Educ Stud Math (2009) 72:17-37
DOI 10.1007/510649-008-9180-y

Encrypted objects and decryption processes:
problem-solving with functions in a learning environment
based on cryptography

Tobin White

Published online: 22 January 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This paper introduces an applied problem-solving task, set in the context of
cryptography and embedded in a network of computer-based tools. This designed learning
environment engaged students in a series of collaborative problem-solving activities
intended to introduce the topic of functions through a set of linked representations. In a
classroom-based study, students were asked to imagine themselves as cryptanalysts, and to
collaborate with the other members of their small group on a series of increasingly difficult
problem-solving tasks over several sessions. These tasks involved decrypting text messages
that had been encrypted using polynomial functions as substitution ciphers. Drawing on the
distinction between viewing functions as processes and as objects, the paper presents a
detailed analysis of two groups’ developing fluency with regard to these tasks, and of the
aspects of the function concept underlying their problem-solving approaches. Results of this
study indicated that different levels of expertise with regard to the task environment
reflected and required different aspects of functions, and thus represented distinct
opportunities to engage those different aspects of the function concept.

Keywords Functions - Multiple representations - Problem solving - Technology - Context

1 Introduction

Applied and ‘real-world’ problem-solving contexts can provide opportunities for
meaningful engagement of rich mathematical ideas (Boaler, 1993). Similarly, technology-
rich learning environments can present students with dynamic representations of real-world
phenomena and authentic settings for applied tasks, as well as powerful problem-solving
tools (Kieran & Yerushalmy, 2004; Roschelle, Pea, Hoadley, Gordin, & Means, 2000).
While the promise of these tasks and technologies for supporting student learning is
considerable, the very open-endedness of the problem-solving process and the richness of

T. White (<)

School of Education, University of California, Davis, 2043 Academic Surge Building,
One Shields Avenue, Davis, CA 95616, USA

e-mail: twhite@ucdavis.edu

@ Springer

18 T. White

the relevant mathematics can make the particular concepts students might engage, and the
nature of that engagement, difficult to specify.

This paper seeks to detail the specific links between a curricular concept and a set of
problem-solving processes as those links emerge from learners’ repeated engagement with a
particular task. I introduce a set of applied problem-solving tasks, situated in the context of
cryptography and embedded in a network of computer-based tools, and explore the
strategies students brought to bear in solving those tasks in relation to the relevant
mathematics concept, namely function. Working in collaborative small groups, students
undertook a series of similar but increasingly difficult tasks in this setting over several
sessions. The paper presents a detailed analysis of two groups’ developing fluency with
regard to these tasks, and of the aspects of the function concept underlying their problem-
solving approaches. The resulting account suggests important links between the
mathematical features of the applied context, the technical and representational features
of the problem-solving environment, and the specific conceptual demands of the assigned
task.

2 Reifying functions in multi-representational environments

Understanding of functions is often characterized in terms of the distinction between
processes and objects. Stard (1991), for example, distinguishes between a structural
perspective on functions as objects comprising sets of ordered pairs, and an operational
perspective emphasizing the role of functions as processes for mapping an input value to an
output. While contemporary mathematics texts emphasize the structural account, Sfard
argues that the operational aspects should be considered complementary, and may be more
salient or relevant in certain contexts. Drawing on a number of historical examples to show
that operational conceptions tend to precede structural ones in the development of
mathematical concepts, she argues that new mathematical objects can be seen as resulting
from the reification of processes involving previously known objects.

Extending this epistemology of mathematical objects to the realm of concept formation
in individual learners, Sfard (1992) proposes that students might be expected to encounter
and grasp operational aspects of functions first, and only gradually see those operations
reify into abstract structures, or objects, which might themselves undergo operations.
Indeed, researchers have found structural conceptions to be particularly elusive, among
even advanced high school and college algebra students (Kaput, 1992; Kieran, 1992; Sfard,
1992; O’Callaghan, 1998). While that shortcoming may follow from difficulties inherent in
grasping the structural view, or the necessary ordering of understanding functions as
processes prior to objects, it may also reflect an emphasis on operational aspects of function
in many students’ curricular experience. Moreover, as Confrey and Smith (1994) argue,
these deficit models of learners’ understanding of functions may be “indicative of a narrow
view of the function concept, bounded by its placement in a decontextualized and heavily
abstract view of mathematical systems” (p. 137). These authors show how concepts such as
rate of change, especially when applied across a range of real-world problem contexts and
through multiple representations, can support the emergence of a rich and diverse array of
learner conceptions about function.

Similarly, other investigations of student function understanding in a variety of
computer-based environments featuring multiple linked representations indicate that
appropriately structured learning experiences might support the development of structural
conceptions independently of operational fluency (Schwarz & Dreyfus, 1995; Slavit, 1997).

@ Springer

Encrypted objects 19

Indeed, different representations of function afford different perspectives; while symbolic
representations of functions tend to emphasize process aspects, other representations such
as graphs may make the object-like properties of such functions particularly salient
(Schwartz & Yerushalmy, 1992). In this vein, Moschkovich, Schoenfeld and Arcavi (1993)
make the case that rich problem contexts encourage or require students to alternately
engage both object and process perspectives on functions. Moreover, such tasks should
encourage use of and connections among several function representations, including
symbols, tables and graphs as well as real-world contexts and verbal descriptions. The
authors argue that understanding of functions might be envisioned in terms of a learner’s
ability to flexibly move in a grid spanned along one dimension by the process and object
perspectives, and along another by an array of representational modes.

Thompson (1994), however, cautions against drawing hasty conclusions about the nature
of connections drawn between different forms of representational activity. He argues that
while a knowledgeable adult may perceive a mathematical object such as a function being
represented by, for example, a table or graph, a student considering the same representation
will not necessarily recognize the same object, let alone the continuity of that object across
other representations (Thompson & Sfard, 1994). Instead of cultivating an object
conception of functions by highlighting the invariance of those objects across different
domains, attempts to engage learners with multiple representations of functions may simply
leave them with disconnected conceptions of those various representations. Rather than
focusing on abstract objects, instructional activities involving multiple representations
should emphasize aspects of specific situations that students might perceive across different
representational forms (Thompson, 1994).

In a similar spirit, this paper presents a learning environment designed to ground the
concept of function in the context of an applied problem-solving situation supported by a
set of multiple linked representational tools. In the remainder of this paper, I explore the
ways participating in open-ended problem-solving activities in this setting afforded
opportunity for students to engage functions as both processes and objects. The next
sections introduce the learning environment and describe results from its implementation in
a classroom-based design experiment (Brown, 1992; Collins, 1992). I present an analysis of
the ways different strategies students brought to bear on the tasks variously emphasized
operational and structural features of functions. This study seeks to address two central
research questions:

1. In what ways do students’ strategies for solving problems in an applied context make
use of properties of functions as processes and objects?

2. To what extent are learners’ developing strategies for solving those problems
compatible with a theory of reification?

3 The Code Breaker learning environment

This paper draws on data collected during the first classroom implementation of a curricular
unit situated in a classroom network of wireless handheld computers, and set in the applied
context of cryptography. This designed learning environment engaged students in a series
of collaborative problem-solving activities intended to introduce the topic of functions
across a variety of representations. In particular, this environment was organized around
functions as substitution ciphers—codes based on polynomial functions that map the letters

@ Springer

20 T. White

in the alphabet to numerical ciphertext characters in an encrypted message, and problem-
solving tasks centered on using multiple representations of functions to analyze and break
those codes. Students were asked to imagine themselves as cryptanalysts, and to collaborate
with the other members of their small group to decrypt these coded messages. Substitution
ciphers such as the ones used in this study played a central role in early code-breaking
history—one, for instance, was so extensively and so famously used by Julius Caesar that it
is now commonly referred to as the “Caesar cipher” (Singh, 1999). Though far too easily
broken to be used in contemporary cryptography, substitution ciphers provided a rich
context for developing an introductory unit on functions and motivating students’
engagement with problem-solving tasks.

To generate these codes, each letter in a plaintext message was assigned to its ordinal
alphabetic value between 1 and 26, and then mapped through a polynomial ‘encoding
function’ to produce its corresponding output value in a numerical ciphertext alphabet.
Groups were presented with ciphertext messages that had been encrypted in this way, and
charged with determining the encoding function in order to decipher the message. In
addition to the polynomial mapping, some codes also featured an “offset.” Offsets shifted
the relationship between the letters of the alphabet and their ordinal values, so that while an
offset of zero meant that A was associated with an input value of one, an offset of one
associated A with an input of 2, B with 3, and so on, including associating Z with 1. Codes
featuring offsets were introduced approximately halfway through the 3-week series of
decryption activities, as part of an effort to steadily increase the difficulty of the tasks.

Each student was equipped with a handheld computer running a software application
called Code Breaker, which provided a suite of tools—graphs, function tables, letter and
word frequency charts—for use in the decryption tasks. Groups used these tools to generate
and examine ‘candidate’ functions, and to compare the image of these functions with the
characters in the ciphertext message, in order to match one such candidate to the encoding
function. The classroom network linked the devices of each student in a group so that
changes to the candidate function on one student’s computer automatically propagated to
the devices of the other group members. Consequently, though a single device could
display only one or two of those tools at a time, a group could collectively examine the full
array of representations simultaneously. Four of these representational tools were linked to
the candidate function—an algebraic expression, a graph, and tabular displays of both that
candidate function and its inverse. Three other displays pertained to the cryptographic
context in which these functions were situated, providing information about the unknown
encoding function as well as aspects of the encrypted text message. These seven tools are
described below in accordance with four representational modes: algebraic, graphical,
tabular, and situational. I then outline the ways student groups might employ these tools to
break codes based on polynomial functions.

3.1 Algebraic

One student in a group was assigned responsibility, rotated daily, for viewing and editing a
symbolic expression for the candidate function. Encoding and candidate functions were of
the form y=axb+c, where ¢ could be any integer, a any nonzero integer, and » could equal
to 1, 2, or 3. Candidate parameters were adjusted from their default settings (a=1, b=1, c=
0) by tapping with a stylus on either the top or the bottom half of the number on the
handheld screen, causing the value to increment or decrement by one unit. As the
designated student made these changes to the algebraic candidate, the corresponding
graphical and tabular displays updated accordingly on each group member’s device.

@ Springer

Encrypted objects 21

3.2 Graphical

The Code Breaker graph (Fig. 1) displayed the current state of the candidate function in a
window scaled in accordance with the encoding function. The x-axis of the graphing
window was always fixed to the alphabetic domain, spanning from 0 to 26. The y-axis, on
the other hand, adjusted automatically around the range of values included in the coded text
message. Each of those cipher text values was also represented in the graph by a horizontal
‘trace line’ stretching from the y-axis until it intersected the candidate curve. A
corresponding vertical line, drawn from this intersection to the x-axis, reflected the
mapping of the cipher text value through the inverse of the candidate function. When the
output of this inverse mapping was an integer between one and twenty-six, students could
click on the associated letter and highlight the trace lines and the ordered pair they
connected. By highlighting the ordered pairings associated with a particular candidate
function, these lines were intended to serve as both a code-breaking resource, and as a
scaffold to students’ understanding of the functional relationship between the input and
output values of the code.

3.3 Tabular

The Code Breaker software featured two different tabular function representations. The
function table (Fig. 2a) paired a static X-column, displaying the numbers 1 through 26, with
a dynamic Y-column that updated with each adjustment of the candidate function to show
the new output value to which that polynomial would map each of the X-values. The
inverse function table (Fig. 2b) displayed the inverse mapping of cipher text values through
the candidate function. The Y-column of the inverse function table displayed the range of
values in an encrypted message, as shown in Fig. 2b for an encoding function of y=x>+7.
Each of these cipher text values was then mapped through the inverse of the current
candidate function (y=2x>+6, in the example of Fig. 2b), with the result displayed in the

Fig. 1 The Code Breaker graph

y=2x2 +B Offset =0
B00 + ’)t

/

400 /

o

i«
200 1 P,

100 4 1/

B B ID0 12 I4 I6 IB 20 22 24 26
ACEG I EMODOQS UwY
B ODOFHJLHNZPZRT®WYZ

@ Springer

22 T. White

a b

Function Table: Inverse Function Table:
X Y X Y Letter X Y Letter X Y
1 8 14 398 A 1 8 9.2| 176
2 14 15 456
3 24 16 518 1.6 11 9.9/ 203
4 38 17 584 2.2 16 10.6| 232
5 56 18 654 36 32 127 331
6 78 19 728
7 104 20 806 E 5 56 13.5| 368
8 134 21 888 5.7 71 142 407
9 168 22 974
10 206 o3 1064 6.4 88 16.3| 536
11 248 24 1158 85 151
12 294 25 1256
13 344 26 1358

Fig. 2 a and b. The function and inverse function tables

corresponding cell of the X-column. When this process yielded an integer from 1 to 26, the
corresponding plaintext letter appeared in the “Letter” column.

Partway through the implementation, students and researchers together discovered a
significant bug associated with the inverse function table; concern about both this bug and
the transparency of the representation prompted researchers to replace it with the function
table for the remainder of the study (for a detailed account of this discovery and subsequent
software revision, see White, 2008).

3.4 Situational

One Code Breaker representation displayed the cipher text itself, shown as a series of
numbers comprising the encoded letters of the encrypted message, with spaces between
numbers bounding each letter and brackets around strings of numbers to demarcate words
(Fig. 3a). Two additional tables provided other information about the cipher text message
under scrutiny. The frequency table (Fig. 3b) displayed each distinct character in the cipher

a

Poem 7:
[88] [368 718 151 151] [11 32] [407 32 151 151
88 203 56] [407 71 28 362] [536 88 407 71] [3)
[368 88 56 71] [368 232 176 32 536 71 32 331

¥
b c

Frequency Table: Word Freguency Table:
4 ¥ Count X ¥ Count Wiord Count
232 1 203 3 [368 38 56 71) 1
13 1 151 4 1
16 1 § 56 4 [536 88 407 71] 1
176 1 1 8 4 [3 203 23] 1
3 1 83 3 [3 66 32 368] 2
1 1 71 fi [365 232 176 32 536 71 32 331 32] 1
5§36 2 368 6 [407 71 88 368) 1
a7 3 2 9 [1132] 1
[F1 32 203 16 32 1
[68] 1

Fig. 3 a-—c. Situational Representations

@ Springer

Encrypted objects 23

text paired with a count of the number of times that value appeared in the encrypted
message. Similarly, the word frequency table (Fig. 3¢) displayed the number of occurrences
of each distinct word in the coded text.

3.5 Cryptanalysis and functions in the Code Breaker learning environment

Generally, decryption strategies in this environment could move in either of two directions—
from candidate function to possible cipher text range, or from cipher text values to possible
candidate function. The first path involves using the other representational tools to examine
how a given candidate maps the plaintext alphabet in relation to the set of cipher text values
—how well the graph ‘fits’ the adjusted window by spanning the domain and range specified
by the plain and cipher text sets respectively, or how the function table values compare to
those in the situational displays. The other line of approach begins with the values in the
cipher text, and involves matching one or more of these with a corresponding plaintext letter
to form an ordered pair. For example, a student examining the frequency table shown in
Fig. 3b might note that 32 is the most commonly occurring value in the cipher text, and
conclude that it was mapped from a plaintext “E”. They would then seek out a candidate
function that included the ordered pair (5, 32).

The intent behind the Code Breaker design was for student groups to use a combination
of these approaches—doing so follows from the collaborative context and the networking
of multiple devices, as different students in the group can be simultaneously engaged with
different linked representational tools. Moreover, while these codes could in principle be
broken using only analyses of the situational displays, the other representational tools were
quite useful not only for determining the degree and often also the lead coefficient of the
polynomial encoding function, but also as scaffolds for students who did not yet have the
familiarity with functions or the fluency with algebra to easily or successfully enact such
analyses. Below, I examine the ways students’ decryption strategies in a classroom study
balanced these different approaches, and the extent to which process and object
characteristics of functions were salient in each.

4 Method
4.1 Context

The Code Breaker handheld environment was implemented with two middle school
mathematics classes during a S-week summer school session. During the first 2 weeks of
the summer session, students had lessons on the history and key terminology of
cryptography, the principles of substitution ciphers, the evaluation of simple polynomial
expressions, coordinate graphing, and the mechanics of the handheld computers and the
Code Breaker client software. Students spent the remaining 3 weeks collaborating in small
groups to make and break codes. As they grew familiar with the different representational
artifacts in the Code Breaker software, students in each group were encouraged to work
together to develop their own strategies for using those resources to solve increasingly
challenging decryption problems.

This paper analyzes the problem-solving work of two focus groups, A and B, comprised
of four students each. A total of four groups from the two classes were selected as focus
groups to be videotaped during all small-group activities for the duration of the study.
These four groups were purposively selected according to several criteria, including the

@ Springer

24 T. White

consent of all members to be videotaped and interviewed, and informal observations of
their work during preliminary activities. Groups A and B were selected from among the
four focus groups for more detailed analysis because they again exhibited particularly high
levels of on-task discourse during decoding activities.

4.2 Analytic approach

The primary problem-solving activity in these decryption tasks involved using the Code
Breaker software to identify encoding functions and decrypt messages. This paper analyzes
the strategies enacted by groups in these problem-solving tasks in order to characterize the
ways they engaged the concept of function. The following analysis examines thirty-two
problem-solving episodes undertaken by the two focus groups over the final 3 weeks of the
study. These decryption events, ranging from 2 to 30 min in duration, began when a group
downloaded a new code to break, and concluded when they either solved or stopped
working on the code. Video records of each event were transcribed and reviewed in detail.
When applicable, server logs of student decoding activity, researchers’ notes, and students’
written records were also consulted to supplement the video data.

Each decryption event was examined in detail in order to characterize the strategies
groups employed. All instances in which a group correctly determined a parameter of an
encoding function, including any of the coefficient a, exponent b, and constant ¢ displayed
in the candidate function interface, were categorized in terms of the extent to which they
incorporated specific ordered pairs in an encoding function. For the purposes of this
analysis, a parameter was deemed “correct” if it (a) matched the corresponding value in the
encoding function, (b) produced an equivalent decryption, (c) failed to meet the previous
criteria only because of an error such as the misassignment of a plaintext letter’s ordinal
value, or (d) was determined following the incorrect specification of the other candidate
parameters, and combined with those to generate a function that included the ordered pair
(s) students specified. So, for example, during event A9, students in Group A9 were
credited with determining a constant of 3 after they had incorrectly determined a linear
coefficient of 6 and specified an ordered pair (2, 15). The majority of parameter
determinations made use only of general features of an encoded message, such as the
size and sign of values in the coded text, without considering how the encoding function
would map specific input values to specific outputs. Some strategies, however, involved the
specification of an ordered pair associated with an encoding function. And a small number
of strategies featured the use of multiple ordered pairs in combination. Hereafter, parameter
determinations that did not involve the specification of ordered pairs are referred to as “non-
ordered pair” strategies. This name is not intended to assess whether students using these
approaches recognized an encoding function as a set of ordered pairs, but rather to
distinguish these strategies from those in which students specifically identified and utilized
one or more ordered pairs to identify a candidate parameter.

The first part of the analysis presented below seeks to characterize these various
decryption strategies in detail, and to examine the aspects of the function concept involved
in each approach. Fine-grained analyses of illustrative episodes involving inferences from
no, one, and multiple ordered pairs are presented in three successive sections. Using the
framework outlined by Sfard (1991), I explore the extent to which these decryption
strategies may have reflected or relied on structural and operational aspects of the function
concept. In particular, I interpret those instances when groups adjusted parameters on the
basis of the mapping between sets suggested by a candidate function or drew on
characterizations of functions as sets of ordered pairs in order to assess those candidate

@ Springer

Encrypted objects 25

parameters as utilizing object-like properties of functions. By contrast, I interpret instances
when their approach to determining parameters hinged on the numerical evaluation of a
candidate expression for a given output as emphasizing process characteristics of functions.
These characterizations of groups’ strategies are drawn both from the ways students used
various software tools and other resources, and from students’ descriptions of candidate and
encoding functions as they interpreted each across different representational modes and in
relation to the decryption task. They are not meant to stand as inferences regarding
students’ concept images (Tall & Vinner, 1981) of function, but rather as illustrations of the
ways different aspects of the function concept may be salient in or relevant to learners’
emerging strategies in the context of these novel cryptographic tools and tasks.

The second part of the analysis examines all strategies used by the two groups across all
decryption tasks in order to identify patterns in the development of those strategies over
time and in relation to increasing task difficulty. Each parameter determination was
categorized according to the number of ordered pairs on which it relied, distinguishing
among decryption strategies that incorporated none, one, or more than one of the ordered
pairs associated with the encoding function. Those different strategies are compared with
regard to their relative effectiveness in completely identifying encoding functions, and in
determining individual parameters of those functions.

5 Non-ordered pair strategies

Strategies that did not rely on ordered pairs were more frequent and more varied than those
that did. The three brief episodes presented in this section serve to illustrate that variety, and
to highlight the common ways these different approaches used features of the Code Breaker
representational tools to engage object-like properties of functions.

5.1 Episode 1

Student groups made extensive use of the software’s graphing tool to evaluate candidate
function parameters by assessing the fit of various candidate graphs to window dimensions
determined by the range of values in the cipher text. As the following segment opened the
group’s candidate function was set to y=—x (Fig. 4a), and Tina sought to ascertain whether
a quadratic function might be a better fit:

1. Tina: Now change the x to squared.
2. Monique: The who?
3. Tina: x to squared.
4. Jessica: Exponent to three. [Monique taps the PDA screen with her stylus twice,
increasing the exponent to two and then three.]
5. Tina: Mind you I assume the exponent...which sucks. Ok that’s way too big.
6. Shirley: [leaning in close to examine her PDA screen] Whoa.
7. Tina: No, no, no, no. Back, back, back, back back...
8. Monique: Back down?
9. Shirley: What the heck is that?
10. Tina: [As Monique decrements the exponent] Back, back, back, back, back to one,

back to one, back to one.
11. Tina: See this obviously, it’s obviously not times negative one. So try negative two.
[Monique adjusts the lead coefficient to —2.] [Event B11]

@ Springer

26 T. White

Fursction: a Funection b Furctan C | |Fumeticn d
y=-1 x1+0 Offset =0 y=-1 x2 +0 Offset =0 y=-1 x3+0 Offset =0 y=-2 x!+0 Offset =0
. . . .
- N I\ NG
~— \ N
. x“*-ﬁ‘ " mi! - .
=T~ A 1 ™~
- . 4 - - M
\ | | Y
- - 1 -- - o
| : H | o,
T TR A A AR AR CRCRCE TRC N MO B B R RN A NI NG TTAd i R Aa AR E AR
A GlrEMoosu £ a'FHUGSUU\‘ ACGEG | KMOGS UWY ACEC I KMODOS UWY
BDFHJLNPRTWVEZ BODFHJLNPRTVYZ ﬁubFﬁJll\IFR'b’tZ 8B DFHJLNPRTVYZ

Fig. 4 a—d. Sequence of graphical displays from Event B11

As Monique adjusted the candidate function (Fig. 4b), Tina announced that the exponent
was “way too big” (line 5). Following up on Jessica’s instruction (line 4), Monique
continued increasing the exponent to three (Fig. 4c). Acting on Tina’s urgings to change the
exponent “back to one,” (line 10) Monique edited the candidate to again show the graph of
Fig. 4a. Tina then proposed that they “try negative two” for the coefficient (line 11),
yielding the graph shown in Fig. 4d.

These examinations of the graph hinged on comparing the range of the numerical values in the
message with those produced by the candidate function. The graphical display allowed students
to evaluate candidate parameters by making these comparisons visually, so that Shirley reacted
with considerable surprise (lines 6 and 9) to the curves displayed in Figs. 4b and c, respectively,
and Tina appealed to the obviousness (line 11) of the misalignment shown in Fig. 4a. They
drew these inferences without recourse to specific ordered pairings, instead relying on the
general trends in the graph that corresponded to each change to the candidate function.

5.2 Episode 2

In fact, the two focus groups almost never discussed specific ordered pairs in the context of
the graph despite the fact that the representation included a feature, the ‘trace lines’,
intended to highlight the ordered pairings associated with a particular candidate function.
Instead, groups tended to use these lines to draw inferences of the kind illustrated in the
following excerpt. As Vince adjusted the candidate parameters, Jason observed the graph,
and CJ made a comment to clarify that observation:

Vince: How’s that?

Jason: Terrible.

Jason: There has to be one for each num... for each letter.
ClJ: For each letter in the code. [Event Al1]

Figure 5 shows the graphing window Group A was looking at in this segment. Jason
asserted that there should be “one” input, represented by a vertical trace line, to
complement “each letter” displayed as a horizontal line. This candidate graph was
“terrible” because there were clearly not enough vertical lines to complement all the
horizontal lines shown. CJ followed up by reiterating Jason’s reference to cipher rather than
plaintext characters—the letters “in the code”—and clarifying that there needn’t necessarily
be twenty-six different vertical trace lines—only enough to match the eleven distinct letters
in the encrypted message. Together, the two students recognized the need for one vertical
trace line, and so one input value, for each letter-output in the coded message. In effect,

@ Springer

Encrypted objects 27

Fig. 5 ‘Trace lines’ 130 -

10 //

BD - _.,.-".Ff

-

4o - o~
il rr-rrrrorrr .":-}. T T T TTTT
2 4 B B 10 12 4 I6 I8 20 22 24 @26
ACEG I EKEMORRQ®S UWY
B ODFHJLMNPRT®WXZI

they relied on the one-to-one correspondence between the input and output values of an
encoding function as a resource for evaluating the candidate Vince had entered.

These groups’ uses of the candidate graph, both as smooth curve in Episode 1 and as set of
intersection points between horizontal and vertical trace lines in Episode 2, reflect similar
inferences regarding the fit of that object to the encoding mapping represented by the viewing
window dimensions. As one student in each group adjusted a candidate parameter, others
compared among members of the parameterized class of candidate functions displayed in the
graph. In the context of these linked symbolic and graphical representations, seeking a match
between a candidate and an encoding function became a process of exploring and evaluating
graphical behavior in relation to parametric variation. In other words, the salient relationship,
and the one around which the groups oriented their decryption efforts, was that between the
candidate parameters and the curve or points as an object to be manipulated by adjustments to
those parameters in order to match known features of the encoding function.

5.3 Episode 3

Group A developed another strategy suggestive of an object perspective on functions by
capitalizing on the programming error in the inverse function table. For certain linear
candidate functions, this bug caused the same letter to appear next to each of two or more
coded text values in the inverse function table (Fig. 6). This error went undiscovered by the
researchers or the teacher until Group A began employing it as a decoding resource. The
following excerpt finds CJ providing a steady series of reports from the inverse function
table as Jason adjusted the parameters of the candidate function:

CJ: We have two D’s, two G’s, and two I’s, at the moment. Two B’s, two E’s, two F’s,
and two J’s. Ok, two H’s. Three F’s. You’re getting closer.

Teacher: (passing by the group’s table) How do you know you’re getting closer?

ClJ: I can tell that when two line up and I'll have A, A, B, B, C,C,D, D, E, E, F, F, G,
G, H, H, that’s bad. We have A, well, A is alone, and H and I and K and certain letters
are alone, which is good. We don’t want to have repeats. [Event A4]

@ Springer

28 T. White

Fig. 6 The inverse function table Letter X Y Letter X Y

with bug
B 2.1 12 E 5.1 67
B 2.1 17 E 5.1 72
(o} 3 22 F 6.1 82
(¢} 3.1 32 F 6.1 87
D 41 42 G 71 102
D 4.1 47 H 8 107
D 4.1 52 H 8.1 112

Identifying as problematic those candidate functions that produced “repeats” in the
inverse function table, the boys instead wanted the table to show each letter only once, and
attempted to edit the candidate function accordingly. Just as the previous episode found the
group seeking a distinct letter input value for each code output, here they similarly
recognized and made use of the fact that each of these letters, as input values of the
encoding function, should have a unique output. Vince’s subsequent explanation of the
phenomenon to another classmate elaborates this insight:

So, we just, if there’s like one A, one B, one C, that’s good. If there’s like two A’s,
that’s bad. Cause there’s only one code for an A.

Recognizing that each plaintext letter should map to a single encoded output because
“there’s only one code for an A,” the group attempted to vary candidate parameters in ways
that would eliminate these repeated letters. They thus sought functions that established a
unique correspondence between sets of plaintext inputs and ciphertext outputs, and rejected
candidates that failed to maintain this uniqueness. In doing so, they creatively utilized
object-like properties of these correspondences as problem-solving resources.

5.4 Summary: functions as objects

In each of these episodes, groups made changes to candidate function parameters in order to
bring the set of candidate output values into alignment with the encoding function outputs.
In doing so, they relied on features of the candidate and encoding functions as objects rather
than processes. Each of their inferences about those functions emphasized sets of ordered
pairs or transformations on a set of values, rather than operations for mapping one element
of an ordered pair to the other or for generating the values in the set. The salience of
functions-as-objects in these decryption approaches likely reflects particular features of the
dynamic links between the symbolic candidate expression and other Code Breaker
representations. The central action in this environment was that of incremental parameter
variation in the algebraic representation, so the corresponding object manipulations, and the
objects under those manipulations, in the other representational modes were particularly
salient. In effect, these graphical and tabular objects emerged from the dynamic behaviors
in these representational modes in concert with actions in the symbolic domain—a
complete set of output values in a table or ordered pairs in a graph were simultaneously
transformed with each parameter adjustment.

This notion of functions-as-objects constituted by parametric variation echoes the
account by Kaput (1992) of students in another computer-based activity similarly organized
around determining the rule for an unknown function. Students who were successful in that
environment were generally those who had come to see functions in terms of varying

@ Springer

Encrypted objects 29

parameters, rather than as defined by fixed values of those parameters. In the present case,
however, my aim is not to illustrate whether students came to understand the algebraic
expression as spanning a family of functions, but rather how they came to make use of
parametric variation in order to compare among candidate members of that family. Here,
such variation was not only a conceptual possibility potentially achieved by some students
but also a software feature utilized by all students. In other words, these students used the
manipulation of parameters in the symbolic mode as a resource for dynamically comparing
and assessing candidate ordered-pair mappings illustrated in the graphical and tabular
displays.

6 Inferences from an ordered pair

Prior to the following excerpt, the group had determined by analyzing the ciphertext that
the character 40 in that text represented the letter I. In the segment below, they seek a
function that would map 9, the ordinal value of I, to 40:

Tina: I is nine. And obviously... 9 times 5 would be 45. 45 minus 5...

Shirley: We’re close.

Monique: We’ve got a long time.

Tina: Minus 5 would be it.

Tina: But...negative 8 might be A. So 5 minus 5 is 0, that will not work. [Adjusts

coefficient to 6].

Tina: 9 times 6 is 54. 54 minus 9... [Begins reducing constant]

7. Jessica: I saw a negative 2 in there. [Tina adjusts the constant to 9 and waits for the
result]

8. Tina: Hmm...didn’t get it right...be 14. [Event B7]

Nk L=

a

Substituting the input value of 9 into the current candidate function, y=>5x, to produce an
output of 45 (line 1), Tina determined they would need a constant of “minus 5” (line 4) to
produce the desired value of 40. When the candidate y=5x—5 did not decrypt the message,
she considered the alternative ordered pair, (1, —8). Computing that the candidate would
map 1 to O rather than —8, she rejected the candidate and tried a new coefficient (line 5).
Pairing this coefficient of 6 with an incorrect constant value of negative 9, she spoke aloud
the series of operations on the input value 9 performed by the new candidate function y=6x
—9 as she entered the new parameters (line 6). After pausing while the device updated, Tina
acknowledged that she “didn’t get it right”, and revised the constant to its correct value of
—14 (line 8). In the moments that followed, she edited the candidate function accordingly,
and saw the message decrypt.

This attempt to determine parameters based on the specification of an ordered pair
hinged on inputting a value into various candidate functions to see which one generated the
expected output—in other words, it treated the candidate function as a process for mapping
one element of that pair to the other. Tina led Group B to the determination of a constant
value by computing the product of a candidate coefficient and an ordered pair input of 9,
and then calculating the difference between that product and the output value 45. Whereas
the non-ordered-pair inferences illustrated in Episodes 1 through 3 emphasized and utilized
object-like properties of the encoding and candidate functions to evaluate candidate
exponents and coefficients, these efforts to determine constant values and to revise
candidate coefficients based on ordered pairs relied much more heavily on operational
aspects of those functions. Though the approach in this episode also relies on variation of

@ Springer

30 T. White

parameters, as all uses of the Code Breaker interface must, here that variation serves as a
resource for evaluating whether the candidate achieves the desired match between a single
input and output, rather than a set of such pairs. In other words, the salient characteristic of
the desired candidate function in this approach is as a process for computing 40 from
operations on 9.

7 Inferences from multiple ordered pairs

The excerpt below joins Group B after they had already matched the ciphertext values
8 and 88 with the plaintext letters A and I, respectively. In the time since, Tina had worked
alone, with paper and pencil, while the other students in the group continued examining the
code with their handhelds. The segment opens with Tina explaining her efforts to the rest of
the group:

1. Tina: I'm trying to find all possible...I’'m writing down all possible functions for A to
equal 8. But...

2. Monique: Wow.

3. Tina: I has to equal 88 at the same time. So I'm crossing out all of these functions that
I’ve thought of so far. [Monique, Jessica, and Shirley discuss this as Tina continues to
work for about 20 more seconds]

4. Tina: This would work. This would work. Try y equals 10x minus 2. [Event B8]

As her account suggests, Tina had been writing down a list of linear candidate functions and
checking to see which would include both the ordered pairs (1, 8) and (9, 88) in a methodical
attempt to solve the system of equations 8=a(1) + b and 88=a(9) + b. First fixing a value for a,
she would generate a list of equations with that coefficient and varying values for b (y=ax+1,
y=ax+2, and so on) and then systematically eliminate all those functions that failed to generate
both ordered pairs. Eventually, she found a function, y=10x—2, that solved the system of linear
equations she had established, successfully mapping 1 to 8 and 9 to 88.

Tina’s strategy relied on the fact that the correct encoding function would necessarily be
simultaneously satisfied by these two distinct ordered pairs, which together uniquely
specified the linear function she sought. The approach relied on both operational and
structural aspects of the encoding function. Much as in the previous episode, she treated the
encoding function as a process for mapping a known input to a known output, in this case
both A to 8 and I to 88, and methodically organized and enacted a series of candidate
processes for generating each of these mappings. But she also relied on her understanding
of the encoding function as an object characterized by the completion of these two
mappings “at the same time” (line 3)—as a set of such ordered pairs rather than merely a
procedure for generating one such pairing at a time. Correctly identifying this object
involved examining an array of candidate functions and rejecting all that lacked this
property. Consequently, her approach integrated both the attention to processes for input to
output values typical of ordered pair strategies, and the emphasis on systematic parametric
variation to achieve a desired set-mapping characteristic of non-ordered pair strategies.

8 Decoding strategies

The functions used to encode these messages generally grew more complex as each group
progressed through the tasks, featuring gradual increases from first to third degree

@ Springer

Encrypted objects 31

polynomial functions, and the eventual introduction of codes with offsets. The general
increases in code complexity were accompanied by changes in the ways the groups went
about trying to solve them, as each group began breaking codes using only inferences from
general characteristics of the encoding function depicted across the Code Breaker
representations, and gradually developed decryption approaches that relied on the
specification of one or more ordered pairs. In particular, of the six codes they successfully
decrypted, Group A specified no ordered pairs in the first three, one ordered pair in each of
the next two, and multiple ordered pairs in the last. Likewise, Group B first solved two
codes without use of an ordered pair, then three codes through the specification of an
ordered pair, then two codes using multiple ordered pairs. A complete list of the decoding
events undertaken by the two groups is presented in Table 1.

One notable trend spanning the decryption activities of both groups is illustrated in
Table 2. Decoding approaches involving ordered pairs were utilized more effectively than
those based on other information derived from the Code Breaker representations. Six of the
11 codes based on linear functions and decrypted by the two groups were solved without
the use of a specific ordered pair. By contrast, the focus groups solved no codes based on
quadratic or cubic functions, and only one featuring an offset, without the specification of at
least one ordered pair. In other words, groups broke both more, and more challenging,
codes when they utilized ordered pairs than when they did not. In total, the two groups
solved 11 of the 13 codes in which they successfully specified one or more ordered pairs,
and only six of the 15 in which they relied only on general characteristics. Indeed, Group
B’s more extensive use of ordered pair strategies may explain their higher overall rate of
success (see Table 1) in solving decryption problems.

While groups often needed to implement ordered-pair strategies in order to fully identify
an encoding function, particularly of degree two or three, they were usually able to
correctly determine at least some of the parameters whether or not they fully solved the
code. Table 3 illustrates the relative importance of these strategy types in the determination
of various encoding function parameters. Exponents were nearly always, and coefficients
usually, identified through general characteristics only, though several coefficients required
the application of one or more ordered pairs. By contrast, a majority of constants were
determined through specification of an ordered pair. Together, Tables 2 and 3 help to
characterize a general pattern in the groups’ code-breaking processes, in which they were
usually able to determine the exponent and coefficient of an encoding function by analyzing
its general characteristics. To identify a constant and thus fully solve the code, however,
often required additional inferences involving specific ordered pairs.

In general, groups solved decryption problems with greater success, and decrypted codes
based on more complex functions, as they learned to specify and draw inferences from
ordered pairs. Strategies based on inferences from general characteristics solved only codes
based on linear encoding functions, and determined most exponents and coefficients but
few constants. By contrast, strategies featuring ordered pairs solved more—and more
complex—codes, and specified most constants and some coefficients.

9 Discussion
The preceding analyses reveal two main results, aligned with the two research questions.
First, different decryption strategies employed by the two groups emphasized different

aspects of function. While structural or object-like properties were particularly salient in
non-ordered pair strategies, inferences from a single ordered pair relied on operational

@ Springer

32

T. White

Table 1 Decryption events

Decrypt. event Solved code Encoding function Determined parameter Ord. pairs
Group A
A2 No -2 Exponent
A4 No Sx+7 Coefficient
A5 Yes 2x Coefficient
A6 Yes —2x Exponent
Coefficient
Constant
A7 Yes 4x+7 Exponent
Coefficient
Constant
A8 Yes —4x+7 Coefficient 1
Constant 1
A9 No Sx, offset Coefficient 1
Constant 1
Al10 No —2x+1, offset Coefficient
Constant
All No Sx+21 Exponent
Coefficient
Al2 No 5x°+6, offset Exponent
Coefficient
Al4 No —ax’+b Exponent
Coefficient
Constant
AlS No —3x°—1, offset Exponent
Coefficient
Al6 Yes 12x3~15, offset Exponent
Coefficient
Constant 1
Al7 Yes 19x*+1, offset Exponent
Coefficient 2
Constant 1
Group B
Bl No 4x—6 Coefficient
B2 Yes —2x Coefficient
B3 Yes 4x+7 Coefficient
Constant
B4 Yes —4x+7 Coefficient 1
Constant 1
B5 Yes 6x—14 Coefficient 1
Constant 1
B6 No —6x+14 Coefficient
B7 Yes 6x—14 Coefficient 1
Constant 1
B8 Yes x*+7 Exponent
Coefficient 2
Constant 2
B9 Yes 2% +7 Exponent 2
Coefficient 2
Constant 2
B10 Yes 2x, offset Constant

@ Springer

Encrypted objects 33

Table 1 (continued)

Decrypt. event Solved code Encoding function Determined parameter Ord. pairs

Offset 1
Bl11 Yes —2x+1, offset Exponent

Coefficient

Constant
B12 Yes —x*—1, offset Exponent

Coefficient

Constant

Offset 1
B13 No 37x°-51, offset Exponent
B15 Yes —20x>+16, offset Exponent

Coefficient

Constant 1

features of functions, and approaches that simultaneously incorporated multiple ordered
pairs integrated elements of functions as both processes and objects. Second, groups were
able to determine encoding function parameters more precisely and break more challenging
codes as they developed decryption strategies that relied on the specification of ordered
pairs. In other words, the groups’ progress toward greater proficiency in the code-breaking
tasks unfolded in concert with their moves from strategies emphasizing functions-as-objects
to those that also drew on process characteristics.

At first pass, this account of increasing problem-solving sophistication in the Code
Breaker environment may appear incompatible with the theory of reification, which holds
that structural features of a mathematical concept follow the operational. The students in
each of these groups developed fluency with non-ordered pair strategies, and made use of
object-like properties of these functions, well before they began to successfully utilize
ordered pairs. My claim, however, is not that groups’ increasing efficacy with regard to the
decryption tasks constitutes a developmental trajectory with regard to the function concept.
Rather, the point is that different levels of expertise with regard to the task environment
reflected and required different aspects of functions, and thus represented distinct
opportunities to engage those different aspects of the function concept.

In simultaneously capitalizing on operational and structural characteristics of functions,
the multiple-ordered-pairs approach is suggestive of a procept account (Gray & Tall, 1994),
in which a symbolic expression integrates both the process it specifies and the object it
generates. Thus, learning to enact successful strategies in this problem-solving environment
might be understood in terms of developing a proceptual view of the candidate function—
as achieving the flexibility to anticipate changes to candidate parameters in terms of either
operations on a specific value or relations between plain and cipher text sets. Indeed, while
the determination of exponents and coefficients tended to both follow from non-ordered

Table 2 Number and type of code solved by number of ordered pairs specified

Ordered pairs Solved codes (linear) Solved codes (quadratic) Solved codes (cubic) Solved codes (offset)

None 6 0 0 1
One 5 1 2 4
Multiple 0 2 1 1

@ Springer

34 T. White

Table 3 Number of parameters determined by number of ordered pairs specified

Ordered pairs Exponents Coefficients Constants
None 14 17 8
One 0 8
Multiple 1 3 2

pair inferences and suggest an object perspective, the specification of a constant was
usually not accomplished without an inference from an ordered pair and a corresponding
shift to a process perspective. Though students were able to break some less-challenging
codes in early episodes without identifying an ordered pair or drawing on a process
perspective, they generally needed to utilize both perspectives and draw on strategies with
and without ordered pairs in order to solve most decryption problems.

Importantly, the extent to which students engaged functions as objects in non-ordered
pair strategies may not plumb the full depth of the structural conception posed in the theory
of reification. The distinct manifestations of objects underlying non-ordered pair and
multiple-ordered pair strategies, respectively, may reflect the differing notions of object that
Tall, Thomas, Davis, Gray & Simpson (2000) argue are embedded within Sfard’s
characterization of structural perspectives on function. While “her description of a function
as a ‘set of ordered pairs’ as structural...agrees with the formal Bourbaki approach,” she
also “considers the visual imagery of a graph of a function to be structural” (p. 234). Tall et
al. assert that the first of Sfard’s uses of the term “structural,” in reference to a set-theoretic
notion of functions, “involves a more sophisticated form of mental construction than the
visual and enactive construction of meaning from mental images” (p. 235).

In the same way, many of the manifestations of function as object in non-ordered pair
decryption strategies probably reflected only this weaker sense of “visual and enactive”
meaning as they emerged from dynamic graphical images and tabular objects in the Code
Breaker representations. In that sense, while these students may have engaged objects
before processes in developing decryption strategies, they did not necessarily do so in ways
that reflected the more sophisticated structural perspective consistent with a formal
definition of function. In particular, many of the inferences regarding candidate coefficients
and exponents that these students routinely drew from observations of the graphical view,
such as the example presented in Episode 1, may have relied on object-like properties of
candidate functions only in this visual sense. On the other hand, Tina’s insistence that “A
has to equal 8” and “I has to equal 88 at the same time” comes much closer to the formal
sense of a structural perspective on function. Her approach relied on the recognition that
multiple ordered pairs simultaneously define this polynomial function—that such a function
was the union of such ordered pairs. A multiple-ordered-pairs strategy, then, may entail the
more robust of the two notions of function-as-object highlighted by Tall et al.

However, some non-ordered-pair strategies, such as Jason and CJ’s joint observation,
while viewing the graph, that there must be one plaintext input for each ciphertext output,
or Vince’s explanation regarding the inverse function table that “there’s only one code for
an A”—only one output for each input—also correspond to a structural definition of
functions, as pairing a set of input values with a unique set of output values. In other words,
though the enactment of a strategy involving the simultaneous use of multiple ordered pairs
may have necessarily invoked structural features of function, such features were also at
least sometimes utilized even when students did not specify ordered pairs at all. More
pointedly, the common emphasis on object properties of functions across the quite different

@ Springer

Encrypted objects 35

decryption strategies of these last two non-ordered-pair examples may highlight the
importance of the role played in each by the cryptographic context. Indeed, the relation
between codes and polynomial functions in this learning environment may, for example, be
compatible with that between embodied objects and symbolic procepts described by Gray
and Tall (2001). In other words, the notion of function-as-code may have supported
students’ successful efforts to make mathematical meaning of the problem situation even in
the absence of more sophisticated strategies for specifying candidate function parameters
using one or more ordered pairs.

More generally, the flexibility groups demonstrated in shifting between strategies
oriented toward processes and objects may reflect the degree to which each relied on
features of the cryptographic situation. Because the activities asked students to
conceptualize the familiar plaintext alphabet in relation to a given set of ciphertext values,
function as mapping between sets was arguably more salient than in applied settings used to
introduce the function concept through an emphasis on the co-variation of real-world
quantities (e.g., Confrey & Smith, 1994). At the same time, features of the cryptographic
context such as the frequency of a character or the length of a word in the ciphertext also
lent particular meaning to ordered pair relationships, and supported decryption approaches
which emphasized the candidate function as a process for mapping between two values.
And finally, the simultaneous specification of multiple ordered pairs, much like the insights
afforded by the global examination of sets of ordered pairs through graphical and tabular
representations, emphasized the changing relationship between domain and range sets
associated with varying candidate function parameters.

The central role of a single applied context in the Code Breaker environment may also
mark a departure from other software oriented toward functions. In a recent review of
technology-based learning environments for algebra, Kieran & Yerushalmy (2004)
emphasize the ways that computer-based tools centered on functions and multiple
representations can provide resources for modeling a wide range of real-world phenomena,
and for expanding the array of problem types and problem-solving approaches typically
available in algebra instruction. The environment presented in this paper follows this
approach in the reverse direction: rather than emphasizing functions as tools for modeling
phenomena, Code Breaker uses a particular phenomenon as a resource for conceptualizing
functions, and as a context within which to equip students with multiple representational
tools. To be sure, the analogy to codes does not begin to span the full scope or complexity
of the function concept. But the apparent importance of that analogy in some students’
problem-solving strategies may speak to both the particular usefulness of cryptography as a
setting for introducing functions, and to the general potential of deeply embedding both
multi-representational tools and complex concepts like function in applied contexts that
teachers can mine across many problem-solving tasks and strategies and over the course of
a full instructional unit.

Together, the mathematical features and the situational context of the task appear to have
alternately called for perspectives on functions as both objects and as processes. While
representations in the Code Breaker software afforded resources for viewing candidate and
encoding functions as objects, and making considerable progress in solving decryption
problems, groups became more effective and efficient in solving those problems only as
they began to develop strategies for building on those object insights by identifying and
drawing inferences from specific ordered pairs, and thus treating functions as processes.
And, in a small number of instances such as Tina’s simultaneous use of multiple ordered
pairs, a few students developed highly effective strategies by integrating aspects of
functions as both object and process. In that way, these groups’ developing expertise in this

@ Springer

36 T. White

cryptographic task environment can be characterized in terms of the broadening and
deepening extent to which problem-solving strategies engaged the concept of function.

10 Conclusion

This paper elaborates the opportunities for engaging particular conceptions of mathematics
topics associated with successfully solving applied problems in a novel computer-based
learning environment. This approach illustrates the importance of carefully examining
problem-solving processes, rather than simply problem content or task structure, in such
environments in order to specify conceptual demands. Moreover, the account presented
here suggests that learning to solve problems in an applied and multi-representational
context such as the Code Breaker environment can invite students to alternately, and even
simultaneously, view functions as processes and objects.

Importantly, and in keeping with the design-based research approach, the analysis
presented in this paper treats structural and operational perspectives not as static
conceptions held or not held by students, but as emergent resources in an active problem-
solving process. Doing so provides an opportunity to consider the reciprocal relations
between the design, as enactment of a problem-solving environment based on an analogy
between the mathematical concept of function and the context of cryptanalysis, and
theoretical perspectives that seek to resolve the duality of function conceptions as process
and object (for a related example, see Abrahamson, 2009). In particular, the instructional
value of a design for cryptography as analogy to function hinges on the extent to which that
analogy sustains learner engagement with the full scope of the function concept—as
process, as object, as integrated symbolic procept. At the same time, these groups’
developing engagement with different aspects of functions in relation to an applied
problem-solving context points to an alternative way to understand student learning about
the function concept: not in terms of the reification of process into object, but rather in
terms of increasing fluency in interpreting, selecting among and applying procedural and
structural features of function toward a task objective.

Acknowledgements Support for this project was provided by Stanford University, The Wallenberg Global
Learning Network, and Hewlett-Packard Corporation. Thanks to Roy Pea, Shelley Goldman and Jo Boaler
for their guidance and collaboration in the design and investigation of this learning environment, and to
Rebecca Ambrose, Garrett Kenehan, and several anonymous reviewers for their feedback on earlier drafts.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Abrahamson, D. (2009) Embodied design: constructing means for constructing meaning. Educational Studies
in Mathematics, in press.

Boaler, J. (1993). Encouraging the transfer of ‘school” mathematics to the ‘real world” through the integration
of process and content, context and culture. Educational Studies in Mathematics, 25, 341-373.
doi:10.1007/BF01273906.

@ Springer

dx.doi.org/10.1007/BF01273906

Encrypted objects 37

Brown, A. (1992). Design experiments: theoretical and methodological challenges in creating complex
interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141-178. doi:10.1207/
s153278091s0202_2.

Collins, A. (1992). Towards a design science of education. In E. Scanlon, & T. O’shea (Eds.), New directions
in educational technology (pp. 15-22). Berlin: Springer.

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit.
Educational Studies in Mathematics, 26, 135-164. doi:10.1007/BF01273661.

Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: a “proceptual” view of simple arithmetic.
Journal for Research in Mathematics Education, 25(2), 116-140. doi:10.2307/749505.

Gray, E., & Tall, D. (2001). Relationships between embodied objects and symbolic procepts: An explanatory
theory of success and failure in mathematics. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the
25th Conference of the International Group for the Psychology of Mathematics Education, 3 (pp. 65—
72). Utrecht, the Netherlands: PME.

Kaput, J. (1992). Patterns in students’ formalization of quantitative patterns. In G. Harel, & E. Dubinsky
(Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 290-317). Washington, DC:
Mathematical Association of America.

Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of Research
on mathematics teaching and learning (pp. 390-419). New York, NY: Macmillan.

Kieran, C., & Yerushalmy, M. (2004). Research on the role of technological environments in algebra
teaching and learning. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and
learning of algebra (pp. 99-152). Boston, MA: Kluwer.

Moschkovich, J., Schoenfeld, A., & Arcavi, A. (1993). Aspects of understanding: On multiple perspectives
and representations of linear relations and connections among them. In T. Romberg, E. Fennema, & T.
Carpenter (Eds.), Integrating Research on the Graphical Representation of Functions (pp. 69—100).
Hillsdale, NJ: Lawrence Erlbaum Associates.

O’Callaghan, B. (1998). Computer-intensive algebra and students’ conceptual knowledge of functions.
Journal for Research in Mathematics Education, 29(1), 21-40. doi:10.2307/749716.

Roschelle, J., Pea, R., Hoadley, C., Gordin, D., & Means, B. (2000). Changing how and what children learn
in school with computer-based technologies. The Future of Children: Children and Computer
Technology, 10(2), 76—101. doi:10.2307/1602690.

Schwarz, B., & Dreyfus, T. (1995). New actions upon old objects: A new ontological perspective on
functions. Educational Studies in Mathematics, 29, 259-291. doi:10.1007/BF01274094.

Schwartz, J., & Yerushalmy, M. (1992). Getting students to function in and with algebra. In G. Harel, & E.
Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 261-289).
Washington, DC: Mathematical Association of America.

Stfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as
different sides of the same coin. Educational Studies in Mathematics, 22, 1-36. doi:10.1007/
BF00302715.

Stfard, A. (1992). Operational origins of mathematical objects and the quandary of reification—The case of
function. In G. Harel, & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and
pedagogy (pp. 59-84). Washington, DC: Mathematical Association of America.

Singh, S. (1999). The code book: The science of secrecy from ancient Egypt to quantum cryptography. New
York, NY: Anchor.

Slavit, D. (1997). An alternate route to the reification of function. Educational Studies in Mathematics, 33,
259-281. doi:10.1023/A:1002937032215.

Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (2000). What is the object of the encapsulation of a
process? The Journal of Mathematical Behavior, 18(2), 223-241. doi:10.1016/S0732-3123(99)00029-2.

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference
to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169. doi:10.1007/BF00305619.

Thompson, P. (1994). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. Schoenfeld,
& J. Kaput (Eds.), Research in collegiate mathematics education, 1 (Issues in Mathematics Education,
Vol. 4) (pp. 21-44). Providence, RI: American Mathematical Society.

Thompson, P., & Sfard, A. (1994). Problems of reification: Representations and mathematical objects. In D.
Kirshner (Ed.), Proceedings of the Annual Meeting of the International Group for the Psychology of
Mathematics Education—North America, Plenary Sessions, 1 (pp. 1-32). Baton Rouge, LA: Louisiana
State University.

White, T. (2008). Debugging an artifact, instrumenting a bug: Dialectics of instrumentation and design in
technology-rich learning environments. International Journal of Computers for Mathematical Learning,
13(1), 1-26. doi:10.1007/s10758-007-9119-x.

@ Springer

dx.doi.org/10.1207/s15327809jls0202_2
dx.doi.org/10.1207/s15327809jls0202_2
dx.doi.org/10.1007/BF01273661
dx.doi.org/10.2307/749505
dx.doi.org/10.2307/749716
dx.doi.org/10.2307/1602690
dx.doi.org/10.1007/BF01274094
dx.doi.org/10.1007/BF00302715
dx.doi.org/10.1007/BF00302715
dx.doi.org/10.1023/A:1002937032215
dx.doi.org/10.1016/S0732-3123(99)00029-2
dx.doi.org/10.1007/BF00305619
dx.doi.org/10.1007/s10758-007-9119-x

	Encrypted objects and decryption processes: problem-solving with functions in a learning environment based on cryptography
	Abstract
	Introduction
	Reifying functions in multi-representational environments
	The Code Breaker learning environment
	Algebraic
	Graphical
	Tabular
	Situational
	Cryptanalysis and functions in the Code Breaker learning environment

	Method
	Context
	Analytic approach

	Non-ordered pair strategies
	Episode 1
	Episode 2
	Episode 3
	Summary: functions as objects

	Inferences from an ordered pair
	Inferences from multiple ordered pairs
	Decoding strategies
	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

