techcommunity.microsoft.com/t5/microsoft-365-pnp-blog/to-write-code-comments-or-not-it-should-not-be-a-question/ba-p/2178622
https://techcommunity.microsoft.com/t5/microsoft-365-pnp-blog/to-write-code-comments-or-not-it-should-not-be-a-question/ba-p/2178622
https://techcommunity.microsoft.com/t5/microsoft-365-pnp-blog/to-write-code-comments-or-not-it-should-not-be-a-question/ba-p/2178622
https://www.itprotoday.com/development-techniques-and-management/5-code-commenting-donts
https://www.itprotoday.com/development-techniques-and-management/5-code-commenting-donts
https://devdeejay.medium.com/dont-comment-your-code-rewrite-it-a145d655f87b
https://devdeejay.medium.com/dont-comment-your-code-rewrite-it-a145d655f87b
https://techbeacon.com/app-dev-testing/useless-comments-can-ruin-your-code-reviews-heres-how-erase-them
https://techbeacon.com/app-dev-testing/useless-comments-can-ruin-your-code-reviews-heres-how-erase-them
https://techbeacon.com/app-dev-testing/useless-comments-can-ruin-your-code-reviews-heres-how-erase-them
https://visualstudiomagazine.com/articles/2013/07/26/why-commenting-code-is-still-bad.aspx/
https://visualstudiomagazine.com/articles/2013/07/26/why-commenting-code-is-still-bad.aspx/
https://courses.cs.washington.edu/courses/cse142/21su/quality/commenting/
https://courses.cs.washington.edu/courses/cse142/21su/quality/commenting/
https://apdevblog.com/comments-in-code/
https://realpython.com/python-comments-guide/#python-commenting-best-practices
https://realpython.com/python-comments-guide/#python-commenting-best-practices

Empirical Software Engineering (2024) 29:58 Page 53 0of 53 58

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	Taxonomy of inline code comment smells
	Abstract
	1 Introduction
	2 Related Work
	2.1 Quality Analysis of Code Comments
	2.2 Taxonomies of Code Comments
	2.3 Detection of Code Comment Smells

	3 Methodology
	3.1 RQ1. What Types Of Inline Comment Smells Are There?
	3.2 RQ2. How Often Does Each Smell Type Occur In Practice?
	3.3 RQ3. What is the Perception of Software Practitioners About Inline Comment Smells?
	3.4 RQ4. Do Developers Of Open-Source Projects Accept Pull Requests Or Issues To Remove Inline Comments Smells?

	4 Results
	4.1 Final Taxonomy (RQ1)
	4.2 Empirical Results (RQ2)
	4.3 Survey Results (RQ3)
	4.3.1 Perceptions on Smell Taxonomy
	4.3.2 Perceptions on Smell Occurrences
	4.3.3 Perceptions on Impacts of Smells

	4.4 Acceptance of Pull Requests and Issues

	5 Discussion
	5.1 Revisiting Research Questions
	5.1.1 RQ1. What Types Of Inline Comment Smells Are There?
	5.1.2 RQ2. How Often Does Each Smell Type Occur In Practice?
	5.1.3 RQ3. What is the Perception Of Software Practitioners About Inline Comment Smells?
	5.1.4 RQ4. Do Developers Of Open-Source Projects Accept Pull Requests Or Issues To Remove Inline Comments Smells?

	5.2 Implications for Researchers
	5.3 Implications for Practitioners
	5.4 Implications for Educators

	6 Threats to Validity
	7 Conclusion and Future Work
	Appendix
	References

