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Summary

Background The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-Gly-Bza) was isolated from a peptide library
constructed to identify peptide-based transport inhibitors of multidrug resistance (MDR) efflux pumps including P-glycoprotein
and Multidrug Resistance-associated Protein 1. 4A6 proved to be a substrate but not an inhibitor of these MDR efflux trans-
porters. In fact, 4A6 and related peptides displayed potent cytotoxic activity via an unknown mechanism. Objective To decipher
the mode of cytotoxic activity of 4A6. Methods Screening of 4A6 activity was performed against the NCI60 panel of cancer cell
lines. Possible interactions of 4A6 with the 26S proteasome were assessed via proteasome activity and affinity labeling, and cell
growth inhibition studies with leukemic cells resistant to the proteasome inhibitor bortezomib (BTZ). Results The NCI60 panel
COMPARE analysis revealed that 4A6 had an activity profile overlapping with BTZ. Consistently, 4A6 proved to be a selective
and reversible inhibitor of 35 subunit (PSMBS5)-associated chymotrypsin-like activity of the 26S proteasome. This conclusion is
supported by several lines of evidence: (i) inhibition of chymotrypsin-like proteasome activity by 4A6 and related peptides
correlated with their cell growth inhibition potencies; (ii) 4A6 reversibly inhibited functional (35 active site labeling with the
affinity probe BodipyFL-Ahx3;L;VS; and (iii) human myeloid THP1 cells with acquired BTZ resistance due to mutated PSMB35
were highly (up to 287-fold) cross-resistant to 4A6 and its related peptides. Conclusion 4A6 is a novel specific inhibitor of the 35
subunit-associated chymotrypsin-like proteasome activity. Further exploration of 4A6 as a lead compound for development as a
novel proteasome-targeted drug is warranted.

Keywords Proteasome - Proteasomeinhibitors - Bortezomib - Cytotoxic peptides - Drugresistance - ABC drugefflux transporters

Introduction potential therapeutic target for the treatment of hematological
malignancies, solid tumors and cancer and chronic inflamma-
tory diseases [1-10]. The 26S—proteasome complex is made

up of a 20S core unit, consisting of 4 stacked heptameric rings,

The central role that the ubiquitin-proteasome system plays in
intracellular protein degradation has been exploited as a
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which form an o;3;370c; complex, and is capped by two 19S
regulatory units [11-13]. The 20S core unit harbors the
proteasome’s catalytic domain which is responsible for cas-
pase-like, trypsin-like and chymotrypsin-like activities, asso-
ciated with the 31, 32 and 35 subunit, respectively [14].
Several types of proteasome inhibitors have been described
that reversibly or irreversibly inhibit proteasome activity by
targeting one or more of these 3 subunits [15-19].
Bortezomib (Velcade®, PS341) was the first proteasome in-
hibitor that was clinically approved and registered for the
treatment of refractory multiple myeloma [2, 20].

Bortezomib (BTZ) is a potent reversible proteasome
inhibitor (ICso: 3—5 nM) that primarily targets the 35 subunit
of the proteasome, although the (31 subunit and its
immunoproteasome counterparts are also targeted [15, 21].
While bortezomib is clinically well tolerated, prolonged ad-
ministration may result in neurotoxicity and drug resistance
may emerge [15, 22-24]. Thus, alternative proteasome inhib-
itors are in demand [7, 17, 25-31].

The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-
Nle-Glu(OtBu)-Gly-Bza) [32] (Fig. 1) was identified from a
peptide library constructed to identify peptide-based inhibitors
of multidrug resistance (MDR) efflux transporters including
P-glycoprotein (Pgp/ABCB1) and Multidrug Resistance-as-
sociated Protein 1 (MRP1/ABCCI1) [33]. These ATP-
binding cassette transorters extrude a plethora of struc-
turally and mechanistically distinct cytotoxic agents and thus
confer multidrug resistance upon various cancer cells [34-36].
In recent years, several types of peptides (linear/cyclic,
neutral/ hydrophobic) have been identified for their interaction
with MDR efflux transporters and/or their potential
chemosensitizing capacity; these include cyclosporin A,
gramicidin D, valinomycin, ALLN, dolastatin 10, pepstatin
A, leupeptin and reversin 121 [37-45]. Likewise, 4A6 was
found to be a substrate of the MDR efflux transporters
ABCBI and ABCCI1, but lacked the ability to reverse efflux
pump MDR [32]. In fact, 4A6 and related peptides displayed
potent cytotoxic effects via an unknown mechanism
[32]. Here we uncovered the mode of action of 4A6 and pro-
vide ample evidence that it exerts its pharmacological
activity by blocking the chymotrypsin-like activity of the pro-
teasome. This finding warrants the exploration of 4A6 as a
lead compound for further development as a novel
proteasome-targeted drug.

Materials and methods

Reagents Bortezomib (Pyrazylcarbonyl-Phe-Leu-boronate)
was provided by the VUmc Hospital Pharmacy Department.
The cytotoxic peptides 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-
Nle-Glu(OtBu)-Gly-Bza) (monomer and dimer form) and
4E11 (Ac-Thr(OBzl)-Glu(OtBu)-Glu(OBzl)-Asp(OtBu)-
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Glu(OtBu)-Gly-Bza) were synthesized as described previous-
ly [32]. P121/Reversin (Boc-Asp(OBzl)-Lys-(Z)-OtBu) was
kindly provided by Prof. Dr. B. Sarkadi (Budapest, Hungary).

Protease Inhibitor Cocktail (PIC) was obtained from
Boehringer Mannheim (Ingelheim, Germany). RPMI-1640
medium and fetal calf serum were obtained from Gibco
Chem. Co (Grand Isl., NY, U.S.A). All fluorogenic substrates
(Suc-Leu-Leu-Val-Tyr-ame, Ac-Arg-Leu-Arg-amc and Z-
Leu-Leu-Glu-amc), the proteasome inhibitors Ac-APnLD-H
and leupeptin, and all proteasome subunit-related antibodies
(B1, B2, and B5) were purchased from Biomol (Plymouth
Meeting, PA, U.S.A.). Anti-ubiquitin antibody (sc-8017)
was purchased from Santa Cruz (USA). Ruthenium Red was
obtained from Sigma Chem Co (USA).

Synthesis of ac-Thr(tBu)-his(Bzl)-Thr(Bzl)-Nle-OH The tetramer
(Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-OH), the major cleav-
age product of 4A6, was synthesized by standard Fmoc-
based solid phase peptide synthesis on FmocNorLeu Sasrin
resin. The FmocNorLeu resin was prepared by esterification
of FmocNorLeu-OH (10 equivalents) with the unloaded resin
using N,N'-diisopropylcarbodiimide (DIC, 10 equivalents) in
dimethylformamide. The resin was deprotected with 1%
trifluoroacetic acid (TFA) in methylenechloride for 2.5 h
followed by precipitation of the peptide with diethylether
and HPLC purification (Waters 1525 EF HPLC system).

Cell cultures Human monocytic/macrophage THP1 cells
(ATTC, Manassas, USA) were cultured in RPMI-1640 medi-
um supplemented with 5% fetal calf serum, 20 mM HEPES,
2 mM glutamine and 100 pg/ml penicillin/ streptomycin at
5% CO, and 37 °C. Cell cultures were seeded at a density of
3% 10° cells/ml and refreshed twice weekly. Bortezomib
(BTZ)-resistant THP1 cell lines were obtained by stepwise
increasing extracellular concentrations of BTZ over a period
of 6 months [46]. In this study, BTZ-resistant THP1 variants
were used and grown in the presence of 50 nM
(THP1/BTZsp), 100 nM (THP1/BTZ9¢) and 200 nM
bortezomib (THP1/BTZ,) (see Table 1). Some specific ex-
periments also included THP1/BTZ, cells that were cultured
in the absence of BTZ for 6 months (further designated as
THP1/BTZ (00, cells). Mouse thymoma EL4 and human
multiple myeloma H929 cells were cultured in RPMI-1640
medium supplemented with 8% fetal calf serum and 100 pg/
ml penicillin/streptomycin at 5% CO, and 37 °C.

Screening of 4A6 using the NCI60 tumor cell line panel The
NCI 60 human tumor cell line screen was used to assess the
activity profile of 4A6 against a panel of tumor cell lines of
various cell lineage [47]. Concentrations of 4A6 eliciting 50%
growth inhibition (GI50) were determined after 48 h drug
exposure. 4A6 sensitivity for each individual cell line is
depicted relative to the mean GIS0 of the total cell line panel.
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Fig. 1 Chemical structures of
4A6, 4E11 and bortezomib

4A6

4A6 cleavage assay Proteasome was purified from bovine liver
as described previously [48]. For digestion assays, 1 pg protea-
some was incubated with 1 pg 4A6 in 50 pl of 50 mM Tris-
HCl buffer pH 8.5 at 45 °C for 16 h. Subsequently, the reaction
mixture was lyophilized and peptides purified using reversed-

phase ZipTip®c,g tips (Millipore). The purified peptide
mixture was mixed in a 1:1 ratio with 10 mg/ml 2,5-
dihydroxybenzoic acid (DHB, Bruker Daltonik) matrix
solution in 0.1% TFA and spotted onto a MALDI (matrix
assisted laser desorption/ ionization) target plate. MALDI-

Table 1 Growth inhibitory

effects of cytotoxic peptides on Drug ICso (HM) [Resistance Factor]

THP1 and bortezomib-resistant

THP1 cells THP1/WT THP1/BTZs, THP1/BTZ 100 THP1/BTZs00
4A6 0.26 +£0.06 [1] 44 117 287
4A6-dimer 0.80+0.09 [1] >63%* >63%* >63*
4E11 3.9+0.8[1] >13%* >13%* >13*
CsA 3.8+1.0[1] 0.9 0.8 ND
Bortezomib® 0.0033 +0.0006 [1] 45 79 129

Results depicted are the mean of at least 3 separate experiments £ S.D.
ND Not determined, CsA cyclosporin A

# Data from Oerlemans et al. [46]

*Solubility of peptide in medium is limited to a concentration of 50 uM
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TOF analysis was performed on an Autoflex, linear MALDI-
TOF-MS (Bruker Daltonik GmbH, Bremen, Germany).
Spectra were analyzed with flexAnalysis software (Bruker
Daltonik).

Growth inhibition assays Evaluation of drug sensitivity was
carried out as described before [49]. Cells were seeded
at an initial density of 1.25x10° cells/ml in individual
wells of a 24-well plate containing up to 50 pl of drug
solutions. Inhibition of cell growth was determined after
72 h of incubation at 37 °C by determining the number
of viable cells viable cells using trypan blue exclusion.
The drug concentration required to inhibit cell growth
by 50% compared to untreated controls was defined as
the ICSO-

Western blot analysis (ubiquitinated proteins/proteasome
subunits) Western blot analysis to determine protein levels
of (i) A1, B2 and 35 proteasome subunits and (ii) the accu-
mulation of ubiquitinated proteins after treatment with 4A6
was performed essentially as described previously [46, 49].
Cells were harvested in the mid-log phase of growth and
washed 3 times with ice-cold buffered saline pH 7.4. Total
cell lysates of 5 x 10° cells were prepared by resuspension in
500 wl lysis buffer containing: 50 mM Tris-HCI (pH 7.6),
5 mM dithiotreitol, 20 pl PIC (Protease Inhibitor Cocktail; 1
tablet/ml H,O), 20% glycerol and 0.5% NP-40. The suspen-
sion was sonicated (MSE sonicator, amplitude 7, for 3 x5 s
with 20 s time intervals at 4 °C) and centrifuged in an
Eppendorf micro centrifuge (5 min, 12,000 rpm, 4 °C).
Protein content of the supernatant was determined by the
Bio-Rad protein assay. 20-30 ug of total cell lysates were
fractionated on a 10% polyacrylamide gel containing SDS
and transferred onto a PVDF membrane. The membranes
were pre-incubated overnight at 4 °C in blocking buffer (5%
Bio-Rad Blocker in TBS-T; 10 mM Tris-HCl, pH 8.0, 0.15 M
NaCl, 0.1% Tween-20) to prevent non-specific antibody bind-
ing. After blocking, the membranes were incubated for 1 h at
room temperature with primary antibodies for proteasome
subunit 31 (1:1000, PW8140), 32 (1:1000, PW8145) and
35 (1:1000, PW8895) or ubiquitin (1:1000, Santa-Cruz, SC-
8017). An antibody to o-tubulin was used (1:1000, Santa
Cruz, sc-8035) to check and normalize for any loading differ-
ences. After 3 washing steps with TBS-T, the membranes
were incubated for 1 h with HRP-labelled donkey-anti-rabbit
(1:6000, Amersham, UK) or goat-anti-mouse (1:6000, Dako,
Glostrup, Denmark) as secondary antibody. Detection of anti-
body binding was followed by chemoluminescence using
Supersignal (Pierce Biotechnology, Rockford, USA) accord-
ing to the manufacturers’ instructions. Digital Image acquisi-
tion was performed using the Versadoc Imaging System
(Biorad Lab., Veenendaal, The Netherlands). The signal inten-
sity was determined densitometrically using Quantity One
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software (Bio-Rad) and was expressed relative to the intensity
of the «-tubulin signal.

Proteasome activity in cell lysates and intact cells

Chymotrypsin-like, trypsin-like and caspase-like proteolytic
activities of the proteasome were determined in freshly pre-
pared cell lysates as described previously [21, 46]. Five mil-
lion untreated or bortezomib-exposed THP1 cells were
washed 3 times with ice-cold PBS and pelleted by centrifuga-
tion (5 min, 12,000 RPM, 4 °C). Cell pellets were then resus-
pended in an ATP-containing lysis buffer; 10 mM Tris-HCI
buffer (pH 7.8) containing 5 mM ATP, 0.5 mM DTT and
5 mM MgCl,, and kept on ice for 10 min. For complete lysis,
cells were sonicated (MSE sonicator, amplitude 7, for 3 x5 s
with 20 s time intervals at 4 °C) followed by centrifugation
(5 min, 12,000 RPM, 4 °C) to remove cell debris. The super-
natant was collected and protein concentration was deter-
mined using the Bio-Rad protein assay. Fluorogenic substrates
to measure the chymotrypsin-like, trypsin-like and caspase-
like activity were Suc-Leu-Leu-Val-Tyr-amc, Ac-Arg-Leu-
Arg-amc and Z-Leu-Leu-Glu-amc, respectively, all at a final
concentrations of 100 uM. The substrates were incubated with
20 ug of total cell protein extract in the presence or absence of
specific inhibitors (bortezomib for chymotrypsin-like activity,
Ac-APnLD-H for caspase-like activity and leupeptin- for
trypsin-like activity) in a total assay volume of 200 ul. The
release of amc (7-amino-4-methyl-coumarin) was monitored
online over a 2-h time period at 37 °C with 5 min intervals.
Fluorescence was measured on a Tecan SpectraFluor appara-
tus (Giessen, The Netherlands) using excitation and emission
wavelengths of 360 and 465 nm, respectively. Proteolytic ac-
tivity was calculated from the slopes of the linear portion of
the curves. All results were expressed as percentage relative to
untreated THP1/WT cells (100%). Inhibition of
chymotrypsin-like activity in intact cells was measured by
the Proteasome-Glo™ cell-based assay (Promega, Leiden,
The Netherlands), using Suc-LLVY-aminoluciferin as a sub-
strate, according to the manufacturer’s instructions.

Proteasome affinity labelling

Proteasome activity profiling assays were performed as de-
scribed [50, 51] using a close analog of the BodipyFL probe.
Briefly, mouse EL4 thymoma cells were incubated at 37 °C
for 2 or 24 h with increasing concentrations of 4A6, followed
by a 1 h chase with 500 nM probe. In other experiments,
human H929 myeloma cells were incubated at 37 °C with
1 uM 4A6 (2 h), 5 uM MG132 (1 h) or 20 nM bortezomib
(1 h) and subsequently probed with 500 nM probe (1 h), either
directly or after a washing and recovery step. Cells were har-
vested and lysed for 30 min in NP40 lysis buffer (50 mM Tris,
pH 7.4, 150 mM NaCl, 1% NP40) at 4°C. The Bradford assay
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was used to measure protein content. Proteins were denatured
by boiling in reducing sample buffer and analyzed by 12%
SDS-PAGE using NuPAGE pre-cast gels (Invitrogen). Gels
were then scanned for fluorescence emission using a
ProXPRESS 2D Proteomic imaging system (Perkin Elmer).
Images were analyzed using Totallab analysis software
(Nonlinear Dynamics, Newcastle upon Tyne, UK). Sypro
staining served as a loading control.

Apoptosis assay Induction of apoptosis was analyzed by flow
cytometry using APOPTEST™-FITC A700 (VPS
Diagnostics, Hoeven, the Netherlands) according to the
instructions of the manufacturer. In short, induction of
apoptosis was determined after 24 h’ drug exposure.
One million cells were harvested and washed 3 times
with ice-cold PBS. The cell pellet was incubated for
30 min with 7-Amino-actinomycin D (7-AAD) on ice
followed by incubation with Annexin-V according to the in-
structions of the manufacturer. Annexin-V (early apoptosis)
and 7-AAD (late apoptosis) staining was measured by
flow cytometry (Beckton & Dickinson, FACScalibur) and
analysed using FCSexpress V3 software (Denovo software,
Thornhill, Canada).

Statistics Statistical analysis was performed using Analysis of
Variance between groups (ANOVA) in Graphpad prism ver-
sion 6.0. P values <0.05 were considered to be statistically
significant.

Results

476 vs bortezomib activity against NCI60 panel
of tumor cell lines

In order to get an initial insight regarding the cytotoxic activity
of 4A6, we first tested 4A6 in the NCI60 tumor cell line panel
that is composed of 60 malignant cell lines of distinct tissue
lineage [47]. 4A6 showed remarkable activity towards a panel
of leukemia, breast cancer, melanoma, and to some extent co-
lon cancer cells (Fig. 2). In contrast, 4A6 proved rather inactive
towards a panel of renal cancer cells and lung cancer cells.
Moreover, cells with high levels expression of the multidrug
efflux transporter Pgp, including HCT-15, ACHN, UO-
31 and NCI/ADR-RES [52], displayed marked resis-
tance to 4A6. COMPARE analysis of Gls, values for
4A6 in the NCl-panel of 60 cell lines showed a corre-
lation coefficient (r) of 0.37 with bortezomib (BTZ), an
established proteasome inhibitor drug. A side by side compar-
ison of the activity profile of 4A6 and BTZ in the NCI60 panel
of tumor cell lines showed overlapping sensitivities (Fig. 2),
albeit based on mean log;(Gls, concentrations obtained after
2 days of drug exposure, BTZ was 2—3 orders of magnitude

more potent than 4A6. These results demonstrate that 4A6 has
an overlapping activity profile with BTZ against the NCI60
panel of tumor cell lines; however, in contrast to BTZ, 4A6
activity was compromised by the presence of a Pgp-dependent
MDR phenotype.

Cells with acquired resistance to peptide-based
proteasome inhibitor bortezomib are cross-resistant
to the cytotoxic peptides 4A6 and 4E11

Because of the overlapping activity profile of 4A6 and BTZ in
the NCI60 panel, we tested 4A6 in human THP1 cell lines with
acquired resistance to BTZ. These cell lines displayed cross-
resistance to other known peptide-based proteasome inhibitors
(e.g. ALLN, MG132), but also to the linear cytotoxic
hexapeptide 4A6, the latter of which has an unknown mecha-
nism of action [46]. To further explore the molecular basis of
this observation, THP1 cells with various levels of BTZ-
resistance were screened for their sensitivity to 4A6, a dimer
form of 4A6, another linear cytotoxic hexapeptide 4E11 (Fig.
1), and the cyclic cytotoxic decapeptide cyclosporin A
(Table 1). Within this panel of cytotoxic peptides, 4A6 was
the most potent inhibitor of THP1 cell growth (ICsy:
0.26 uM), followed by a 3-fold lower potency for the 4A6
dimer and a 15-fold lower potency for 4E11 and cyclosporin
A (Table 1). These bortezomib-resistant cell lines displayed
the highest levels (up to 287-fold) of cross-resistance to 4A6
(Table 1, Fig. 3) and >60-fold cross resistance to the 4A6-
dimer. With respect to the peptide 4E11, a consistently higher
IC50 value compared to 4A6 (Table 1) along with limitations
in solubility of peptides above a concentration of 50 uM,
allowed for the assessment of relatively low level (>13-fold)
cross-resistance to 4E11. No cross-resistance of bortezomib-
resistant cells was observed for cyclosporin A. Collectively,
these results indicate that the peptides 4A6 and 4E11 share
properties with known inhibitors of the ubiquitin-proteasome
system, including BTZ.

476 is a potent inhibitor of chymotrypsin-like
proteasome activity

An intact cell-based luminogenic assay that monitors
chymotrypsin-like proteasome activity was used to investigate
whether the cytotoxic peptides 4A6 and 4E11 could exert their
cytotoxic effect via inhibition of proteasome activity
(Fig. 4). Indeed, 4A6 displayed a marked inhibition of
chymotrypsin-like proteasome activity (ICsq: 0.21 £
0.05 uM) with a potency 28-fold lower than BTZ (ICsy:
0.0074+£0.002 uM (Fig. 4a). Likewise, the 4A6-dimer and
4E11 were found to inhibit chymotrypsin-like proteasome ac-
tivity, though with a lower potency than 4A6 (ICs,: 0.49 +
0.12 uM and 2.4 £0.5 puM, respectively). A control peptide
Reversin 121, a transport inhibitor of the MDR efflux
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Fig. 2 Cytotoxic activity profiles
of bortezomib vs 4A6 against the
NCl-panel of 60 malignant cell
lines. Data are based on 48 h’
drug exposure and presented as
log Gl for each individual tumor
cell line and as Gl relative to the
mean Gls of all cell lines tested
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To address whether or not 4A6 is also capable of inhibiting
one or both of the other protease activities harbored by the
proteasome, chymotrypsin-, caspase- and trypsin-like activities
were measured in THP1 cell extracts in the absence or presence

of 4A6. Consistent with results shown in Fig. 4a, 4A6 elicited
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that 4A6 is a potent and selective inhibitor of
chymotrypsin-like proteasome activity.

4A6 is a reversible inhibitor of chymotrypsin-like
proteasome activity
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but affinity labeling was fully recovered within 2 h after drug
withdrawal (Fig. 5b). We finally explored whether 4A6
remained intact as a peptide or could be subject to proteolytic
cleavage when exposed to purified proteasomes. Comparison
of mass spectra of the intact peptide (Fig. 5c) and the peptide
after proteasomal digestion (Fig. 5d) showed that next to 4A6
(m/z 1080.6), one main additional peak appeared after diges-
tion at m/z 749.5, corresponding to the 4-mer peptide Ac-
Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-OH. A smaller peak appeared
at m/z 934.6, corresponding to 5-mer peptide Ac-Thr(tBu)-
His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-OH. This indicates that
4A6 is predominantly cleaved at the P4-P5 position and to a
lesser extent at the P5-P6 position. The main 4A6 proteasomal
cleavage product, Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-OH
was synthesized, but did not show any proteasome inhibitory
effect or cell growth inhibitory potential (data not shown).
Hence, these results suggest that 4A6 is a dual substrate and
reversible inhibitor of proteasome subunit (35.

Cellular exposure to 4A6 induces accumulation
of ubiquitinated proteins and apoptosis but displays
properties distinct of bortezomib

One hallmark of proteasome inhibition is the accumulation of
ubiquitinated proteins, which are toxic to cells and induce
apoptosis [53, 54]. Exposure of THP1/WT cells to 4A6 and
4E11 for 24 h resulted, just as for the known proteasome
inhibitor BTZ, in a marked accumulation of ubiquitinated
proteins, illustrated by a characteristic smear upon Western
blot probed with an anti-ubiquitin antibody (Fig. 6a). In con-
trast, the same concentrations of 4A6 and 4E11 did not pro-
voke any accumulation of ubiquitinated proteins in
bortezomib-resistant cells. Consistent with these observations

1M 4A6, 2h pM 4A6, 24h

a 0 0105 1 5 10 0 01 05 1 5 10

B2 —

B2 —— o s s ——— — — ———
U5/51 —— J—
B ' .-————— = e ——
i
Probe  4ag (2n), recovery MG132 :
nl 4 Bortezomib
b - -0 15 300 90’ 120° 0 1200 0 1200
1 h
p2 S . -
2i —— - —— -
p2i - ——— - -
p1 i .
B5I5i . -
i -

® =

Fig.5 4AG6 is a reversible inhibitor of proteasome subunit 35. a EL4 cells
were incubated with the indicated concentrations of 4A6 for 2 or 24 h and
then probed with a proteasome affinity probe as described in the Materials
& Methods section. b H929 cells were incubated with 1 pM 4A6 (2 h),
20 nM BTZ (1 h) or 5 uM MG132 (1 h). Subsequently, cells were either
probed directly with the affinity probe (0") or resuspended in fresh
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was the efficient induction of apoptosis by 4A6 in parental
THP1/WT cells but none by 4A6 (over a concentration range
of 0-25 uM) in THP1/BTZ, cells (Fig. 6b and ¢). For com-
parison, the anti-cancer drug and topoisomerase Il inhibitor
etoposide (VP16) was equally effective in inducing apoptosis
in THP1/WT and THP1/BTZ,, cells (not shown).

To explore whether 4A6 shares properties with the known
proteasome inhibitor BTZ, we investigated the ability of 4A6
to mimic a reported feature of BTZ, the disregulation of intra-
cellular calcium homeostasis that triggers caspase activation
and apoptosis [55]. This process could be counteracted by
inhibitors of the mitochondrial calcium uniporter (e.g.
Ruthenium Red), thereby providing a protective effect against
BTZ [55]. While a marked abrogation of BTZ activity could
be obtained by Ruthenium Red, no effect of this compound
was observed with respect to 4A6 activity (Fig. 6d). These
results suggest that 4A6 has no apparent impact on mitochon-
drial calcium homeostasis.

4A6 provokes proteasome B5 subunit induction

Given the specific targeting of 4A6 of the 35 subunit of the
proteasome, we explored whether exposure to 4A6 had an
effect on the expression of the 35 subunit as compared to
the other catalytic subunits 31 and (32. To this end, THP1/
WT cells and the bortezomib-resistant cell lines THP1/BTZ
100 and THP1/BTZ (o), the latter being a subline of THP1/
BTZ o that was grown in the absence of BTZ for 6 months,
were exposed to a concentration range of 4A6 (0.1-10 uM)
for 24 h (Fig. 7a). No significant effects of 4A6 exposure were
observed regarding expression of the 31 and 32 proteasome
subunits. In contrast, a dose-dependent increase in proteasome
[35 subunit expression was noted in both THP1/WT sublines
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medium without inhibitor and left to recover for the indicated times. As
a control, non-treated cells were probed directly. A representative of 2
separate experiments is shown. ¢ MALDI spectrum of 4A6 (m/z 1080.6).
d MALDI spectrum of 4A6 after proteasomal digestion, showing the
appearance one major cleavage product at m/z 749.5, which corresponds
to Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-OH
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Fig. 6 4A6-induced accumulation of ubiquitinated proteins and
induction of apoptosis in THP1/WT cells but not in BTZ-resistant cells.
a Accumulation of ubiquitinated proteins in THP1/WT cells and BTZ-
resistant THP1/BTZ,q cells after 24 h’ exposure to the indicated concen-
trations of BTZ and 4A6. THP1/BTZ, cells were allowed a 4 day drug
washout period (control) before exposure to BTZ or 4A6. b Induction of
apoptosis (Annexin-V positive cells) in THP1/WT cells and THP1/BTZ;¢
cells after 24 h’ exposure to a concentration range of 4A6. ¢ A

with relatively low basal levels of 35 expression and the two
BTZ-resistant cell lines, including THP1/BTZ (¢, cells that
retained a level of cross-resistance to 4A6 similar as THP1/
BTZ g cells (Fig. 7a). Densitometric analysis showed a 3—5
fold increase in (35 subunit induction in all three cell lines
upon exposure to 10 uM 4A6 exposure as compared to
drug-free controls (Fig. 7b). This result implies that induction
of proteasome 35 subunit expression constitutes a rapid adap-
tive response upon targeting of this subunit by the inhibitor
4A6.

Discussion

Here we have shown that the cytotoxic hexameric 4A6 peptide
elicits its pharmacological activity via selective and reversible
inhibition of the chymotrypsin-like proteasome activity. The
specific targeting of the chymotrypsin-like proteasome activity

representative flow cytometric tracing of apoptosis induction (Annexin-
V/7-AAD staining) following 24 h incubation of THP1/WT cells and
THP1/BTZ,¢ cells with 25 pM 4A6. d Ruthenium Red protects from
BTZ-induced but not from 4A6-induced cell growth inhibition. THP1 cells
were incubated for 72 h with a concentration range of BTZ or 4A6 in the
absence (—) or presence (+) of 25 uM Ruthenium Red. The ratio of ICsq
values for BTZ and 4A6 in the presence or absence of Ruthenium Red is
depicted as fold protection. Mean of 3 separate experiments =+ S.D

by 4A6 was further corroborated by upregulation of the expres-
sion of the 35 subunit of the proteasome. Moreover, cells har-
boring mutations in the 35 subunit which confer resistance to
BTZ [21], displayed a marked cross-resistance to 4A6.

Most peptide-based proteasome inhibitors contain tri- or
tetrapeptide moieties that dock into one or more of the active
site pockets of the proteasome [16, 56]. However, peptides
extended with N-terminally linked spacers and specific caps
can also retain their proteasome inhibitory potential [50, 57].
Notwithstanding this fact, 4A6, as well as another hexameric
peptide (4E11) exhibited a motif and mode of action distinct
from known peptide-based proteasome inhibitors. The linear
hydrophobic nature of 4A6 likely facilitates its interactions
with the 35-subunit of the proteasome that preferentially
cleaves after hydrophobic amino acid residues [12, 14]. To
this end, we explored whether or not the interaction of 4A6
with the proteasome involves mere steric occlusion of the 35
active site or alternatively, that the 4A6 peptide serves as a
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Fig. 7 4A6 induces proteasome (35 subunit overexpression. a Protein
expression of 31, 32 and 35 proteasome subunits in THP1/WT cells, the
BTZ-resistant cell line THP1/BTZ;¢ grown in the presence of 100 nM
BTZ, and THP1/BTZ (g0 cells, a subline of THP1/BTZ,q, that was
grown in the absence of BTZ for 6 months. Before incubation with 4A6,

cleavage substrate of the proteasome. Consistent with this
notion may be the fact that the dimeric form of 4A6, which
contains the same amino acid sequence as 4A6 and is there-
fore also likely to be cleaved by the proteasome, is almost
equally effective in inhibiting (35-associated proteasome ac-
tivity (Fig. 4a and Table 1). In this context, it is important to
note that replacement of Thr(Bzl) at the P3 position by Lys(Z)
or Ala in 4A6 abolished the cytotoxic effect by 4A6 [32],
suggesting that this residue is essential for effective protea-
some binding and inhibition.

The marked level of cross-resistance to 4A6 of cells resis-
tant to the proteasome inhibitor BTZ (Table 1, Fig. 3) supports
the conclusion that 4A6 and BTZ share a common mode of
interaction with the 5 active site. In fact, studies from our
laboratory revealed that the molecular basis of BTZ resistance
in these cells involved a point mutation in the PSMBS5 gene
that introduced a single amino acid change (Ala — Thr) at
position 49 of the PSMBS protein [46]. Since the Ala49 posi-
tion resides in the BTZ binding pocket of PSMBS5 and is
involved in the interaction with BTZ [16, 30, 56, 58, 59],
the Ala49Thr mutation is likely to underlie loss of BTZ bind-
ing and acquisition of bortezomib resistance [46]. The even
higher levels of cross-resistance to 4A6 than resistance levels
to BTZ suggest that Ala49 is even more critical in binding the
4A6 peptide than BTZ. In this respect, it was interesting to
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THP1/BTZ; cells were allowed a 4 days BTZ washout period (control/0),
after which cells were exposed for 24 h to the indicated concentrations of
4A6. Expression of «-tubulin served as an actual loading control. b Results
of scanning of protein band intensities in panel (a) are presented as mean +

S.D. of 3 separate experiments

note that exposure of BTZ-resistant cells to 4A6 provoked a
marked upregulation of mutant PSMBS protein (Fig. 7), pre-
sumably as a compensatory mechanism to counteract loss of
proteasome activity due to inhibition by 4A6.

Although the indicated PSMB5 mutation may be the domi-
nant factor in conferring drug resistance to 4A6, it was previ-
ously reported that cellular extrusion by the MDR efflux trans-
porters P-gp (ABCB1) and MRP1 (ABCC1) could also confer
resistance to 4A6 [32]. This was further illustrated herein in the
activity profile of 4A6 in the NCI60 panel of tumor cell lines
where cells with a consistent MDR phenotype (mainly P-gp)
were markedly less sensitive to 4A6 (Fig. 2). In contrast, such a
MBDR phenotype had relatively a marginal impact on the activ-
ity of BTZ. The presence of the boron group in BTZ most likely
abolishes the ability of this compound to serve as a proficient
substrate for MDR transporters as compared to other small pep-
tides [60, 61]. Although Fig. 2 demonstrated an overlap in ac-
tivities against some tumor types (leukemia/breast cancer), the
current study indicates (Fig. 6d) that at least one mode of action
of 4A6 was distinct from BTZ by not inducing apoptosis/
growth inhibition via disregulation of mitochondrial cal-
cium homeostasis [55]. Consistent with this study we
showed here that inhibition of the mitochondrial uniporter
with ruthenium red abrogated the growth inhibitory ef-
fects of BTZ, but had no effect on 4A6 activity.
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Collectively, this study reported on 2 novel hexameric
peptide-based proteasome inhibitors with several properties
distinct from currently identified proteasome inhibitors, in-
cluding BTZ. One of these peptides, 4A6, may serve as a lead
compound for drug development by further optimization of its
selective proteasome (35 subunit targeting against leukemia
and breast cancer cells. The notion that 4A6 is a bona fide
P-gp and MRP1 substrate may on the one hand compromise
some of its activity against tumor cell expressing this drug
efflux transporter, but on the other hand it may underlie a
different, possibly more favorable toxicity profile than BTZ.
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