Empirical Software Engineering (2022) 27: 139
https://doi.org/10.1007/510664-022-10183-w

®

Check for
updates

Self-Admitted Technical Debt and comments’ polarity:
an empirical study

Nathan Cassee’ © . Fiorella Zampetti2 - Nicole Novielli® - Alexander Serebrenik’ -
Massimiliano Di Penta?

Accepted: 20 May 2022 / Published online: 26 July 2022
© The Author(s) 2022

Abstract

Self-Admitted Technical Debt (SATD) consists of annotations—typically, but not only,
source code comments—pointing out incomplete features, maintainability problems, or, in
general, portions of a program not-ready yet. The way a SATD comment is written, and
specifically its polarity, may be a proxy indicator of the severity of the problem and, to some
extent, of the priority with which it should be addressed. In this paper, we study the rela-
tionship between different types of SATD comments in source code and their polarity, to
understand in which circumstances (and why) developers use negative or rather neutral com-
ments to highlight an SATD. To address this goal, we combine a manual analysis of 1038
SATD comments from a curated dataset with a survey involving 46 professional developers.
First of all, we categorize SATD content into its types. Then, we study the extent to which
developers express negative sentiment in different types of SATD as a proxy for priority,
and whether they believe this can be considered as an acceptable practice. Finally, we look
at whether such annotations contain additional details such as bug references and devel-
opers’ names/initials. Results of the study indicate that SATD comments are mainly used
for annotating poor implementation choices (~41%) and partially implemented functional-
ity (=22%). The latter may depend from “waiting” for other features being implemented,
and this makes SATD comments more negatives than in other cases. Around 30% of the
survey respondents agree on using/interpreting negative sentiment as a proxy for priority,
while 50% of them indicate that it would be better to discuss SATD on issue trackers and
not in the source code. However, while our study indicates that open-source developers use
links to external systems, such as bug identifiers, to annotate high-priority SATD, better tool
support is required for SATD management.

Keywords Self-Admitted Technical Debt - Sentiment analysis - Empirical study

Communicated by: Kelly Blincoe and Mei Nagappan

This article belongs to the Topical Collection: Mining Software Repositories (MSR)

P4 Nathan Cassee
n.w.cassee @tue.nl

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10183-w&domain=pdf
http://orcid.org/0000-0002-6511-918X
mailto: n.w.cassee@tue.nl

139 Page 2 of 42 Empir Software Eng (2022) 27: 139

1 Introduction

Self-Admitted Technical Debt (SATD) (Potdar and Shihab 2014) refers to source code com-
ments (as well as other annotations elsewhere) indicating that the corresponding source
code is (temporarily) inadequate, e.g., because the implementation is incomplete, buggy,
or smelly. The identification of SATD (da Silva Maldonado et al. 2017; Ren et al. 2019),
as well as its introduction or removal, have attracted significant attention of the research
community (Bavota and Russo 2016; da Silva Maldonado et al. 2017; Zampetti et al. 2018;
Rantala et al. 2020; Zampetti et al. 2020).

In this paper, we study the annotation practices of open-source developers from two per-
spectives. First, we use an existing curated dataset of SATD comments (da Silva Maldonado
et al. 2017) to study their content and their sentiment polarity. Second, we survey open-
source developers to (i) ask them about specific annotation practices they adopt, and (ii)
elicit the SATD comments that they would draft in five different scenarios representative of
code not being right yet.

To understand which kinds of technical debt (TD) are annotated by developers, previ-
ous literature has also categorized SATD comments. The categorizations of SATD proposed
so far are based on the various phases of the software development process (da Silva Mal-
donado and Shihab 2015; Bavota and Russo 2016). As such, they (i) miss the opportunity
to identify concerns transcending the boundaries of individual development phases such as
waiting for other components to be ready, and (ii) are somewhat broad because the SATD
content still lacks an in-depth classification. Specifically, while SATD might manifest at one
phase of the software development process, resolving it might require activities typically
associated with another phase. For instance, the following SATD comment, taken from the
Apache Ant project, can manifest during testing but its resolution requires a bug to be fixed,
i.e., a typical implementation activity:

doesn’t work: Depending on the compression engine used, compressed bytes
may differ. False errors would be reported. assertTrue (' ‘'File content
mismatch’’, FILEUTILS.contentEquals(...)));.

Hence, while the existing categorizations contribute to the understanding of the SATD phe-
nomenon, we think that a different categorization is required as a basis for the design of
tools that can help support SATD resolution. By providing a more fine-grained classifica-
tion of the problems experienced by contributors we expect that more actionable insights
can be obtained from SATD. Thus, we ask the following research question:

RQ 1 : What kind of problems do SATD annotations describe?

To address RQ1, we use 1038 SATD comments sampled from the dataset of da Silva Mal-
donado et al. (2017) to perform a fine-grained classification. We classify SATD comments
from the point of view of their textual content, as opposed to the software development life-
cycle, as it was done in previous work (da Silva Maldonado and Shihab 2015; Bavota and
Russo 2016). Our taxonomy has been created by adopting a bottom-up strategy (i.e., what
do SATD comments mention?) rather than a top-down (i.e., how do SATD comments map
onto a software development life-cycle?). This leads us towards a taxonomy featuring nine
top-level categories specialized into 32 sub-categories. The taxonomy spotlights categories
that are, on the one hand, crosscutting to the life-cycle and, on the other hand, more related
to the reasons why SATD was admitted and to the goal developers want to achieve.

Different authors have studied the sentiment and emotions expressed by developers
(Mintyla et al. 2016; Murgia et al. 2014; Novielli and Serebrenik 2019; Lin et al. 2021). In

@ Springer

Empir Software Eng (2022) 27: 139 Page3of42 139

particular, Méntyld et al. (2016) and Murgia et al. (2014) studied emotions expressed in the
context of issue reports, finding that there appears to be a link between issue priority and
complexity and negative emotions present in issue reports. When describing TD, develop-
ers could express the same concept in neutral or in a rather negative fashion. For instance,
in the following comment from JRuby the author expresses a negative attitude:

/l Yow...this is still ugly

Several authors hypothesize that the expression of negative sentiment may be a proxy for
the priority of a problem to be solved (Gachechiladze et al. 2017; Uddin and Khomh 2017,
Lin et al. 2019). In other fields, such as marketing, negative sentiment has a clear meaning.
For instance, customers give greater weight to negative information (Wright 1974), and
negative reviews are more useful to customers’ decisions than positive ones (Casalé et al.
2015; Sparks and Browning 2011). However, to the best of our knowledge, nobody has
studied how priority is expressed in different kinds of software development issues—and
in particular TD-related issues—and whether developers use negative sentiment to indicate
priority. This leads us to address the following research question:

RQ2: How do developers annotate SATD that they believe requires extra priority?

To address RQ», we ask developers how they would annotate TD they believe requires
more priority, and specifically whether they would (i) use negative sentiment to indicate
higher priority and (ii) interpret a comment with negative sentiment as an indication of
higher priority. Our results show that while the perception of negativity as a proxy for pri-
ority is not necessarily shared by all developers, it is still sufficiently common to confirm
this relation as hypothesized in the previous work (Gachechiladze et al. 2017; Uddin and
Khomh 2017; Lin et al. 2019).

Other than that, we also seek to understand whether developers believe that the expres-
sion of negative sentiment in annotating TD is an acceptable practice. In particular, if
developers believe that expressing negativity is not acceptable, then they might feel obliged
to suppress it. Suppressing negative emotions is an example of emotional labor—i.e., the
“process by which workers are expected to manage their feelings in accordance with
organizationally defined rules and guidelines” (Hochschild 1983)—in software develop-
ers (Serebrenik 2017). While traditionally, software development has been stereotyped as
a job less likely to induce emotional labor (Diefendorff and Richard 2003), communi-
cation between developers and their collaborators makes their job an intrinsically social
activity (Storey 2012). Therefore, we ask the following:

RQj3: Do developers believe that the expression of negative sentiment in SATD is an
acceptable practice?

To address RQs, we directly ask open-source developers whether they believe that
expressing negativity when annotating TD is an acceptable practice.

Furthermore, certain kinds of TD may be expressed with a different sentiment. For exam-
ple, an issue affecting the system’s functionality may be perceived as more critical than a
documentation or maintainability issue, and therefore be expressed more negatively. This
leads us to address the following research question:

RQ4: How does the occurrence of negative sentiment vary across different kinds of
SATD annotations?

@ Springer

139 Page 4 of 42 Empir Software Eng (2022) 27: 139

To address RQ4, we follow two different approaches, i.e., (i) we study the sentiment
polarity of the 1038 SATD comments used for addressing RQy, and (ii) we use a survey
asking respondents to draft SATD comments for different scenarios. The latter is used since
that, within a specific open-source project, developers might not feel free to express the
emotions they experience (Hochschild 1983). We consider as non-negative all comments
merely stating the problem or suggesting an improvement, e.g., “TO DO : delete the file
if it is not a valid file”, while we consider as negative all comments expressing a negative
attitude, e.g., “TODO : YUCK!!! fix after HHH-1907 is complete”.

From the answers given by our survey respondents to RQ; we learn that open-source
developers use links to external systems, such as bug identifiers, to annotate high priority
SATD. Moreover, in a survey-based study on task annotations, Storey et al. (2008) found
that developers tend to include additional references or information in task annotations. To
better understand this phenomenon we investigate our last research question:

RQs: To what extent do SATD annotations belonging to different categories contain
additional details?

To address RQs, we combine manual and automatic labeling of the comments from the
dataset of da Silva Maldonado et al. (2017) with manual labeling of the comments drafted
by the survey respondents.

This paper is a follow-up to our previous work (Fucci et al. 2021). In this journal article,
we extend our previous study in the following way:

— We seek a better understanding of the TD annotation practices of open-source devel-
opers, and to that end we design and discuss a survey in which we ask open-source
developers to (i) provide us with insights about their TD annotation practices, and (ii)
draft SATD comments for five different scenarios;

— We add two new research questions: RQ, and RQ3, which we address considering the
results of our survey;

— We extend two existing research questions (RQ4 and RQs) with the results of the
survey.

By studying the annotation practices of developers we hope to better understand how
developers use and perceive different kinds of SATD. In turn, this should help developers
better triage and prioritize TD, and allow researchers to better understand how SATD con-
taining negative sentiment influences, and is perceived by, developers. The full dataset, files
used during the annotation, and qualitative data gathered during the survey, are publicly
available.!

2 Study Design

To address the research questions stated in the introduction, we combine two different anal-
yses, as depicted in Fig. 1. On the one hand, we take a sample of 1038 from an existing
curated dataset of SATD comments (da Silva Maldonado et al. 2017), and categorize their
content (to address RQy, and, by further classifying the presence of additional references

Thttps://figshare.com/articles/online_resource/Self- Admitted_Technical_Debt_and_Comments_Polarity_An_
Empirical _Study/17024294

@ Springer

https://figshare.com/articles/online_resource/Self-Admitted_Technical_Debt_and_Comments_Polarity_An_Empirical_Study/17024294

Empir Software Eng (2022) 27: 139 Page50f42 139

Survey with 46 OSS developers

questions vignettes

Card Sentiment Annotation
Sorting classification Classification

v v

T Sentiment Annotation
classification Classification

SATD dataset Open l
—>| P

(1038 Coding

comments)

Fig.1 Methodology

in the comments, RQs), and sentiment (to address RQ4). On the other hand, we survey
46 open-source developers to understand their perception to negative sentiment in SATD,
and way they express priority in SATD. The survey is composed of two parts: (i) questions
about SATD practices (addressing RQ; and RQ3), and (ii) vignettes (Rossi and Nock 1983;
McNamara et al. 2018; Palomba et al. 2021) depicting realistic scenarios where developers
can admit TD, and for which we ask survey participants to write possible SATD comments.
The latter further contribute to answering RQ4 and RQs.

2.1 Addressing RQq: SATD Content Coding

To study the content of SATD comments we take an existing dataset of SATD comments
and perform open coding of this dataset.

2.1.1 Dataset

We start from a curated dataset of SATD comments by da Silva Maldonado et al. (2017),
consisting of 4071 SATD comments belonging to 10 different open-source Java projects.
These comments were classified by da Silva Maldonado et al. (2017) into five categories
(DEFECT, DESIGN, DOCUMENTATION, IMPLEMENTATION, and TEST). Note that IMPLE-
MENTATION debt also includes REQUIREMENT debt from the original taxonomy of da Silva
Maldonado and Shihab (2015).

@ Springer

139 Page 6 of 42 Empir Software Eng (2022) 27: 139

First, we remove 782 duplicated comments (i.e., comments having the same content but
attached to different source code elements) since our focus is on the comments’ content.
After the removal, we manually analyze a statistically significant random-stratified sam-
ple (strata are the SATD comments types in the initial dataset) accounting for 1038 SATD
comments (confidence interval of 3.33% for a confidence level of 99%). Specifically, as
reported in Table 1, our sample has the same percentage of SATD comments types as the ini-
tial dataset, guaranteeing that each SATD type is well represented in our study. For instance,
our dataset without duplication counts 350 SATD belonging to DEFECT, i.e., ~11% over
the total number of SATD comments (3289), and in our sample, we have manually analyzed
116 SATD comments in the same category that accounts for 11% of the total number of
SATD comments being analyzed.

2.1.2 Data Analysis

To derive a taxonomy for SATD contents, we follow a card-sorting procedure, and
specifically a cooperative (multiple annotators) open (no predefined categories) card-
sorting (Spencer 2009). This step has been conducted by the authors of the companion paper
(Fucci et al. 2021).

In the first round, two of the authors independently created labels for 108 SATD com-
ments randomly chosen from the dataset without duplication in proportion to each SATD
type. Once completed, the two annotators discussed their labels, i.e., also resolving incon-
sistencies and redundancies, and grouped the tags into a hierarchy. After that, two different
authors reviewed the initial set of created labels, in turn suggesting improvements, obtaining
a taxonomy featuring 11 high-level categories specialized into 26 sub-categories.

In the second round, two authors used the first version of the taxonomy to label a different
set of 115 SATD comments randomly picked from the dataset without duplicated instances
and, again in proportion to each SATD type. Specifically, while reading a SATD comment
content, the annotator could choose to reuse an existing label or to add a new one. Upon
completion, the two annotators solved inconsistencies and evaluated the introduction of
newly added labels. The updated version of the taxonomy has been sent to two different
authors, that after some improvements ended up with a taxonomy featuring ten high-level
categories specialized into 28 sub-categories. More specifically, two high-level categories
have been used as specializations of other categories and one has been added (see details in
the online dataset).

In the third round, using the same process, the authors manually analyzed 114 SATD
comments. As a result, they obtained a new modified version of the taxonomy made up
of 11 high-level categories, of which two are newly introduced ones and one became a

Table 1 Number of SATD comments in the original dataset and in the sampled ones

SATD type Initial dataset Without duplication Sampled
Defect 472 350 116 (11%)
Design 2703 2260 657 (63%)
Documentation 54 49 39 (4%)
Implementation 757 550 183 (18%)
Test 85 80 43 (4%)
Total 4071 3289 1038

@ Springer

Empir Software Eng (2022) 27: 139 Page 7 of 42 139

sub-category. The high-level categories were properly specialized into 36 sub-categories,
five of which were not reported in the previous version.

This final version of the taxonomy has been used to label the remaining 701 comments
that were randomly assigned to four authors, such that each SATD comment was indepen-
dently analyzed by two of them. Also in this case, the annotators could either use the existing
labels or create a new one if no one fitted a specific comment. As it happens in team-
work card-sorting (Spencer 2009), newly introduced labels (groups) became immediately
available also for other annotators. Upon completion, the annotators discussed their clas-
sifications resolving inconsistencies, and revised the taxonomy. During the last round, the
authors did not introduce any new high-level category while using two of them to special-
ize existing ones, even if there is the introduction of two new sub-categories. In summary,
since in our last round no new high-level categories are introduced, the identified taxonomy
is general enough. However, this does not exclude that, in the future, further contents could
emerge and be therefore included in the taxonomy.

To address RQ1, we present our final version of the taxonomy, reporting for each cate-
gory the number of SATD comments belonging to it together with some examples aimed at
explaining the meaning of the category.

2.2 Addressing RQ; and RQ3;

For both RQ;, and RQ3, we seek to understand how developers annotate SATD that is
more important, and whether they believe the annotation of TD with negative sentiment is
an acceptable practice. Therefore, we use a survey to ask open-source developers whether
they use a negative sentiment as a proxy for SATD priority and whether they consider the
expression of negative sentiment in annotating TD as an acceptable practice. Specifically,
we ask the questions shown in Table 2.

To learn the methods used by open-source developers to annotate high priority SATD
(RQ»), two authors performed an open card-sort (Spencer 2009) on the responses to the
open-question on how developers annotate high priority TD, and a third author resolved
the conflicts. Each response can be assigned to multiple cards, based on the content of the
answer being provided. As it is widely hypothesized that negative sentiment in SATD is
used to indicate priority (Gachechiladze et al. 2017; Uddin and Khomh 2017; Lin et al.
2019), we augment the open question with a set of closed questions on whether developers
interpret negative sentiment as a proxy for priority, as well as, whether they are more likely
to write negative SATD for high priority issues.

Finally, the closed questions on whether developers consider the expression of negative
sentiment in SATD as an acceptable practice, and how frequently developers come across
or author negative SATD allows us to determine whether open-source developers believe
that this is an acceptable practice (RQj3). We statistically compare the three distributions
(SATD annotation, SATD negative annotation, and encountering negative SATD) using (a) a
combination of the Kruskal-Wallis test (1952) with three post-hoc pairwise Wilcoxon rank-
sum tests with the p-values adjusted to control for the false discovery rate, as recommended
by Benjamini and Hochberg (1995), and (b) a more recently proposed multiple comparisons
method of Konietschke et al. (2012).

2.3 Addressing RQ4

To address RQ4, we need to understand whether negative sentiment is more or less likely to
occur for specific categories of SATD. To this aim, we analyze the sentiment of comments

@ Springer

139 Page 8 of 42

Empir Software Eng (2022) 27: 139

Table 2 Survey questions

Question

Response type

When writing source code, how often do you write source code
comments indicating delayed or intended work activities such as
TODO, FIXME, hack, workaround, etc.?

When authoring comments that describe a problem, how often do
you write negative source-code comments indicating delayed or
intended work activities such as TODO, FIXME, hack, workaround,

etc.?

How often do you come across negative source-code comments
indicating delayed or intended work activities such as TODO,
FIXME, hack, workaround, etc.?

Suppose you believe that an issue requires extra priority, how would
you usually indicate this in a comment indicating delayed or ?
intended work activities such as TODO, FIXME, hack, workaround,

etc.

While writing a comment describing an issue in the source-code, I
am more likely to write negative comments for issues that I believe

are more important.

Writing negative comments to assign extra priority to issues in the

source-code is an acceptable practice.

Whenever I come across a source-code comment describing a
problem that is particularly negative, I interpret this as a more
important issue than a source-code comment describing a problem

that is more neutral.

Never, Rarely (Less than once a
month), Sometimes (Monthly),
Often (Weekly), Very often (Daily)

Never, Rarely (Less than once
a month), Sometimes (Monthly),
Often (Weekly), Very often (Daily)

Never, Rarely (Less than once a
month), Sometimes (Monthly),
Often (Weekly), Very often (Daily)

Open-text

Strongly disagree, Disagree,

Neutral, Agree, Strongly agree

Strongly disagree, Disagree,
Neutral, Agree, Strongly agree

Strongly disagree, Disagree,
Neutral, Agree, Strongly agree

from the dataset of da Silva Maldonado et al. (2017) and from a set of SATD comments
drafted by respondents of the survey. This way, we combine results of two different kinds of
studies, i.e., one conducted by mining SATD comments from real projects, and another in
which survey participants are involved. Section 2.3.1 discusses the labeling protocol used to
assign a sentiment polarity to SATD comments. The labeling procedure was originally con-
solidated on the set SATD comments from da Silva Maldonado et al. (2017) and then applied
to annotate also the SATD comments collected through the survey. Section 2.3.2, instead,
discusses the survey in which we ask respondents to draft SATD comments. We would
like to emphasize that, albeit obtained using the same protocol and guidelines, the negative
sentiment distribution in the two datasets of SATD comments collected through software
repository mining and survey, respectively, might not be directly comparable. Specifically,
differences in the proportion of labels that we might observe could be related to the fact
that each category in our taxonomy is made up of several different sub-categories, each one
representing a specific development scenario. In our survey, we could address only a selec-
tion of such scenarios depicted by our vignettes (detailed in Table 3). As such, the SATD

@ Springer

Empir Software Eng (2022) 27: 139 Page90f42 139

Table 3 Vignettes used in the survey to describe different SATD categories

SATD category Vignette

Functional issue You are working on an open-source mail client and you are working on a new
feature. You observe that the auto-completion of e-mail addresses is broken: It
should complete addresses using e-mail addresses from the address book and e-mail
addresses used recently. However, it only uses addresses from the address book

for the auto-complete. You do not have time to fix this immediately.

Partially/not You are working on an open-source mail client. You observe that one method is
impl. func. not yet finished: If the method detects invalid input it should raise a dialog window,

and this is not currently implemented. You do not have time to fix this immediately.

Poor impl. choice You are working on an open-source diagramming application. You observe that a
code fragment is copied over and over again. You do not have time to refactor this

immediately.

Documentation You are working on an open-source diagramming application. You observe that
there is a method without any documentation, in violation of the agreed upon
coding guidelines. You do not have the time to read the method and write

the documentation yourself.

Wait While working on an open-source Java GUI application and you are implementing
a new feature, however, to implement this feature you are dependent on

an external API that is not yet available.

scenarios included in the Maldonado et al. dataset are higher in number (and more diverse
in terms of specific SATD sub-categories) than the ones included in our survey.

2.3.1 Sentiment Labeling of SATD

To address RQy, all 1038 comments sampled from the dataset of da Silva Maldonado et al.
(2017) for RQ have been manually annotated with their sentiment polarity (Section 2.1.1),
together with the comments drafted by the respondents of the survey (Section 2.3.2). In
principle, we could have used automated tools to classify comments’ polarity. However, pre-
vious work has shown that even SE-customized sentiment analysis tools may fail to produce
areliable annotation (Lin et al. 2018), especially if they are fine-tuned using a gold standard
collected on a platform that is different from the one targeted for the study (Novielli et al.
2020). For this reason, we decided to perform a prelminary assessment of the performance
of publicly available, SE-specific tools for sentiment analysis, as described in the following.
To this aim, we leverage a multiple annotator manual analysis and to create a gold standard
against wich to compare the outcome of three publicly available sentiment analysis tools
that have been specifically tuned for the software engineering domain, i.e., SentiStrength-
SE (Islam and Zibran 2018), Senti4SD (Calefato et al. 2018a), and SentiCR (Ahmed et al.
2017).

By definition, SATD describes an undesirable situation, so we do not expect to observe
many positive comments and opt to classify sentiment as either negative or non-negative,

@ Springer

139 Page 10 of 42 Empir Software Eng (2022) 27: 139

where the latter category includes both positive and neutral comments. Comments con-
veying both positive and negative sentiment are labeled as mixed. We label as negative,
comments containing expressions that clearly communicate negative sentiment, e.g., emo-
tions or negative opinions about the underlying code, beyond the negativity inherent in
problem reporting, e.g., SATD comments.

Determining sentiment for a text is a subjective task, i.e., the labels given by indi-
viduals depend on their cultural background, upbringing, and interpretation of the com-
ment (Scherer et al. 2004). As such, following clear annotation guidelines is recommended
for enabling reliable annotation (Novielli et al. 2018). For this reason, we defined a set of
annotation guidelines by conducting a pilot labeling study. We randomly sampled 32 com-
ments from the 1038 comments of the dataset of da Silva Maldonado et al. (2017) and
asked each author to label them individually, based on their subjective perception of each
comment polarity. Then, we jointly discussed disagreements in a plenary session, resolving
conflicts and addressing ambiguities in the definition of negative sentiment. Based on the
results of our discussion, we drafted our coding guidelines to be used for the labeling study
as follows:

— negative: the comment expresses negative sentiment about the underlying source-code
(e.g., “this method is a nightmare”); specifically, we considered the following factors:
terms highlighting urgency (like the presence of terms such as “asap” and “urgent”),
the presence of multiple exclamation and question marks, as well as, the presence of
some keywords being reported in upper case such as the term NOT in the comment: “//
the plot field is NOT tested”;

— non-negative: the comment expresses either positive or no sentiment about the code
referenced in the comment (e.g., “TODO: Why is this a special case?”);

— mixed: the comment expresses both positive and negative sentiment (e.g., “This is a
fairly specific hack for empty string, but it does the job”).

We used the 32 SATD comments manually labeled during our pilot to evaluate the accu-
racy of the selected SE-specific sentiment analysis tools. We apply the tools “off-the-shelf”,
i.e., without further tuning or training (Novielli et al. 2021). Looking at the agreement
between manual labels and the tools’ predictions, we found that Senti4SD has the highest
F-1 score (0.69), lower than the one reported by the authors of the tool (0.87) on the original
training platform (Calefato et al. 2018a), i.e., Stack Overflow. By inspecting disagreements
we found that some negative comments were missed by the tool due to the presence of a
lexicon which is specific to SATD comments. For instance, “FIXME: Big fat hack here,
because scope names are expected to be interned strings by the parser” is labeled as negative
by the human judges but classified as neutral by Senti4SD. We conclude that the opera-
tionalization of sentiment by tools does not align with our operationalization of sentiment
in SATD. For this reason, we decide to manually label both the remaining SATD comments
in the dataset and the SATD comments drafted by the developers in the survey.

To label the 1038 comments from da Silva Maldonado et al. (2017), we divide the com-
ments in our sample, excluding the ones already labeled in our pilot study (1006), over six
annotators, including the authors of this paper, such that each annotator labeled an equal
number of comments per SATD category, and each comment was labeled by at least two
annotators, to mitigate the presence of any biases between annotators and over SATD cate-
gories. Moreover, to ensure reliability and consistency of our labeled dataset, we resolved
all disagreements in plenary sessions involving all annotators. The agreement between the
annotators for the sentiment labeling of the comments from the dataset of da Silva Maldon-
ado et al. (2017) is moderate, with a Krippendorff’s « of 0.455 (Krippendorff 2012), which

@ Springer

Empir Software Eng (2022) 27: 139 Page 11 0f42 139

is in line with agreement reported by previous studies on developers’ sentiment annotation
in short comments from software development platforms (Murgia et al. 2014). Lastly, to
understand for what SATD categories negative sentiment is more likely to occur, and how
this differs over the SATD categories of the taxonomy constructed in RQ, we use a pair-
wise proportion test (Newcombe 1998). Specifically, for each category, we compare the
proportion of negative and non-negative comments. Because of the multiple comparisons,
we control for the false discovery rate by adjusting the p-values using the Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995). The Benjamini-Hochberg procedure
adjusts the p-values as follows: Let py, .., p, be a collection of p-values ordered from the
smallest to the largest one. For p; the adjusted value p; is computed as p; * n/i (topped at
1). Hence the largest p-value of the collection is never modified, and the smallest p-value is
increased most.

2.3.2 Survey

In addition to the survey questions described in Section 2.2, we ask the respondents to draft
SATD comments for five different scenarios selected from the taxonomy identified in RQ;.
Specifically, we took the five most populous categories and, for each of them, we designed
a vignette representing the category (Rossi and Nock 1983) (see Table 3).

During the survey we only showed the respondents the text of the vignette but not the
category name, to ensure that respondents are not biased by the category name. For each
vignette, we want to understand the TD comments that developers would write. Hence, after
each vignette we also ask the following three questions:

(a) How likely will you add a comment recording this observation? Very unlikely,
Somewhat unlikely, Neither likely nor unlikely, Somewhat likely, Very likely.

(b) What are your reasons for deciding to write a comment or not? Open-text.

(c) If you would add a comment, please draft the comment you would add in this situation?
Open-text.

For each vignette, we label the comments written for question (c) with their senti-
ment polarity using the labeling procedure and operationalization of sentiment described in
Section 2.3.1. Agreement between the annotators, over the SATD comments drafted for the
survey was moderate with a Krippendorff’s o of 0.503 (Krippendorff 2012). Additionally,
to learn whether negative sentiment is more likely to occur in specific categories we use a
set of pairwise proportion tests (Newcombe 1998), similarly to Section 2.3.1.

To ensure that the order of the vignettes does not impact the results obtained from the
survey we create several survey variants in which we shuffle the order of the vignettes. In
the analysis, we merge the results of the surveys with a different vignette order if there
are no differences between the responses given for different survey variants corresponding
to different orders. To determine whether the order in which we present the vignettes to
the users influences the results we apply PERMANOVA (Anderson 2017), which is a non-
parametric equivalent to the Analysis of Variance (ANOVA). For each vignette we apply
PERMANOVA with the dependent variable being the response to the closed question, i.e.,
“How likely will you add a comment recording this observation?”, and the independent
variable being the order in which the vignette was present in the survey. To account for the
multiple comparisons we adjust p-values using the Benjamini-Hochberg procedure (Ben-
jamini and Hochberg 1995). For the vignette(s) where we find that the order influences the
responses, we apply a post hoc pairwise PERMANOVA to determine which variants can be

@ Springer

139 Page 12 of 42 Empir Software Eng (2022) 27: 139

safely combined because the differences in the vignettes order did not influence the answers
to the closed questions. When discussing the results we consider these subgroups separately.

2.4 Addressing RQs: Identifying Additional Details in SATD

Developers use external references to annotate SATD that they believe is more important,
including links to bug trackers, or bug ids. Additionally, from work by Storey et al. (2008),
we know that developers tend to include: (i) references to another class, method, plug-in, or
module, (ii) developers’ names or initials, (iii) references to bugs, (iv) URLs, (v) dates, and
(vi) “memorable keywords” in SATD.

To understand how often these additional details occur in SATD we use a combination
of manual labeling and automated detection to extract fields (i) through (vi) from the 1038
SATD comments. Due to the heterogeneity (as well as our unfamiliarity) with the practices
of the projects that make up the dataset, and considering that in SATD comments keywords
are mainly related to tags, e.g., TODO, FIXME, XXX etc. we have chosen to not identify
“memorable keywords”.

Firstly, we identify the following fields automatically:

— for class names, we search for all possible class names of a project, obtained from its git
repository (all file versions from all branches), onto comments, using a case insensitive,
word boundary match, and for methods references we use a simple regular expression
(‘“\\w + \\(”, matching all words that contain one or more alphanumeric characters
followed directly by an opening parenthesis);

— for bug references, we use the Fischer et al. approach (Fischer et al. 2003), e.g.,
matching JIRA-style references (e.g., “jruby-1234") or GitHub-style reference (e.g.,
“#1234”);

— for URLs we match the following two regular expressions onto the SATD comments,
ie.,http:// and https://.

Also, while we initially detected bug-ids and dates (in this case matching various for-
mats as “12 Jan 2002”, or “20020112”) automatically, we double-checked them manually
because of the presence of several formats.

Based on a manual inspection of the dataset, we combine the results of the automatic
detection with the manual labeling. Specifically:

(1) for class/method names and URLs we use the automated detection;
(ii) for developers names/initials and dates we rely on the manual labeling;
(iii) for bug-ids we combine the manual analysis with the automatic detection.

We report the occurrences of each field for each high-level category of the taxonomy,
and evaluate how the perceptions of developers, as found by Storey et al. (2008), compare
to the occurrences of these fields in the 1038 SATD comments.

Additionally, to understand how developers annotate SATD when they are asked to write
comments in a more neutral setting, we manually label the comments drafted by respondents
in Section 2.3.2 for the presence of names, dates, and references to bugs.

2.5 Survey Preparation and Sampling

To verify whether the survey discussed in Sections 2.2 and 2.3.2 was understandable for
developers, and to ensure that the survey takes ca. 10—15 minutes to complete we asked two

@ Springer

Empir Software Eng (2022) 27: 139 Page 130f42 139

non-academic developers to fill out a drafted version of the survey. Based on their feedback,
we modified the wording of several questions to make the survey more clear.

The survey itself was prefaced with an informed consent form that is included as an
appendix in the replication package and the survey has been approved by the Ethical Review
Board of the first author’s institution. The population we target for this study are open-
source developers, to make results comparable with the quantitative analysis conducted
on the Maldonado et al. dataset. To reach developers within this population we used the
following platforms:

— We sent out emails to the mailing lists of open-source software projects. The list of
projects is identical to the list that was used for the study of Zampetti et al. (2021). This
list also includes the mailing lists of five out of ten projects from the Maldonado et al.
dataset (i.e., the ones for which we were able to access the mailing list) we used for the
other part of the study. We did not limit survey participation to the projects from the
Maldonado dataset to ensure larger participation in the survey. In total, we invited the
developers of 93 open-source through the respective mailing lists, Discord, Slack, and
Google Group channels.

— We posted the link to the survey to several Facebook and LinkedIn groups, which target
open-source developers.

— We posted the survey on the Twitter accounts of the authors.

— We asked personal contacts for which we know that they contribute to open-source
projects to fill out the survey.

Note that the question about how often respondents author SATD has been already posed
before in a different study (da Silva Maldonado et al. 2017). However, we include this
question to understand whether our respondents are as familiar with SATD as in previous
studies.

Finally, to ensure that we target only open-source developers we include a screening
question asking whether the respondent contributed in an open-source project in the past
three months. Moreover, to ensure that we collect no personal information we did not
include any question asking about demographics, such as age, gender, or experience. In the
authors’ experience, the latter favors larger participation. Moreover, it was a constraint for
the approval by our ethical committees.

3 Study Results

This section reports and discusses the study results, addressing the research questions
formulated in the introduction.

3.1 Survey Responses

In total we obtained 46 responses to the survey, and in this section we discuss whether the
order in which we presented the vignettes of the survey influenced the results obtained.
None of the questions was mandatory, hence the number of responses for different questions
might vary.

After the application of PERMANOVA (Anderson 2017) to the five vignettes described
in Section 2.3.2 we find that the responses for the vignettes of the macro-categories: Poor
implementation choices, Partially implemented, Functional issues, and Wait, belonging to

@ Springer

139 Page 14 of 42 Empir Software Eng (2022) 27: 139

the different pools having a different ordering, can be safely analyzed together, as the cor-
responding p-values are 0.71, 0.71, 0.52 and 0.95, respectively, i.e., all of them exceed the
customary threshold of 0.05.

The responses to the macro-category Documentation are dependent on the order in
which the vignette was included in the survey (p =~ 0.03), and therefore we cannot merge
all responses obtained for this vignette in different survey variants. The post hoc analy-
sis revealed that there is a statistically significant difference between the answers obtained
when the Documentation vignette is shown at the beginning of the survey, as the first or
the second vignette (subgroup A—36 responses), as opposed to the answers obtained when
the Documentation vignette is shown last (subgroup B—10 responses). We hypothesize that
this difference can be attributed to how developers were biased by seeing documentation-
related vignettes after having seen vignettes related to more critical issues (e.g., functional
TD). In such cases, respondents might have been tempted to say that documentation is not
important enough to write a SATD comment for. In conclusion, for this specific case, the
ordering has influenced the results.

3.2 RQ;: What Kind of Problems do SATD Annotations Describe?

Figure 2 depicts the taxonomy of SATD comments’ content, obtained as described in
Section 2.1.2: the small red boxes of Fig. 2 indicate the number of SATD comments (out
of 1038) belonging to each category. Table 4, instead, shows the distribution and map-
ping between our high-level categories and the categories provided by da Silva Maldonado
et al. (2017). Note that, for some comments, we were not able to assign the leaf category
while only the higher-level category. For instance, the SATD comment: “TODO: imple-
ment the entity for the annotation” in JFREECHART reports that the functionality is only
partially implemented but does not contain any other information aimed at justifying why
that happened.

Although our data came from a curated dataset (da Silva Maldonado et al. 2017), we
still found 40 instances that, according to our manual analysis, were not related to SATD
(i.e., labeled as false positives). For instance, “Required otherwise it gets too wide” in SQL
describes the design decision without indicating that it is suboptimal in any sense.

While (not surprisingly) most SATD comments highlight poor implementation choices
(429 over 1038) mainly related to maintainability issues, as well as partially/not imple-
mented functionality (229), we notice that functional issues (135) are not so frequent in our
sample. Furthermore, we found 89 SATD comments classified as “Wait”, meaning that a
developer cannot improve the code or complete a functionality since they are waiting for a
different event that has to occur in the same project or in a third-party component (e.g., “this
is the temporary solution for issue 1011” in JFREECHART). As also reported in previous
work (Bavota and Russo 2016; da Silva Maldonado and Shihab 2015; Xavier et al. 2020),
developers tend to admit TD also in artifacts that are different from the production code:
indeed, we found 54 SATD comments dealing with documentation issues, and 36 SATD
comments related to the test code. Finally, we found 21 SATD comments describing mis-
alignment between requirements and design or implementation, as well as problems with
deployment (2) and SATD comments that are left in the code while not describing a TD
anymore (3).

Next, we elaborate on each of the nine high-level categories of our taxonomy.

@ Springer

Empir Software Eng (2022) 27: 139

Page 150f42 139

Poor

Poor
implementation
solution

Taxonomy —

Fig.2 Discussions contents in SATD comments

choices

REEY T
implemented
functionality

Functional
Issues

Misalignment

SATD
comments
outdated

Deployment
issues

Works only under
specific
conditions

Functional issue
elsewhere

Pre-condition

Post-condition
unchecked

Incomplete
exception
handling

Bug to fix

Fix to
postpone

Compatibility/
dependencies

61

il

Poor
API usage

Code review
needed

1 Maintainability
issues

Performance
issue

] Usability

L__| Won'timprove
the code

Implementation
12

Design -
Implementation
9

@ Springer

139 Page 16 of 42 Empir Software Eng (2022) 27: 139

Table 4 Distribution of our taxonomy top-level categories and how they map onto da Silva Maldonado et al.
(2017) categories

Macro-category Defect Design Doc. Impl. Test Total
Poor implementation choices 22 361 2 43 1 429
Partially implemented 27 94 5 100 3 229
Functional issues 48 68 0 18 1 135
Wait 6 76 0 6 1 89
Documentation issues 0 19 30 4 1 54
Testing issues 0 1 0 0 35 36
Misalignment 1 13 2 5 0 21
SATD comments outdated 2 1 0 0 0

Deployment issues 1 0 0 1 0

False positive 9 24 0 6 1 40
Total 116 657 39 183 43 1038

Poor Implementation Choices. This category includes (i) maintainability issues, (ii) poor
implementation solutions, (iii) asking for code review, i.e., the developer is not sure of the
actual design, (iv) performance issues, (v) poor API usages, i.e., reliance on a third-party
component without actually understanding the proper way to use it, (vi) lack of intention to
improve the code despite the awareness that it is not in the right shape, and (vii) usability
issues.

Maintainability issues constitute the category with the highest number of samples, not
merely within “Poor implementation choices” but overall, covering 20% of the comments.
The latter is in line with the results reported by Zampetti et al. (2021) highlighting that
more than 60% of the open-source developers in their study use annotations to indicate
the need for maintainability improvement. Unsurprisingly, many maintainability issues
require a refactoring activity such as a better distribution of responsibilities among soft-
ware components (e.g., “TODO: We should have all the information that is required in
the NotationSettings object” in ARGOUML), proper reuse of features (e.g., “TODO: Reuse
the offender List” in ARGOUML), or else the replacement of magic numbers with proper
constant variables (e.g., “// TODO: define constants for magic numbers” in ARGOUML).

Furthermore, we found 79 SATD comments reporting that the implemented solution has
to be improved, e.g., “EATM This might be better written as a single loop for the EObject
case” in EMF highlighting the need for simplifying the actual implementation removing a
control structure. In other cases, the developers criticize the implementation choices and
ask for a code review, e.g., “FIXME: Is “No Namespace is Empty Namespace” really OK?”
in APACHE-ANT or “TODO: this assumes ranges are sorted. Is this true?” in ARGOUML.
The latter confirms the findings by Ebert et al. (2018) who highlight that 8% of questions
during code reviews express attitudes and emotions. Specifically, their manual coding shows
that developers express doubts through criticisms (~5%) inducing critical reflection in the
interlocutor.

Finally, concerns related to the use of APIs and performance are reflected in the SATD
comments: e.g., “FIXME: don’t use RubylO for this” in JRUBY alerts developers to replace

@ Springer

Empir Software Eng (2022) 27: 139 Page 17 of 42 139

the existing API for a specific task, while “TODO replace repeated substxr () above and
below with more efficient method” in JIMETER indicates performance issues.

Partially/Not implemented functionality groups the SATD comments reporting that a
feature is not ready yet. While, on the one hand, we found many cases (105) in which the
SATD comment simply reports that the implementation is missing without adding any fur-
ther details, on the other hand, we found comments indicating what is specifically missing
from the implementation: e.g., a precondition (“TODO: delete the file if it is not a valid
file” in ANT), or a postcondition check (“FIXME: Make bodyNode non-null in parser” in
JRUBY).

We found comments clarifying that the feature works only under specific conditions (61)
as “If c2 is empty, then we’re done. If c2 has more than one element, then the model is
crappy, but we’ll just use one of them anyway” in ARGOUML. Our results are in line with
findings from Zampetti et al. (2021) who report that about half of their survey respondents
use SATD to report incomplete features, as well as, features exhibiting incorrect behavior
under certain conditions.

Finally, some comments (4) indicate that the implementation is absent due to problems
elsewhere: e.g., “Predecessors used to be not implemented, because it caused some prob-
lems that I've not found an easy way to handle yet. The specific problem is that the notation
currently is ambiguous on second message after a thread split.” in COLUMBA.

Functional issue includes all cases directly or indirectly related to the presence of a
bug in the system and constitutes the third-largest category of SATD comments in our tax-
onomy. Unsurprisingly, most of them highlight the presence of a bug that should be fixed
immediately, (i.e., 56 comments belonging to the Bug to Fix category): e.g., “FIXME: If
NativeException is expected to be used from Ruby code, it should provide a real
allocator to be used. Otherwise Class .new will fail, as will marshaling. JRUBY-415" in
JRUBY. 11 SATD comments, instead, indicate the presence of misbehavior that is acceptable
even though a better solution must be found, i.e., Fix to postpone: e.g., “this will generate
false positives but we can live with that” in ANT.

The most interesting sub-category groups compatibility and dependency issues that
are also not very easy to address (41 SATD comments). For instance, we found com-
ments indicating that the code is not able to work properly in specific environments, e.g.,
“waitFor () hangs on some Java implementations” in JEDIT, or cases where the actual
implementation inherits a bug from an external API being used, e.g., “Workaround for JDK
bug 4071281 [...] in JDK 1.2” in JEDIT.

Wait includes all SATD comments in which the developer reports that the code has to be
improved and/or completed once a different event occurs. In many cases (51) the comments
report that the code is a temporary patch that needs to be removed later on, e.g., “TODO:
temporary initial step towards HHH-1907” in HIBERNATE. Furthermore, 16 comments state
that the code is not in the right shape since it requires a different feature to be ready first, e.g.,
“todo : remove this once ComponentMetamodel is complete and merged” in HIBER-
NATE. There are also seven SATD comments where developers admit the presence of a TD
in the code that cannot be addressed before an issue already opened is not fixed, e.g., “//
TODO: This whole block can be deleted when issue 6266 is resolved” in ARGOUML. Dif-
ferently from the comments belonging to the Fix to Postpone leaf in the Functional issue
category where the TD corresponds to the functional issue for which developers do not have
to rush to fix them, in this case the functional issue is simply the event developers are wait-
ing for before removing a TD from the code. An interesting phenomenon related to waiting
is an SATD comment requiring other SATD comments to be fixed (2), e.g., “TODO: simply
remove this override if we fix the above todos” in HIBERNATE. We found four comments

@ Springer

139 Page 18 of 42 Empir Software Eng (2022) 27: 139

in which developers need to wait for a proper API to be found, e.g., “This really should
be Long.decode, but there isn’t one. As a result, hex and octal literals ending in '’ or
L’ don’t work.” in JEDIT. Differently from the comments belonging to the Poor API usage
leaf under the Poor Implementation Choices category where the TD corresponds to an inap-
propriate API usage, here we group comments where developers admits the presence of a
workaround that must be removed once an appropriate API is found, i.e., the external event
developers are waiting for.

Recently Maipradit et al. (2020b) have looked at “on-hold” SATD, i.e., debt containing a
condition highlighting that a developer is waiting for a certain event or an updated function-
ality having been implemented elsewhere, that maps onto our “Wait” category. Our results
confirm what found by Maipradit et al. (2020b), i.e., around 8% of the SATD comments
contains a waiting condition, however, our taxonomy enlarges the set of possible events a
developer is waiting for, indeed Maipradit et al. (2020b) only considered bugs to be fixed,
or new releases/versions of libraries.

Documentation issues (54 over 1038). Many cases are related to the need for docu-
menting a specific method/class such as “FIXME This function needs documentation” in
COLUMBA. However, we also found three cases describing inconsistencies in the related
documentation, e.g., “UML 1.4 spec is ambiguous - English says no Association or Gen-
eralization, but OCL only includes Association” in ARGOUML, and one case in which the
author is reporting that the documentation cannot be modified even if it is required to modify
it, i.e., “TODO: Currently a no-op, doc is read only” in ARGOUML.

Testing issues. 36 SATD comments refer to test code, including (i) untested features,
e.g., “TODO add tests to check for: - name clash - long option abbreviations/” in JMETER,
(i) bugs in the current test suite, e.g., “this is the wrong test if the remote OS is OpenVMS,
but there doesn’t seem to be a way to detect it” in ANT, or (iii) misalignment of the test
code with the production code, e.g., “TODO: [...] An added test of isAModel (obj) or
isAProfile (obj) would clarify what is going on here” in ARGOUML.

Misalignment groups the SATD comments in which the developers report a mismatch
between (i) requirements and implementation (12) such as “TODO: The Quickguide also
mentions [...] Why are these gone?” in ARGOUML, where the developers ask whether the
current implementation deviates from what was reported in the specification, or (ii) design
and implementation (9) such as “TODQO: This shouldn’t be public. Components desiring to
inform the Explorer of changes should send events” in ARGOUML, clearly highlighting a
deviation from what was reported in the design document.

We also found three instances belonging to outdated SATD comments in which the
SATD comment no longer reflects the source code evolution e.g., “todo: is this comment
still relevant ??” in ANT. This category generally belongs to the problem of comments
being outdated with respect to source code. For simple cases, especially related to com-
ments explaining statements’ behavior, detection approaches have been proposed (Fluri
et al. 2007) and empirical studies have been carried out. As regards SATD, it is still possible
that in many circumstances SATD comments remain in the system even after the mentioned
problem has been addressed.

Two SATD comments reporting Deployment issues: the first one in ARGOUML (i.e., “As
a future enhancement to this task, we may determine the name of the EJB JAR file using this
display-name, but this has not be implemented yet.”) highlights the need for improvements
to the overall deployment phase while constructing the application jar. The second one in
ANT (i.e., “the generated classes must not be added in the generic JAR! is that buggy on old
JOnAS (2.4)”), reports about a problem while selecting the components to involve in the jar.

@ Springer

Empir Software Eng (2022) 27: 139 Page 19 0f 42 139

To understand the difference between our categories and those by da Silva Maldonado
et al. (2017), Table 4 shows how SATD comments belonging to different categories of their
taxonomy are mapped to our high-level ones. Although 48 over 116 SATD comments in the
“Defect” category are mapped onto our “Functional issues”, the remaining SATD comments
are mainly scattered onto the “Partially/not implemented functionality”” and “Poor imple-
mentation choices”. As an example of the former, the comment “TODO: we didn’t check the
height yet” in JFREECHART, originally considered as a defect SATD, has been categorized
as a “Partially/not implemented functionality” since its content has nothing reporting the
presence of a bug in the system due to the lack of a pre-condition check. As regards the lat-
ter, instead, “TODO: This method doesn’t appear to be used.” in IMETER mostly highlights
possible maintainability issues, therefore it has been categorized as a “Poor implementation
choice”.

Similarly, while “Design” SATD comments mainly belong to our “Poor Implementation
Choices” category (361 over 657), some refer to waiting (76), e.g., “Remember to change
this when the class changes” in JMETER, partially implemented functionality (94), e.g.,
“TODO: complete this” in JFREECHART or functional issues (68), e.g., “TODO - is this the
correct default?” in IMETER.

The “Implementation” SATD comments were originally labeled as “Requirement debt”
by da Silva Maldonado and Shihab (2015) and then renamed in their follow-up dataset.
While, unsurprisingly, almost half of them belong to our “Partially/Not implemented Func-
tionality” (which is indeed requirement debt, because the requirement has not been fully
implemented), 43 cases are related to poor implementation choices, hence not related to
requirements. For instance, there are comments in ARGOUML asking for code review, e.g.,
“TODO: Why is this disabled always?”, or pointing out the presence of maintainability
issues, e.g., “TODO: Reuse the offender List.”

Finally, the categories of our taxonomy having a good fit with the ones of Maldon-
ado et al. are “Documentation issues” and “Testing Issues”. Still, in JMETER we found a
documentation debt, e.g., “TODO Can’t see anything in SPEC”, we categorized as “Mis-
alignment” since it relates to a discrepancy between specification and implementation, and
either of the two can be wrong.

RQ; Summary: We categorized the sample of 1038 SATD comments into nine
top-level categories, separating functional issues from partially implemented function-
ality and poor implementation choices. We also considered on-hold TD (“Wait”) as
a specific category with 89 instances, while Documentation and Testing issues were
almost mapped onto the categories of da Silva Maldonado et al. (2017). We noticed
how our content-based SATD categorization does not have a one-to-one mapping to
lifecycle-based categories.

3.3 RQ,: How do Developers Annotate SATD that they Believe Requires Extra
Priority?

As explained in Section 2.2 to answer RQ», we have asked developers how they would
indicate that a source code problem should be addressed with high priority. As this was an
open question we performed card sorting among the provided answers, which results are
summarized in Table 5. Survey respondents recommend doing so outside of the source code
or to use tags such as TODO, FIXME, or XXX (with or without additional information

@ Springer

139 Page 20 of 42 Empir Software Eng (2022) 27: 139

Table 5 To express that SATD should have higher priority developers recommend doing so outside of the
source code or to use tags such as TODO, FIXME, or XXX

Card sorting code Occurrence

Should be discussed elsewhere (issue tracker, code review, mail, PM, 19
backlog, tests)

Tag 14

Should not be indicated in the source code (alternative reporting 4
mechanism is not indicated)

Rationale

Code should report an error

Not-ready work should not be merged

Tags make the code not ready to merge during code reviews

Tag followed by the name of the person who has to address it

Tag followed by the bug ID detailing the issue in the issue tracking system

—_ = = = = NN

Use specific keywords in the comment like issue, ASAP and high-priority

such as bug ID or name of the person responsible for fixing). Interestingly, a small group
of respondents suggests that high priority issues should prevent the normal way of working
through either run-time errors or blocking the code from being merged.

To verify what conjectured in literature about the relationship between negative com-
ments and priority (Gachechiladze et al. 2017; Uddin and Khomh 2017; Lin et al. 2019),
we asked developers whether they are more likely to write negative comments for high-
priority SATD comments, as well as, whether they are likely to interpret negative comments
as conveying higher priority.

Each of these questions has been answered by 44 respondents out of 46. By inspecting
Fig. 3, it is possible to observe that 29% of the respondents are more likely to express nega-
tivity when the issue has high priority and a similar share of respondents (27%) will interpret
negative SATD comments as reflecting higher priority. Therefore, while the perception of
negativity as a proxy for priority is not necessarily shared by all developers, we can still
confirm the relation hypothesized in the previous work (Gachechiladze et al. 2017; Uddin

While writing a comment ! B Strongly Disagree

describing an issue in the source- ! Disagree
code | am more likely to write Neutral
negative comments for issues that 1 mm Agree
| believe are more important. EEm Strongly agree
Whenever | come across a source-

code comment describing a
problem that is particularly
negative | interpret this as a more |
important issue than a source- -

code comment describing a
problem that is more neutral

v
=
=)
=
«
N
o

.

1
30 25 20 15 10 5 0
Number of Responses

Fig.3 Negativity in SATD comments and their priority

@ Springer

Empir Software Eng (2022) 27: 139 Page 21 0f42 139

and Khomh 2017; Lin et al. 2019), as there appears to be a sizable group of developers that
are more likely to write or interpret negative comments as reflecting high priority.

RQ; Summary: Respondents confirmed use of tags in the source code to indicate
extra priority. However, nearly half of them indicate that it would be better to open
issues instead and, in some cases, to even avoid merging a change if it is not ready.
Furthermore, 29% of developers reported that they would write a comment contain-
ing negative sentiment for problems with high priority. Similarly, 27% of respondents
reported they interpret negative sentiment as an indication of higher priority.

3.4 RQs: Do Developers Believe that the Expression of Negative Sentiment in SATD
is an Acceptable Practice?

Figure 4 shows that using negative comments in the source code to indicate the priority of
an issue is a matter of controversy. While 13% believe this to be an acceptable practice,
16% disagree, and 38% strongly disagree. However, it is interesting to notice that the per-
centage of the respondents who believe that the usage of negative comments in the source
code to indicate priority is an acceptable practice is less than half of the percentage of the
respondents exhibiting this behavior (as shown in Fig. 3).

Figure 5 provides further insights into the developers’ annotation practices as well as
in the role of negativity. By comparing the left and the central bar charts visually, we can
observe that a substantial share of developers write negative source-code comments record-
ing SATD. In particular, 9 respondents indicate that they write negative comments often or
very often. This might not appear much but at the same time, only 20 respondents report
that they write any SATD comments often or very often, i.e., 45% of the respondents that
(very) often write SATD comments also write negative SATD comments. This observation
concurs with the fact that while, in general, 13% of the respondents believe that it would be
appropriate to use negativity to express a higher priority of an issue (Fig. 4), this percentage
increases to 45% if we only consider respondents that (very) often write SATD comments.

The comparison of the bar chart in the middle of Fig. 5 with the one on the right sug-
gests that there are fewer developers that never write negative SATD than those that never

Emm Strongly Disagree
Disagree

Neutral

Agree

Strongly agree

Writing negative
comments to assign extra
priority to issues in the
source code is an
acceptable practice.

T T T T T T

30 25 20 15 10 5

(=) SE——

Number of Responses

Fig.4 13% of respondents believe that writing negative comments to indicate higher priority is an acceptable
practice (light blue), while 16% disagree with this (pink) and 38% strongly disagree (red)

@ Springer

139 Page 22 of 42 Empir Software Eng (2022) 27: 139

When authoring comments that
When writing source code, how describe a problem, how often do

often do you write source-code you write negative source-code How often do you come across
comments indicating delayed or ~ comments indicating delayed or ~ negative source-code comments
intended work activities such as intended work activities such as indicating delayed or intended
TODO, FIXME, hack, workaround, TODO, FIXME, hack, workaround, work activities such as TODO,
etc.?) etc.? FIXME, hack, workaround, etc.?

Number of responses

Fig.5 Responses to closed questions of the survey

encounter negative SATD. However, besides such a difference, these two distributions are
very similar.

What is highlighted visually is indeed confirmed by the statistical comparison of the
distributions. The only statistically significant differences are (i) between developers writing
SATD comments and expressing negativity in such comments (p =~ 0.014), and (ii) between
developers writing SATD comments and encountering negativity in such comments (p =~
0.021).

RQ3 Summary: While in general most developers believe that expressing negativity
in SATD comments is not acceptable, the opinion shifts towards acceptance among
respondents that frequently write SATD comments.

3.5 RQ4: How does the Occurrence of Negative Sentiment Vary Across Different
Kinds of SATD Annotations?

Following the methodology described in Section 2.3, the polarity of 998 SATD comments
(= 1038 — 40, where 40 comments have been excluded as false positives, i.e., SATD com-
ments that are not real SATD) has been manually classified. Four comments have been
further excluded as the authors could not reach an agreement regarding their sentiment
polarity. Hence, for this question, we looked at 994 SATD comments (hereinafter, SATD

@ Springer

Empir Software Eng (2022) 27: 139 Page 23 0f42 139

Table 6 Distribution of sentiment labels over the 994 comments from the da Silva Maldonado et al. (2017)
dataset

Category Negative (%) Non-negative Mixed Total
Poor implementation choices 125 (29%) 294 7 426
Partially implemented 29 (13%) 197 2 228
Functional issues 66 (49%) 67 2 135
Wait 41 (46%) 45 3 89
Documentation issues 18 (33%) 36 0 54
Testing issues 12 (33%) 24 0 36
Misalignment 6 (29%) 15 0 21
SATD comments outdated 1 (33%) 2 0 3
Deployment issues 1 (50%) 0

Total 299 (30%) 681 14 994

dataset) out of 1038 in the original dataset. We report the resulting distribution of sentiment
labels in Table 6.

We apply the same protocol and guidelines for labeling the sentiment of the com-
ments drafted by our survey respondents (hereinafter, survey dataset). We remind the reader
that these comments were formulated by the survey participants in response to the five
vignettes representing five different development scenarios where there is a need to admit
the presence of a TD in the code. The results of this second labeling study are reported in
Table 7.

In the following, we detail the results of the labeling studies performed on both SATD
and survey datasets. Overall, we observe that 299 of the 994 comments (30%) in the SATD
dataset convey negative sentiment polarity and only 14 items are labeled as mixed. We
observe a lower percentage (11%) of negative sentiment in the survey dataset. As we will
discuss below, while we report and discuss the results of both studies together, a direct
comparison should not be done, given the wider diversity of SATDs in the first data set, and
given the different settings of the two studies.

Based on sentiment distribution observed in the two datasets, we found that developers
mostly complain about “Functional issues”. Specifically, 49% of comments (66 out of 135)
in the SATD dataset convey negative sentiment, e.g., “TODO: include the rowids!!!!” in

Table 7 Distribution of sentiment labels over the comments drafted by the respondents for the five vignettes
presented in the survey

Category Negative (%) Non-negative ~ Mixed No-comment Total
Poor implementation choices 2 (7%) 27 0 17 46
Partially implemented 4 (11%) 32 0 10 46
Functional issues 7 (23%) 24 0 15 46
Wait 1 (4%) 22 0 23 46
Documentation issues — A 2 (10%) 18 0 16 36
Documentation issues — B 0 (0%) 3 0 7 10
Total 16 (11%) 126 - Total comments: 142

@ Springer

139 Page 24 of 42 Empir Software Eng (2022) 27: 139

HIBERNATE or “something is very wrong here” in COLUMBA. “Functional issues” is also
the most negative category emerging from the comments in the survey dataset, with 23%
of proposed comments conveying negative sentiment. Specifically, as reported in Table 7,
7 out of 31 SATD comments drafted for the functional issues’ vignette convey a negative
sentiment aimed at stressing the presence of an unexpected behavior within the code frag-
ment by using tags such as FIXME or by emphasizing the urgency in addressing a problem
(e.g., “Please investigate ASAP, autocompletion appears to be ignoring recently used email
addresses.”)

Similarly, developers appear annoyed by required changes being on hold: in the SATD
dataset, 46% of comments (41 out of 89) belonging to the “Wait” category contains negative
sentiment, such as “turn of focus stealing (workaround should be removed in the future!)”
in COLUMBA. Similarly to self-directed anger studied by Gachechiladze et al. (2017), we
also found cases in which developers blame themselves, e.g., “this is retarded. excuse me
while I drool and make stupid noises” in JEDIT.

When looking at the sentiment for on-hold TD vignettes, we found that only 1 out 23
SATD comments contain a negative sentiment. This may depend on both the specific (sub)
type of SATD in the vignette which is related to the lack of a proper API (for which often
there is little to do), whereas the examples above refer to circumstances internal to the
project, which may cause more negativity.

In the SATD dataset, negative sentiment is also found in 33% of “Documentation
issues” (e.g., “TODO: are we intentionally eating all events?—tfm 20060203 document!”
in ARGOUML) and “Testing issues” (e.g., “TODO enable some proper tests!!” in IMETER).
This makes these two categories as the third most negative ones in the SATD dataset, simi-
larly to what was observed in the survey dataset, albeit with different percentages (10% of
the survey respondents conveyed negative sentiment in presence of documentation issues
for subgroup A, while the three comments drafted for subgroup B were all non-negative).

As for “Poor implementation choices”, which is the most frequently observed macro-
category in our taxonomy with 426 comments, we observe 29% of negative sentiment
comments in the SATD dataset (e.g., “TODO: terrible implementation!” in HIBERNATE).
As for the survey study, only 7% of our survey respondents appear annoyed by issues due to
poor implementation choices. However, despite the different proportions, “Poor implemen-
tation choices” emerges as the fourth category in terms of percentage of negative sentiment
in both datasets.”

Concerning the “Partially implemented” category, in the SATD dataset, when reporting
a partial or non-implemented functionality developers are unlikely to be negative (29 out of
228, corresponding to 13%), e.g., “calculate the adjusted data area taking into account the
3D effect... this assumes that there is a 3D renderer, all this 3D effect is a bit of an ugly
hack...” in JFREECHART. For the survey dataset we observe that “Partially implemented” is
the category with the second-highest proportion of negative comments (Table 7). In partic-
ular, for TDs due to partially/not yet implemented functionality, developers tend to not use
a negative sentiment to report them (32 out of 36 comments) while simply stating what is
missing in the current implementation (e.g., “Function not completed, Need to raise dialog
after invalid input”). In both the survey dataset (Table 7) and the Maldonado et al. dataset
(Table 6) developers tend to report what is missed. However, in the survey dataset devel-
opers tend to use more negative polarity. We conjecture that this may depend on several
factors, ranging from the specific types of TD (again, more diverse in the dataset of da Silva

2As for the remaining categories observed in the SATD dataset, they contain a very small number of
comments so the results might bring anecdotal evidence and need to be further verified with a larger study.

@ Springer

Empir Software Eng (2022) 27: 139 Page 250f42 139

Table 8 Statistical comparison of negative polarity for the comments in the dataset of Maldonado et al.
(OR> 1 means that the proportion is significantly greater for the left-side category. Non-significant pairs are
omitted in the table)

Category 1 Category 2 p-value OR

Functional issues Partially implemented <0.01 6.52
Functional issues Documentation issues 0.04 243
Functional issues Poor implementation choices <0.01 2.30
Poor implementation choices Partially implemented <0.01 2.85
Wait Partially implemented <0.01 5.82
Wait Poor implementation choices 0.02 2.05
Testing issues Partially implemented 0.02 341
Documentation issues Partially implemented 0.03 2.67

Maldonado et al. (2017) than in the vignettes), by the personal attitude of the SATD authors
vs. survey respondents, and, last but not least, to the different context (realistic setting vs.
artificial one).

As a follow-up study, we performed a pairwise comparison of negative polarity in the
macro-categories in the SATD dataset of da Silva Maldonado et al. (2017). The results,
reported in Table 8, confirm that negative sentiment mostly occurs in presence of bugs or
the need to wait to see an issue resolved. Specifically, comments in “Functional issues”
and “Wait” appear significantly more negative than comments labeled as “Partially imple-
mented” (Odds Ratio equal to 6.25 and 5.82, respectively) and more than twice as negative
than “Poor implementation choice.” Moreover, statistical analysis confirms that comments
reporting partial implementation are the least negative, compared to the other categories.

RQ4 summary: SATD about functional issues conveys more negative sentiment. Also,
being “on-hold” for various reasons that do not depend on themselves, make develop-
ers communicating negative sentiment. Survey respondents were more neutral when
reporting partial implementations due to the lack of a proper API, misalignment, or
documentation/testing issues.

3.6 RQs: To What Extent do SATD Annotations Belonging to Different Categories
Contain Additional Details?

We perform a conceptual replication of the work on task annotations by Storey et al. (2008).
Following the methodology described in Section 2.4, we leverage the SATD dataset together
with the comments left by our respondents to the five vignettes included in the survey. We
present the results of this analysis in Tables 9 and 10. While frequently mentioned by the
developers surveyed by Storey et al., additional details rarely appear in our study.
Specifically, 64% of developers from Storey et al. study declared to add references to
classes/methods/plug-ins/modules. However, in our study we found the latter happening in
304 SATD comments (30%) which, although not as high as 60%, is a conspicuous fraction
of the total. As for the authors’ names, instead, only 10% of the SATD comments in our
sample contain them, even if around 50% of developers explicitly added their names in the
annotations. This may be confirmed considering that only 12 out of 135 SATD comments in

@ Springer

139 Page 26 of 42 Empir Software Eng (2022) 27: 139

Table 9 Distribution of dimensions used by developers to annotate technical debt over the 1038 comments
from the Maldonado et al. dataset

Category Component Name Bug id URL Date
Functional issues 47 (35%) 12 (9%) 11 (8%) 1 (1%) 9 (7%)
Poor implementation choices 152 (35%) 48 (11%) 5(1%) 0 16 (4%)
Wait 21 (24%) 4 (5%) 9 (10%) 2 (2%) 1 (1%)
Deployment issues 0 0 0 0 0

SATD comments outdated 1 (33%) 0 1 (33%) 0 0
Partially implemented 50 (22%) 22 (10%) 0 0 1(1%)
Testing issues 7 (19%) 3 (8%) 0 0 0
Documentation issues 19 (35%) 11 (20%) 0 0 1 (2%)
Misalignment 7 (33%) 4 (19%) 0 0 0

Tot. (unique) 304 (30%) 104 (10%) 26 (3%) 3(0.3%) 28 (3%)

the “Functional issues” category clearly report the name. However, about half of the SATD
comments referring to a name fall into the “Poor implementation choices” category. One
possibility is that during code reviewing processes, reviewers may identify the presence of
wrong decisions and highlight them as source code comments. By looking at the comments
left from our survey respondents, only 3 out of 148 comments (see Table 10) contain a
reference to a developer name. The low percentage in our survey results might be justified
because the respondents are invited to draft a comment related to a hypothetical situation.
Moving our attention to the inclusion of bug identifiers, 42% of the SATD comments in
the dataset of da Silva Maldonado et al. (2017) containing them belong to the “Functional
issues” category, however, a non-negligible percentage (33%) concerns the “Wait” category.
This is not surprising since developers may introduce a workaround due to a bug that needs
to be fixed in the same project or in a third-party library being used. As regards the former,
consider the SATD comment: “// TODO : YUCK!!! fix after HHH-1907 is complete” in
HIBERNATE, while for the latter in ARGOUML we found a comment stating: “[...] NOTE:
This is temporary and will go away [...] http://bugs.sun.com/bugdatabase/view _bug.do?bug_
1d=4714232” in which the bug is in java.awt library. The same does not apply to the SATD
comments from our survey respondents, where for each category we have less than 17%
of comments clearly referring to bug identifiers. However, while there are no comments
belonging to Documentation and partially implemented functionality issues in the original
Maldonado et al. dataset, we found 4 out of 36 and 3 out of 20 for subgroup A and 0

Table 10 Distribution of dimensions used by developers to annotate technical debt over Macro-categories
for comments drafted in the survey

Category Name Bugid Date Total comments drafted
Functional issues 2 (6.25%) 4 (12.50%) 0 (0.00%) 31
Poor implementation choices 1(3.22%) 5(16.12%) 0(0.00%) 29
Wait 0 (0.00%) 3 (12.00%) 1 (4.00%) 23
Partially implemented 0(0.00%) 4 (11.11%) 0 (0.00%) 36
Documentation issues — A 0 (0.00%) 3 (15.00%) 0 (0.00%) 20
Documentation issues — B 0 (0.00%) 0 (0.00%) 0 (0.00%) 3

@ Springer

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4714232
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4714232

Empir Software Eng (2022) 27: 139 Page 27 of 42 139

out of 3 for subgroup B comments referring to a bug-id belonging to the same categories
in our survey (e.g., “TODO - this is a bug, described in PRG-123, dialog window is not
implemented (so what is raised??)”).

Finally, looking both at dates and URLs, percentages from the dataset of da Silva Mal-
donado et al. (2017) are very low compared to those reported in the survey by Storey et al.
(2008) (3% and 0.3% vs 19%, and 30%). A possible interpretation is that unlikely as stated
in the survey, developers assume redundant introducing signature and date (as such infor-
mation is available in the versioning system anyway). Nevertheless, having them explicitly
stated in the source code makes the accountability and tracing more evident. The same
occurs also in the drafted comments from our survey where only 1 comment explicitly
refer to a date (i.e., “// Blocked on external API by XYZ corp, expecting it to be online by
32 Juvember 2038.”) However, as already said for the developer’s name, also in this case,
respondents are asked to write a comment for a hypothetical situation probably impacting
the lack of the additions of further details.

RQs5 summary: The addition of details such as bug identifiers and names is not so
frequent when reporting TD in source code comments. However, developers tend to
mention classes and methods more frequently, possibly to improve traceability and
support themselves/others in addressing the SATD.

4 Discussion

Sentiment in SATD: a proxy for priority? Recently, software engineering researchers
hypothesized that negatively loaded communication might be a proxy for identifying prior-
ity of a problem that need to be addressed (Gachechiladze et al. 2017; Uddin and Khomh
2017; Lin et al. 2019). Similarly, in marketing research, more attention is devoted to nega-
tive rather than positive customers’ reviews (Wright 1974; Yin et al. 2010), in line with the
assumption that negative feedback is usually more informative as it provides an indication
of problems that need to be solved and that might influence consumers’ decisions (Casal6
et al. 2015; Sparks and Browning 2011). Our study shows that, while only 13% of the
respondents believe that it is acceptable to use negative comments to express priority, more
than twice agree to do so, and a similar share of respondents will interpret negative SATD
comments as reflecting higher priority. Hence while the perception of negativity as a proxy
for priority is not necessarily shared by all developers, it is still sufficiently common to con-
firm this relation as hypothesized in previous work (Gachechiladze et al. 2017; Uddin and
Khomh 2017; Lin et al. 2019).

Both in the SATD source comments (Table 6) and in the survey (Table 7), negative
sentiment is most frequently associated with reporting functional issues. In other words,
developers perceive the presence of bugs as more annoying than other problems, such as
waiting, partial implementations, testing, and documentation issues. While we acknowledge
the need for further investigation of sentiment in SATD, e.g., on a larger dataset, we believe
these findings already have actionable implications. Specifically, the amount of negativity
observed in the “Functional issues” category suggests that developers should prioritize bug
fixing over other issues, such as the implementation of missing functionality. This is also in
line with previous findings by Mintyli et al. (2016) reporting more negativity for bugs and
more positive sentiment for feature implementation requests.

@ Springer

139 Page 28 of 42 Empir Software Eng (2022) 27: 139

Waiting is the category commonly associated with the negative sentiment in the SATD
comments but much rarely so in the survey. The high negative sentiment associated with
being “on-hold” might be interpreted as an indication of a blocking issue urgently requiring
attention. This is in line with previous findings by Ortu et al. (2015) reporting a positive
correlation between negative sentiment and issue fixing time. Along the same line, Mintyld
et al. (2016) reported higher emotional activation as the issue resolution time increases, as
well as higher arousal in high priority bug reports, thus indicating a presence of emotions
with high activation and negative polarity, such as stress. As such, the presence of negative
sentiment can be used as a proxy for automatic identification and prioritization of critical,
blocking issues, which might require the interventions of peers. Secondly, the information
in the classification can be used to assist in the fine-grained problem of SATD prioritization.

When looking at the SATD polarity, one important element to consider is whether the
comment belongs to source code written by the developer who introduced the comment,
or whether, instead, the source code has been written to somebody else. In the first case,
this means that one is “self-blaming” (e.g., “For some reason, I am not able to get the
sheet to size correctly.”), warning others that the artifact is not in an ideal state yet, and
encouraging others to improve it (e.g., “I have no idea how to get it, someone must fix it” or
“If someone knows a better way // please tell me”). This behavior might be related to self-
directed anger (Gachechiladze et al. 2017) and may depend a lot on the context in which one
works. Zampetti et al. (2021) have indicated that developers are more reluctant to self-admit
technical debt in an industrial context than in an open-source one.

In the second case, one may be criticizing source code written by somebody else. Pre-
vious work (conducted on a different dataset than ours) has shown that this occurs in a
relative minority of cases, with a percentage varying between 0 and 16% (Fucci et al. 2020).
Therefore, it is very likely that the majority of SATD are related to their own code, and the
negative sentiment mainly expresses un-satisfaction for what was done.

Support for SATD reporting. While, as mentioned above, functional TD is the macro-
category triggering more negative comments, survey respondents clearly indicated that issue
trackers should be used instead of source code comments to report high-priority SATD. This
is because, differently from source code comments, issue trackers allow for better man-
agement of the problem (e.g., triaging, priority assignment, discussion, fixing or possibly
reopening). Indeed, as a previous study by Xavier et al. (2020) has shown, SATD is also
reported beyond source code, e.g., in issue trackers. However, (and this was confirmed by
Xavier et al. (2020)), such SATD is infrequently traceable to the exact source-code location
that exhibits the SATD. This problem of traceability raises the need for tooling that supports
the reporting of SATD, i.e., not only the use of issue trackers but also the need for estab-
lishing traces between issues and the affected code fragments (this is not needed for SATD
comments present in the source-code as they appear close to the affected code). Such traces
between code and issues are for example present when developers use code reviewing tools
or pull request discussions, as comments made during a review can point directly to the
code.

Supporting developers in effective SATD comment writing: the role of sentiment.
Based on the results of the sentiment analysis study, we believe that providing immediate
feedback on the negative tone during comment-writing could support developers in more
effective collaboration. Specifically, an early detection of harsh or hostile sentiment could
not only enable discovering code of conduct violations (Tourani et al. 2017) but also support
developers towards effective communication. A SATD sentiment analyzer could prompt

@ Springer

Empir Software Eng (2022) 27: 139 Page 29 of 42 139

developers to highlight the “toxicity” conveyed by their comments, and possibly suggest re-
tuning their writing, to avoid irritating their peers. Also, it can recommend using alternative
ways of expressing that SATD requires higher priority as suggested in Table 5.

Our vision is corroborated by the survey results: Fig. 4 indicates that nearly half of
the survey respondents do not see writing negative comments as an acceptable practice.
Furthermore, it is supported by previous findings on collaborative software development
and technical knowledge-sharing. Motivated by developers reporting stress due to aggres-
sive communicative behavior in open source communities, Raman et al. (2020) investigated
the possibility to automatically detect and mitigate such unhealthy interactions. Steinmacher
et al. (2015), instead, showed the impact of social barriers in attracting new contributors
to open-source projects. Further studies investigated the impact of sentiment in collec-
tive knowledge-building: Calefato et al. (2018b) found a higher probability of fulfilling
information-seeking goals on Stack Overflow when questions are formulated using a neu-
tral style, while Choi et al. (2010) found that positive, welcoming tone and constructive
criticism is beneficial for online collaboration in Wikipedia.

The evaluation of the SE-specific publicly available sentiment analysis tools we per-
formed (see Section 2) indicated that a fine-tuning is needed before existing tools can be
reliably used. Our gold standard for sentiment annotation in SATD represents the first step
towards this goal. Furthermore, being able to reliably identify and distinguish hostile com-
ments from non-toxic negative sentiment, as in reporting concerns due to a bug, is a crucial
aspect to take into account in performing such fine-tuning to avoid marking non-toxic com-
ments for moderation. By releasing our gold standard and guidelines for annotation, we
hope to stimulate further research on negativity detection in SATD.

References perceived as important in comments (Storey et al. 2008), but not widely
used in SATD comments. Survey respondents state that including bug IDs and name of
the responsible person can be used to indicate that the SATD should have a higher priority
(Table 5). Based on the results of our study we envision the emergence of tools supporting
and guiding the authors towards adding proper references and information while adding
SATD.

While previous work by Storey et al. (2008) stressed the perceived importance of various
forms of references in task annotations, they occur much less frequently than one would
expect. For example, while most developers (64%) participating in the study by Storey et al.
declared they add references to classes, methods, plug-ins, and modules, such references
appear only in 30% of our dataset of SATD comments; similarly, adding bug ids has been
reported by 44% of the developers surveyed by Storey et al. only 3% of the SATD comments
in our dataset contained bug ids. In our survey we have asked the respondents to provide
examples of SATD comments that they would write given a situation (see Table 10): without
further prompting 11.11-16.12% of the survey respondents have included bug ids in their
comments across all categories of SATD, names of developers or date (as discussed by
Storey et al. (2008)) are much less commonly mentioned. Hence, for all categories of our
taxonomy to properly document SATD, developers should open bug reports in the issue
tracker and reference them in the comment, as well as refer to other classes or methods to
be updated.

Tool support could be developed to automatically detect introduction/change of SATD
comments, and generate a date and signature for it, since half of developers in the study
by Storey et al. include both their names and dates during task annotations. Similarly, auto-
mated support could be provided to reference/open an issue every time a Functional SATD
is detected. Also, when “on-hold” SATD comment is automatically detected (Maipradit

@ Springer

139 Page 30 of 42 Empir Software Eng (2022) 27: 139

et al. 2020b), developers may be guided to add a reference to a proper source. By help-
ing to achieve properly structured SATD comments (depending on their type) with suitable
references, not only those comments may become more traceable and understandable, but
the available information will also help to better drive their manual (or semi-automated)
resolution.

5 Related Work

In the following, we discuss relevant literature related to (i) studies about TD and SATD,
and (ii) sentiment analysis in software development.

5.1 Technical Debt and Self-Admitted Technical Debt

In the past years, the research community empirically studied TD and SATD. Seaman and
Guo (2011), Kruchten et al. (2013), Brown et al. (2010), and Alves et al. (2014) made differ-
ent considerations about “technical debt” highlighting that TDs are a communication media
among developers and managers to discuss and address development issues. Furthermore,
Lim et al. (2012) highlighted that TD introduction is mostly intentional, and Ernst et al.
(2015) pointed out how TD awareness is a cornerstone for TD management. Zazworka et al.
(2011), instead, highlighted the need for proper handling and identification of TD to reduce
their negative impact on software quality.

By looking at source code comments in open source projects Potdar and Shihab (2014)
found that developers tend to “self-admit” TD. In a follow-up study, da Silva Maldonado
and Shihab (2015) developed an approach that by using 62 patterns identifies whether or
not a comment is an SATD along with such categories as defect, design, documentation,
requirement, and test debts. Bavota and Russo (2016), instead, have refined the above clas-
sification providing a taxonomy featuring 6 higher-level TD categories properly specialized
into 11 sub-categories. Our work differs from that by Potdar and Shihab (2014) and Bavota
and Russo (2016) in that we focus on the content reported in the SATD without considering
the development life-cycle in which the SATD may be mapped.

Nevertheless, it is possible to identify a possible correspondence between the SATD
categories identified by Bavota and Russo and those we have identified. Table 11 reports
the mapping between the third-level SATD classification by Bavota and Russo (2016) and
our taxonomy. By looking at the mapping, it is possible to state that, except for “Licens-
ing”, which was not encountered in our study, our taxonomy covers all the categories by
Bavota and Russo (2016). Note that in some cases we could only create a mapping with
their 2nd-level category, as in the case of “Documentation Issues/Inconsistent Documenta-
tion” mapped on their “Inconsistent comments”, and “Functional Issues”, mapped on their
“Functional”.

Being based on the technical content of commit messages rather than on the develop-
ment process, our taxonomy provides a more detailed classification for some of the general
categories in Bavota and Russo, e.g., “Low Internal Quality” is specialized in our taxon-
omy among different type of issues in the “Poor Implementation Choices” category. Finally,
our taxonomy enriches the one already presented in previous literature since that 14 out of
our 33 categories and/or sub-categories cannot be mapped on the taxonomy by Bavota and
Russo (2016), unless doing a generic mapping on the first level of their taxonomy.

Concerning the SATD classification, Maipradit et al. (2020b), introduced the concept
of “on-hold” SATD i.e., comments expressing a condition indicating that a developer is

@ Springer

Empir Software Eng (2022) 27: 139

Page 310f42 139

Table 11 Mapping between Bavota and Russo (2016) SATD categories and our taxonomy. In some cases we
could only create a mapping with the 2nd-level category of Bavota and Russo (2016), as in the case of “Doc-
umentation Issues/Inconsistent Documentation” mapped on their “Inconsistent comments”, and “Functional
Issues”, mapped on their “Functional”

Bavota and Russo (2016) Our taxonomy
Ist Level 2nd Level 3rd Level Category Sub-category
Code Low Internal Poor Impl. Choices Poor impl. solutions
Quality Poor API usage
Code review needed
Maintainability issues
Performance issues
Usability
Won’t improve the code
Partially/Not Impl. Func.
Workaround Wait Temporary patch
Design Code Smells Poor Impl. Choices Maint. Issues
Poor Impl. Solutions
Design Patterns Poor Impl. Choices Maintainability Issues
Poor Impl. Sol.
Doc. Incons. Comm. Doc. Issues Inconsistent Doc.
Addressed TD SATD outdated
Won’t fix Func. Issues Fix to postpone
Poor Impl. Choices Won’t improve the code
Doc. Issues Won’t modify doc.
Licensing
Defect Defects Known defects Func. Issues Bug to fix
to fix
Partially fixed Func. Issues Temporary Patch
defects Partially/Not Impl. Func. ~ Work under specific cond.
Low Ext. Poor Impl. Choices Usability
Qual.
Test Testing Issues Improve tests
Test case bugs
Disalign. prod/test code
Req. Functional Func. Issues

Improv. to feat.

needed

Partially/Not Impl. Func.

Work under specific cond.
Func. issue elsewhere
Pre-cond. missing

Post-cond. unchecked

Incompl. except. handling

@ Springer

139 Page 32 of 42 Empir Software Eng (2022) 27: 139

Table 11 (continued)

Bavota and Russo (2016) Our taxonomy

Ist Level 2nd Level 3rd Level Category Sub-category

New feat. to be impl. Partially/Not Impl. Func. Work under specific cond.
Func. issue elsewhere
Pre-cond. missing
Post-cond. unchecked
Incompl. except. handling

Non Functional Performances Poor Impl. Choices Performance issues

waiting for an event internal or external to the project under development. As a follow-up
study, Maipradit et al. (2020a), built a classifier aimed at detecting on-hold SATD with an
average AUC of 0.97. Moreover, they studied the on-hold SATD evolution by looking into
the life-span of removed issue-referring comments finding that 13% of on-hold SATD are
removed from the code more than one year after their resolution.

Fucci et al. (2020), conjectured that “self-admission” may not necessarily mean that the
comment has been introduced by whoever has written or changed the source code. Their
results highlight that SATD comments are mainly introduced by developers having a high
level of ownership on the SATD-affected source code.

While most of the aforementioned work focused the attention on SATD in source code
comments or commit messages, Xavier et al. (2020) studied SATD being reported in the
issue trackers of five projects. Their findings indicate that SATD issues take longer to be
fixed than other issues and that only 29% of those issues can be traced onto source code
comments. As confirmed by the results of our survey, where respondents have indicated that
SATD should be reported in issue trackers and not in the source code, we share with Xavier
et al. (2020) the need to develop tools for better SATD management.

As regards the impact of SATD, Wehaibi et al. (2016) found that SATD leads to complex
changes in the future, while Russo et al. (2022) found that 55% of SATD in Chromium
contains potentially vulnerable code. Yasmin et al. (2022) studied duplicate SATD, and
found that between 41%—-65% of SATD in five Apache projects is duplicated, additionally,
Kamei et al. (2016) highlighted that ~42% of TD incurs positive interest. From a different
perspective, Zampetti et al. (2017) developed an approach for recommending when a design
TD has to be admitted.

Differently from previous work, we focused our attention on the SATD content, i.e., what
developers usually annotate about TD, as well as how they communicate the presence of
this temporary solution, i.e., sentiment and external references.

Zampetti et al. (2021) conducted a survey with open-source and industry developers to
investigate their TD admission practices. Their study found that TD admission is very simi-
lar between industry and open-source, although then behavior of industrial developers upon
commenting source code is often constrained by organizational guidelines. Also, industrial
developers are more afraid in admitting TD, because they see this as a way to reveal their
weaknesses, and are afraid this may have consequence on their career.

The research community has also focused on SATD removal. da Silva Maldonado et al.
(2017) found that there is a high percentage of SATD being removed even if their surviv-
ability varies by project. Zampetti et al. (2018), instead, studied the relationship between
comment removals and changes applied to the affected source code. They found how SATD

@ Springer

Empir Software Eng (2022) 27: 139 Page330f42 139

can be either removed through focused changes (e.g., to conditional statements), but also
by rewriting/replacing substantial portions of source code. Liu et al. (2021) also empirically
analyzed the introduction and removal of different types of TD, in this case with a specific
focus to machine learning projects. They found that the most frequently introduced TD dur-
ing the development process is design debt, whereas in terms of removal developers tend
to remove requirement debt the most, and design debt fastest. To aid developers in SATD
removal, Zampetti et al. (2020) proposed SARDELE, a multi-level classifier able to recom-
mend six SATD removal strategies using a deep learning approach. We believe that a more
focused analysis of the SATD content like the one done in our work could help to refine
such approaches, allowing for more actionable suggestions.

The textual content of SATD comments is analyzed by Rantala et al. (2020), who devel-
oped a detector for Keyword-Labeled SATD, i.e., SATD highlighted by specific keywords
such as TODO or FIXME. Their analysis shows, among others, the usages of keywords
expressing not only the need for code changes, but also a situation of uncertainty. Our
analysis complements the findings of Rantala et al. (2020) as it turns out that, in some
circumstances, SATD also contains expressions of negativity.

TODO comments can be sometimes obsolete, but they may or may not be removed by
developers. Therefore Gao et al. (2021) proposed an approach, named TDCleaner, to iden-
tify and remove obsolete TODO comments. Their approach is based on a neural encoder
that learns from SATD comments, code changes, and commit messages. In principle, obso-
lete SATD could affect all categories we have considered (in RQj), although our manual
analysis did not identify any explicit trace of such comments.

By mining the file history of these frameworks, we find that design debt is introduced
the most along the development process. As for the removal of technical debt, we find that
requirement debt is removed the most, and design debt is removed the fastest. Most of test
debt, design debt, and requirement debt is removed by the developers who introduced them.

Zampetti et al. (2021) surveyed developers in the open-source and industry, investigating
whether they admit SATD differently. They found that, in general, their behavior is similar.
At the same time, industrial developers are more driven by their organizational guidelines,
and are also (implicitly or explicitly) discouraged to admit SATD and/or to push code that
is not ready. The finding of our survey further confirms what conjectured by Zampetti et al.
(2021), because developers have pointed out that code with SATD should not be merged.

5.2 Sentiment Analysis in Software Development

Recently, a trend has emerged and consolidated to leverage sentiment analysis in empiri-
cal software engineering research (Novielli and Serebrenik 2019; Lin et al. 2021). Murgia
et al. (2014) presented an early exploratory study of emotions in software artifacts. By man-
ually labeling issues from the Apache Software Foundation, they found that developers feel
and report a variety of emotions, including gratitude, joy, and sadness. Ortu et al. (2015),
instead, investigated the correlation between sentiment in issues and their fixing time show-
ing how issues with negative polarity, e.g., sadness, have a longer fixing time. On the same
line, Méntyli et al. (2016) performed a correlation study between emotions and bug priority
to derive symptoms of productivity loss and burnout. By looking at issue tracking comments
they mined emotions and used them to compute Valence (i.e., sentiment polarity), Arousal
(i.e., sentiment intensity), and Dominance (the sensation of being in control of a situation).
Their findings highlight that bug reports are associated with a more negative Valence, and
issue priority positively correlates with the emotional activation, with higher priority corre-
lating with higher arousal. While not representing any causal relationship between emotions

@ Springer

139 Page 34 of 42 Empir Software Eng (2022) 27: 139

and the investigated factors, both correlation studies suggest how sentiment can be used as
a proxy for problems or priority in the development process, for monitoring the mood of
software development teams, as well as identifying factors correlated to positive emotion,
towards fostering effective collaboration and developers’ productivity. Differently from the
previous correlation studies, our study investigates how developers communicate the pres-
ence of technical debt by manually labeling the sentiment inside SATD comments and
survey responses imitating SATD comments. Furthermore, while previous studies conjec-
tured the link between sentiment and priority in the software development process, we have
evaluated this conjecture by surveying software developers.

Researchers in requirements engineering use sentiment analysis as a source of informa-
tion for requirements classification towards supporting software maintenance and evolution.
Panichella et al. (2015) applied sentiment analysis for classifying user reviews in Google
Play and Apple Store, Maalej et al. (2016) leveraged several text-based features, includ-
ing sentiment, for automatically classifying app reviews into four categories, namely
bug reports, feature requests, user experiences, and text ratings, while Portugal and do
Prado Leite (2018) use sentiment analysis to acquire a deeper understanding of usability
requirements.

While early studies of sentiment in software development made use of general-purpose
sentiment analysis tools this approach is shown to be unreliable (Jongeling et al. 2017). To
address this challenge multiple sentiment analysis tools have been specially designed for
the software development domain (Islam and Zibran 2018; Calefato et al. 2018a; Ahmed
etal. 2017; Alkalbani et al. 2016; Chen et al. 2019; Ding et al. 2018). We have evaluated the
applicability of such tools to SATD comments but as explained in Section 2.3.1 the tools
missed some negative comments due to the presence of lexicon which is specific to SATD
comments. Hence, the sentiment analysis in this paper has been performed manually.

As far as negative emotions are concerned, Gachechiladze et al. (2017) looked at the
anger and its direction in collaborative software development, envisioning the tools detect-
ing the anger target in developers’ communication, by distinguishing between anger towards
self, others, and object. In their vision, detecting anger towards self could be useful to
support stuck developers, while anger towards others should be detected for community
moderation purposes. Finally, detecting anger towards objects can enable the recommenda-
tion of alternative tools or task prioritization. As a preliminary step towards this goal, they
created a manually annotated dataset of 723 sentences from the Apache issue reports and
used it to train a supervised classifier for anger detection. Similarly to this study, we focus
on negative emotion confirming that their detection and modeling can serve as a proxy for
problems occurring in the software development process.

A complementary line of research considers biometric measurements to assess software
developers’ emotional states rather than texts authored by them (Miiller and Fritz 2015;
Girardi et al. 2020; Girardi et al. 2021).

6 Threats to Validity

Threats to construct validity concern the relationship between theory and observation. One
threat is how the comments are classified in RQ;. Our knowledge of the analyzed systems
may not be as deep as those of the original developers. To mitigate this threat, we analyzed
not only the comments but also the corresponding source code when this was needed. A
relevant threat for RQy is related to how “sentiment” is perceived by annotators but may not
match the actual sentiment of developers. For what possible, the subjectiveness in RQ; and

@ Springer

Empir Software Eng (2022) 27: 139 Page350f42 139

RQ4 has been mitigated by establishing clear coding guidelines, and by doing initial joint
sessions. Furthermore, we resolved all disagreements through a discussion during plenary
meetings involving all the annotators. For sentiment labeling, we also measured the extent to
which we could have reached an agreement by chance using inter-rater agreement metrics.

Concerning the first part of the survey which we used to answer RQ, and RQj3, we
ask developers to provide their perception about SATD practices and the extent to which
negative polarity should be used when reporting SATD. We are aware that this kind of “self-
assessment” conducted through a survey not only can be affected by the self-selection of the
participants (e.g., less negative ones were those who decided to respond), but, also, that what
answered to a questionnaire may be different from what one actually does in the practice.

In the survey study, we used vignettes (Rossi and Nock 1983; McNamara et al. 2018;
Palomba et al. 2021) to gather, from respondents, their reaction to certain development
scenarios or to certain situations occurring in a project. Although the vignettes are inspired
by the SATD source comments we have analyzed and realistic development scenarios, they
might still be artificial with respect to the intrinsic complexity and the constraints of open-
source software development. Moreover, although we have paid special attention to neutral
wording in the vignettes, we cannot exclude that the vignettes’ text influenced the sentiment
of the SATD comment written by respondents. Finally, to avoid having an excessively long
study (and therefore discouraging participation), we had to limit the number of vignettes to
five. This makes their diversity, depth and breadth with respect to the other analysis we did
on the Maldonado et al. dataset fairly limited. For this reason, we cannot directly compare
the results of the two studies used to answer RQy.

Threats to internal validity are related to factors internal to our study that can affect
our results. Although we created a relatively large and statistically significant sample, we
cannot exclude that our sampling strategy is weakly representative of the studied dataset. In
particular, we sampled our dataset starting from the data and categories of Maldonado et al.,
so we might have inherited representativeness threats from the original study. Measurement
imprecision in RQs has been mitigated, where it matters, through manual analysis.

A further threat affecting RQ3 and RQ4 may be represented by the sentiment of SATD
comments submitted by the survey participants for our vignettes. While we asked them to
behave as they were working on their own project, their actual sentiment may be different
from a real development context (e.g., when a developer finds that somebody has introduced
some poor source code) to an artificial setting, where one may tend to be more polite. At the
same time, the artificial context of the survey might release some of the pressure induced
on the developers by the need to conform to the norms of the professional behavior at the
workplace.

In this work we find that 29 of the comments from the dataset of Maldonado et al. contain
references to external bug reports or urls. However, these references might not be up to date
anymore as Li and Zhong (2021) have found that some bug reports become obsolete over
time.

To ensure that we only study the practices of open-source software projects, we ask
participants whether they have contributed to open-source software projects in the past three
months. However, this does not exclude the possibility that we received responses from
participants who mostly contribute to commercial software projects, and only sparingly
contribute to open-source in the past three months. To minimize the risk of these participants
answering based on their commercial experience, we explicitly included the text 'you are
working on an open-source application’ in each question of the survey.

@ Springer

139 Page 36 of 42 Empir Software Eng (2022) 27: 139

Finally, the order in which we presented vignettes may have impacted the comments
written by respondents. We mitigated this threat by using versions of the survey with a
different ordering, and by using PERMANOVA, (Anderson 2017) to analyze the ordering
effect and discuss how ordering could have influenced the results (see Section 3.1).

Threats to external validity concern the generalizability of our findings. The qualita-
tive nature of the study (especially RQ;) and the need for manual inspection for all three
research questions do not make a large-scale analysis feasible. Therefore, although the sam-
ple is statistically significant, it may not generalize to further projects and programming
languages different from Java. For RQj, although we reached saturation when identifying
categories, we cannot exclude that new categories would emerge when looking at fur-
ther datasets. Both components of the study—the SATD comment mining part and the
survey—focus on a (relatively limited) set of open-source projects, therefore results might
not generalize further. That being said, previous work of Zampetti et al. (2021) showed that
the differences in SATD practices between industry and open source are fairly limited.

Finally, in our survey study, we recruited participants by advertising the questionnaires
through messages to mailing lists, posts on social media, and personal contacts. On one
hand, this is in line with our assumption that the different communication channels we used
to recruit the participants do not influence the population. On the other hand, this allows
us to reach a broader and more diverse audience. However, we are aware this might have
potentially introduced threats due to mixed recruiting strategy.

7 Conclusion

In this paper, we have studied developers’ practices related to Self-Admitted Technical Debt
(SATD) in open-source software projects. More specifically, we investigated (i) the content
of SATD comments, (ii) the methods used to indicate priority in SATD, (iii) the extent to
which developers believe that the expression of negative sentiment in SATD is acceptable,
(iv) how negative polarity occurs in different kinds of SATD, and (v) whether developers
add details such as URLSs, contributors’ names, timestamps, or bug IDs in SATD comments.
The study has combined the manual classification of 1038 SATD comments from a curated
dataset of da Silva Maldonado et al. (2017), with a survey involving 46 open-source devel-
opers, which comprised open-ended and closed-ended questions about SATD annotation
practices, as well as tasks requiring to write SATD comments for vignettes (Rossi and Nock
1983) depicting scenarios where TD could be admitted.

We found that SATD is spread across different categories, and that different prob-
lems are described in SATD. SATD comments are often related to functional issues and
partially-implemented functionality, but also to poor implementation choices, and waiting
for other features to be ready/APIs to be available. Less frequent, though non-negligible,
are SATD comments related to documentation and tests. A group of developers (13 out of
44) acknowledges the use of negativity in the source code to indicate extra-priority, tenta-
tively confirming what conjectured in previous literature (Gachechiladze et al. 2017; Uddin
and Khomh 2017; Lin et al. 2019). At the same time, survey respondents indicated that,
when discussing SATD, a negative polarity should be avoided, despite our analysis of the
da Silva Maldonado et al. (2017) dataset found a relatively large (>40%) proportion SATD
with negative polarity, especially related to functional issues and “on-hold” debt.

Finally, although we found the presence of various pieces of additional information in
SATD comments (including bug IDs), survey respondents argued that SATD comments in

@ Springer

Empir Software Eng (2022) 27: 139 Page 37 of 42 139

the source code should not be used to trigger development activities or to highlight prob-
lems; issue trackers should be used instead. However, the use of issue trackers does not
solve the problem of ensuring traceability between issues and source code elements being
affected by SATD.

All the above findings foster future research on SATD, primarily aimed at helping devel-
opers in better writing SATD, also considering that previous research already found ways to
recommend when SATD should be admitted (Zampetti et al. 2017). Primarily, tools should
help developers to properly write SATD comments, by using a suitable polarity, but at
the same by including proper pieces of information such as links to external resources, or
authorship information. More importantly, better support than just using issue trackers is
highly desirable, especially to establish traceability between TD-affected code and issues.

Acknowledgements We’d like to thank Gianmarco Fucci for his contribution to the companion paper (Fucci
et al. 2021). Moreover, we are also grateful to the survey respondents who took the time to respond to our
survey, and the authors of da Silva Maldonado et al. (2017) for making available their dataset.

Declarations

Conflict of Interest The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmed T, Bosu A, Igbal A, Rahimi S (2017) SentiCR: a customized sentiment analysis tool for code review
interactions. In: ASE 2017—proceedings of the 32nd IEEE/ACM international conference on automated
software engineering, pp 106—111. https://doi.org/10.1109/ASE.2017.8115623

Alkalbani A, Ghamry A, Hussain F, Hussain O (2016) Sentiment analysis and classification for
software as a service reviews. In: 2016 IEEE 30th international conference on advanced infor-
mation networking and applications (AINA). IEEE Computer Society, Los Alamitos, pp 53-58.
https://doi.org/10.1109/AINA.2016.148. https://doi.ieeecomputersociety.org/10.1109/AINA.2016.148

Alves NSR, Ribeiro LF, Caires V, Mendes TS, Spinola RO (2014) Sixth international workshop on managing
technical debt, mtd@icsme 2014, Victoria, BC, Canada, September 30, 2014. In: International workshop
on managing technical debt. IEEE Computer Society, pp 1-7

Anderson MJ (2017) Permutational multivariate analysis of variance (PERMANOVA). American
Cancer Society, pp 1-15. https://doi.org/10.1002/9781118445112.stat07841. https://onlinelibrary.
wiley.com/doi/abs/10.1002/9781118445112.stat07841. https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9781118445112.stat07841

Bavota G, Russo B (2016) A large-scale empirical study on self-admitted technical debt. In: Kim M, Robbes
R, Bird C (eds) International conference on mining software repositories. ACM, pp 315-326

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289-300

Brown N, Cai Y, Guo Y, Kazman R, Kim M, Kruchten P, Lim E, MacCormack A, Nord RL, Ozkaya I,
Sangwan RS, Seaman CB, Sullivan KJ, Zazworka N (2010) Managing technical debt in software-reliant
systems. In: Roman G, Sullivan KJ (eds) Proceedings of the workshop on future of software engineering

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ASE.2017.8115623
https://doi.org/10.1109/AINA.2016.148
https://doi.ieeecomputersociety.org/10.1109/AINA.2016.148
https://doi.org/10.1002/9781118445112.stat07841
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07841
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07841
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07841
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07841

139 Page 38 of 42 Empir Software Eng (2022) 27: 139

research, FOSER 2010, at the 18th ACM SIGSOFT international symposium on foundations of software
engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010. ACM, pp 47-52

Calefato F, Lanubile F, Maiorano F, Novielli N (2018a) Sentiment polarity detection for software develop-
ment. Empir Softw Eng 23(3):1352-1382. https://doi.org/10.1007/s10664-017-9546-9

Calefato F, Lanubile F, Novielli N (2018b) How to ask for technical help? Evidence-based guidelines for
writing questions on stack overflow. Inf Softw Technol 94(C):186-207

Casal6 LV, Flavian C, Guinaliu M, Ekinci Y (2015) Avoiding the dark side of positive online consumer
reviews: enhancing reviews’ usefulness for high risk-averse travelers. J Bus Res 68:1829-1835

Chen Z, Cao Y, Lu X, Mei Q, Liu X (2019) Sentimoji: an emoji-powered learning approach for sentiment
analysis in software engineering. In: Dumas M, Pfahl D, Apel S, Russo A (eds) Proceedings of the
ACM joint meeting on European software engineering conference and symposium on the foundations of
software engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. ACM, pp 841—
852. https://doi.org/10.1145/3338906.3338977

Choi B, Alexander K, Kraut RE, Levine JM (2010) Socialization tactics in wikipedia and their effects. In:
Proceedings of the 2010 ACM conference on computer supported cooperative work, CSCW ’10. Asso-
ciation for Computing Machinery, New York, pp 107-116. https://doi.org/10.1145/1718918.1718940

da Silva Maldonado E, Shihab E (2015) Detecting and quantifying different types of self-admitted technical
debt. In: 7th IEEE international workshop on managing technical debt, MTD@ICSME 2015, Bremen,
Germany, October 2, 2015, pp 9-15

da Silva Maldonado E, Abdalkareem R, Shihab E, Serebrenik A (2017) An empirical study on the removal
of self-admitted technical debt. In: ICSME, pp 238-248

da Silva Maldonado E, Shihab E, Tsantalis N (2017) Using natural language processing to automatically
detect self-admitted technical debt. IEEE Trans Softw Eng 43(11):1044-1062

Diefendorff J, Richard E (2003) Antecedents and consequences of emotional display rule perceptions. J Appl
Psychol 88:284-94. https://doi.org/10.1037/0021-9010.88.2.284

Ding J, Sun H, Wang X, Liu X (2018) Entity-level sentiment analysis of issue comments. In: Begel A,
Serebrenik A, Graziotin D (eds) Proceedings of the 3rd international workshop on emotion awareness
in software engineering, SEmotion @ICSE 2018, Gothenburg, Sweden, June 2, 2018. ACM, pp 7-13.
https://doi.org/10.1145/3194932.3194935

Ebert F, Castor F, Novielli N, Serebrenik A (2018) Communicative intention in code review questions. In:
2018 IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 519—
523

Ernst NA, Bellomo S, Ozkaya I, Nord RL, Gorton I (2015) Measure it? Manage it? Ignore it? Software
practitioners and technical debt. In: Foundations of software engineering. ACM, pp 50-60

Fischer M, Pinzger M, Gall H (2003) Populating a release history database from version control and bug
tracking systems. In: International conference on software maintenance, 2003. ICSM 2003. Proceedings.
IEEE

Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? On the relation between source
code and comment changes. In: 14th Working conference on reverse engineering (WCRE 2007). IEEE,
pp 70-79

Fucci G, Zampetti F, Serebrenik A, Di Penta M (2020) Who (self) admits technical debt? In: 2020 IEEE
International conference on software maintenance and evolution (ICSME). IEEE, pp 672-676

Fucci G, Cassee N, Zampetti F, Novielli N, Serebrenik A, Penta MD (2021) Waiting around or
job half-done? Sentiment in self-admitted technical debt. In: 2021 IEEE/ACM 18th international
conference on mining software repositories (MSR) (MSR). IEEE Computer Society, Los Alami-
tos, pp 403—414. https://doi.org/10.1109/MSR52588.2021.00052. https://doi.ieeecomputersociety.org/
10.1109/MSR52588.2021.00052

Gachechiladze D, Lanubile F, Novielli N, Serebrenik A (2017) Anger and its direction in collab-
orative software development. In: Proceedings of the 39th international conference on software
engineering: new ideas and emerging results track, ICSE-NIER ’17. IEEE Press, pp 11-14.
https://doi.org/10.1109/ICSE-NIER.2017.18

Gao Z, Xia X, Lo D, Grundy JC, Zimmermann T (2021) Automating the removal of obsolete TODO
comments. In: ESEC/FSE ’21: 29th ACM joint European software engineering conference and sympo-
sium on the foundations of software engineering, Athens, Greece, August 23-28, 2021, pp 218-229.
https://doi.org/10.1145/3468264.3468553

Girardi D, Novielli N, Fucci D, Lanubile F (2020) Recognizing developers’ emotions while programming.
In: Rothermel G, Bae D (eds) International conference on software engineering. ACM, pp 666-677

Girardi D, Lanubile F, Novielli N, Serebrenik A (2021) Emotions and perceived productivity of software
developers at the workplace. IEEE Trans Softw Eng xxx(1):1-1. https://doi.org/10.1109/TSE.2021.
3087906

@ Springer

https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1145/3338906.3338977
https://doi.org/10.1145/1718918.1718940
https://doi.org/10.1037/0021-9010.88.2.284
https://doi.org/10.1145/3194932.3194935
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00052
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1145/3468264.3468553
https://doi.org/10.1109/TSE.2021.3087906
https://doi.org/10.1109/TSE.2021.3087906

Empir Software Eng (2022) 27: 139 Page390f42 139

Hochschild R (1983) The managed heart: commercialization of human feeling. The University of California
Press, Berkeley

Islam MR, Zibran MF (2018) Sentistrength-se: exploiting domain specificity for improved sentiment analysis
in software engineering text. J Syst Softw 145:125-146. https://doi.org/10.1016/j.jss.2018.08.030. http://
www.sciencedirect.com/science/article/pii/S0164121218301675

Jongeling R, Sarkar P, Datta S, Serebrenik A (2017) On negative results when using sentiment analysis tools
for software engineering research. Empir Softw Eng 22(5):2543-2584. https://doi.org/10.1007/s10664-
016-9493-x

Kamei Y, Maldonado EDS, Shihab E, Ubayashi N (2016) Using analytics to quantify interest of self-admitted
technical debt. In: Lichter H, Fogen K, Sunetnanta T, Anwar T, Yamashita A, Moonen L, Mens T, Tahir
A, Sureka A (eds) Joint Proceedings of the 4th international workshop on quantitative approaches to
software quality (QuASoQ 2016) and 1st international workshop on technical debt analytics (TDA 2016)
co-located with the 23rd Asia-Pacific software engineering conference (APSEC 2016), Hamilton, New
Zealand, December 6, 2016, CEUR-WS.org, CEUR Workshop Proceedings, vol 1771, pp 68-71

Konietschke F, Hothorn LA, Brunner E (2012) Rank-based multiple test procedures and simultaneous
confidence intervals. Electron J Stat 6:738-759

Krippendorff K (2012) Content analysis: an introduction to its methodology. Sage, Thousand Oaks

Kruchten P, Nord RL, Ozkaya I, Falessi D (2013) Technical debt: towards a crisper definition report on the
4th international workshop on managing technical debt. ACM SIGSOFT Software Engineering Notes

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc
47(260):583-621. https://doi.org/10.1080/01621459.1952.10483441

Li Z, Zhong H (2021) An empirical study on obsolete issue reports. In: Proceedings of the 36th [IEEE/ACM
international conference on automated software engineering, p page to appear

Lim E, Taksande N, Seaman C (2012) A balancing act: what software practitioners have to say about technical
debt. IEEE Softw 29(6):22-27

Lin B, Zampetti F, Bavota G, Di Penta M, Lanza M, Oliveto R (2018) Sentiment analysis for software engi-
neering: how far can we go? In: Proceedings of the 40th international conference on software engineer-
ing, ICSE 2018, Gothenburg, Sweden, May 27-June 03, 2018, pp 94—104. https://doi.org/10.1145/318
0155.3180195

Lin B, Zampetti F, Bavota G, Di Penta M, Lanza M (2019) Pattern-based mining of opinions in Q & A
websites. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), pp 548—
559. https://doi.org/10.1109/ICSE.2019.00066

Lin B, Cassee N, Serebrenik A, Bavota G, Novielli N, Lanza M (2021) Opinion mining for software
development: a systematic literature review. ACM Trans Softw Eng Methodol xx:XX—xx

Liu J, Huang Q, Xia X, Shihab E, Lo D, Li S (2021) An exploratory study on the introduction and
removal of different types of technical debt in deep learning frameworks. Empir Softw Eng 26(2):16.
https://doi.org/10.1007/s10664-020-09917-5

Maalej W, Kurtanovic Z, Nabil H, Stanik C (2016) On the automatic classification of app reviews. Requir
Eng 21:311-331

Maipradit R, Lin B, Nagy C, Bavota G, Lanza M, Hata H, Matsumoto K (2020a) Automated identification
of on-hold self-admitted technical debt. In: 2020 IEEE 20th international working conference on source
code analysis and manipulation (SCAM). IEEE, pp 54-64

Maipradit R, Treude C, Hata H, Matsumoto K (2020b) Wait for it: identifying “on-hold” self-admitted
technical debt. Empir Softw Eng 25(5):3770-3798

Mintyld M, Adams B, Destefanis G, Graziotin D, Ortu M (2016) Mining valence, arousal, and dominance:
Possibilities for detecting burnout and productivity? In: Proceedings of the 13th international conference
on mining software repositories, MSR ’16. Association for Computing Machinery, New York, pp 247-
258. https://doi.org/10.1145/2901739.2901752

McNamara A, Smith J, Murphy-Hill E (2018) Does acm’s code of ethics change ethical decision making in
software development? In: Proceedings of the 2018 26th ACM joint meeting on european software engi-
neering conference and symposium on the foundations of software engineering, ESEC/FSE 2018. Asso-
ciation for Computing Machinery, New York, pp 729-733. https://doi.org/10.1145/3236024.3264833

Miiller SC, Fritz T (2015) Stuck and frustrated or in flow and happy: sensing developers’ emotions and
progress. In: Bertolino A, Canfora G, Elbaum SG (eds) 37th IEEE/ACM international conference on
software engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, vol 1. IEEE Computer Society,
pp 688-699. https://doi.org/10.1109/ICSE.2015.334

Murgia A, Tourani P, Adams B, Ortu M (2014) Do developers feel emotions? An exploratory anal-
ysis of emotions in software artifacts. In: Proceedings of the 11th working conference on mining
software repositories, MSR 2014. Association for Computing Machinery, New York, pp 262-271.
https://doi.org/10.1145/2597073.2597086

@ Springer

https://doi.org/10.1016/j.jss.2018.08.030
http://www.sciencedirect.com/science/article/pii/S0164121218301675
http://www.sciencedirect.com/science/article/pii/S0164121218301675
https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1007/s10664-020-09917-5
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1145/3236024.3264833
https://doi.org/10.1109/ICSE.2015.334
https://doi.org/10.1145/2597073.2597086

139 Page 40 of 42 Empir Software Eng (2022) 27: 139

Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison
of eleven methods. Stat Med 17(8):873-890. https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8
<873::AID-SIM779>3.0.CO;2-1

Novielli N, Serebrenik A (2019) Sentiment and emotion in software engineering. IEEE Softw 36(5):6-9.
https://doi.org/10.1109/MS.2019.2924013

Novielli N, Girardi D, Lanubile F (2018) A benchmark study on sentiment analysis for soft-
ware engineering research. In: Proceedings of the 15th international conference on mining soft-
ware repositories, MSR ’18. Association for Computing Machinery, New York, pp 364-375.
https://doi.org/10.1145/3196398.3196403

Novielli N, Calefato F, Dongiovanni D, Girardi D, Lanubile F (2020) Can we use SE-specific sentiment
analysis tools in a cross-platform setting? Proceedings—2020 IEEE/ACM 17th international conference
on mining software repositories, MSR 2020, pp 158-168. https://doi.org/10.1145/3379597.3387446.
2004.00300

Novielli N, Calefato F, Lanubile F, Serebrenik A (2021) Assessment of off-the-shelf SE-specific sentiment
analysis tools: an extended replication study. Empir Softw Eng 26

Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R (2015) Are bullies more productive?
Empirical study of affectiveness vs. issue fixing time. In: 2015 IEEE/ACM 12th working conference on
mining software repositories, pp 303—-313. https://doi.org/10.1109/MSR.2015.35

Palomba F, Andrew Tamburri D, Arcelli Fontana F, Oliveto R, Zaidman A, Serebrenik A (2021) Beyond
technical aspects: How do community smells influence the intensity of code smells? IEEE Trans Softw
Eng 47(1):108-129. https://doi.org/10.1109/TSE.2018.2883603

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can i
improve my app? Classifying user reviews for software maintenance and evolution. In: 2015
IEEE International conference on software maintenance and evolution (ICSME), pp 281-290.
https://doi.org/10.1109/ICSM.2015.7332474

Portugal RLQ, do Prado Leite JCS (2018) Usability related qualities through sentiment analysis. In:
Fucci D, Novielli N, Guzman E (eds) 1st International workshop on affective computing for require-
ments engineering, affectRE@RE 2018, Banff, AB, Canada, August 21, 2018. IEEE, pp 20-26.
https://doi.org/10.1109/AffectRE.2018.00010

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical debt. In: 30th IEEE International
conference on software maintenance and evolution, Victoria, BC, Canada, September 29-October 3,
2014, pp 91-100

Raman N, Cao M, Tsvetkov Y, Kistner C, Vasilescu B (2020) Stress and burnout in open source: toward
finding, understanding, and mitigating unhealthy interactions. In: Proceedings of the ACM/IEEE 42nd
international conference on software engineering: new ideas and emerging results, ICSE-NIER °20.
Association for Computing Machinery, New York, pp 57—60. https://doi.org/10.1145/3377816.3381732

Rantala L, Méntyld M, Lo D (2020) Prevalence, contents and automatic detection of KL-SATD. In: 46h
Euromicro conference on software engineering and advanced applications, SEAA 2020, Portoroz,
Slovenia, August 26-28, 2020, pp 385-388. https://doi.org/10.1109/SEAAS51224.2020.00069

Ren X, Xing Z, Xia X, Lo D, Wang X, Grundy J (2019) Neural network-based detection of self-admitted
technical debt: from performance to explainability. ACM Trans Softw Eng Methodol 28(3):15

Rossi PH, Nock SL (1983) Measuring social judgments : the factorial survey approach. Social Forces 12:598

Russo B, Camilli M, Mock M (2022) Weaksatd: detecting weak self-admitted technical debt. In: Proceedings
of the 19th international conference on mining software repositories, p page to appear

Scherer KR, Wranik T, Sangsue J, Tran V, Scherer U (2004) Emotions in everyday life: prob-
ability of occurrence, risk factors, appraisal and reaction patterns. Soc Sci Inf 43(4):499-570.
https://doi.org/10.1177/0539018404047701

Seaman C, Guo Y (2011) Measuring and monitoring technical debt. Advances in Computers

Serebrenik A (2017) Emotional labor of software engineers. In: Demeyer S, Parsai A, Laghari G, van Bladel
B (eds) Proceedings of the 16th edition of the BElgian-NEtherlands software eVOLution symposium,
Antwerp, Belgium, December 4-5, 2017. CEUR-WS.org, CEUR Workshop Proceedings, vol 2047,
pp 1-6

Sparks BA, Browning V (2011) The impact of online reviews on hotel booking intentions and perception
of trust. Tour Manag 32(6):1310-1323. https://doi.org/10.1016/j.tourman.2010.12.011. https://www.
sciencedirect.com/science/article/pii/S0261517711000033

Spencer D (2009) Card sorting: designing usable categories. Rosenfeld Media

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing
their first contribution in open source software projects. In: CSCW 2015, CSCW ’15. Association for
Computing Machinery, pp 1379-1392. https://doi.org/10.1145/2675133.2675215

@ Springer

https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8$<$873::AID-SIM779$>$3.0.CO;2-I
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8$<$873::AID-SIM779$>$3.0.CO;2-I
https://doi.org/10.1109/MS.2019.2924013
https://doi.org/10.1145/3196398.3196403
https://doi.org/10.1145/3379597.3387446
https://doi.org/10.1109/MSR.2015.35
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/AffectRE.2018.00010
https://doi.org/10.1145/3377816.3381732
https://doi.org/10.1109/SEAA51224.2020.00069
https://doi.org/10.1177/0539018404047701
https://doi.org/10.1016/j.tourman.2010.12.011
https://www.sciencedirect.com/science/article/pii/S0261517711000033
https://www.sciencedirect.com/science/article/pii/S0261517711000033
https://doi.org/10.1145/2675133.2675215

Empir Software Eng (2022) 27: 139 Page 41 0f42 139

Storey MA (2012) The evolution of the social programmer. In: Proceedings of the 9th IEEE working
conference on mining software repositories, MSR *12. IEEE Press, p 140

Storey MA, Ryall J, Bull RI, Myers D, Singer J (2008) Todo or to bug: exploring how task annotations play
arole in the work practices of software developers. In: Proceedings of the 30th international conference
on software engineering, ICSE ’08. Association for Computing Machinery, New York, pp 251-260.
https://doi.org/10.1145/1368088.1368123

Tourani P, Adams B, Serebrenik A (2017) Code of conduct in open source projects. In: 2017 IEEE
24th international conference on software analysis, evolution and reengineering (SANER), pp 24-33.
https://doi.org/10.1109/SANER.2017.7884606

Uddin G, Khomh F (2017) Opiner: an opinion search and summarization engine for apis. In: Proceedings
of the 32nd IEEE/ACM international conference on automated software engineering, ASE 2017. IEEE
Press, pp 978-983

Wehaibi S, Shihab E, Guerrouj L (2016) Examining the impact of self-admitted technical debt on soft-
ware quality. In: IEEE 23rd International conference on software analysis, evolution, and reengineering,
SANER 2016, Suita, Osaka, Japan, March 14-18, 2016, vol 1, pp 179-188

Wright P (1974) The harassed decision maker: time pressures, distractions, and the use of evidence. J Appl
Psychol 59(5):555-561

Xavier L, Ferreira F, Brito R, Valente MT (2020) Beyond the code: mining self-admitted techni-
cal debt in issue tracker systems. In: Proceedings of the 17th international conference on mining
software repositories, MSR ’20. Association for Computing Machinery, New York, pp 137-146.
https://doi.org/10.1145/3379597.3387459

Yasmin J, Sheikhaei MS, Tian Y (2022) A first look at duplicate and near-duplicate self-admitted technical
debt comments. In: Proceedings of the 30th international conference on program comprehension, p page
to appear

Yin D, Bond SD, Zhang H (2010) Are bad reviews always stronger than good? asymmetric negativity bias
in the formation of online consumer trust. In: Sabherwal R, Sumner M (eds) Proceedings of the inter-
national conference on information systems, ICIS 2010, Saint Louis, Missouri, USA, December 12-15,
2010. Association for Information Systems, p 193. http://aisel.aisnet.org/icis2010_submissions/193

Zampetti F, Noiseux C, Antoniol G, Khomh F, Di Penta M (2017) Recommending when design technical
debt should be self-admitted. In: International conference on software maintenance and evolution. IEEE
Computer Society, pp 216-226

Zampetti F, Serebrenik A, Di Penta M (2018) Was self-admitted technical debt removal a real removal?: an in-
depth perspective. In: Proceedings of the 15th international conference on mining software repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pp 526-536

Zampetti F, Serebrenik A, Di Penta M (2020) Automatically learning patterns for self-admitted technical debt
removal. In: 2020 IEEE 27th International conference on software analysis, evolution and reengineering
(SANER), pp 355-366

Zampetti F, Fucci G, Serebrenik A, Di Penta M (2021) Self-admitted technical debt practices: a comparison
between industry and open-source. Empir Softw Eng 26(6):131. https://doi.org/10.1007/s10664-021-
10031-3

Zazworka N, Shaw MA, Shull F, Seaman CB (2011) Investigating the impact of design debt on software qual-
ity. In: Proceedings of the 2nd workshop on managing technical debt, MTD 2011, Waikiki, Honolulu,
HI, USA, May 23, 2011, pp 17-23

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1145/1368088.1368123
https://doi.org/10.1109/SANER.2017.7884606
https://doi.org/10.1145/3379597.3387459
http://aisel.aisnet.org/icis2010_submissions/193
https://doi.org/10.1007/s10664-021-10031-3
https://doi.org/10.1007/s10664-021-10031-3

139 Page 42 of 42 Empir Software Eng (2022) 27: 139

Affiliations

Nathan Cassee’ @ . Fiorella Zampetti? - Nicole Novielli® - Alexander Serebrenik! -
Massimiliano Di Penta?

Fiorella Zampetti
fiorella.zampetti @unisannio.it

Nicole Novielli
nicole.novielli @uniba.it

Alexander Serebrenik
a.serebrenik @tue.nl

Massimiliano Di Penta
dipenta@unisannio.it

' Eindhoven University of Technology, Eindhoven, The Netherlands
University of Sannio, Benevento, Italy

University of Bari, Bari, Italy

@ Springer

http://orcid.org/0000-0002-6511-918X
mailto: fiorella.zampetti@unisannio.it
mailto: nicole.novielli@uniba.it
mailto: a.serebrenik@tue.nl
mailto: dipenta@unisannio.it

	Self-Admitted Technical Debt and comments' polarity: an empirical study
	Abstract
	Introduction
	Study Design
	Addressing RQ1: SATD Content Coding
	Dataset
	Data Analysis

	Addressing RQ2 and RQ3
	Addressing RQ4
	Sentiment Labeling of SATD
	Survey

	Addressing RQ5: Identifying Additional Details in SATD
	Survey Preparation and Sampling

	Study Results
	Survey Responses
	RQ1: What Kind of Problems do SATD Annotations Describe?
	Poor Implementation Choices.

	RQ2: How do Developers Annotate SATD that they Believe Requires Extra Priority?
	RQ3: Do Developers Believe that the Expression of Negative Sentiment in SATD is an Acceptable Practice?
	RQ4: How does the Occurrence of Negative Sentiment Vary Across Different Kinds of SATD Annotations?
	RQ5: To What Extent do SATD Annotations Belonging to Different Categories Contain Additional Details?

	Discussion
	Related Work
	Technical Debt and Self-Admitted Technical Debt
	Sentiment Analysis in Software Development

	Threats to Validity
	Conclusion
	References
	Affiliations

