
https://doi.org/10.1007/s10664-023-10396-7

An empirical study on software understandability
and its dependence on code characteristics

Luigi Lavazza1 · Sandro Morasca1 ·Marco Gatto1

Accepted: 18 September 2023 /
© The Author(s) 2023

Abstract
Context Insufficient code understandability makes software difficult to inspect and maintain
and is a primary cause of software development cost. Several source code measures may be
used to identify difficult-to-understand code, including well-known ones such as Lines of
Code andMcCabe’s Cyclomatic Complexity, and novel ones, such as Cognitive Complexity.
Objective We investigate whether and to what extent source code measures, individually or
together, are correlated with code understandability.
Method Wecarried out an empirical studywith students whowere asked to carry out realistic
maintenance tasks on methods from real-life Open Source Software projects. We collected
several data items, including the time needed to correctly complete the maintenance tasks,
which we used to quantify method understandability. We investigated the presence of cor-
relations between the collected code measures and code understandability by using several
Machine Learning techniques.
Results We obtained models of code understandability using one or two code measures.
However, the obtained models are not very accurate, the average prediction error being
around 30%.
Conclusions Based on our empirical study, it does not appear possible to build an understand-
abilitymodel basedon structural codemeasures alone. Specifically, even the newly introduced
Cognitive Complexitymeasure does not seem able to fulfill the promise of providing substan-
tial improvements over existing measures, at least as far as code understandability prediction
is concerned. It seems that, to obtain models of code understandability of acceptable accu-
racy, process measures should be used, possibly together with new source code measures
that are better related to code understandability.

Communicated by: Simone Scalabrino, Rocco Oliveto, Felipe Ebert, Fernanda Madeiral, Fernando Castor

This article belongs to the Topical Collection: Special Issue on Code Legibility, Readability, and
Understandability.

This work was partly supported by the “Fondo di ricerca d’Ateneo” funded by the Università degli Studi
dell’Insubria.

B Luigi Lavazza
luigi.lavazza@uninsubria.it

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Published online: 15 November 2023

Empirical Software Engineering (2023) 28:155

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10396-7&domain=pdf
http://orcid.org/0000-0002-5226-4337
http://orcid.org/0000-0003-4598-7024

Keywords Software understandability · Cognitive complexity · Software code measures ·
Complexity measures · Static code measures

1 Introduction

Software professionals spend a large amount of time and effort understanding software code
(Minelli 2015; Xia et al. 2017). It would be very useful to be able to predict in advance with a
sufficient degree of confidence which sections of software code are difficult to understand, so
as to take adequate action. For instance, hard-to-understand software code could be revised to
improve its clarity, to make following maintenance activities easier and less time- and effort-
consuming. In addition, proactive rules could be established to avoid writing unreadable code
in the first place.

Prediction of various software qualities, e.g., software fault-proneness, has been often
carried out by building models that relate them with one or more code measures. Likewise,
accurately modeling the relationship between code understandability and some code mea-
sureswould be quite useful for software development. A large number of codemeasures exist.
Some of them, e.g., the number of Lines of Code, McCabe’s Cyclomatic Complexity (which
we denote as McCC) (McCabe 1976), various Maintainability Indices (Heitlager et al. 2007;
Oman and Hagemeister 1992), and Halstead measures (Halstead 1977) have been used to
this end in the past. None of them has however led to the building of very accurate prediction
models that could be used in practice to predict and control code understandability. Other
measures, notably Cognitive Complexity (Campbell 2018), have recently been introduced
with the goal of taking into account understandability-related aspects that previous measures
do not capture. However, no empirical evidence has so far been provided to support their
usefulness.

We carried out an empirical study with the goal of investigating whether various source
code measures could be useful to build accurate understandability prediction models and
whether novel measures such as Cognitive Complexity could be useful to this end.

Specifically, our empirical study addresses the following Research Questions.

RQ1 Is it possible to define predictive models for code understandability by using source
code measures?

RQ2 Which source code measures are best at predicting code understandability?
RQ3 Is Cognitive Complexity better than other measures as a predictor of code understand-

ability?
RQ4 How much can source code measures be trusted as understandability predictors? In

other words, are predictions based on code measures accurate enough? Do we need to
consider additional factors, other than code characteristics, that affect understandabil-
ity?

The answers to the Research Questions help provide practitioners with indications on
which methods are more difficult to understand, hence are more likely to cause problems.
This will lead to reduced maintenance costs.

Our empirical study involved three Master’s degree students who carried out realistic
maintenance tasks on 32 methods from two real-life Open Source Software applications. We
measured understandability as the time needed to correctly complete the maintenance tasks.
We also collected several source code measures and investigated whether and to what extent
they are correlated to the understandability measure. To this end, we used several Machine
Learning techniques.

The models we obtained in our empirical study show that code understandability is cor-
related with structural characteristics of code. Nonetheless, the obtained models are not

123

155 Page 2 of 24 Empirical Software Engineering (2023) 28:155

accurate; also the usage of the recently introduced Cognitive Complexity measure does not
seem to help. Thus, code understandability depends only partially on code characteristics,
as quantified by the measures chosen. This result could be expected, since code understand-
ability depends on the code but also, to a great extent, on who has to understand the code.
This suggests that future research activities should take the human factor in due account.

The remainder of the paper is organized as follows. Section 2 provides some background
on code understandability and its measurement. Section 3 reviews the source code measures
we use in our empirical study and specifically Cognitive Complexity, which is themost recent
one, along with some of its precursors. The empirical study is described in Section 4 and
its results are illustrated in Section 5. In Section 6, we answer the Research Questions. The
threats to the validity of the empirical study are discussed in Section 7. Section 8 accounts
for related work. Section 9 illustrates the conclusions and outlines future work.

2 Source Code Understandability

A large part of the costs incurred during the software development process, even the majority
(60% on average, according to Glass 2001), is due to software maintenance and evolution
activities. Maintaining software implies being able to fully understand code that was written
by the maintainers themselves or by other developers. The lack of familiarity of maintainers
with the software code they deal with is one of the main causes of the large amount of effort
that maintainers spend understanding code (Minelli 2015). Given their industrial importance,
software maintainability and understandability have been the subject of several empirical
studies.

Maintainability and understandability belong to the category of “external” software
attributes (Fenton and Bieman 2014). They depend on the knowledge of both the software
code at hand and its relationships with its “environment,” i.e., how and by whom it is main-
tained and understood. This is apparent because the amount of effort needed by developers
in maintaining and understanding code that they wrote is certainly lower than the amount
of effort that other maintainers would spend in maintaining or understanding the very same
code.

The research documented in this paper focuses on understandability. Like many other
software attributes, understandability has different aspects and may therefore be measured
in several different ways, based on the goals and constraints of software development and
Empirical Software Engineering research. We concisely summarize how understandability
has been measured in previous studies.

– Time. An often used understandability measure is the time taken to carry out some
comprehension task on some software code (Ajami et al. 2019; Börstler and Paech 2016;
Dolado et al. 2003; Hofmeister et al. 2017; Peitek et al. 2020; Salvaneschi et al. 2014;
Scalabrino et al. 2021; Siegmund et al. 2012).

– Correctness. Correctness is usually defined as the degree of success in performing one
or more specified maintenance tasks that require understanding a specific portion of
software code (Börstler and Paech 2016; Dolado et al. 2003; Salvaneschi et al. 2014;
Scalabrino et al. 2021; Siegmund et al. 2012).

– Subjective rating. This is the subjective perception of how well maintainers believe that
they understood the code they are asked to maintain, usually on an ordinal scale (Börstler
and Paech 2016; Buse and Weimer 2010; Scalabrino et al. 2021).

123

Page 3 of 24 155Empirical Software Engineering (2023) 28:155

– Physiological measures. Several studies (Floyd et al. 2017; Fucci et al. 2019; Ikutani
and Uwano 2014; Peitek et al. 2020; Sharafi et al. 2021) investigated the physiological
activities occurring in the human body when understanding software code, involving for
instance the brain, heart, and skin.

In empirical studies like ours, one or more of these measures were taken as the dependent
variable of models whose independent variables are source code measures and possibly
others.

We here use a time-related measure of understandability, specifically, the time needed to
correctly carry out a maintenance task on a software method. This is therefore the dependent
variable of the models we build in our empirical study. More details about the measurement
of this dependent variable are in Section 4, which describes the empirical study.

3 Source CodeMeasures

Many softwaremeasures have been defined to capture so-called “internal” software attributes
(Fenton and Bieman 2014), which are defined as those attributes of an entity (source code,
in our case) that can be measured based only on the knowledge of the entity. Examples of
internal software attributes are size, complexity, cohesion, and coupling. The measures of
internal attributes are especially useful when they are associated with some process variable
of interest (e.g., software development cost) or with some external software attribute (Fenton
and Bieman 2014; Morasca 2009) (e.g., software understandability).

In our empirical study, we considered source code measures that have been present in the
literature and in practical use for several years. We concisely describe them in Section 3.1. In
addition, we considered Cognitive Complexity, a novel measure that was introduced with the
purpose of overcoming the pitfalls of existing measures (Campbell 2018). Throughout the
paper we name this measure CoCo, to avoid confusion with the actual cognitive complexity,
i.e., what CoCo is supposed to evaluate. We describe CoCo more extensively in Section 3.2.

3.1 Traditional CodeMeasures

Here are the measures from the literature that we took into account.

Logical Lines of Code Software size, measured via the number of lines of code, is the
first code characteristic to be quantified. LOC (or the logical LOC, i.e., LLOC) are so
widely used that performing a study that involves code measures without considering
LOC (or LLOC) is almost inconceivable.
McCabe’s Complexity McCC was originally proposed to identify software modules
that are difficult to test or maintain, based on the control flow of a function or method.
McCC has been used extensively as an indicator of difficult understandability and
maintainability.
Nesting Level Else-If Nesting Level Else-If (NLE) measures the depth of the maximum
nestingof amethod’s conditional, iteration, and exceptionhandlingblock scopes,whereas
only the first if instruction is considered in the if-else-if construct. Deep nesting of control
structures, hence a high value of NLE, is expected to make code harder to understand.
HVOL Halstead identified measurable properties of software in analogy with the mea-
surable properties of matter (Halstead 1977). Halstead Volume (HVOL) is computed as
follows:

H V O L = N ∗ log2(η) (1)

123

155 Page 4 of 24 Empirical Software Engineering (2023) 28:155

where N = N1 + N2 is the “program length,” N1 is the total number of occurrences of
operators, N2 is total number of occurrences of operands; η = η1 + η2 is the “program
vocabulary,” η1 is the number of distinct operators and η2 is the number of distinct
operands. According to Fitzsimmons and Love, “for each of the N elements of a program,
log2 η bits must be specified to choose one of the operators or operands for that element.
Thus HVOL measures the number of bits required to specify a program.” (Fitzsimmons
and Love 1978)
HCPL Halstead Calculated Program Length (HCPL) is computed as follows:

HC P L = η1 ∗ log2(η1) + η2 ∗ log2(η2) (2)

Maintainability IndexTheMaintainability Index, whose original definition byColeman
et al. (1994) was then simplified by Welker et al. (1997), is computed by the following
formula:

M I = 171 − 5.2 ∗ ln(H V O L) − 0.23 ∗ (McCC) − 16.2 ∗ ln(L L OC) (3)

Several software measures were proposed long ago and have been widely used (with
varying levels of success) to identify hard-to-understand code. It is thus interesting to verify
also whether CoCo provides better accuracy than those measures.

We used SourceMeter1 to collect these measures, because it is a fairly consolidated and
robust tool and it is efficient and well documented.

The usage of themeasures described above formaintainability evaluationwas evaluated by
several authors, and some of these measures were considered inappropriate (see, for instance,
the discussion byOstberg andWagner 2014). Nonetheless, we included thesemeasures in our
empirical study for completeness and as a sort of benchmark for a more thorough evaluation
of CoCo, which we describe next.

3.2 The“Cognitive Complexity” Measure

In 2018, SonarSource introduced “Cognitive Complexity” (Campbell 2018) as a new mea-
sure for the understandability of a given piece of code. CoCo takes into account several
aspects of code. Like McCabe’s complexity, it takes into account decision points (condi-
tional statements, loops, switch statements, etc.), but, unlike McCabe’s complexity, it gives
them a weight equal to their nesting level plus 1. So, for instance, in the following code
fragment

void firstMethod() {
if (condition1)

for (int i = 0; i < 10; i++)
while (condition2) { ... }

}

the if statement at nesting level 0 has weight 1, the for statement at nesting level 1 has
weight 2, and thewhile statement at nesting level 2 hasweight 3, thusCoCo = 1+2+3 = 6.
The same code has McCC = 4 (3 decision points+1).

Consider instead the following code fragment, in which the three control structures are
not nested.

1 https://www.sourcemeter.com/

123

Page 5 of 24 155Empirical Software Engineering (2023) 28:155

https://www.sourcemeter.com/

void secondMethod() {
if (condition1) { ... }
for (int i = 0; i < 10; i++) { ... }
while (condition2) { ... }

}

It has CoCo = 3, because all the three control instructions are at nesting level 0 and have
weight 1; its McCabe complexity is still McCC = 4. It is thus apparent that nested structures
increase CoCo, while they have no effect on McCC. This inadequacy of McCC is one of the
main reasons for the introduction ofCoCo (Campbell 2018). One of the goals of our empirical
study is to check whether this difference between McCC and CoCo can help successfully
identify the code that is hard to understand and, if so, to what extent.

CoCo also accounts for the nesting level (which is also measured by NLE). Hence, it is
reasonable to expect that CoCo is able to identify hard-to-understand code more effectively
than McCC or NLE alone. However, it is not clear whether McCC and NLE together may
achieve better results, or if McCC, NLE, and CoCo together may be even more accurate
at discovering hard-to-understand code. Our empirical study was designed to gather some
evidence.

The structure of Boolean predicates is also taken into account by CoCo. Specifi-
cally, a Boolean predicate contributes to CoCo depending on the number of its sub-
sequences of logical operators. For instance, consider the following code fragment, where
a, b, c, d, e, f are Boolean variables:

void thirdMethod() {
if (a && b & & c || d || e && f) { ... }

}

Predicate a && b && c || d || e && f contains three sub-sequences with the
same logical operators, i.e., a && b && c, ... || d || e, and ... && f, so it
adds 3 to the value of CoCo.

Other aspects of code contribute to incrementing CoCo, but they are much less frequent
than those described above. For a complete description ofCoCo, see the definition (Campbell
2018).

4 The Empirical Study

Ideally, the best way of evaluating code understandability is by observing professionals at
work. However, this is hardly ever possible, thus we resorted to an empirical study involving
Master’s students.

4.1 Objectives and Conditions

We pursued the following two objectives.

– Analyze code understandability in realistic conditions. To this end, we analyzed the
understandability of pieces of code of realistic size and complexity. We also devised
tasks that resemble as much as possible part of the actual work carried out by professional
programmers. As a result, the unit of code to be understood is the method.

123

155 Page 6 of 24 Empirical Software Engineering (2023) 28:155

– Use a process to build models that is feasible for practitioners. Thus, we used techniques
that are available in a “packaged” way that makes them usable without very sophisticated
knowledge of data analysis techniques.

We must consider that understandability is an external property, i.e., it does not depend
exclusively on code properties, but also on additional properties and conditions, with special
reference to who has to understand the code. In this sense, one does not measure code
understandability, but how quickly, correctly, etc., someone understood a piece of code. To
make our results as independent as possible from the context and the participants, we enrolled
a set of participants as homogeneous as possible in the empirical study.

As stated above, our study involves analyzing code understandability in conditions that
can be found in real code maintenance activities. Nonetheless, typical code maintenance
processes can as well be carried out in conditions that are not covered by our study: for
instance,maintainersmay know the code andmay verywell talk to each other. This should not
be regarded as a limitation of our study: in fact, the aim of this study is to collect quantitative
data that represent code understandability, not to collect data that can be representative of all
the possible maintenance processes.

4.2 Organization and Execution

We tried to re-create and simulate real-world scenarios that developers may encounter in
their activities.

One of the main problems in an experiment dealing with code comprehension is how to
quantitatively characterize software understandability. Given also the kind of tasks in which
participants were involved, we aimed to collect two main measures:

– overall time required to solve a comprehension task;
– correctness of the proposed solution.

In the experiment, we did not enforce time limits for each task. As a result, all participants
were able to provide correct solutions, eventually. Thus, wemeasured code understandability
via the time taken by each participant to produce a correct solution.

To ensure the homogeneity of participants, we involved Master’s students in Computer
Science, all having similar levels of knowledge of the coding language and similar levels of
programming experience. The coding language used is Java, because it is the language most
diffusely used in courses. In practice, the proficiency in Java programming of the involved
students may be deemed similar to that of junior professionals (Carver et al. 2010).

Tasks require that the participants carry out some defect removal operations. Hence, tasks
involve faulty methods, which are of two types:

1. the method does not call other methods, thus the comprehension activity scope is limited
to the considered method;

2. the method calls other methods, thus the comprehension activity scope includes the
considered method and the methods it uses.

In our empirical study, it is possible that a faulty method m1 calls a method m2 that is
also faulty. In these cases, a participant was always given a list of methods to be corrected
involving both m1 and m2.

To make the experiment feasible, a way to evaluate methods’ correctness was needed. To
this end, every method is equipped with a set of unit tests that assess the correct behavior of a

123

Page 7 of 24 155Empirical Software Engineering (2023) 28:155

method. So, correctness could be quickly evaluated by the participants during the empirical
study as well as by the supervisor, who needed to evaluate the correctness of the modified
code supplied by participants.

Participants were supplied with

– the code of an open-source project;
– a list of defective methods belonging to the supplied code;
– a set of unit tests for each of the defective methods.

For each method in the list, participants had to locate the fault in the method, devise a way
to correct the faulty method, perform the correction, and test the modified code by running
the available test cases.

The nature of the faults was such that understanding the code to locate the fault was by
far the most challenging and time-consuming activity, since the required corrections were
trivial and the testing just required running the corresponding unit test case. Therefore, coding
and testing took negligible time. So, although the measures we collected involve coding and
testing time as well, we can regard them as proper measures of code understandability.

As a final remark, we can note that according to a systematic literature review (Oliveira
et al. 2020) several studies addressing code readability and legibility considered time and
correctness of tasks involving finding and fixing bugs.

4.2.1 Choice of the Source Code Used in the Empirical Study

We used Open Source code because that is the easiest way to get access to code. Within the
many available open-source projects that use the Java language, we needed to select projects
satisfying the following conditions.

– Methods should be equipped with test cases.
– Applications should not be too large, because participants should not get lost in a complex
project structure.

– Code understanding should not require specific application domain knowledge that the
participants do not master. Accordingly, we restricted the choice to applications in the
information technology field.

– Finally, we needed projects whose methods were sufficiently varied with respect to the
considered code metrics. That is, we needed methods having different size, complexity,
CoCo, etc.

Two applications concerning the processing of JSON files were finally selected: JSON-
Java (GitHub - stleary/JSON-java 2022) and Jsoniter (GitHub 2022).

The specific methods to be used in the experiment were chosen based on the following
criteria:

– They should be equipped with test cases. In general, not all methods have test cases, even
in projects where unit tests are used.

– They were associated with some solved issues. This allowed us to identify the buggy
versions of the methods to be proposed to participants. Thus, we also made sure that the
tasks assigned to participants were realistic ones.

– They should form sets sufficiently varied with respect to the considered code metrics
(size, complexity, CoCo, etc.).

Based on these criteria we selected 16 methods from each project, for a total of 32 methods.

123

155 Page 8 of 24 Empirical Software Engineering (2023) 28:155

4.2.2 Empirical Study Execution

Three students participated in the empirical study. They were recruited among the students
attending the Master’s Degree in Computer Science program at the Università degli Studi
dell’Insubria. They had similar expertise concerning the programming language and the
application domain, acquired through university courses. All of them had also a few months
of work experience acquired via the industrial training required for the Bachelor Degree.

The empirical study was carried out in two sessions, lasting four hours each, in different
days, to avoid fatigue effects. In each session, each participant had to perform the corrective
maintenance of eight methods (four from Jason-java and four from Jsoniter). Half of the
methods were assigned to multiple participants. This was done to be able to evaluate partici-
pants. In fact, participants’ ability is a potentially confounding factor that has to be evaluated
and taken into account.

Suitable working conditions were created. Participants used the Eclipse IDE on their own
machine, and they could take breaks, whose duration was not counted in task execution time.

Participants were properly instructed not to communicate with each other, and they were
also informed that they were not being evaluated in any way via the empirical study. To
make the environment as friendly as possible, sessions were supervised by another Master’s
student.

The tracking of the times took place through the push system on the repository, reporting
both the provided solution and the completion time of each task.

4.3 Collected Data

For each method involved in a task, the following data were collected via the experiment:

– Id of the participant that performed the maintenance task;
– Name of the method;
– Class of the method;
– Time in minutes taken to provide the solution;
– Correctness of the solution (Boolean).

As already mentioned, all methods were successfully corrected by all participants, i.e., cor-
rectness was true for all supplied methods.

In addition, every method was measured via SourceMeter (Source 2022). The measures
mentioned in Section 3 were collected. Table 1 contains the descriptive statistics for the data
we collected.

Table 1 Descriptive statistics of the Java methods used in the empirical study

Time CoCo HVOL HCPL McCC LLOC NLE MI

mean 28.1 16.5 936.1 271.2 10.7 33.6 2.8 78.2

st. dev. 11.8 10.9 418.4 97.0 6.5 14.8 1.5 11.2

median 26.5 12.0 838.7 254.1 10.0 31.0 3.0 77.0

min 9 2 244 104 1 10 0 59

max 77 43 1956 522 28 68 7 105

123

Page 9 of 24 155Empirical Software Engineering (2023) 28:155

5 Data Analysis and Results

5.1 Evaluation of Participants

Code understanding depends on code as well as on who has to understand the code. It is
therefore important to evaluate the differences in code understanding ability of the partic-
ipants. To this end, we proceeded as follows: we identified the set of methods assigned to
two or more participants, then we collected the time employed by the involved participants
to complete the tasks concerning these common methods. These data are given in Table 2,
where P1, P2 and P3 indicate the three participants in the study. To highlight the differences,
for each common task we computed the mean completion time t̄ and the relative difference
to t̄ mean (RDtM) for each participant (for instance, in the first row, concerning method
fillCacheUntil, the mean time is 29+26+32

3 = 29 and the RDtM for participant 2 is
26−29
29 = −10.3%.
It can be seen that different participants obtained similar results for common methods,

except for method nextValue and, to a lesser extent, for method
objectToBigInteger. We also evaluated the global performances of participants, com-
puted as the mean times taken by participants to complete the assigned tasks. They are shown
in the bottom line of Table 2 and they appear to be very similar.

It is also worth noting that no participant was consistently better or worse than others:
specifically, the RDtM column of each participant includes both positive and negative values.
This is what we expect from developer groups in real organizations: a developer performs
better than colleagues in some tasks and worse in others.

Table 2 Participants’ common task completion times

Time RDtM
Method P1 P2 P3 P1 P2 P3

Any fillCacheUntil(int target) 29 26 32 0.0% -10.3% 10.3%

BigInteger objectToBigInteger(...) 35 22 NA 22.8% -22.8%

Boolean equals(Object o) NA 19 17 5.6% -5.6%

Decoder createDecoder(...) 24 25 32 -11.1% -7.4% 18.5%

Int findStringEnd(JsonIterator iter) 22 NA 29 -13.7% 13.7%

Int parse(JsonIterator iter) 18 22 NA -10.0% 10.0%

JSONArray(JSONTokener x) NA 28 25 5.7% -5.7%

Object nextMeta() 27 NA 38 -16.9% 16.9%

Object nextValue() NA 77 30 43.9% -43.9%

Object read() 25 32 NA -12.3% 12.3%

String toString(JSONArray ja) 23 27 NA -8.0% 8.0%

String unescape(String string) 19 20 24 -9.5% -4.8% 14.3%

Void enableDecoders() 37 NA 33 5.7% -5.7%

Void populateMap(Object bean) 41 NA 33 10.8% -10.8%

Void skipFixedBytes(...) NA 16 16 0.0% 0.0%

Writer write(Writer writer, ...) 26 32 38 -18.8% 0.0% 18.8%

Mean time for all methods 27.2 28.8 28.9 -4.0% 1.9% 2.2%

123

155 Page 10 of 24 Empirical Software Engineering (2023) 28:155

5.2 Analysis Methods

At first, we tried building models via Ordinary Least Squares (OLS) regression, both linear
and after log-log transformation, given that the distribution of data is not normal. However,
the resulting models were quite inaccurate. Therefore, we tried applying more sophisticated
Machine Learning techniques.

We built models using Support Vector Regression (SVR), Random Forests (RF) and
Neural Networks (NN) approaches. The analysis was carried out using the R programming
language and environment (R core team 2015). Specifically, we used the e1071, nnet, and
randomForest libraries.

Themodels obtained with different techniques provided generally concordant indications.
NN models provided slightly more accurate predictions then the other models, hence we
report only the results from NN models.

To build models, a fundamental step was the configuration of ML model with proper
parameters (i.e., the so-called hyperparameters of the model), in order to find the best con-
figuration for our dataset. To this end, we exploited the tuning function of the e1071
library, which has a wrapper for many ML methods available in R. The tuning function
was designed to find the best set of parameters for the data in a ranged or full parameter space
for each parameter. Among the tune.control arguments,cross allows the programmer
to instruct the tuning function to look for the best parameters via an internal cross-fold
cross validation: we set cross=5. Hyperparameters values and ranges were set after a pre-
liminary test phase, where subsequently simplified parameter spaceswere used and compared
against time performance, accuracy intervals, and “best practice” hyperparameters tuning.2

The final model-specific parameters for NN models were set as follows.
The nnet package models a single hidden layer neural network; linout (for linear

output instead of logistic output) = true; rang (initial random weights interval [-rang,
rang]) = 0.1. Best parameter space considered: size (number of units in the hidden layer)
= 2, decay (a factor by which the minimization of the loss function procedure is affected,
in that it “regularizes” weights value at each step) = 0.

Models were built and evaluated via 10-times 10-fold cross validation, i.e., the dataset
was split randomly in ten subsets, and each subset was used as a test set to evaluate the model
built on the basis of the other data. The procedure was repeated 10 times to average out the
effects of random splitting.

Prediction accuracywas evaluated viaMAR,which is an unbiased indicator, recommended
by several authors (e.g., Shepperd and MacDonell 2012). Given a set of observations Y , the
residual (or error) of the i th prediction ŷi is yi − ŷi , where yi is the i th observation (i.e., the
actual value of the considered understandability factor). MAR is then computed as the mean
of absolute residuals, as follows:

M AR = 1

n

n∑

i=1

|yi − ŷi |

MAR is useful to compare the accuracy of different models, but does not provide a clear
perception of how good the model is. To this end, we provide also a normalized version of
MAR, obtained by dividing MAR by the mean actual value of the considered aspect, i.e., the
time taken to carry out tasks. Specifically,we proceed as follows: given a set of observationsY ,

2 The e1071 package uses the Grid Search meta-heuristic for parameters tuning, given a parameter space in
input.

123

Page 11 of 24 155Empirical Software Engineering (2023) 28:155

– The residual of the i th prediction ŷi is yi − ŷi , where yi is the i th observation.
– The mean actual value ȳ is ȳ = 1

n

∑n
i=1 yi , where n is the number of observations in Y .

– We consider the ratio rr between absolute residuals and themean of actuals: rri = |yi −ŷi |
ȳ .

– Then, we compute MR, the mean of rr, as follows:

M R = 1

n

n∑

i=1

rri = 1

n

n∑

i=1

|yi − ŷi |
ȳ

= 1

ȳ

1

n

n∑

i=1

|yi − ŷi | = M AR

ȳ

Unlike MMRE, i.e., the Mean Magnitude of Relative Errors, defined as 1
n

∑n
i=1

|yi −ŷi |
yi

,
MR is not biased, since in the computation ofMR the absolute residuals of a given dataset are
all divided by the same number (the mean value of the considered measure in that dataset).

MdAR is themedian of absolute errors.MdR is computed asMdARdivided by themedian
of understanding times.

AccuracymetricsMAR,MdAR,MR, andMdRare loss functions (or penalty functions), so
they are smaller in more accurate models. No consensus thresholds exist for them to separate
models that are accurate enough from those that are not accurate enough. This assessment
is therefore carried out by software practitioners based on their goals. At any rate, the used
metrics always make it possible to rank different models according to their accuracy.

5.3 Results

In this section, we present the results obtained with NN models. As explained above, other
techniques provided similar models, only slightly less accurate.

5.3.1 Models Using OneMetric as Independent Variable

We obtained models of code understanding time using each of the considered code metrics,
for which we computed MAR, MdAR, MR, and MdR, as reported in Table 3, where the best
result for each column is in bold (hence, McCC has the best values for all four accuracy
metrics).

Figure 1 shows the boxplots of the absolute errors from models that use one metric as the
independent variable. Specifically, the boxplots on the left-hand side illustrate the complete
sets of absolute errors, while the boxplots on the right-hand side do not show outliers, for the
sake of readability. The orange diamonds represent the mean value, i.e., MAR.

Similarly, Fig. 2 shows the boxplots of the absolute relative errors from models that use
one metric as the independent variable.

Table 3 Accuracy of models
using just one independent
variable

MAR MdAR MR MdR

CoCo 8.8 6.6 31.3% 25.0%

HVOL 9.0 7.1 31.9% 26.8%

HCPL 8.0 6.4 28.5% 24.2%

McCC 7.6 5.1 26.9% 19.4%

LLOC 8.7 6.5 31.0% 24.5%

NLE 8.6 6.2 30.7% 23.4%

MI 8.7 6.2 30.8% 23.5%

123

155 Page 12 of 24 Empirical Software Engineering (2023) 28:155

Fig. 1 Boxplots of absolute errors frommodels using one independent variable (to improve readability, outliers
are not shown in the right-hand side figure)

The data and a visual analysis of the boxplots show that the models have similar accuracy.
In fact, Table 3 shows small ranges for the four accuracy metrics: MAR ∈ [7.6, 9.0], MdAR
∈ [5.1, 7.1], MR ∈ [26.9%, 31.9%], and MdR ∈ [19.4%, 26.8%].

The results do not seem to be very satisfactory. For instance, even the bestMR (i.e., 26.9%,
obtained with the McCC-based model) shows that the average absolute error is more than
one-fourth the average time needed to complete a task. This is probably hardly acceptable.

At any rate, even though the ranges of the accuracy metrics are quite small, we proceeded
to quantitatively assess to what extent a code metric is a better predictor of understandability
than another metric. To this end, we computed the effect size of absolute errors, using Vargha
and Delaney’s A (Vargha and Delaney 2000).

The Vargha and Delaney’s A statistic is a non-parametric effect size measure that com-
pares the results obtained by applying two data analysis algorithms alg1 and alg2. Given
an accuracy measure AM, A measures the probability that the value am1 of the accuracy

Fig. 2 Boxplots of absolute relative errors frommodels using one independent variable (to improve readability,
outliers are not shown in the right-hand side figure)

123

Page 13 of 24 155Empirical Software Engineering (2023) 28:155

measure obtained by running alg1 is higher than the value am2 obtained by running alg2. If
the two algorithms have equivalent accuracy as quantified by AM, then A = 0.5. If instead,
say, A = 0.7, we would likely obtain higher results 70% of the times with alg1. A is defined
as follows Vargha and Delaney (2000):

A = 1

n2

(
R1

n1
− n1 + 1

2

)
(4)

whereR1 is the rank sumof the results obtainedwith alg1 after combining the results obtained
with the two algorithms in a single set. For example (as in Arcuri and Briand 2014), assume
that the values obtained with alg1 are AMValues1 = {21, 12, 9} and those obtained with alg2
are AMValues2 = {4, 17, 6}. The values in set AMValues1 have ranks 6, 4, 3, whose sum is
13. In (4), n1 is the number of values obtained with alg1, whereas n2 is the number of values
obtained with alg2. Hence, in our example, A = 1

3 (
13
3 − 4

2) � 0.78.
The results of applying Vargha and Delaney’s A statistic to the absolute errors of our

models’ predictions are given in Table 4.
Table 4 shows that the effect size is mostly negligible. We have a small effect size in only

a few cases, the largest of which involves the comparison between CoCo and McCC (A =
0.57), which seems to indicate that McCC is a better predictor of understandability time than
CoCo, though only marginally so.

Since there is no codemetric that appears to be amuch better predictor of understandability
time than any other code metric, we proceeded to investigate the accuracy of models with
multiple independent variables.

5.3.2 Models Using Multiple Metrics as Independent Variables

When building models with multiple code metrics as independent variables,

1. We limited the number of independent variables to four, because using more variables
could imply overfitting, given the size of the dataset. This does not appear as a relevant
limitation, since models using more variables do not provide more accurate predictions
than those using fewer variables.

2. We did not useHVOL, because it is strongly correlated toHCPL, as shown in Formula (3).
3. Similarly, we did not use MI, since it is strongly correlated to other measures, being

defined as a combination of HVOL, McCC, and LLOC.

Table 4 Effect size for absolute
residuals, according to Vargha
and Delaney’s A

CoCo HVOL HCPL McCC LLOC NLE MI

CoCo — 0.49 0.54 0.57 0.51 0.51 0.53

HVOL 0.51 — 0.55 0.57 0.51 0.51 0.52

HCPL 0.46 0.45 — 0.53 0.47 0.47 0.48

McCC 0.43 0.43 0.47 — 0.44 0.44 0.45

LLOC 0.49 0.49 0.53 0.56 — 0.50 0.51

NLE 0.49 0.49 0.53 0.56 0.50 — 0.51

MI 0.47 0.48 0.52 0.55 0.49 0.49 —

123

155 Page 14 of 24 Empirical Software Engineering (2023) 28:155

We obtained models for all the possible combinations of measures. The accuracy of the
obtained models is summarized in Table 5.

The boxplots of relative absolute errors are given in Figs. 3 and 4. In Fig. 4, the boxplots
are colored differently depending on the number of measures used as independent variables:
light blue indicates two measures, light yellow three measures, and pink four measures.

The comparison of the results abovewith those formodelswith only one variable (reported
in Section 5.3.1) shows that using multiple variable to predict code understandability does
not appear to improve accuracy.

The comparison of Tables 3 and 5 shows that adding further codemetrics does not improve
the accuracy of models. Table 5 shows the following ranges for the four accuracy metrics:
MAR ∈ [7.6, 9.0] (with the exception of the model with independent variables CoCo and
NLE, which hasMAR=10.7);MdAR∈ [5.2, 7.2];MR∈ [28.9%, 34.1%] (with the exception
of the model with independent variables CoCo and NLE, which has MR=37.9%); and MdR
∈ [19.6%, 27.1%]. There seems to be an improvement for MdAR, while all other accuracy
metrics seem to indicate a marginal worsening of the accuracy.

Table 5 Accuracy of models using multiple independent variables

Metrics MAR MdAR MR MdR

CoCo,HCPL 8.5 6.5 30.4% 24.5%

CoCo,LLOC 9.1 6.9 32.2% 25.9%

CoCo,McCC 8.6 6.0 30.4% 22.8%

CoCo,NLE 10.7 6.0 37.9% 22.5%

HCPL,LLOC 8.1 5.9 28.9% 22.4%

HCPL,McCC 8.2 5.2 29.0% 19.6%

HCPL,NLE 8.7 6.4 31.0% 24.3%

LLOC,NLE 8.3 5.9 29.5% 22.1%

McCC,LLOC 8.7 6.0 30.7% 22.7%

McCC,NLE 8.3 6.5 29.6% 24.4%

CoCo,HCPL,McCC 8.9 6.4 31.7% 24.1%

CoCo,HCPL,LLOC 8.6 6.2 30.4% 23.2%

CoCo,HCPL,NLE 8.8 5.9 31.4% 22.4%

CoCo,LLOC,NLE 9.5 6.2 33.9% 23.4%

CoCo,McCC,LLOC 9.1 7.0 32.3% 26.3%

CoCo,McCC,NLE 9.6 5.6 34.1% 21.2%

HCPL,LLOC,NLE 8.6 6.1 30.7% 23.0%

HCPL,McCC,LLOC 8.4 5.5 30.0% 20.9%

HCPL,McCC,NLE 8.5 6.0 30.2% 22.8%

McCC,LLOC,NLE 8.3 5.9 29.3% 22.2%

CoCo,HCPL,LLOC,NLE 9.1 6.3 32.3% 23.6%

CoCo,HCPL,McCC,LLOC 9.5 7.2 33.9% 27.1%

CoCo,HCPL,McCC,NLE 9.3 6.3 33.2% 23.8%

CoCo,McCC,LLOC,NLE 8.9 5.8 31.7% 21.8%

HCPL,McCC,LLOC,NLE 8.5 6.0 30.3% 22.6%

123

Page 15 of 24 155Empirical Software Engineering (2023) 28:155

Fig. 3 Boxplots of absolute relative errors from models using multiple independent variables

6 Synthesis of Findings

In Section 6.1 below we provide answers to the research questions, based on the collected
data.

To verify hypotheses and conclusions, we interviewed the participants in the study, as
well as experienced industrial developers. The outcome of the interviews is summarized in
Section 6.2.

6.1 Answers to Research Questions

RQ1 Is it possible to define predictive models for code understandability by using source
code measures? We were able to find models using different ML techniques. All of the
considered code metrics support code understandability models.
RQ2 Which source code measures are best at predicting code understandability?
Table 3 and Figs. 1 and 2 show that McCabe’s complexity seems to be the best predictor
of code understandability, but by a very small margin. The evaluation of the effect size
shows that the advantage of using McCC over other metrics is small, at best. In fact,
all models based on a single metric have accuracy in the [26.9%, 31.9%] range, when
considering absolute estimation errors.

123

155 Page 16 of 24 Empirical Software Engineering (2023) 28:155

Fig. 4 Boxplots of absolute relative errors from models using multiple independent variables (outliers not
shown)

RQ3 Is Cognitive Complexity better than other measures as a predictor of code under-
standability?
Based on our results, it seems that CoCo does not fulfill its original objectives (CoCo was
proposed with the aim “to remedy Cyclomatic Complexity’s shortcomings and produce
a measurement that more accurately reflects the relative difficulty of understanding, and
therefore of maintaining methods, classes, and applications”Campbell 2018).Whenused
alone, CoCo performs at the same level of accuracy as LLOC and HCPL, and slightly
worse than McCC. Even when used together with other measures, CoCo does not seem
to make models more accurate.
RQ4 How much can source code measures be trusted as understandability predictors?
In other words, are predictions based on code measures accurate enough? Do we need to
consider additional factors, not involving code, that affect understandability?
The models we found show that there is a correlation between code structural charac-
teristics and code understandability. Nonetheless, the models we found feature a relative
absolute error around 30%, on average. The practical usefulness of understandability
models featuring 30% error can ultimately be evaluated only subjectively by practition-
ers, on the basis of their specific needs. However, the prediction error of our models is
large enough to suggest that some research is still needed before we can build really reli-
able models of understandability. We should identify and measure code-unrelated factors

123

Page 17 of 24 155Empirical Software Engineering (2023) 28:155

that affect understandability, but also devise new ways of measuring the characteristics
of code that most likely affect code readability and understandability.

6.2 Verification

During the experiment sessions, participants could have experienced fatigue or tiredness,
which could have affected the time taken to perform tasks. Concerning this issue, none of
the participants reported to have experienced fatigue or tiredness.

Another possible confounding factor is the well-known learning effect, which could have
made the work in the second session easier than in the first one. Indeed, participants stated
that the work in the second session seemed easier. Based on this indication, we analyzed the
performance of participants in the two sessions, and we found that there is no evidence that
tasks were performed faster in the second session.

We used the time taken to perform code correction tasks as a proxy for code understand-
ability. Consequently, we designed all code correction tasks in such a way that their actual
difficulty lay in identifying the problem (which, in turn, required understanding the code),
while correcting the code required little time. Participants confirmed that performing correc-
tions and checking them via the available test cases was actually quite easy and fast, once
the problem had been understood.

Finally, we interviewed industrial developers from two companies to have their opinions
on the study and its validity. The interviewed developers appreciated the idea of correlating
code metrics with understandability measures and supported the conclusions of the study.
However, they also pointed out that the experimentation should be extended to make it more
generally representative. That is, they consider the preliminary results we obtained promising
and provided some suggestions, whichwe report in the futurework section of the conclusions.

7 Threats to Validity

We here summarize the main threats to the validity of our empirical study.
Internal validity. We used several techniques to build the various models, with one or with

more independent variables. This is common current practice in model building. In the paper,
we report on the various decisions we made in the process (e.g., about the hyperparameters),
so the readers can evaluate their appropriateness by themselves.

External validity. The number of subjects that participated in the empirical study is too
small to provide a sufficient degree of external validity to our empirical study. The students
formed a homogeneous sample, so they were representative of a portion of the possible
population. Due to the characteristics of the current business environment, the subjects could
be considered as representative of junior programmers.

Construct validity. Software code understandability was measured via the time needed
to correctly complete a maintenance task. Thus, we use a time-related measure, as done in
a large part of the literature. Other ways of measuring understandability have been used,
e.g., based on the number of correct answers on a questionnaire about software code (see
Section 8). Thus, we capture one, time-related aspect of code understandability.

As for result evaluation, we used MAR, MdAR, MR, and MdR, which alleviate some of
the most relevant construct validity problems of other accuracy metrics such as MMRE.

123

155 Page 18 of 24 Empirical Software Engineering (2023) 28:155

8 RelatedWork

A few software readability models have been proposed, with different degrees of variety of
types of information, features taken into account, and understandability measures.

Buse and Weimer (2010) defined a readability model based on a number of code features,
e.g., the number of identifiers, the number of parentheses, the number of branches, the
number of loops. Theymeasure readability by having experiment subjects assess several code
snippets via an ordinal scale with values from 1 to 5, where value 1 is associated with the least
readable code snippets and value 5 with the most readable ones. Then, the study computes the
average score for each snippet and builds the distribution of these averages, which presents a
natural cut-off score value at 3.14 between more and less readable snippets. Thus, readability
is ultimately evaluated on a binary scale: snippets whose average score is below 3.14 are
classified as “less readable” and the others as “more readable.” So, Buse and Weimer’s
quantification of readability is quite different from our quantification of understandability,
which is based on time. Their readabilitymodelwas fairly effective in predicting the perceived
readability of short code snippets.

The model by Buse and Weimer was later simplified by Posnett et al. (2011), who used
only 3 source code measures, namely LOC, entropy, and HVOL. The accuracy of the new
model was evaluated via the Area Under the Curve of ROC curves, on the same dataset as
Buse and Weimer. The model by Posnett et al. turned out to be more accurate. Posnett et
al. also reevaluated the process by which they defined their model in Posnett et al. (2021).
Among the main lessons learned, they reiterated a common finding in predictive models
based on source code, i.e., the influence of source code size can by no means be ignored.

Dorn (2012) used an additional set of code snippets and built on the previous models by
using 4 categories of features, namely, visual, spatial, alignment, and linguistic ones, based
on the idea that practitioners read source code on screens, so structural code features alone
are not sufficient when assessing readability.

A study by Scalabrino et al. (2018) took into account textual features based on source code
lexicon analysis in addition to structural features. Their study takes into account the datasets
collected by Buse and Weimer and by Dorn along with a new dataset built based on a new
set of code snippets. Empirical findings show that textual features complement structural
ones. In particular, models based on structural and textual features are more accurate than
the previous ones.

A related paper by Fakhoury et al. (2019) describes an empirical study assessing the
quality of three readability models when it comes to evaluating readability improvements.
These models are based on source code measures and, in their empirical study, Fakhoury et
al. used the values of measures extracted by SourceMeter. Readability changes are identified
by analyzing the documentation accompanying software code changes. The paper shows
the inability of current readability models in capturing readability improvements and rec-
ommends that other characteristics be taken into account to build more accurate models for
readability changes.

A recent paper by Scalabrino et al. (2021) describes an extensive study inwhich 444 evalu-
ations concerning 50methodswere provided by 63 Java professional developers and students.
Perceived understandabilitywasmeasured by asking the empirical study participants whether
they understood a code snippet. If so, theywere asked to answer three confirmation questions,
with the purpose of measuring actual understandability. On the other hand, the independent
variables included 121 measures related to code, documentation, and developers. The statis-
tical analysis of the collected data found that none of the code measures was significantly
correlated with any understandability proxy based on perceived or actual understandability

123

Page 19 of 24 155Empirical Software Engineering (2023) 28:155

evaluations. They also built models based on multiple metrics, using several techniques,
including machine learning ones. The obtained models show some discriminatory power in
the prediction of code understandability proxies, but with very high Mean Absolute Error.

Compared to the work by Scalabrino et al. (2021), our work shows a better ability of code
measures (even single ones) in predicting code understandability, even though the prediction
errors of our models are definitely not negligible (see Table 3). This is probably due to the fact
that Scalabrino et al. employed developers having quite different skills and experience.While
the participants in our experiment were characterized by similar skills and experiences, and
provided similar performances, the participants in Scalabrino et alii’s experiment yielded very
different performances. For instance, for 33 out of the 50 methods involved in the experience,
there was at least one participant that provided no correct answers to method comprehension
questions, and at least one participant that answered correctly all method comprehension
questions.

The data collected by Scalabrino et al. were then re-analyzed by Trockman et al. (2018).
Scalabrino et al. evaluated the actual understanding of a method based on how many correct
answers were provided to the three questions associated with the method. Trockman et al.
introduced a binary response variable “understood” for every method, that they consider
true if two or more questions were answered correctly, false otherwise. Then, they built
binary classifiers based on multiple code variables. They found that some metrics correlate
with understandability. The models achieved an average Area Under the ROC Curve of
0.64, which implies some discriminating power, but is too low to provide practically reliable
predictions.

The results obtained by Trockman et al. are hardly comparably with ours, given not
only the diversity of participants’ characteristics and the different natures of the considered
understandability indicators, but also the difference of metrics used as independent variables.
With respect to the latter point, it is worth noting that none of the metrics that are statistically
significant in Trockman et alii’s models belongs to the set of metrics we investigated.

The appropriateness of using some of the measures listed in Section 3 for maintainability
evaluationwas discussed byOstberg andWagner (2014):Halstead’smeasures,McCC,LLOC,
and MI (Coleman et al. 1994) were not considered adequate, while NLE was considered
adequate. Even though we agree with Ostberg and Wagner’s considerations on a number of
counts, we included these measures in our experiment to practically investigate their degree
of (in)adequacy.

As a sort of validation of CoCo, Campbell performed an investigation of the developers’
reaction to the introduction of CoCo in the measurement and analysis tool SonarCloud. In an
analysis of 22 open-source projects, they assessedwhether a development team“accepted” the
measure, based on whether they fixed those code areas indicated by the tool as characterized
by high CoCo. Around 77% of developers expressed acceptance of the measure (Campbell
2018).

An evaluation of how well CoCocan be used to assess code understandability based on
actual understandability data was performed by Muñoz Barón et al. (2020). They collected
published data from empirical studies on code understandability, measured the CoCo of the
source code used in the experiments, and evaluated the statistical association between various
types of understandability indicators and CoCo. They found moderate associations in some
cases.

The issue of the impact of nesting on source code complexity was addressed in software
measurement literature prior to CoCo, especially with the goal of overcoming some limita-
tions of McCC. Howatt and Baker (1989) provided a formal definition of nesting that can
be applied to structured and unstructured programming. This formal definition was used as

123

155 Page 20 of 24 Empirical Software Engineering (2023) 28:155

a framework for several nesting-based measures, such as the ones defined by Piwowarski
(1982); Dunsmore and Gannon (1979); Harrison and Magel (1981a, b). Chen (1978) defines
an entropy-based complexity measure that also accounts for nesting of predicate nodes. Also,
Li (1987) introduces a measure similar to CoCo, in which each control structure is weighted
according to its nesting level. Binary logical operators, instead, are not weighted according
to the nesting level of the control structure they belong to.

9 Conclusions and FutureWork

We have investigated the possibility of using software source code measures to build models
to predict the understandability of software methods. To this end, we carried out an empir-
ical study, in which we collected data about code understandability, and a set of structural
measures, to be used as independent variables.

As a measure of code understandability, we used the time needed to correctly complete
some maintenance task on code. Since maintenance tasks involve both understanding and
modifying the code, we included in the experimental activity only tasks that required very
little time to modify the code, once it had been understood. Even so, the code correction
time is actually a measure of code understanding, rather than understandability. In fact,
code understanding depends on the understandability of code as well as on the ability of
involved developers. To minimize the impact of developers’ capability and experience on
the maintenance time, we selected a set of developers having similar experience and similar
capability. Therefore, our results depend almost exclusively on the properties of code.

The models we obtained in our empirical study indicate that code understandability is
correlated with the considered set of structural characteristics.

Given the small size of our experiment, especially as far as the number of participants
is concerned, our results should be regarded as preliminary indications, which contribute to
shed some light on code understandability, rather than definitive conclusions.

The models found seem to indicate that code understandability depends on structural code
properties. Nonetheless, the prediction error is around 30%; also the usage of the recently
introducedCognitiveComplexitymeasure does not seem to capture understandability-related
aspects better than “traditional” code measures. This outcome of our study indicates that
further research is necessary. To improve code understandability models, we should identify
and measure properties of the code understanding process, as well as the characteristics of
code that most likely affect code readability and understandability and have not yet been
suitably described.

Future work will involve

– experimenting inmore complex conditions, e.g., involving a larger set of subjects, a larger
set of methods, and different processes (e.g., having more than one developer working
on a task, like in Pair Programming).

– the use of more source code measures, as well as non-code measures;
– the investigation of other measures than time-related ones to quantify understandability;
– the search for new code measures that are more representative of code understandability
than those used in this paper and the literature.

Acknowledgements The authors would like to thank the students that participated in the empirical study, the
professionals that participated in the interviews, and Anatoliy Roshka and Gabriele Rotoloni, who developed
the tool we used to measure Cognitive Complexity.

123

Page 21 of 24 155Empirical Software Engineering (2023) 28:155

Funding Open access funding provided byUniversità degli Studi dell’Insubriawithin theCRUI-CAREAgree-
ment.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Replication Package Areplicationpackage is publicly available at http://www.dista.uninsubria.it/supplemental_
material/understandability/replication_package.zip.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

GitHub (2022) - json-iterator/java: jsoniter (json-iterator) is fast and flexible JSON parser available in Java
and Go. https://github.com/json-iterator. Accessed 29 Sept 2023

GitHub - stleary/JSON-java (2022) A reference implementation of a JSON package in Java. https://github.
com/stleary/json-java. Accessed 29 Sept 2023

SourceMeter (2022). https://www.sourcemeter.com/. Accessed 29 Sept 2023
Ajami S,Woodbridge Y, Feitelson DG (2019) Syntax, predicates, idioms - what really affects code complexity.

Empir Softw Eng 24(1):287–328. https://doi.org/10.1007/s10664-018-9628-3
Arcuri A, Briand L (2014) A hitchhiker’s guide to statistical tests for assessing randomized algorithms in

software engineering. Softw Test Verif Reliab 24(3):219–250
Börstler J, Paech B (2016) The role of method chains and comments in software readability and comprehension

- an experiment. IEEE Trans Software Eng 42(9):886–898. https://doi.org/10.1109/TSE.2016.2527791
Buse RPL,WeimerW (2010) Learning ametric for code readability. IEEE Trans Software Eng 36(4):546–558.

https://doi.org/10.1109/TSE.2009.70
Campbell GA (2018) Cognitive complexity - a new way of measuring understandability. https://www.

sonarsource.com/docs/CognitiveComplexity.pdf. Accessed 29 Sept 2023
Campbell GA (2018) Cognitive complexity: An overview and evaluation. In: Proceedings of the 2018 inter-

national conference on technical Debt, pp 57–58
Carver JC, Jaccheri L, Morasca S, Shull F (2010) A checklist for integrating student empirical studies

with research and teaching goals. Empir Softw Eng 15(1):35–59. https://doi.org/10.1007/s10664-009-
9109-9

Chen ET (1978) Program complexity and programmer productivity. IEEE Trans Software Eng 4(3):187–194.
https://doi.org/10.1109/TSE.1978.231497

Coleman D, Ash D, Lowther B, Oman P (1994) Using metrics to evaluate software system maintainability.
Computer 27(8):44–49

Dolado JJ, Harman M, Otero MC, Hu L (2003) An empirical investigation of the influence of a type of side
effects on program comprehension. IEEE Trans Software Eng 29(7):665–670. https://doi.org/10.1109/
TSE.2003.1214329

Dorn J (2012) A general software readability model. Department of Computer Science, Master’s thesis, Uni-
versity of Virginia, Charlottesville, Virginia

Dunsmore HE, Gannon JD (1979) Data referencing: An empirical investigation. Computer 12(12):50–59.
https://doi.org/10.1109/MC.1979.1658576

Fakhoury S, Roy D, Hassan SA, Arnaoudova V (2019) Improving source code readability: theory and practice.
In: Guéhéneuc, Y, Khomh, F, Sarro F (eds.) Proceedings of the 27th international conference on program
comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019, pp 2–12. IEEE / ACM. https://
doi.org/10.1109/ICPC.2019.00014

123

155 Page 22 of 24 Empirical Software Engineering (2023) 28:155

http://www.dista.uninsubria.it/supplemental_material/understandability/replication_package.zip
http://www.dista.uninsubria.it/supplemental_material/understandability/replication_package.zip
http://creativecommons.org/licenses/by/4.0/
https://github.com/json-iterator
https://github.com/stleary/json-java
https://github.com/stleary/json-java
https://www.sourcemeter.com/
https://doi.org/10.1007/s10664-018-9628-3
https://doi.org/10.1109/TSE.2016.2527791
https://doi.org/10.1109/TSE.2009.70
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://doi.org/10.1007/s10664-009-9109-9
https://doi.org/10.1007/s10664-009-9109-9
https://doi.org/10.1109/TSE.1978.231497
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.1109/MC.1979.1658576
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014

Fenton NE, Bieman JM (2014) Software metrics: a rigorous and practical approach, third edition. Chapman
& Hall/CRC innovations in software engineering and software development series. Taylor & Francis.
https://books.google.es/books?id=lx_OBQAAQBAJ. Accessed 29 Sept 2023

Fitzsimmons A, Love T (1978) A review and evaluation of software science.ACM Comput Surv 10(1):3–18
Floyd B, Santander T, Weimer W (2017) Decoding the representation of code in the brain: an fmri study of

code review and expertise. In: 2017 IEEE/ACM 39th international conference on software engineering
(ICSE) pp 175–186. IEEE

Fucci D, Girardi D, Novielli N, Quaranta L, Lanubile F (2019) A replication study on code comprehension
and expertise using lightweight biometric sensors. In: 2019 IEEE/ACM 27th international conference on
program comprehension (ICPC) pp 311–322. IEEE

Glass RL (2001) Frequently forgotten fundamental facts about software engineering. IEEE Softw 18(3):112
Halstead, MH (1977) Elements of software science. Elsevier North-Holland
Harrison W, Magel K (1981a) A topological analysis of the complexity of computer programs with less than

three binary branches. SIGPLAN Not 16(4):51–63. https://doi.org/10.1145/988131.988137
Harrison WA, Magel KI (1981b) A complexity measure based on nesting level. SIGPLAN Not 16(3):63–74.

https://doi.org/10.1145/947825.947829
Heitlager I, Kuipers T, Visser J (2007) A practical model for measuring maintainability. In: 6th International

conference on the quality of information and communications technology (QUATIC 2007) pp 30–39.
IEEE

Hofmeister JC, Siegmund J, Holt DV (2017) Shorter identifier names take longer to comprehend. In: Pinzger
M, Bavota G, Marcus A (eds.) IEEE 24th international conference on software analysis, evolution and
reengineering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017, pp 217–227. IEEE Computer
Society. https://doi.org/10.1109/SANER.2017.7884623

Howatt JW, Baker AL (1989) Rigorous definition and analysis of program complexity measures: An example
using nesting. J Syst Softw 10(2):139–150. https://doi.org/10.1016/0164-1212(89)90025-3

Ikutani Y, Uwano H (2014) Brain activity measurement during program comprehension with nirs. In: 15th
IEEE/ACIS international conference on software engineering, artificial intelligence, networking and
parallel/distributed computing (SNPD) pp 1–6. IEEE

Li EY (1987) Ameasure of program nesting complexity. In: 1987 AFIPS national computer conference (NCC)
pp 531–538. AFIPS

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 4:308–320
Minelli R, Mocci A, Lanza M (2015) I know what you did last summer-an investigation of how developers

spend their time. In: 2015 IEEE 23rd international conference on program comprehension, pp 25–35.
IEEE

Morasca S (2009) A probability-based approach for measuring external attributes of software artifacts. In:
Proceedings of the 2009 3rd international symposium on empirical software engineering and measure-
ment, ESEM ’09, Lake Buena Vista, FL, USA, October 15-16, 2009, pp 44–55. IEEE Computer Society,
Washington, DC, USA. https://doi.org/10.1109/ESEM.2009.5316048

Muñoz Barón M, Wyrich M, Wagner S (2020) An empirical validation of cognitive complexity as a measure
of source code understandability. In: Proceedings of the 14th ACM/IEEE international symposium on
empirical software engineering and measurement (ESEM), pp 1–12

Oliveira D, Bruno R, Madeiral F, Castor F (2020) Evaluating code readability and legibility: An examination
of human-centric studies. In: IEEE International conference on software maintenance and evolution,
ICSME 2020, Adelaide, Australia, September 28 - October 2, 2020, pp 348–359. IEEE. https://doi.org/
10.1109/ICSME46990.2020.00041

Oman P, Hagemeister J (1992) Metrics for assessing a software system’s maintainability. In: Proceedings
conference on software maintenance 1992, pp 337–338. IEEE Computer Society

Ostberg JP, Wagner S (2014) On automatically collectable metrics for software maintainability evaluation.
In: 2014 Joint conference of the international workshop on software measurement and the international
conference on software process and product measurement, pp 32–37. IEEE

Peitek N, Siegmund J, Apel S, Kästner C, Parnin C, Bethmann A, Leich T, Saake G, Brechmann A (2020) A
look into programmers’ heads. IEEE Trans Software Eng 46(4):442–462. https://doi.org/10.1109/TSE.
2018.2863303

Piwowarski P (1982) A nesting level complexity measure. ACM SIGPLAN Notices 17(9):44–50. https://doi.
org/10.1145/947955.947960

Posnett D, Hindle A, Devanbu PT (2011) A simpler model of software readability. In: van Deursen A, Xie T,
Zimmermann T (eds.) Proceedings of the 8th international working conference onmining software repos-
itories, MSR 2011 (Co-located with ICSE)Waikiki, Honolulu, HI, USA, May 21-28, 2011, Proceedings,
pp 73–82. ACM. https://doi.org/10.1145/1985441.1985454

123

Page 23 of 24 155Empirical Software Engineering (2023) 28:155

https://books.google.es/books?id=lx_OBQAAQBAJ
https://doi.org/10.1145/988131.988137
https://doi.org/10.1145/947825.947829
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1016/0164-1212(89)90025-3
https://doi.org/10.1109/ESEM.2009.5316048
https://doi.org/10.1109/ICSME46990.2020.00041
https://doi.org/10.1109/ICSME46990.2020.00041
https://doi.org/10.1109/TSE.2018.2863303
https://doi.org/10.1109/TSE.2018.2863303
https://doi.org/10.1145/947955.947960
https://doi.org/10.1145/947955.947960
https://doi.org/10.1145/1985441.1985454

Posnett D, Hindle A, Devanbu PT (2021) Reflections on: A simpler model of software readability. ACM
SIGSOFT Softw Eng Notes 46(3):30–32. https://doi.org/10.1145/3468744.3468754

R core team (2015) R: a language and environment for statistical computing
Salvaneschi G, Amann S, Proksch S, Mezini M (2014) An empirical study on program comprehension with

reactive programming. In: Cheung S, Orso A, Storey MD (eds.) Proceedings of the 22nd ACM SIG-
SOFT international symposium on foundations of software engineering, (FSE-22) Hong Kong, China,
November 16 - 22, 2014, pp 564–575. ACM. https://doi.org/10.1145/2635868.2635895

Scalabrino S, Bavota G, Vendome C, Linares-Vásquez M, Poshyvanyk D, Oliveto R (2021) Automatically
assessing code understandability. IEEETrans SoftwareEng 47(3):595–613. https://doi.org/10.1109/TSE.
2019.2901468

Scalabrino S, Linares-Vásquez M, Oliveto R, Poshyvanyk D (2018) A comprehensive model for code read-
ability. J Softw Evol Process 30(6). https://doi.org/10.1002/smr.1958

Sharafi Z, Huang Y, Leach K, Weimer W (2021) Toward an objective measure of developers’ cognitive
activities. ACM Trans Softw Eng Methodol 30(3):1–40

Shepperd M, MacDonell S (2012) Evaluating prediction systems in software project estimation. Inf Softw
Technol 54(8):820–827

Siegmund J, Brechmann A, Apel S, Kästner C, Liebig J, Leich T, Saake G (2012) Toward measuring
program comprehension with functional magnetic resonance imaging. In: Tracz W, Robillard MP,
Bultan T (eds.) 20th ACM SIGSOFT symposium on the foundations of software engineering (FSE-
20):SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012, p 24. ACM. https://doi.org/10.1145/
2393596.2393624

Trockman A, Cates K, Mozina M, Nguyen T, Kästner, C, Vasilescu, B (2018) Automatically assessing code
understandability reanalyzed: combined metrics matter. In: 2018 IEEE/ACM 15th international confer-
ence on mining software repositories (MSR) pp 314–318. IEEE

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics
of mcgraw and wong. J Educ Behav Stat 25(2):101–132

Welker KD, Oman PW, Atkinson GG (1997) Development and application of an automated source code
maintainability index. J Softw Maint Res Pract 9(3):127–159

Xia X, Bao L, Lo D, Xing Z, Hassan AE, Li S (2017) Measuring program comprehension: A large-scale field
study with professionals. EEE Trans Softw Eng 44(10):951–976

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Luigi Lavazza1 · Sandro Morasca1 ·Marco Gatto1

Sandro Morasca
sandro.morasca@uninsubria.it

Marco Gatto
marcogatto.1997@hotmail.it

1 Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, Varese, Italy

123

155 Page 24 of 24 Empirical Software Engineering (2023) 28:155

https://doi.org/10.1145/3468744.3468754
https://doi.org/10.1145/2635868.2635895
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1002/smr.1958
https://doi.org/10.1145/2393596.2393624
https://doi.org/10.1145/2393596.2393624
http://orcid.org/0000-0002-5226-4337
http://orcid.org/0000-0003-4598-7024

	An empirical study on software understandability and its dependence on code characteristics
	Abstract
	1 Introduction
	2 Source Code Understandability
	3 Source Code Measures
	3.1 Traditional Code Measures
	3.2 The ``Cognitive Complexity'' Measure

	4 The Empirical Study
	4.1 Objectives and Conditions
	4.2 Organization and Execution
	4.2.1 Choice of the Source Code Used in the Empirical Study
	4.2.2 Empirical Study Execution

	4.3 Collected Data

	5 Data Analysis and Results
	5.1 Evaluation of Participants
	5.2 Analysis Methods
	5.3 Results
	5.3.1 Models Using One Metric as Independent Variable
	5.3.2 Models Using Multiple Metrics as Independent Variables

	6 Synthesis of Findings
	6.1 Answers to Research Questions
	6.2 Verification

	7 Threats to Validity
	8 Related Work
	9 Conclusions and Future Work
	Acknowledgements
	References

