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Abstract
We investigated temporal variations in turbidity in Base Mine Lake, an oil sands pit lake, 
located in northeast Alberta, Canada. The lake has a surface area of 7.8 km2, is 9 m deep, 
and exhibits seasonal thermal stratification similar to that of natural dimictic lakes. Water 
turbidity was measured continuously throughout the year with moored sensors, supple-
mented with turbidity profiles and bottle samples, from sites on the lake. During summer 
there was a gradual exponential (e-folding time of 25 days) decrease in epilimnetic turbid-
ity due to relatively steady settling of solids from the epilimnion through the thermocline 
to the hypolimnion. Rapid oscillations (periods of approximately 1 day) in turbidity during 
summer were due to wind driven internal waves. Convective cooling and wind-shear driven 
stirring during fall storm events increased the turbidity to an annual high just before ice-on. 
During these storm events, similarity scaling indicated wind shear imparted greater energy 
than convective cooling to the turbulence at the base of the water column. Ice suppressed 
wind forcing and resulted in a rapid decrease in turbidity. The rate of decrease in turbidity 
following ice-on was initially greater than the rate of decrease in the epilimnion during 
summer, and then slowed until the under-ice turbidity was a relatively constant value which 
was sustained during the latter half of the ice-on period. The minimum turbidity during 
winter was greater than the minimum during summer. Following ice-melt in spring, wind 
driven stirring increased turbidity until summer stratification began.
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1  Introduction

Turbidity is an important characteristic of aquatic ecosystems. It controls the penetration 
of sunlight into the water column, thereby affecting the absorption of solar energy and the 
resulting distribution of heat [7, 8], the level of biological activity [6], and the aesthetic 
appearance of the water body [19]. Many factors affect turbidity in both natural and man-
made lakes over a wide range of time scales.
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Dissolved organic matter (e.g. humic acids), suspended organic particles (e.g. phyto-
plankton), and suspended inorganic particles (e.g. clastic materials, [1, 23] can all contrib-
ute to turbidity. They may originate from a variety of sources, both allochthonous (such as 
tributary inputs), and autochthonous (such as biological production, shoreline erosion, and 
re-suspension from the bottom). For example, turbidity can be controlled by the tributary 
inflow of inorganic particles such as glacial fines that are slow to settle [18, 24]. In shallow 
water bodies, including lakes [3] and tailings ponds [14], high turbidity can result from re-
suspension of bottom sediments by wind driven currents.

Here we examine turbidity in Base Mine Lake (BML) a unique man-made water body in the 
Athabasca oil sands region in Alberta, Canada (Fig. 1). The lake is the first full scale demon-
stration end pit lake in the region and consists of water with an average depth of 9 m, covering 
a layer of fluid fine tailings (FFT) of up to 45 m deep (Fig. 2). BML has low biological activity 
(low primary production due to limited light penetration), and small inflows that have much 
lower turbidity (< 10 NTU) than the lake water (> 100 NTU). Therefore, Lawrence et al. [12] 
hypothesize that BML turbidity is governed by the internal cycling of fine inorganic particles, 
and that during settling, these particles form a layer of increased turbidity at the base of the 
water cap, similar to the fluid mud often found in estuaries [15]. This layer is far less dense 
and more mobile than the underlying gel-like FFT, and is subsequently re-suspended by hydro-
dynamic processes that are not strong enough to erode the underlying FFT. The goal of the 
present paper is to investigate these hydrodynamic processes, the time scales over which they 
act, and the resulting temporal variations in turbidity observed in BML from May 2013 until 
August 2016. The study site and data collection are described in Sects. 2 and 3 respectively. 
Results are given in Sect. 4. Discussion and conclusions are given in Sects. 5 and 6 respectively.

Fig. 1   Base Mine Lake location (starred) north of Fort McMurray, Alberta, Canada at 57°1′N, 111°37′W, 
308 m above sea level. The insert (b) shows the locations of the three platforms overlain on the October 
2016 water depths (m). The line through the platforms shows the location of the cross-section in Fig. 2
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2 � Site description

Base Mine Lake (57°1′N, 111°37′W, elevation 308 m, surface area 7.8 km2) is located in a 
mined out oil sands pit at the Syncrude Canada Ltd. base mine site in northeast Alberta, Can-
ada (Fig. 1). Until late 2012 BML was an active tailings pond storing large quantities of FFT 
overlain by process-affected water. In November 2012 BML was disconnected from tailings 
operations, and fresh water was added to increase the water depth sufficient to prevent wind-
wave induced erosion of the FFT that forms much of the lake bottom as shown in Fig. 2 [11]. 
The sides and bottom of the pit are a combination of undisturbed stratigraphy, overburden 
dumps and engineered dams made of compacted overburden, see Fig. 2.

During the study period, from May 2013 to August 2016, the average depth of the water 
increased from approximately 5.2–8.9 m. Of this 3.7 m increase, approximately 2.3 m was 
due to the on-going settling of FFT, and 1.4 m was due to fresh water (turbidity < 10 NTU) 
piped into the lake from a nearby reservoir. The net inflow from surface runoff plus precipita-
tion onto the lake surface minus evaporation from it was negligible. The volume of the water 
increased from approximately 35 × 106  –  62 × 106 m3 as the volume of the FFT decreased 
approximately from 184 × 106 to 167 × 106 m3 over the study period. As a consequence of the 
fresh water inputs, the concentration of total dissolved solids in the lake water decreased from 
approximately 2.3 g/L in May 2013 to approximately 1.6 g/L in August 2016.

3 � Data collection

3.1 � Meteorological measurements

A meteorological station was mounted on a floating platform anchored in the center of the 
lake (Platform 1 or P1, Fig. 1). Incoming and outgoing long- and short-wave radiation were 
measured from a boom above the water surface; and relative humidity and air temperature 

Fig. 2   Base Mine Lake 20 × vertical exaggeration cross-section looking NE (location shown in Fig. 1). The 
horizontal shore to shore distance is approximately 4.1 km; the maximum FFT thickness is approximately 
45 m and the average water depth was approximately 9 m in October 2016. Between October, 2013 and 
October, 2016 the water level rose due to freshwater inflows while the mudline (water-FFT) interface) fell 
due to settling (see Sect. 2 for details). The water surface and mudline for these two dates are included
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were measured with shielded sensors. Wind speed and direction were measured with an 
anemometer 3.3  m above the lake surface. A secondary meteorological station located 
1.5 km northeast of the lake was used to fill gaps in the wind data.

3.2 � Temperature chains and moored turbidity sensors

Time-series measurements of temperature were obtained initially at the central platform 
(P1, 10 depths, February 2014 to May 2015) and then at both the northeast platform (P2, 
11 depths) and southwest platform (P3, 10 depths) using self-contained temperature log-
gers (RBR SoloT, 0.002  °C accuracy) on moorings. Each of these temperature chains 
included two pressure loggers to verify the vertical stability of the mooring. In May of 
2015 two self-contained turbidity loggers (RBRDuo with Seapoint turbidity sensor) were 
added to the temperature chain at the southwest platform, P3, at depths of 2.5 m and 7.5 m. 
The temperature and pressure loggers sampled every 10 s, and the turbidity loggers sam-
pled every 30 s. During May, June and July of 2015 an RBRConcerto was used at P3 in 
place of RBRSoloTs. This instrument had an accuracy of approximately 0.25 °C.

3.3 � Profiling data (turbidity and temperature) and bottle samples

In the first year of the study, monthly from May to October 2013 and in February 2014, tur-
bidity and total suspended solids (TSS) data were obtained from bottle samples collected 
throughout the water depth at various locations. The samples were analyzed in the labora-
tory with a calibrated bench top turbidity meter. Coincident water temperature data were 
collected in the field with a YSI Castaway (accuracy 0.01 °C). We will focus on the turbid-
ity measurements in the present paper, because of its relative simplicity (including frequent 
sensor calibration checks) compared to the sampling and laboratory work associated with 
determining TSS, and because it is a more direct measure of water clarity (and light pen-
etration). Preliminary analyses (not shown) indicate the turbidity in NTU is approximately 
twice the TSS in mg/L.

Monthly from May to October 2014, 2015 and 2016, and in March 2015, turbidity and 
temperature profiles were obtained with a Seabird 19plus (accuracy 0.0005 °C) equipped 
with a Seapoint turbidity sensor at multiple locations.

4 � Results

Base Mine Lake exhibits dimictic behaviour, mixing throughout the water column in 
May (immediately following ice off), and in September and October, following the 
breakdown of summer thermal stratification and before ice-on (Fig.  3a). Over the 
40 month study period, the largest variations of turbidity coincided with the seasonal 
cycle in mixing: increasing during spring turnover, decreasing during summer stratifi-
cation, increasing again during fall turnover, and decreasing again after ice formation 
(Fig. 3b). This cycle in turbidity became clearer as bottle samples in 2013 were aug-
mented with periodic turbidity profiles in 2014, and further augmented with moored 
turbidity loggers in 2015 and 2016. The data from the moored turbidity loggers also 
revealed variations at shorter time scales from the annual cycle, providing evidence 
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of the influence of wind driven motions and thermal convection. In this section we 
focus on 2015, and describe the seasonal and shorter time scale variations in turbidity 
and thermal stratification using both time series (Fig. 3) and selected vertical profiles 
(Fig. 4). We will also briefly discuss interannual variability in turbidity.

The timing of turnover and stratification
The timing of ice cover and lake turnover varies from year to year (see Table 1) and 

we define the “seasons” accordingly. We define the period between ice-on and ice-off 
as winter, between ice-off and the onset of summer stratification as spring, between the 
onset of summer stratification and the onset of fall turnover as summer, and between 
the onset of fall turnover and ice-on as fall.

4.1 � Winter

Our time series data show that prior to ice-on in mid-November the water is homogene-
ous and cooler than the temperature of maximum density (see Fig. 3a). Once the lake is 
fully ice-covered the upper portion of the water column cools approaching 0 °C, while the 
deeper water warms approaching the temperature of maximum density (~ 3.7 °C). The tur-
bidity decreases rapidly at ice-on and then asymptotes to a relatively constant level that is 
maintained until ice-off (Fig. 3b).

Fig. 3   Time series of a temperature and b turbidity in Base Mine Lake from May 2013 to August 2016 
(daily moving average)
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The profiles of temperature and turbidity collected under ice (6 March 2015, day 65, 
Fig. 4) corroborate the time series data. They show that the water temperature increases 
from close to 0  °C immediately under the ice, to the temperature of maximum density 
near the bottom of the water cap (~ 10.5 m). This reverse stratification is similar to condi-
tions under ice in natural lakes and occurs every winter in BML (Fig. 3a). The turbidity 
increased with depth from 200 NTU in the upper 5 m of the water column to 330 NTU 

Fig. 4   Vertical profiles of a turbidity and b temperature collected during 2015 at the northeast platform 
(P2). The depth at which the turbidity exceeds the threshold of the sensor is marked by a circle in the tem-
perature profiles. a The vertical line marks the temperature of maximum density

Table 1   Summary of seasonal 
turbidity (NTU) extremes at 
shallow depths (1–3 m) and the 
timing of ice-on, ice-off, and the 
onset of summer stratification 
and fall turnover. Note that the 
exact timing of these events 
is often uncertain, our best 
estimates are given here

a Italics mark turbidity measured from bottle samples before the con-
tinuous moored turbidity loggers were installed
b Estimate only

Year 2013 2014 2015 2016

Winter min. (NTU) – 160 159 53
Ice-off – May 1 Late April April 27
Spring max. (NTU) 99a 177 221 153
Stratification onset Late Mayb May 30 June 9 June 23
Summer min. (NTU) 5 10 36 16
Fall turnover Early Sept. Sept. 7 August 28 August 27
Fall max. (NTU) 260 138 308 –
Ice-on Nov 10 Nov 11 Nov 20
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at a depth of 9.8 m (Fig. 4b). Below a depth of 9.8 m the turbidity increased dramatically 
indicating the presence of a fluid mud layer. The turbidity exceeded the threshold of the 
sensor (about 800 NTU) at approximately 10 m depth. Note, unlike summer, the turbidity 
in winter displays persistent horizontal gradients between the south and north end of the 
lake (not shown).

4.2 � Spring and summer

The first profiles collected after ice-off (4 May 2015, day 124) show both a relatively uni-
form turbidity of 200 NTU (Fig. 4b), and a uniform temperature of 6 °C (Fig. 4a) in the top 
8 m. Between 8 and 10 m depth, the turbidity increased to 500 NTU, while the temperature 
decreased to 5 °C. Summer thermal stratification developed soon after these profiles were 
collected.

Like other temperate and northern lakes, BML stratifies every summer (for example, 
from approximately 9 June–28 August 2015, day 160–240, Fig. 3a). When the moored tur-
bidity sensors were first deployed (11 May 2015, day 131) the temperature and turbidity 
were essentially the same at 2.5 m and 7.5 m (Fig. 3b). As stratification developed in both 
2015 and 2016 the turbidity remained elevated at a depth of 2.5 m depth and increased at 
7.5  m depth. Once the thermal stratification was well established the turbidity began to 
decline first at a depth of 2.5 m and then at a depth of 7.5 m (between 9 June and 19 July 
2015, day 160–200, Fig. 3b). This decline in turbidity continued until the breakdown of 
thermal stratification, and occurred in all 4 years of data collection.

The vertical profiles in Fig. 4 are consistent with the time series data. Between 4 May 
and 8 June 2015 (day 124–159) the lake became temperature stratified, while the turbid-
ity decreased slightly in the epilimnion and increased below the epilimnion. Between 8 
June and 20 July 2015 (day 159–201) the epilimnion warmed approximately 3 °C and the 
hypolimnion warmed by approximately 4 °C, while the thermocline shifted downward by 
approximately one meter. During this period the turbidity declined particularly in the upper 
layer. Between 20 July and 18 August 2015 (day 201–230) the lower layer warmed by 
1–2 °C, while the turbidity continued to decline at all depths. The overall decline in turbid-
ity is primarily due to particle setting and will be discussed in Sect. 4.2.1.

It should be noted that throughout summer, density stratification supports wind driven 
internal seiching resulting in high frequency variations in temperature and turbidity 
(Fig. 3), which will be described in greater detail in Sect. 4.2.2.

4.2.1 � Particle settling from the epilimnion

During summer stratification, the turbidity at 2.5 m decreases exponentially; see Fig. 5. 
For example: between 7 July and 3 August 2015 (day 188–215) the turbidity decreases 
with an e-folding time of 26 days (4.1% decrease per day). For 2016, the corresponding 
e-folding time is 24 days (3.8% decrease per day).

Here we apply the approach of Smith [20] and Reynolds [17] to explain the observed 
exponential decrease in turbidity and provide an estimate of the effective particle set-
tling velocity. We make the following assumptions:

1.	 Under still water conditions, small (< 100 microns) spherical particles fall through the 
water column at the Stokes settling velocity:
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where g� = g
(

�p − �w

)

∕�w , and �p and �w are the densities of the particles and water, 
respectively; D the diameter of the particles; and � the kinematic viscosity of water. We 
assume the density of the particles is 2650 kg m−3.

2.	 The epilimnion is subject to daily vertical mixing so that the particle concentration, 
like turbidity, is considered uniform. The total mass of particles in the epilimnion is 
�pC∀ , where C is the concentration of particles in the epilimnion and ∀ is the volume 
of the epilimnion. Smith [20] shows that, if the period between mixing events is small 
compared to the e-folding time (the time required for the concentration to decrease by 
1/e), then this assumption is valid. This assumption is satisfied since epilimnetic mixing 
in BML, due to either wind or thermal convection, generally occurs on a daily basis, 
while the e-folding time in BML is almost a month.

3.	 Particles are falling from the epilimnion into the hypolimnion with velocity, VS , and 
once they enter the hypolimnion they remain there. Thus the flux of particles leaving the 
epilimnion is �pCVSA , where C is the mass concentration of particles in the epilimnion, 
and A is the surface area of the interface between the epilimnion and hypolimnion.

4.	 The average depth of the epilimnion, h = ∀∕A , remains constant. Note that towards the 
end of summer this assumption is violated, because the epilimnion deepens rapidly.

5.	 The fresh water inflow during summer does not affect the turbidity of the epilimnion. 
The maximum fresh water inflow is 1.8 × 106 m3/month (see [5], Fig. 3), which for a 
5 m deep epilimnion corresponds to a maximum turbidity decrease of 0.03%/day, much 
less than the observed decrease.

(1)VS =
g�D2

18�

Fig. 5   Summer turbidity (hourly average) in 2015 and 2016. The thick black and magenta lines represent 
log linear least square fits for the associated range of time. The e-folding times are 26 days in 2015 and 
24 days in 2016
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Equating the rate of change of particle mass in the epilimnion with the flux of particles 
settling into the hypolimnion gives:

and after integration:

where the e-folding time scale:

The e-folding time scale equals the time it would take for a particle to settle through the 
epilimnion. Typically the epilimnion in Base Mine Lake has a depth of about 5 m so that 
in both 2015 and 2016, VS ≈ 0.2 m/day. Rearranging the above equations gives an effective 
settling diameter of:

setting v = 10−6 m2 s−1, h = 5 m, g
�

= 16.2 m s−2 and � = 2.16 × 106 s (25 days) , yields 
D = 1.6 × 10−6m . This value is an estimate of the effective diameter of spherical parti-
cles that would result in an e-folding time of 25 days. In reality the particles are not of 
uniform size, nor are they spherical; nevertheless, the calculated value is consistent with 
median particle size of samples taken from Base Mine Lake FFT (G. Halferdahl, personal 
communication).

4.2.2 � Wind‑driven turbidity variations

Every summer, wind events drive tilting, upwelling and oscillations of the thermocline in 
lakes, including Base Mine Lake. Here we examine one of these events from the summer 
of 2015 and the connection between motion of the thermocline and variations in turbidity.

We focus on the variations that were excited by a strong wind (> 6 m/s and sustained 
for more than 6 h) from the north on 17 July 2015 (day 198), see Fig.  6. This north-
erly wind event had the expected impact on water temperature at the northeast (P2) and 
southwest (P3) platforms. At the peak of the northerly winds the thermocline upwelled 
at the northeast platform (decreasing temperature at shallow depths in Fig.  6c), and 
downwelled at the southwest platform (increasing temperature at depth in Fig. 6d). As 
the wind subsided during the night of 17 July 2015 (day 198), and then reversed to 
blowing from the south during the early morning of 18 July 2015 (day 199), the shallow 
water temperature rose at the northeast platform (P2, Fig. 6c), and the deeper water tem-
perature fell at the southwest platform (P3, Fig. 6d).

The turbidity measured at a depth of 7.5 m at the southwest platform shows a large 
drop during the wind event (Fig.  6e). To understand why this occurs, recall that the 
7.5 m sensor is located in a turbidity gradient that can be seen in the profile of 20 July 
2015 (Fig. 4b). During the wind event, warm clear surface water displaces colder turbid 
water at 7.5 m at the downwind location of platform P3. Because of the strong vertical 

(2)
d(�pCAh)

dt
= −�pCVSA

(3)C(t) = Co(t) exp
{

−
t

�

}

(4)� =
h

VS

(5)D =

√

18�h

g��
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Fig. 6   a Wind speed (hourly), b wind direction (hourly), c, d water temperature (10 s) at the northeast and 
southwest platforms respectively, and e turbidity (30  s) at the southwest platform. The downward arrow 
marks the time of the July 20 profiles in Fig. 4
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gradient in turbidity, vertical motions of the thermocline result in large rapid changes in 
turbidity.

This pattern repeats itself during every wind event throughout summer stratification 
(see Fig. 3). Note, that throughout the period from day 195–202, including during the 
strongest winds, the turbidity in the upper layer (red line) continues to decline (Fig. 5e). 
This occurs because the thermal stratification isolates the epilimnion from the potential 
source of higher turbidity water in the hypolimnion. The spectrum of the temperature, 
isotherms and turbidity (not shown) for this period match the spectrum of the wind with 
a peak between 0.3 and 0.5 cycles a day (period of 2–3 days). There are no peaks at the 
expected period of standing internal waves (shorter than 12 h) indicating these waves 
are probably damped.

4.2.3 � Transition to fall turnover

In August, the epilimnion cools and deepens to the bottom of the water column (Fig. 3a). 
There follows a transition period of approximately 2  weeks, when, due to variations in 
wind and convective cooling, the water column intermittently re-stratifies. For example, 
in 2015 at the southwest platform, the water column was stratified until 20 Aug (day 232), 
was well mixed on Aug 21 and 22 (days 233 and 234), stratified again until Sep 3 (day 
246), and then well mixed (except for periods less than a day) until after ice-on (Fig. 7a). 
During the period of intermittent mixing the lake may be well mixed at one location and 

Fig. 7   Temperature (a) and turbidity (b) measured at the southwest platform (P3) during fall turnover of 
2015
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stratified at another. Any stratification during this period is weak and consequently inter-
nal wave motions are potentially large resulting in rapid turbidity spikes, see Fig. 7b (days 
230–233 and 238–244).

4.3 � Fall

At the onset of fall turnover (about day 246 in 2015) internal wave activity ceases and the 
turbidity at both 2.5 m and 7.5 m increase almost linearly until ice-on (Fig. 7). Field meas-
urements at an adjacent site show that the increase in turbidity correlates closely with the 
rate at which energy is imparted to the water column [12, 22]. In fall the energy input is a 
combination of wind and convective cooling, which we estimate by applying the similarity 
scaling commonly used in the ocean (e.g. [13], and more recently in lakes (e.g. [21]:

where ϵz is the rate of dissipation of turbulent kinetic energy; u∗ the shear velocity; k = 0.4 , 
the von Karman coefficient;z = 8 m , the mean water depth; and Jb , the surface buoyancy 
flux due to cooling. We use the procedures given in Imboden and Wüest [9] to calculate 
u∗ and Jb . The coefficients 0.56 and 0.77 were determined for a similarly sized lake during 
fall cooling [21]. Note that the buoyancy flux due to surface cooling drops to zero when the 
water temperature approaches the temperature of maximum density (~ 3.7  °C for BML), 
which occurs approximately a week before ice-on. This indicates that while convective 
cooling may be important, it is not the dominant mixing process, at least not in the latter 
part of fall.

Close inspection of Fig.  7b reveals that the increase in turbidity is not monotonic. 
There are several storm events, each lasting several days, when the average daily turbidity 
increases significantly, departing from the general upward trend. During the calm periods 
between these events, the turbidity typically decreases.

We compare the average daily increase in turbidity at 2.5 m depth at P3 during four 
storm events (A, B, C & D in Fig. 8a) between days 252 and 312 (Sept. 9 to Nov. 8) in 
2015, with the input of turbulent kinetic energy into the water column due to wind and 
convective cooling in Fig. 8. At the beginning of fall cooling the contributions of the 
buoyancy flux and wind shear are of the same order of magnitude (Fig. 8a). As the water 
temperature approaches the temperature of maximum density the wind shear dominates 
since the buoyancy flux drops to zero. The total input of turbulent kinetic energy during 
the periods of rapid increase in turbidity is much greater than in the intervals between 
them (Fig. 8b). In general, the higher the energy input, the more rapid the observed rate 
of increase in turbidity. The rate of decrease in turbidity during periods of low energy 
input (periods I and II in Fig.  8a) is comparable with the decrease of turbidity in the 
epilimnion during summer shown in Fig. 5.

The general increase in turbidity, except during calm periods, continues until ice-on, 
at which time the turbidity decreases rapidly and the annual cycle as described above 
begins again.

(6)ϵz =
0.56u3

∗

kz
+ 0.77Jb
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4.4 � Interannual variability

Although all 4 years had the same general seasonal turbidity trends (decreasing and then 
steady in winter, increasing in the spring, decreasing in the summer, and increasing in 
the fall), there are several notable differences between the years in the turbidity levels 
and the timing of various events (Fig. 3 and Table 1).

1.	 First, although there is limited winter turbidity data, it was higher in both 2014 and 2015 
than in 2016.

2.	 The lower winter 2016 turbidity levels continued after ice-off with spring maximums of 
150 and 280 NTU at 2.5 m and 7.5 m, respectively, compared to 2015 spring maximums 
of 221 and 380 NTU at the same depths.

3.	 The minimum turbidity that occurred each summer in the epilimnion (i.e. 2.5 m depth), 
was 5, 10, 36, and 16 NTU in 2013, 2014, 2015 and 2016, respectively.

4.	 In terms of timing of events, 2016 showed the latest onset of summer stratification (June 
23) compared to previous years of late May/early June. Fall turnover dates ranged from 

Fig. 8   a Turbidity (red) and 
energy input from wind plus 
convection (solid blue line) cal-
culated using similarity scaling 
(Eq. 6) and from convection only, 
i.e. 0.77Jb (dashed black line) 
at 2.5 m depth at the southwest 
platform (P3) from Sept. 9 (day 
252) to Nov. 8 (day 312) 2015. 
Events (A–D) are periods during 
which the turbidity is generally 
increasing; periods between 
events are labelled I–II. b Energy 
input from wind and convection. 
Annual servicing of the instru-
ments resulted in a data gap from 
day 272 to day 276
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Aug. 27 to as late as Sept. 7. The timing of ice-on and ice-off was fairly consistent from 
year to year (see Table 1).

5 � Discussion

5.1 � Winter particle settling

Once ice formed on the lake in November 2015 turbidity initially decreased far more rap-
idly than during summer, see Fig. 9b. This decrease may be due to the rapid settling of 
relatively large particles that were remobilised into the water column during fall turnover. 
After the initial rapid decrease in turbidity at ice-on, the decay rate decreased until the sec-
ond half of January 2016, after which time the turbidity remained relatively constant until 
ice-off. It is not clear why the turbidity levels off, or why the minimum turbidity in winter 
is much higher than the minimum turbidity in summer (Table 1).

One hypothesis for elevated winter turbidity may be gas ebullition from the FFT, and 
with bubbles rising through the water column (see [12], Fig.  4). It may be that the gas 
bubbles input enough energy into the water column to maintain a relatively high turbid-
ity, or that they entrain some particles from the FFT (similar to the observations of [10]. 

Fig. 9   a Temperature and b turbidity measured at the southwest platform (P3) under ice. The fitted declines 
in turbidity in the epilimnion during the summers of 2015 and 2016 (see Fig. 5) are included in b. Note that 
the data plotted here is identical to the longer time series plotted in Fig. 3 and described in Sect. 4.1
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Gas generation rates from methanogenesis in FFT depend on a number of factors includ-
ing temperature. It is not known how the annual temperature variations (of up to 4 °C, [4] 
in the upper meter of the FFT, might impact ebullition rates or thermally driven convec-
tion. Another possible reason for elevated turbidity under the ice is salt water exclusion 
as the ice forms. Bluteau et al. [2] show that salt water exclusion can overcome the weak 
density stratification under the ice and facilitate mixing throughout the water column. The 
effects of gas ebullition and salt exclusion are the subject of ongoing field and laboratory 
investigations.

5.2 � Winter turbidity variations

In addition to the decline in turbidity after ice-on, the turbidity exhibits variations at 
shorter time scales (< 10 days) throughout the winter. In Fig. 10 we compare the change 
in turbidity and isotherm depth that occurred over 1.5  days during the winter of 2016, 
with the change in turbidity and isotherm depth that occurred during the seiche event from 
the summer of 2015. Similar to the short time scale variations that occurred in the sum-
mer (Fig. 10a, c), the variations in turbidity were correlated with temperature (Fig. 10b, 
d). However, unlike in summer, variations in winter were not due to basin scale internal 
seiches, namely, in winter, the temperature at P2 (not shown) was not out of phase with the 
temperature at P3 (Fig. 3b).

Fig. 10   a Isotherms (14 °C, 16 °C, 18 °C) at the southwest platform (P3) during a summer seiche in 2015. 
b Isotherms (1 °C, 1.5 °C, 2 °C, 2.5 °C, 3 °C) at P3 during winter cooling in 2016. The horizontal black 
line in panels a, b indicates the depth of the turbidity sensor. c, d Turbidity at 7.5 m at P3. For clarity the 
plotted temperature and turbidity are sub-sampled at 5 min intervals
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Similarly, the largest variations in turbidity under the ice are not explained by down-
welling of cooler, clearer water from above or by upwelling of warmer, more turbid water 
from depth. Note that downwelling appears as falling isotherms whether temperature is 
decreasing with depth (summer, Fig. 10a) or increasing with depth (winter, Fig. 10b). For 
example, on days 57 and 58, during the increase in turbidity which suggested upwelling 
(Fig.  10d), the temperature isotherms were falling suggesting downwelling (Fig.  10b). 
These changes suggest instead, that water masses move horizontally rather than vertically 
past the turbidity sensor, consistent with gradients in turbidity and temperature observed 
across the basin in the winter. The connection between atmospheric forcing and changes in 
water temperature and turbidity under the ice is the subject of ongoing study at Base Mine 
Lake.

5.3 � Spring turbidity

While both wind shear and convective cooling contribute to mixing throughout most of 
the fall, for most of the spring, surface heating stabilises the water column and inhibits 
mixing. In addition, in the spring the water column may be stabilised by fresh water ice 
melt. As a consequence, while in the fall the water column is almost always well mixed; in 
spring the water column is only intermittently well mixed (Fig. 3a). In some circumstances 
spring turnover can be suppressed altogether [16]. Consequently, the increase in turbid-
ity in spring is far more variable than in fall, and the formulation presented in Eq. 6 is not 
applicable.

6 � Conclusions

We investigated primary processes that cause seasonal variability in mineral turbidity in 
Base Mine Lake. The annual turbidity cycle is summarized as follows: during summer 
there is an exponential decrease in turbidity due to relatively steady settling of particu-
late matter from the epilimnion, through the thermocline to the base of the water column. 
Rapid changes (shorter than 1 day) in turbidity during summer are due to wind-driven 
internal seiches. Convective cooling and wind during fall storm events increase the turbid-
ity to an annual maximum just before ice-on. Ice-on suppresses wind forcing, resulting in a 
rapid decrease in turbidity. By mid-January the turbidity falls to a relatively constant value 
that is higher than the summer minimum. The reason(s) for this relatively high minimum 
turbidity in winter is, as yet, unexplained; however, we note that it may be sustained con-
vection driven by salt exclusion as ice thickens, heating from warm underlying FFT, or by 
ebullition from the FFT. Following ice-melt, wind increases turbidity until summer stratifi-
cation begins and turbidity declines.
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