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Abstract We study the probability distribution of user accusations in the q-ary Tardos
fingerprinting system under the Marking Assumption, in the restricted digit model. In par-
ticular, we look at the applicability of the so-called Gaussian approximation, which states
that accusation probabilities tend to the normal distribution when the fingerprinting code is
long. We introduce a novel parametrization of the attack strategy which enables a significant
speedup of numerical evaluations. We set up a method, based on power series expansions, to
systematically compute the probability of accusing innocent users. The ‘small parameter’ in
the power series is 1/m, where m is the code length. We use our method to semi-analytically
study the performance of the Tardos code against majority voting and interleaving attacks.
The bias function ‘shape’ parameter κ strongly influences the distance between the actual
probabilities and the asymptotic Gaussian curve. The impact on the collusion-resilience of
the code is shown. For some realistic parameter values, the false accusation probability is
even lower than the Gaussian approximation predicts.
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List of symbols
Q The alphabet
q Alphabet size |Q|
n Number of users
C Set of colluding users
c Number of colluders |C|
c0 Coalition size that the code can resist
m Code length (number of q-ary symbols)
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380 A. Simone, B. Škorić

X ji Embedded symbol in segment i for user j
p(i) Bias vector for column i
F Distribution function of the bias vector, p(i) ∼ F
f (pα) Marginal distribution of F for one component
κ Shape parameter contained in F

σ
(i)
α Number of occurrences of symbol α in attackers’ segment i

P Probability distribution for σ

P1 Marginal distribution for one component of σ

Pq−1 Marginal distribution for q − 1 components of σ

yi Symbol in segment i of attacked content
θy|σ Prob. that attackers output symbol y, given σ

S j Accusation sum of user j
S Coalition accusation sum, S = ∑

j∈C S j

Z Accusation threshold
Z̃ Z/

√
m

L List of accused users
ε1 Max. tolerable prob. of fixed innocent user getting accused
ε2 Max. tolerable prob. of not catching any attacker
FP False positive
FN False negative
μ̃ E[S]/m; does not depend on m
ρm Prob. distribution of S j/

√
m for innocent j

Rm Area function for the right-hand tail of ρm

τm Prob. distribution of S/(c
√

m), normalized to zero mean and variance 1
Tm Cumulative distribution function for τm

ϕ Prob. distribution of one-segment contribution to innocent’s accusation
Ψb(x) θy|σ when σy = b and the rest of σ is equal to x

Kb Quantity derived from Ψb(x)

Ω(x) Probability mass in the right tail of a Gaussian, beyond x

1 Introduction

1.1 Collusion attacks against forensic watermarking

Fingerprinting provides a means for tracing the origin and distribution of digital data. Before
distribution of digital content, the content is modified by applying an imperceptible fin-
gerprint, which plays the role of a personalized serial number. The fingerprint is usually
embedded through a watermarking algorithm. Once an unauthorized copy of the content
is found, the identity can be determined of those users who participated in the creation of
the unauthorized copy. This can be done using a tracing algorithm, which outputs a list of
allegedly guilty users. This process is also known as ‘forensic watermarking’.

Reliable tracing of content requires security against attacks that aim to remove the embed-
ded information from a copy. Collusion attacks, where a group of pirates collude to compare
their copies, are a particular threat. As any differences between the copies have to arise from
the watermarks and not the content, such a comparison gives information which can be used
to remove the watermark. To counter this threat, coding theory has produced a number of
collusion-resistant codes. In any practical implementation, they must be combined with some
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Accusation probabilities in Tardos codes 381

kind of embedding scheme. The resulting system has two layers [9,19]: The coding layer
determines which message to embed and protects against collusion attacks. The underlying
watermarking layer hides symbols of the message in segments of the content. The symbols
are either binary or from a larger alphabet. The interface between the fingerprinting code and
the watermarking system is usually specified in terms of the marking assumption plus addi-
tional assumptions that are referred to as a ‘model’. The marking assumption states that the
colluders are able to perform modifications only in those content segments where the collud-
ers received differently marked content. These segments are called detectable positions. The
‘model’ specifies the kind of symbol manipulations that the attackers are able to perform in
detectable positions. The commonly used restricted digit model only allows them to choose
pieces from their copies of the content, i.e. each segment of the unauthorized copy carries
exactly one symbol that the attackers have available. The unreadable digit model allows for
slightly stronger attacks. The attackers are also able to erase the fingerprint at detectable posi-
tions. Under the arbitrary digit model the attackers can put arbitrary symbols in detectable
positions, while the general digit model additionally allows erasures at detectable positions.

1.2 Tardos codes

Many collusion resistant codes have been proposed in the literature. Most notable are the
Boneh-Shaw construction [5] and the by now famous Tardos code [23]. The former con-
struction uses a concatenation of an inner code with a random outer code, while the latter
one is a fully randomized binary code. We briefly summarize some of the most important
developments regarding Tardos codes. The number of users is n. In Tardos’ original paper
[23] a binary code was given achieving length m = 100c2

0�ln 1
ε1

�, along with a proof that

m ∝ c2
0 is asymptotically optimal1 for large coalitions, for all alphabet sizes. Here c0 denotes

the number of colluders that can be resisted, and ε1 is the maximum allowed probability of
accusing a fixed2 innocent user.

The original Tardos code construction contained two unfortunate design choices which
caused the proportionality constant ‘100’ to be so high. First, the false negative probability
ε2 (not accusing any of the guilty users) was coupled to ε1 according to ε2 = ε

c0/4
1 . This

gives ε2 � ε1 which is highly unusual in the context of content distribution; a deterring
effect is achieved already at ε2 ≈ 1

2 , while the false positive probability (≈nε1) needs to be
very small. In the subsequent literature (e.g. [4,21]) the ε2 was decoupled from ε1, leading
to a substantial improvement of the code length.

Second, the symbols 0 and 1 were not treated on an equal footing. Only segments where
the attackers produce a 1 were taken into account. This procedure ignores 50% of all the
available information. A fully symbol-symmetric version of the Tardos code was given in
[20], leading to a further improvement of the code length by a factor 4.

A further improvement was achieved in [17]. The Tardos code construction consists of
two probabilistic steps. In the first step, a bias parameter is generated for each segment. In
Tardos’ original construction the probability density function (pdf) for the bias is a continu-
ous function, suitable for arbitrary coalition size. In [17] a class of discrete distributions was
given that performs better against finite coalition sizes than the original pdf.

1 The proportionality m ∝ c2
0 was already known in the context of spread-spectrum watermarking. Kilian

et al. [13] showed that, if the watermarks have a component-wise normal distribution, then Ω(
√

m/ ln n)

differently marked copies are required to successfully erase any mark with non-negligible probability.
2 Not to be confused with the total false positive probability (which we denote as η). The relation is η =
1 − (1 − ε1)n−c0 ≈ nε1.
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382 A. Simone, B. Škorić

All the above mentioned work followed the so-called ‘simple decoder’ approach, i.e.
an accusation value is computed for each user independently, and if it exceeds a cer-
tain threshold, the user is considered suspicious. In contrast, one can also use a ‘joint
decoder’ which considers sets of users. Amiri and Tardos [2] have given a capacity-achiev-
ing joint decoder construction for the binary code. (Capacity refers to the information-
theoretic treatment [11,16,22] of the colluder attack as a communication channel.)
However, the construction is rather impractical, requiring computations for many candidate
coalitions. Even if more practical joint decoders are found, the simple decoder will serve
as a stepping stone in their operation. Thus, interest in the simple decoder remains high. In
[20] the binary construction was generalized to alphabets of arbitrary size q , in the simple
decoder approach. It was shown that, in the restricted digit model, the transition to a larger
alphabet size has benefits beyond the mere fact that a q-ary symbol carries log2 q bits of
information.

1.3 Main topic of this paper: the Gaussian approximation

The so-called ‘Gaussian approximation’ or ‘Gaussian assumption’, introduced in [21], has
been a useful tool in the analysis of Tardos codes. The assumption is that the pdf of a user’s
accusation value has a normal distribution. When this is the case, the statistical analysis of
the code’s performance can be drastically simplified; the performance is almost completely
determined by a single parameter, namely the average accusation μ̃ of the coalition.

The Gaussian assumption is motivated by the Central Limit Theorem (CLT): A user accu-
sation consists of a sum of per-segment contributions, which are independent and identically
distributed (i.i.d.). When many of these get added together, the result is close to normal-
distributed, i.e. the pdf is very close to a Gaussian in a certain region around the average,
and deviates in the tails. The longer the code becomes (i.e. the larger the coalition size c0),
the wider this central region. In [20,21] theoretical results were provided arguing that the
central region is sufficiently wide to allow for application of the Gaussian approximation
for realistic parameter choices. However, these arguments are not very precise in nature and
have not been sufficiently corroborated.

In this paper we provide an in-depth analytical and numerical investigation of the
Gaussian approximation. Our approach is based on the addition rule for characteristic func-
tions, and a method to re-write the false accusation probability as a power series expansion
with increasing powers of 1/m.

1.4 Related work

Kuribayashi et al. [14] numerically studied the error probabilities of the binary Tardos code
in the case of the majority voting attack. They used a fixed code length m = 104 and a false
accusation probability of around 10−8. They found that the Gaussian approximation is valid
under these circumstances.

Furon et al. [7] did a simulation-based numerical analysis of error probabilities for the
binary Tardos code in the case of small coalitions and coupled false positive and false nega-
tive, ε2 = ε

c0/4
1 . The used a rate-minimizing attack, yet combined it with the simple decoder.

Their method was based on rare event analysis. They found that the Tardos code performs
better than expected.

In our work we decouple ε2 from ε1 and take ε2 ≈ 0.5. We stay within the simple decoder
approach. Our method to compute probabilities is general, and can be applied to all alphabet
sizes and parameter settings.
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Accusation probabilities in Tardos codes 383

Our approach is based on the elementary ‘multiplication is convolution’ property of the
characteristic function (Fourier transform) of probability distributions (see e.g. [15]). Com-
putation of a cumulative distribution function of summed independent variables using this
property is sometimes called Beaulieu’s method [3]. In the context of watermarking it has
been applied to analyze e.g. the robustness of Distortion-Compensated Dither Modulation
[1].

1.5 Contributions and outline

This paper discusses the case of the simple decoder, in the restricted digit model.

– We introduce a new parametrization of the colluder strategy in the restricted digit model.
As usual in the literature, their strategy is allowed to be probabilistic. In a given content
segment, they receive symbol α a number of times equal to σα . Under the usual symmetry
assumptions, the strategy can be completely fixed by setting parameters which we denote
as Ψb(x); this is the probability that the attackers choose a symbol y that occurs σy = b
times, given that the rest of the symbols occur x times. The quantity Ψb(x) does not depend
on an actual symbol index, and is invariant under permutation of x. This new parame-
trization allows us to obtain more compact expressions for e.g. the average accusation
of the coalition (μ̃), and the probability distribution of the accusation of innocent users.
Furthermore, for several strategies it allows us to do a certain amount of pre-computation,
speeding up the numerical analysis of the false positive errors.

– For nonbinary alphabets and realistic parameter choices, we show that the statistical
parameter μ̃ is minimized when the colluders employ a majority voting attack. In the
Gaussian approximation, the code length scales as m ∝ c2

0μ̃
−2; hence, the colluders want

to minimize μ̃.
– We determine the pdf ϕ of an innocent user’s accusation at a single content segment.

We show that the tails of the pdf follow a power law which depends on the colluder
strategy. Independent of the strategy, the right tail falls off faster than the left tail. This is
an advantageous property, since positive accusation of innocent users is undesirable.

– We show that, given realistic parameter settings, the third abolute moment of the pdf is
always finite. This guarantees convergence to the normal distribution.

– The ‘interleaving’ colluder strategy, which is known to be information-theoretically opti-
mal [10,12] for c0 → ∞ and binary alphabet, turns out to have special properties: the
pdf and μ̃ do not depend on the coalition size; the left and right tail are maximally heavy.

– We compute the Fourier transform ϕ̃ (characteristic function) of ϕ. In the Fourier domain,
the pdf of a sum of two variables is simply the product of their pdfs. Using this fact, we
obtain an analytic result for the false accusation probability expressed in terms of ϕ̃m ,
containing only a single integration.

– The integration mentioned in the previous point turns out to be rather difficult to compute
numerically. In order to deal with this problem, we use a series expansion of ϕ̃m in powers
of 1/m. This yields an expression for the false accusation probability consisting of the
Gaussian result plus correction terms of decreasing magnitude. The larger m is, the fewer
terms are required. In the limit m → ∞ the tail of a Gaussian is all that remains.

– We introduce a fast algorithm for computing strategy-dependent coefficients in the case
of majority voting. We present numerical results for the majority voting and interleaving
attacks. It turns out that the ‘shape’ parameter κ (which appears in the bias function, see
Sect. 2) plays a major role in the speed of convergence to the Gaussian limit. The larger
κ , the faster the convergence and the better the defense against the interleaving attack.
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In Sect. 2 we briefly review the q-ary Tardos code and the Gaussian approximation, introduce
some notation (including the new strategy parametrization), and give some lemmas that are
needed for the computations in later sections. After these long preliminaries, we show in
Sect. 3 that the majority voting attack minimizes the parameter μ̃. In Sect. 4 we develop our
method of systematically computing corrections to the Gaussian limit. Numerical results are
shown in Sects. 5 and 6.

2 Preliminaries

2.1 The q-ary Tardos code

The setting in this paper is the q-ary Tardos code in the restricted digit model. We briefly
summarize the most important concepts and introduce the notation.

The length of a codeword (number of symbols) is denoted as m. The number of users
who receive a codeword is n. The alphabet is Q, with size q . Sometimes the alphabet will be
referred to as {0, . . . , q − 1} for simplicity. The notation X ji ∈ Q stands for the i’th symbol
in the codeword of user j . The whole matrix of embedded codewords is X .

Code generation: The code is generated by a two-step probabilistic algorithm. First, m
vectors p(i) ∈ (0, 1)q are independently drawn (i ∈ [m]) according to a distribution F , with

F(p) = δ

⎛

⎝1 −
∑

β∈Q
pβ

⎞

⎠ · 1

B
(
κ1q

)
∏

α∈Q
p−1+κ
α . (1)

Here 1q stands for the vector (1, . . . , 1) of length q, δ(·) is the Dirac delta function ensuring
that the components pα add up to 1, and B is the generalized Beta function (also known as
the Dirichlet integral). κ is a positive constant.

In the case of the binary alphabet it is optimal to set κ = 1/2. A complication then occurs:
the range of the pα variables has to be restricted to (t, 1 − t), with 0 < t � 1, in order to
avoid excessive accusation scores (see the ‘accusation’ step below). In this paper we will not
consider the case (q = 2, κ = 1

2 ) and hence work with the unrestricted range pα ∈ (0, 1).
For parameters v1, . . . , vn > 0 the n-dimensional Beta function is defined as3

B(v) :=
1∫

0

dn x δ

(

1 −
n∑

a=1

xa

)
n∏

b=1

x−1+vb
b =

∏n
a=1 Γ (va)

Γ
(∑n

b=1 vb
) . (2)

In the second step of the code generation, all matrix elements X ji are drawn independently
according to the following distribution,

Pr
[

X ji = α|p(i)
]

= p(i)
α . (3)

Notice that the probabilities do not depend on the row index j , i.e. p(i) determines the
probabilities for a whole column of X .

The attack: The coalition of attackers is C, with size |C| = c. The part of X observed by
the coalition is XC . In the restricted digit model, the attackers create a pirated version of the
content such that segment i contains a symbol yi ∈ Q. (In contrast to other attack models,

3 This is also known as a Dirichlet integral. The ordinary Beta function (n = 2) is B(x, y) = Γ (x)Γ (y)/

Γ (x + y).
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e.g. the combined digit model, where erasures and combinations of multiple symbols are
allowed.) We define vectors σ (i) ∈ N

q as

σ (i)
α := |{ j ∈ C : X ji = α}| (4)

i.e. the number of occurrences of the symbol α that the attackers see in column i . Obvi-
ously

∑
α∈C σ

(i)
α = c. The attackers have a (probabilistic) strategy for choosing their output

symbols. As usual in the literature on this subject, it is assumed that this strategy is fully col-
umn-symmetric, symbol-symmetric and attacker-symmetric. The assumption of column and
symbol symmetry of the attack is motivated by the fact that these symmetries are present in
the code generation and accusation algorithms, and that all columns and symbols are handled
completely independently. The assumption of attacker-symmetry is motivated by (i) the row
symmetry and independence of the rows in the code generation and accusation; (ii) the fact
that any departure from attacker-symmetry will endanger one attacker more than the others.

The strategy is expressed as a set of probabilities θy|σ that apply independently for each
segment. Omitting the column index i , we have for each i

Pr
[
output y, given σ

] = θy|σ . (5)

Due to the marking condition some of these probabilities are fixed. Let eα denote the vector
(0, . . . , 0, 1, 0, . . . , 0) with the ‘1’ in position α. Then

θy|ceα = δyα, (6)

where δ is the Kronecker delta.
Accusation: The watermark detector sees the symbol yi embedded in segment i of the

attacked content. Users are classified as suspicious (‘accused’) or not suspicious according
to the following algorithm. For each user j , the so-called accusation sum Sj is computed,

S j =
m∑

i=1

S(i)
j where S(i)

j = g[X ji ==yi ]

(
p(i)

yi

)
, (7)

where the expression [X ji == yi ] evaluates to 1 if X ji = yi and to 0 otherwise, and the
functions g0 and g1 are defined as

g1(p) =
√

1 − p

p
; g0(p) = −

√
p

1 − p
. (8)

In words: Having the same symbol as the attacked content induces a positive contribution
g1(pyi ) to the accusation sum, which becomes worse when yi is unlikely to occur. Having a
symbol different from yi induces a negative amount g0(pyi ), which becomes more negative
when yi is likely to occur. The total accusation of the coalition is defined as S := ∑

j∈C S j .
The choice (8) of g0, g1 is the unique combination of functions that satisfies

pg1(p) + (1 − p)g0(p) = 0 ; p [g1(p)]2 + (1 − p) [g0(p)]2 = 1. (9)

This choice has been shown to be optimal for the binary alphabet [6,21], i.e. it minimizes
the code length. Its unique properties (9) also hold for q ≥ 3; that is the main motivation for
using (8).

A user is ‘accused’ if his accusation sum exceeds a threshold Z . A list L is made of
accused users,

L = { j : S j > Z}. (10)
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Performance: The ‘performance’ of the scheme involves four important parameters: the
number of attackers that has to be resisted (c0), the maximum tolerable false negative prob-
ability ε2 (prob. of not catching any of the attackers),

Pr [L ∩ C = ∅] ≤ ε2, (11)

the maximum tolerable false positive probability ε1

for fixed innocent j : Pr[ j ∈ L] ≤ ε1, (12)

and the length m of the code. (Note that the total probability of false positives occurring is
approximately nε1.) One way of measuring how well the scheme works is to look at how big
m has to be as a function of c0, ε1 and ε2. The smaller m, the better the scheme. It is important
to note that in forensic watermarking of audio/video content, a small false positive probabil-
ity is the primary requirement. The false negative is far less important, since the deterring
effect of forensic watermarking is preserved even for large ε2, of the order of 1

2 . Hence m
essentially becomes a function of c0 and ε1. In [20] an asymptotic result was obtained for
large c0,

m = 2

μ̃2 c2
0 ln

1

ε1
√

2π
. (13)

Here μ̃ is the expectation value of the collective accusation sum of the coalition, scaled in
such a way that the dependence on m is removed: μ̃ = E[S]/m. In the case of the binary
scheme (with κ = 1/2), μ̃ = 2/π ≈ 0.64. For larger alphabets the μ̃ depends on the param-
eter κ in a complicated way; for optimal κ , the μ̃ takes values from approximately 0.8 to 1.4
as q goes from 3 to 10.

2.2 The Gaussian approximation

We briefly review the analysis of error probabilities performed in [20], which leads to the
result (13). Consider, for some innocent user j , the probability distribution function (pdf) ρm

of the quantity S j/
√

m. (Note that the pdf itself depends on m.) From (9) it follows that ρm

has zero mean and unit variance. For brevity we now introduce the notation Z̃ = Z/
√

m.
The probability of falsely accusing j is given by

∞∫

Z̃

dx ρm(x) =: Rm(Z̃). (14)

This is depicted as the shaded area ‘FP’ in Fig. 1. We require

Rm(Z̃) ≤ ε1. (15)

Similarly, consider the probability distribution τm of the quantity S/(c
√

m), but normalized
in such a way that the mean is zero and the variance is 1. The cumulative distribution function
is

Tm(x) :=
x∫

−∞
dx ′ τm(x ′). (16)

It was shown in [23] that Pr[FN] ≤ Pr[S < cZ ]. Hence if Pr[S < cZ ] ≤ ε2 then auto-
matically Pr[FN] ≤ ε2. The shaded area in Fig. 1 labeled as ‘FN’ is actually Pr[S < cZ ],
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Fig. 1 Sketch of the probability distributions of S j /
√

m for some fixed innocent j , and of S/(c
√

m).
The horizontal axis is scaled by a factor

√
m so that the variance of the innocent curve is exactly 1

which acts as a handy bound on the FN. This area is given by Tm

([
Z̃ − μ̃

√
m

c

]
/ σ̃

c

)
=

Tm

(
cZ̃−μ̃

√
m

σ̃

)
, where σ̃ is the (scaled) standard deviation of the collective accusation,

mσ̃ 2 := E[S2] − (E[S])2. The requirement on the FN probability in case of c0 attackers
is then formulated as

Tm

(
c0 Z̃ − μ̃

√
m

σ̃

)

≤ ε2. (17)

The two equations (15) and (17) for given c0, ε1, ε2 can be thought of as constraints in the
(Z , m)-plane. It was shown that these constraints can be satisfied only if

m ≥ 1

μ̃2 c2
0

[

Rinv
m (ε1) − σ̃

c0
T inv

m (ε2)

]2

(18)

where Rinv
m and T inv

m are the inverse functions of Rm and Tm respectively. Note that T inv
m (ε2) <

0 for ε2 smaller4 than approximately 1/2; decreasing ε2 leads to a longer code. It was shown
that the T inv

m term is negligible with respect to the Rinv
m term if c0 is large and/or ε2 ≈ 1/2.

Hence, (18) in practice reduces to

m ≥ mmin ; mmin ≈ 1

μ̃2 c2
0

[
Rinv

m (ε1)
]2

. (19)

Equation 19 in itself is not immediately useful, because Rm depends on m. In the limit of large
m, however, ρm simply becomes a Gaussian independent of m, and Rm is the area under a

Gaussian tail, which we denote as Ω(Z̃) = 1
2 Erfc Z̃√

2
. (Here Erfc is the complementary error

function.) The result (13) follows by applying the bound [Ω inv(ε1)]2 = [√2 Erfcinv(2ε1)]2 <

2 ln(ε1
√

2π)−1.

4 If one is willing to set ε2 > 1/2, the contribution from T inv
m (ε2) may even reduce the code length.
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To the best of our knowledge, the above reasoning is the simplest argument available that
yields the asymptotic relation m ∝ c2

0.
It was argued in [20,21] that m is so large that ρm is Gaussian even a sufficient number of

standard deviations away from 0. (‘Sufficient’ here means that the area under the Gaussian
part is at least 1 − 2ε1 so that the area under the right tail is estimated accurately.) The argu-
ment was based on the moments of the innocent accusation. However, a full analysis of the
tails of ρ has never been done. Such a full analysis is important for the following reason. As
(19) shows, it is advantageous for the attackers not only to decrease μ̃, but also to modify the
shape of Rm such that Rinv

m (ε1) increases, i.e. such that the right-hand tail of the innocent’s
accusation probability becomes longer. How much influence their strategy has on the shape
of Rm will be studied in Sects. 5 and 6. If there is hardly any influence, then the value of μ̃

uniquely determines mmin, and the optimal strategy is to minimize μ̃; if there is a significant
influence, then the attackers’ aim is to maximize the quotient Rinv

m (ε1)/μ̃.

2.3 Probabilities and expectation values

For given p, the probability that the colluders receive symbol occurrences σ is the multinomial
distribution. We use the following notation,

P(σ |p) :=
(

c

σ

) ∏

α∈Q
pσα
α , (20)

where
(c
σ

) = c!/(∏α σα !). It is always implicitly understood that
∑

α σα = c. The marginal
distribution for a single component σα is the binomial. We use the notation

P1(b|p) := Pr[σα = b|pα = p] =
(

c

b

)

pb(1 − p)c−b. (21)

Lemma 1 The overall probability that the colluders receive symbol occurrences σ is given
by

P(σ ) :=
(

c

σ

)
B
(
κ1q + σ

)

B
(
κ1q

) .

Proof We have Pr[σ ] = EpP(σ |p), with P(σ |p) given by (20). The expectation Ep stands

for Ep[· · · ] = ∫ 1
0 dq p F(p)(· · · ), with F defined in (1). The lemma follows by applying

the Dirichlet integration rule (2). ��

Lemma 2 The marginal probability distribution f (pα) for a single component of the vector
p is

f (pα) = 1

B (κ, κ[q − 1]) p−1+κ
α (1 − pα)−1+κ[q−1] .

Proof We have
∫ 1

0 d pα f (pα) = ∫ 1
0 dq p F(p). In the latter integral, we write for all

β �= α: pβ = (1 − pα)sβ , with sβ ∈ [0, 1]. This gives dq p = d pα(1 − pα)q−1dq−1s,

and
∏

γ p−1+κ
γ = p−1+κ

α (1 − pα)(q−1)(−1+κ)
∏

β∈Q\α s−1+κ
β , and δ

(
1 − ∑

γ∈Q pγ

)
=

δ
(
[1 − pα]

[
1 − ∑

β∈Q\α sβ

])
= (1 − pα)−1δ

(
1 − ∑

β∈Q\{α} sβ

)
. Combining all these

ingredients, we find
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1∫

0

d pα f (pα) =
1∫

0

d pα p−1+κ
α (1 − pα)−1+κ[q−1] 1

B(κ1q)

1∫

0

dq−1sδ

⎛

⎝1−
∑

γ∈Q\α
sγ

⎞

⎠

×
∏

β∈Q\α
s−1+κ
β . (22)

The lemma follows after evaluation of the
∫

dq−1s integral using (2). ��
Lemma 3 The overall marginal probability distribution for one component of σ is

P1(b) := Pr[σα = b] =
(

c

b

)
B(κ + b, κ[q − 1] + c − b)

B(κ, κ[q − 1]) .

Proof We have Pr[σα = b] = ∫ 1
0 d pα f (pα)P1(b|pα) with P1(b|pα) and f (pα) given by

(21) and Lemma 2 respectively. The integral is evaluated using (2). ��
Corollary 1 Let σ \α denote the vector σ without the component σα . The probability distri-
bution of σ \α conditioned on σα is given by

Pq−1(x|b) := Pr[σ \α = x|σα = b] =
(

c − b

x

)
B(κ1q−1 + x)

B(κ1q−1)
.

Proof Follows directly from Lemmas 1 and 3 by taking Pr[σ \α = x|σα = b] = P(σ =
(x, b))/P1(b) and simplifying the Beta functions. ��

We introduce a new parametrization of the colluder strategy. For b ∈ {1, . . . , c} and
x ∈ N

q−1, with
∑

a xa = c − b, we define

Ψb(x) := θα|(σα=b,σ \α=x). (23)

The vector σ has σα = b, and the other q −1 components are given by x. The probability for
outputting α given such a σ does not depend on the actual value of α, but only on b and x.
(In fact, it is even insensitive to permutations of x.) This follows from the symbol-symmetry
and attacker-symmetry of the attack strategy. In words: Ψb(x) is the coalition’s probability
of outputting a symbol which for them occurs b times, with the other symbol frequencies
being x. In the case of the binary alphabet, x has only one component equal to c − b. We
will then use the notation Ψb, with Ψ0 = 0 and Ψc = 1 due to the marking condition.

Next we define

Kb := Ex|bΨb(x) =
∑

x

Pq−1(x|b)Ψb(x). (24)

It is implicit that
∑

β∈Q\{α} xβ = c − b. For q = 2 we define Kb = Ψb. (In some of the
literature the notation θx := Pr[y = 1| #received 1s = x] is used for the binary case. The
relation with our notation is: θb = Ψb.)

For any pirate strategy we have

K0 = 0 ; Kc = 1 (25)

due to the marking assumption.

Lemma 4 The numbers Kb satisfy

q
c∑

b=1

KbP1(b) = 1.

123



390 A. Simone, B. Škorić

Proof The factor q can be replaced by
∑

y∈Q. Using the definition (24) we get∑
y
∑

b KbP1(b) = ∑
b
∑

x P(x, b) · ∑y Ψb(x) = ∑
b
∑

x P(x, b) · ∑y θy|σy=b,σ \y=x =∑
b
∑

x P(x, b) = 1. ��
Lemma 5 If the colluder strategy is the interleaving attack, θy|σ = σy

c , then Kb = b/c.

Proof This strategy implies Ψb(x) = b/c independent of x. Substitute this into (24) and use
the fact that the probabilities add up to 1. ��
2.4 Integrals and Gamma function equalities

Lemma 6 For d > 0, v > 0, the following holds

∞∫

0

du
u2d−1

(1 + u2)d+v
= 1

2 B(d, v).

Proof Apply a change of variables u = √
p/(1 − p), with p ∈ [0, 1]. This gives 1 + u2 =

1/(1− p) and du = 1
2 p−1/2(1− p)−3/2d p. The integral becomes 1

2

∫ 1
0 d p p−1+d(1− p)−1+v

which has the Dirichlet form (2). ��
Lemma 7 For x � 1, and a1, a2 such that |a1| � x and |a2| � x, it holds that

Γ (x + a1)

Γ (x + a2)
= xa1−a2 [1 + O(

1

x
)].

Proof Follows directly from Stirling’s approximation Γ (z + 1) ≈ √
2π z(z/e)z . ��

Lemma 8 Let c � 1 and 1 � b ≤ c. Let α1, α2, β1, β2 � b. Then

B (b + α1, c − b + β1)

B (b + α2, c − b + β2)
=

(
b

c

)α1−α2
(

1 − b

c

)β1−β2
[

1 + O(
1

b
)

]

.

Proof Follows directly from writing out the Beta functions in terms of Gamma functions
and then applying Lemma 7. ��
Definition 1 We define Ω(z) as the probability mass in the right tail of the normal distribution
beyond point z,

Ω(z) = 1√
2π

∞∫

z

dx e−x2/2.

Lemma 9 (See e.g. Eq. 9.254.1 in [8]) For x ∈ R

1

2π i

∞∫

−∞
dk

eikx

k
e−k2/2 = 1

2 − Ω(x).

Lemma 10 (See e.g. Eq. 3.462.1 in [8]) For ν > 0 and x ∈ R

∞∫

0

dk kν−1e− 1
2 k2

eikx = Γ (ν)2ν/2 H−ν

(−i x√
2

)

. (26)

Here H is the Hermite function.
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Corollary 2 For x ∈ R and ν > 0

∞∫

−∞

dk

2π
(i sgn k)α−1|k|ν−1e−k2/2eikx = 1

π
Γ (ν)2ν/2 Im

[

i−α H−ν

(
i x√

2

)]

= 2−(ν−1)/2

(sin νπ)
√

2π
e− 1

2 x2
[

Hν−1

(
x√
2

)

sin
π

2
(ν − α) − Hν−1

(−x√
2

)

sin
π

2
(ν + α)

]

.

(27)

Proof The first equality follows by applying Lemma 10 twice (once for the positive part of
the integral, once for the negative). The second equality follows from the properties of the
Hermite function (see e.g. p. 1094 of [8]). ��

Remark In the case α = ν, the first term of the last line vanishes, yielding −2− ν
2 π

− 1
2 e− 1

2 x2

Hν−1(
−x√

2
). For integer ν, the Hermite function Hν−1 reduces to a Hermite polynomial.5

2.5 Fourier transforms

Definition 2 Let χ : R → C be a function. The Fourier transform of χ is denoted as χ̃ and
defined as

χ̃ (k) =
∞∫

−∞
dx e−ikxχ(x) with k ∈ R.

Lemma 11 If χ is a real-valued function, then χ̃(−k) = [χ̃(k)]∗.

Proof
[∫

dx e−ikxχ(x)
]∗ = ∫

dx
[
e−ikxχ(x)

]∗ = ∫
dx eikxχ(x) = χ̃(−k). ��

Corollary 3 If χ is a real-valued function, then the even part of χ̃ (k) is Re χ̃ (k), and the
odd part is i · Im χ̃ (k).

Proof By Lemma 11, the even part is 1
2

[
χ̃ (k) + χ̃(−k)

] = 1
2 χ̃ (k) + 1

2 [χ̃(k)]∗ = Re χ̃ (k).
The odd part is 1

2 [χ̃ (k) − χ̃ (−k)] = 1
2 χ̃ (k) − 1

2 [χ̃ (k)]∗ = iIm χ̃(k). ��
Lemma 12 Let χ(x) be a probability distribution function, and X a random variable with
X ∼ χ . Then

∂nχ̃ (k)

∂kn

∣
∣
∣
∣
k=0

= (−i)n
E[Xn].

Proof ∂n χ̃ (k)
∂kn = ∫

dx [ ∂n

∂kn e−ikx ]χ(x) = (−in)
∫

dx xne−ikxχ(x). Setting k = 0 gives the
result. ��
Corollary 4 Let ϕ be the probability distribution function of the one-symbol accusation S(i)

j
for an innocent user j . Then its Fourier transform ϕ̃ has the following power series expansion,

ϕ̃(k) = 1 − 1
2 k2 + higher powers of k,

where the higher powers of k are allowed to be irrational.

5 There are multiple versions of ‘the’ Hermite polynomials in the literature. We refer to the pure polynomial
without the exponential factor.
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Proof We denote u = S(i)
j for brevity. Trivially E[u0] = 1. From (9) we know that E[u] = 0

and E[u2] = 1. Hence by Lemma 12 we have ϕ̃(0) = 1, ϕ̃′(0) = 0 and ϕ̃′′(0) = −1. The
expansion in the corollary is consistent with these values. ��

Higher orders of k do not have to be integer. In fact, if E[u3] �= 0, E[u3] < ∞ and
E[u4] = ∞ (as we will see is the case in Sect. 4.2) then there is a k3 term in the expansion,
and the lowest power of k higher than 3 lies somewhere between 3 and 4.

3 Strategy for minimizing μ̃

Definition 3 When we use the term ‘majority voting’ it will mean the following:

– If ∃α : σα > σβ for all β �= α, then output α. (If one symbol occurs more often than all
the others, output this symbol.)

– If the most frequently occurring symbol is not unique, i.e. there are multiple such symbols,
then output one of them uniformly at random.

Similarly, by ‘minority voting’ we mean:

– If ∃α : 1 ≤ σα < σβ for all β �= α, then output α. (If one symbol occurs less often than
all the others, output this symbol.)

– If the least frequently occurring symbol is not unique, i.e. there are multiple such symbols,
then output one of them uniformly at random.

3.1 Binary alphabet

The case q = 2 is simple. It was shown in [20] that for κ > 1/2 minority voting is optimal
(in the sense of minimizing μ̃), while for κ < 1/2 it is majority voting. For κ = 1/2 the
strategy has no effect on μ̃, whose value is then 2/π .

Remark At this point we are discussing only the effect on μ̃, not other criteria to judge the
strength of attacks.

3.2 Non-binary alphabet

In [20] the following expression was obtained for μ̃ (for the case q ≥ 3),

μ̃ =
∑

σ

P(σ )
∑

y∈Q
θy|σ W (σy)

{
1
2 − κ + σy

c
(κq − 1)

}
(28)

W (b) := c
Γ

(
b + κ − 1

2

)

Γ (b + κ)

Γ
(
c − b + κ[q − 1] − 1

2

)

Γ (c − b + κ[q − 1]) .

The colluders want to minimize μ̃, while the content owner wants to maximize it.

Theorem 1 For q ≥ 3 and κ ≈ 1/q, the majority voting strategy minimizes μ̃.

Proof The ‘optimal’ colluder strategy (in the sense of making μ̃ as small as possible) is, for
given σ , to choose y such that the expression W (σy)

{ 1
2 − κ + σy

c (κq − 1)
}

is minimized. It
was found numerically in [20] that the optimal choice of the parameter κ against this attack
is slightly larger than 1/q . Putting κ ≈ 1/q in (28), we see that the optimal attack strategy
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Fig. 2 Example of W (b) for
q = 3, κ = 0.34

is effectively to minimize W , i.e. the coalition chooses y = arg min{W (σα)}α∈Q. Numerical
inspection shows that the function W (b) has a minimum at b = �c/2� (see Fig. 2).

For large c this is easily understood: application of Lemma 7 for large b and c − b gives
W (b) ≈ [ b

c

(
1 − b

c

)]−1/2, a function with its minimum at b = c/2 and symmetric around
this minimum. Hence the optimal strategy consists of choosing the symbol α whose σα is
closest to c/2. It turns out that this is precisely the same as majority voting. This can be seen
as follows. First consider the case where the ‘closest to c/2’ strategy results in σy > c/2.
Because of the sum rule

∑
α σα = c, there can be no α �= y with σα > c/2; hence the

strategy has resulted in selecting the majority symbol. Second, consider the ‘closest to c/2’
strategy yielding σy = c/2 − δ, with δ > 0. If there is any α �= y with σα > σy , it will have
to satisfy σα ≥ c/2 + δ = c − σy . Only the equality is allowed (σα = c − σy) by the sum
rule; it gives rise to almost the same amount of accusation as σy , since W (b) is very close to
symmetric around c/2. ��
Theorem 2 The quantity μ̃ as defined in (28) can be written as

μ̃ = q
c∑

b=1

P1(b)KbW (b)

{
1
2 − κ + b

c
(κq − 1)

}

. (29)

Proof In (28) we shift the
∑

y to the front and write P(σ ) = Pr[σy = b]Pr[σ \y = x|σy = b]
and

∑
σ = ∑

b
∑

x . The
∑

x of θy|σ yields Kb according to the definition (24). ��
Corollary 5 For κ > 1

2(q−1)
the contribution of the b = c term to μ̃ vanishes in the limit of

large c.

Proof In (29) we split off the b = c term, which has Kc = 1 due to the marking condition.
After some rewriting of Gamma functions this yields

μ̃ = cq
B
(
c + κ − 1

2 , κ[q − 1] + 1
2

)

B (κ, κ[q − 1]) + q
c−1∑

b=1

P1(b)KbW (b)

{
1
2 − κ + b

c
(κq − 1)

}

.(30)

In the limit of large c, the first term scales as (1/c)κ[q−1]−1/2. For κ[q −1] > 1
2 this vanishes

asymptotically. ��
Corollary 5 tells us that in the relevant case κ ≈ 1/q , the contributions to μ̃ work com-

pletely different than in the usual binary scheme (q = 2, κ = 1
2 ). There the b = c term

scales as c0 and all the b < c terms are zero.
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4 Statistics of the accusations

4.1 Our approach: Fourier transform

We now describe the basis of our method of computing false accusation probabilities. The
whole approach is based on a single observation: when random variables are added, the pdf
of the sum is obtained by multiplying the Fourier transforms of their respective pdf’s and then
doing a Fourier back-transform. In other words, if X ∼ f1, Y ∼ f2 and Z = X + Y ∼ f3,
then f̃3 = f̃1 f̃2. When this rule is applied to the m random variables in the accusation sum,
it leads to the following result.

Theorem 3 Let j be an innocent user. Let ϕ denote the pdf of S(i)
j , with S(i)

j as defined in
(7). Let ϕ̃ be the Fourier transform of ϕ. Then the probability that S j > Z is given by

Rm(Z̃) = 1

2
+ i

2π

∞∫

−∞
dk

exp ik Z̃

k

[

ϕ̃

(
k√
m

)]m

. (31)

Proof see Appendix A. ��
This result gives us a closed-form expression for Rm(Z̃) that contains only a single inte-

gration and a limited number of sums. (The sums are contained in the evaluation of ϕ̃, as
will become apparent in Sect. 4.3.) These will have to be evaluated numerically. Note that
Pr[S j > 0] is not necessarily equal to 1

2 .
It turns out that numerical evaluation of the integral in (31) is difficult, because of the

fast oscillations of the integrand at large k. For this reason, we have chosen for a somewhat
indirect method of evaluating (31). It is based on a series expansion in powers of k. It has
the advantage that the accuracy of the numerical evaluation is well under control, and that
the dependence of Rm on m is visible. The disadvantage is that many terms in the expansion
have to be kept.

Theorem 4 Let j be an innocent user. Let ϕ have a finite third moment. Then it is possible
to write

[

ϕ̃

(
k√
m

)]m

= e− 1
2 k2

[

1 +
∞∑

t=0

ωt (m)(i sgn k)αt |k|νt

]

, (32)

where αt are real numbers; the coefficients ωt (m) are real; the powers νt satisfy ν0 = 3
and νt+1 > νt . The νt are not necessarily integer. All the coefficients ωt (m) are decreasing
functions of m, decreasing as m−νt /6 or faster. The probability of accusing user j is given by

Rm(Z̃) = Ω(Z̃) + 1

π

∞∑

t=0

ωt (m)Γ (νt )2
νt /2Im

[
i−αt H−νt (i Z̃/

√
2)
]
. (33)

Here H is the Hermite function.

Proof see Appendix B. ��
The proof closely follows one of the standard proofs of the Central Limit Theorem. In

the limit m → ∞ all the coefficients ωt vanish, leaving only the term Ω(Z̃) which is the
right-hand tail mass of the normal distribution.
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Table 1 Powers in ϕ(u) in the tails and close to u = 0

b Left tail Right tail u = −0 u = +0

1
(

1
|u|

)2c+1+2κ[q−1] (
1
u

)5+2κ |u|1+2κ u2c−3+2κ[q−1]

c
(

1
|u|

)3+2κ[q−1] (
1
u

)2c+3+2κ |u|2c−1+2κ u−1+2κ[q−1]

Dominant powers are shown in boldface

For integer ν the function H−ν reduces to the Hermite polynomial of order ν−1, multiplied
by a factor exp(− 1

2 Z̃2) (see Corollary 2).
In Sect. 4.2 we determine the distribution ϕ. In Sect. 4.3 the Fourier transform ϕ̃ is com-

puted and the leading order parameters νt , ωt , αt are derived.

4.2 Distribution function of an innocent user’s accusation

Theorem 5 For an innocent user j , the distribution function ϕ of S(i)
j is given by

u > 0 : ϕ+(u) = 2q

B(κ, κ[q − 1])
c∑

b=1

(
c

b

)
(u2)

κ[q−1]+c−b− 1
2

(1 + u2)c+1+κq
Kb

u < 0 : ϕ−(u) = 2q

B(κ, κ[q − 1])
c∑

b=1

(
c

b

)
(u2)

κ+b− 1
2

(1 + u2)c+1+κq
Kb. (34)

The proof is given in Appendix D. Note that all dependence on the strategy is contained in
the numbers Kb ∈ [0, 1]. Furthermore we see that the left tail and the right tail of ϕ(u) have
different power law behaviour. This is summarized in Table 1.

Note also that for 2κ[q − 1] > 1 the absolute third moment exists: the integral∫
du |u|3ϕ(u) is convergent in both tails. (As opposed to the binary case with κ = 1/2.) Con-

sequently, there is a guaranteed convergence to the normal distribution when i.i.d. random
variables ui ∼ ϕ are added together in large numbers.

The right tail is dominated by the b = 1 term; it is proportional to (1/u)5+2κ . The left
tail is dominated by the b = c term, and is proportional to (1/|u|)3+2κq−2κ . It was found
numerically in [20] that the ‘optimal’ κ (in terms of maximizing μ̃) lies close to 1/q; for
such a choice of κ the left tail is heavier than the right tail.

Such a property is obviously beneficial for not accusing innocent users. The discrepancy
between the tails is even more pronounced if the attackers use the majority voting strategy
(which for q ≥ 3, κ ≈ 1/q minimizes μ̃, as mentioned in Sect. 3). Then the right tail is
dominated by the b = �c/q� term, which behaves as (1/u)3+2�c/q�+2κ , which for c > q
decreases even faster than (1/u)5+2κ . From this perspective it may be better for the attackers
not to use majority voting; another strategy may yield a form of the ρ curve that is better for
them. The best strategy strikes a balance between decreasing μ̃ and lengthening the tail of
ϕ+(u).

In the binary case, it is easy to identify where the balance lies: For κ ≈ 1
2 , the strategy has

practically no effect on μ̃, so the attackers should concentrate on lengthening the ϕ+(u) tail.
This is achieved by setting Ψb nonzero for small values of b, e.g. interleaving or minority
voting.
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The behaviour of ϕ(u) around u = 0 is also noteworthy. For u ↑ 0 the function is
dominated by the b = 1 contribution |u|1+2κ , which has zero derivative at u = 0. For
u ↓ 0 the b = c term u−1+2κ[q−1] dominates; this one, however, has infinite derivative for
κ < 1/(q − 1) (which is the case when e.g. κ ≈ 1/q).

Corollary 6 For an innocent user, the overall probability of positive and negative accusation
are in general unequal, and are given by

Pr[u > 0] = q
c∑

b=1

KbP1(b)
b + κ

c + κq

Pr[u < 0] = q
c∑

b=1

KbP1(b)
c − b + κ[q − 1]

c + κq
. (35)

Proof Follows by evaluating the u-integrals with Lemma 6, then applying Lemma 3 and
finally rewriting the Beta functions using B(x, y + 1) = B(x, y)

y
x+y . ��

Note that the probabilities properly add up to 1; this is readily seen from Lemma 4. Note
too what happens when the colluders choose a majority voting strategy: then Kb tends to be
small for small b and large for large b (see Sect. 5.1). The terms with large b then dominate
the summations in Corollary 6, and consequently Pr[u > 0] > Pr[u < 0]. This is consistent
with the fact that the left (u < 0) tail is heavier: the probability mass at u < 0 must be further
removed from u = 0 in order to cause E[u] = 0.

Corollary 7 If the colluder strategy is the interleaving attack, θy|σ = σy
c , then

ϕ+(u) = 2q

B(κ, κ[q − 1])
(u2)

κ[q−1]− 1
2

(1 + u2)2+κq

ϕ−(u) = 2q

B(κ, κ[q − 1])
(u2)

κ+ 1
2

(1 + u2)2+κq
,

and Pr[u > 0] = κ+1
κq+1 ,

Proof The first part follows directly by applying Lemma 5 to (34) and using
∑c

b=0

(c
b

)
bxb =

xc(1 + x)c−1. The second part follows from computing the integral
∫∞

0 du ϕ+(u) using
Lemma 6. ��

It is interesting to note that the interleaving attack yields a ϕ(u) distribution that has
the heaviest possible tails for both positive and negative u (see Table 1): proportional to
(1/|u|)3+2κ[q−1] for the left tail and (1/u)5+2κ for the right tail. It also has the lowest pos-
sible dominant powers around u = 0. Furthermore, ϕ(u) has the special property that it is
completely independent of c.

4.3 The Fourier transform of ϕ

We compute the Fourier transform (characteristic function) of ϕ(u) using the following
lemma.
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Lemma 13 (From [18], Sect. 2.5.9) Let k ∈ R, Re v > − 1
2 , and d > 0. Let the function Λ

be defined as the following convergent integral,

Λ(d, v; k) :=
∞∫

0

du
u2d−1

(u2 + 1)v+d
eiku .

This integral is expressed in terms of hypergeometric 1 F2 functions as

Λ(d, v; k) = (−ik)2vΓ (−2v) 1 F2

(

v + d; v + 1
2 , v + 1; k2

4

)

+ 1
2

∞∑

j=0

(ik) j

j ! B

(

d + j

2
, v − j

2

)

(36)

= (−ik)2vΓ (−2v) 1 F2

(

v + d; v + 1
2 , v + 1; k2

4

)

+ 1
2 B(d, v) 1 F2

(

d; 1
2 , 1 − v; k2

4

)

+ ik

2
B
(
d + 1

2 , v − 1
2

)
1 F2

(

d + 1
2 ; 3

2 , 3
2 − v; k2

4

)

.

Notice that in general Λ(d, v; k) is not an entire function of k due to the appearance of the
factor k2v in the first term, which for general v is not an entire function.

The hypergeometric function 1 F2 has the sum representation 1 F2(α;β1, β2; z) =
∑∞

j=0
(α) j

j !(β1) j (β2) j
z j where (α) j = α(α + 1) · · · (α + j − 1) is the Pochhammer symbol.

The radius of convergence is infinity. The 1 F2 function can be evaluated by using software
packages such as Mathematica.

Theorem 6 The Fourier transform of ϕ is given by

ϕ̃(k) = 2q

B(κ, κ[q − 1])
c∑

b=1

(
c

b

)

Kb ·
[

Λ(db, vb; k) + Λ(Db, Vb;−k)

]

,

with Λ as defined in Lemma 13, and

db = b + κ ; vb = c − b + κ[q − 1] + 1

Db = c − b + κ[q − 1] ; Vb = b + κ + 1. (37)

Proof The Fourier transform is defined as ϕ̃(k) = ∫∞
−∞du ϕ(u)e−iku . We use the expression

for ϕ given in Theorem 5. The integral for the summands in ϕ+ is immediately of the form
appearing in Lemma 13 and yields Λ(Db, Vb;−k). The integral over the ϕ− terms is of the
form

∫ 0
−∞du f (u2)e−iku , which can be rewritten as

∫∞
0 du f (u2)eiku ; this has the form of

the integral in Lemma 13 and yields Λ(db, vb; k). ��
For q ≥ 3 and realistic κ , none of the values db, vb, Db, Vb in (37) is integer or half-

integer. Hence substitution into all the Gamma functions and Pochhammers contained in the
1 F2 functions of Lemma 13 is well defined. Note that, given the summation range 1 ≤ b ≤ c,
the smallest possible value of vb or Vb is vc = 1 + κ[q − 1] > 1. Hence, in a power series
expansion for small k, the k2v term in (36) always comes ‘after’ the k3 power. In fact, for
q ≥ 3 and κ ≈ 1/q we have 2vc ∈ (3, 4).
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Corollary 8 For q ≥ 3 the leading order terms in the expansion of ϕ̃(k) are given by

ϕ̃(k) = 1 − 1
2 k2 + 2q

B(κ, κ[q − 1])

{
(ik)3

2 · 3!
c∑

b=1

Kb
[
B
(
db + 3

2 , vb − 3
2

)

−B
(
Db + 3

2 , Vb − 3
2

)] + (−ik)2+2κ[q−1]Γ (−2 − 2κ[q − 1])

+ (ik)4

2 · 4!
c∑

b=1

Kb [B (db + 2, vb − 2) − B (Db + 2, Vb − 2)]

+(ik)4+2κ K1Γ (−4 − 2κ)

}

.

+ . . .

Proof Follows by substituting the first expression for Λ from Lemma 13 into Theorem 6,
and then cutting off the small-argument power series of the 1 F2 function (which is preceded
by a factor (−ik)2v) after the k0 term. ��

Corollary 9 If the colluders use the interleaving attack, then

ϕ̃inter(k) = 1 − 1
2 k2 + 2q

B(κ, κ[q − 1])

⎡

⎣(ik)4+2κΓ (−4 − 2κ)1 F2

(
κq; κ + 5

2 , κ + 3; k2

4

)

+(−ik)2+2κ[q−1]Γ (−2 − 2κ[q − 1])1 F2

(
κq; κ[q − 1] + 3

2 , κ[q − 1] + 2; k2

4

)

+ 1
2

∞∑

j=3

(ik) j

j !
[

B
(
κ + 1 + j

2 , κ[q − 1] + 1 − j
2

)

+(−1) j B
(
κ[q − 1] + j

2 , κ + 2 − j
2

)]
]

.

Proof The Fourier integrals of the ϕ+ and ϕ− given in Corollary 7 are precisely of the form
handled in Lemma 13, with (d = κ[q − 1], v = κ + 2) and (d = κ + 1, v = κ[q − 1] + 1)

respectively. ��

5 Numerics for the majority voting strategy

We first present a fast algorithm for computing the Kb parameters in the case of majority
voting. Then we show numerical results for the minimum code length required to resist a
coalition of c0 attackers who use the majority voting strategy.

5.1 Computing Kb for majority voting

Lemma 14 Let the colluder strategy be majority voting. Let Nb ∈ N with Nb > max{c −
b, bq − c}, and let tb and Gba be defined as

tb = ei2π/Nb ; Gba =
b−1∑

x=0

Γ (κ + x)

x ! tax
b . (38)
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Then Kb is given by

b <
c

q
: Kb = 0 (39)

c

q
≤ b <

c

2
: Kb = b!(c − b)!

Γ (c − b + κ[q − 1])Γ (b + κ)B(κ1q−1)

· 1

q Nb

Nb−1∑

a=0

t−ac
b (Gba)q ·

{(

1 + Γ (b + κ)tab
b

b!Gba

)q

− 1

}

. (40)

b = c

2
: Kc/2 = 1 − q − 1

2

B
(
κ1q−1 + c

2e1
)

B
(
κ1q−1

) (41)

= 1 − 1
2

(1 + κ)c/2−1

(1 + κ[q − 1])c/2−1

b >
c

2
: Kb = 1. (42)

The proof is given in Appendix C.
These expressions look very complicated. However, they are easier to evaluate numerically

than (24). Evaluation of (40) requires only two summations: for every a, the computation of
Gba involves fewer than c/2 terms, and the a-sum has Nb terms, with Nb = O(cq/2). The
total number of terms is O(c2q/4). Direct evaluation of (24) on the other hand involves a
(q − 1)-dimensional sum with O([c/2]q−1) terms, a higher power of c when q > 3.

Note that a large number N can be chosen that satisfies N > max{c − b, bq − c} for all
c/q ≤ b < c/2. Then all the Nb values in (40) can be set to N . The price one pays for this
small simplification is that the sums contain more terms.

5.2 Behaviour of Rm(Z̃) for majority voting

From all the results in the previous sections, the false accusation probability for a fixed
innocent user, as a function of q, κ, c, and m, is numerically computed as follows (assuming
ε2 ≈ 1/2). The Kb parameters are evaluated using Lemma 14. A power series expansion
for x = ϕ̃(k) − 1 is obtained from Theorem 6. It is substituted in the series expansion of
ln(1+ x). Then k is replaced by k/

√
m and the whole expression is multiplied by m, yielding

a power series for m ln ϕ̃(k/
√

m). The first term, − 1
2 k2, is split off, and the rest is substituted

into the power series of the exp function. The resulting series precisely yields the powers νt ,
‘angles’ αt and coefficients ωt (m) as defined in (32). These are then used in (33) to obtain
the final result.

We did the handling of the power series and further numerical evaluations with Wolfram’s
Mathematica 7 package, using standard precision settings. The Hermite functions were evalu-
ated using theParabolicCylinderD function, which is part of the Mathematica function
library.

Figure 3 shows a typical example of the shape of the resulting curve. For low values of Z̃
the curve lies below the Gaussian tail integral Ω(Z̃), meaning that the Gaussian approxima-
tion is actually pessimistic there! Then at some point the curve crosses Ω(Z̃) and becomes
a power-law tail. The existence of a transition was expected: for finite m the CLT predicts
that convergence to the Gaussian shape occurs only in a central region around 0; outside of
this region (larger Z ) the original power-law behaviour of ϕ(u) prevails (see the analysis in
[20]).

123



400 A. Simone, B. Škorić

Fig. 3 Logarithmic plot of the
probability Rm (Z̃) of accusing a
fixed innocent user, as a function
of the scaled threshold Z̃ , for the
majority voting attack and with
parameter settings as listed in the
graph

Fig. 4 Logarithmic plot of the
correction to Ω(Z̃) as a function
of νmax, the maximum power of
k kept in the expansion

We will use the notation mcross(ε1) for the value of m where the crossover point Rm(Z̃) =
Ω(Z̃) lies exactly at Ω(Z̃) = ε1. For m ≥ mcross(ε1), the Gaussian approximation is valid
(and even pessimistic) for false accusation probabilities up to ε1. Note that mcross(ε1) depends
on c, q, κ and the pirate strategy. In the case of the majority voting attack, we find that mcross

decreases with c. This happens because the Kb parameters for majority voting (Lemma 14)
kick in only at b ≥ c/q , with Kb = 0 for b < c/q . From (34) we see that the b = c/q
term in ϕ(u), which then is the heaviest of the contributions to the right tail, behaves as
(1/u)3+2κ+2c/q . Thus, the right tail becomes less heavy with increasing c, facilitating con-
vergence to the Gaussian form.

We also find that mcross increases with q . This can be understood from the same reasoning
as above. The main contribution to the right tail, (1/u)3+2κ+2c/q , is an increasing function
of q .

It is important to remark on the number of terms that should be kept in the power series.
If too few terms are kept, the Rm(Z̃) values fluctuate wildly. Some general, unsurprising
rules of thumb apply. For an accurate result, more terms need to be kept when Z̃ is increased
and when m is decreased. For m < 100, powers larger than k50 are required, with rather
long computation times. Less obviously, the crossover region sometimes needs more terms
than other values of Z̃ . For example, the curve in Fig. 3 requires powers up to k20 to get a
converging result around Z̃ = 8. An example of such convergence is shown in Fig. 4. With
the interleaving attack (Sect. 6) νmax > 60 is sometimes required in the transition region.

5.3 Sufficient code lengths for majority voting

Table 2 shows sufficient code lengths against colluders who use the majority voting strat-
egy. The crossover values mcross are also listed. We take parameters: ε2 ≈ 1

2 , κ ≈ 1/q , with
κ > 1/q . The sufficient code length m∗ as a function of q, κ, c, ε1 was determined as follows.
We numerically solved the equation
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Table 2 Sufficient code lengths for various alphabet and coalition sizes

Majority voting; ε1 = 10−10; ε2 ≈ 0.5

q κ c m∗ Z̃∗ m∗
c2 ln 1/ε1

mcross

3 0.34 3 1.29 × 103 10.4 6.22 11 × 103

4 7.5 × 102 5.91 2.04 3 × 102

5 1.19 × 103 5.97 2.07 3 × 102

7 2.41 × 103 6.06 2.14 3 × 102

20 2.09 × 104 6.24 2.27 <300

80 3.44 × 105 6.33 2.33 <300

10 0.105 3 2.48 × 103 21.3 12.0 9 × 105

5 1.90 × 103 10.8 3.30 3 × 104

6 1.26 × 103 7.30 1.52 4 × 103

7 1.25 × 103 6.22 1.11 4 × 102

11 3.16 × 103 6.24 1.13 <100

20 1.07 × 104 6.29 1.16 <100

80 1.75 × 105 6.34 1.19 <100

16 0.066 3 2.8 × 103 24.1 14 3 × 106

5 2.36 × 103 12.73 4.10 2 × 105

6 1.68 × 103 8.89 2.03 2 × 104

7 1.20 × 103 6.42 1.06 1.3 × 103

80 1.59 × 105 6.34 1.08 <100

The normal distribution has Ω(Z̃) = 10−10 at Z̃ = 6.36

Rinv
m (ε1) = μ̃maj

√
m

c
(43)

for m, where μ̃maj is the statistical parameter μ̃ computed according to (29) for the majority
voting strategy.6 The solution gives the smallest possible value for m such that there exists
a Z̃ satisfying Rm(Z̃) = ε1 as well as Z̃ ≤ μ̃maj

√
m/c. The latter condition is required in

order to have Pr[FN] ≤ 1
2 (see the guilty curve in Fig. 1).

Table 2 gives the solution m∗ as well as the Z̃ value at the solution (Z̃∗), and the cross-
over7 value mcross as defined in Sect. 5.2. The proportionality constant in the relation m∗ ∝
c2 ln(1/ε1) is also shown. Several conclusions can be drawn from the table.

– For very small coalitions (i.e. code lengths) the Gaussian approximation does not hold,
e.g. (q = 3, c ≤ 3), (q = 10, c ≤ 6), (q = 16, c ≤ 7). The Rm(Z̃) curve crosses the
line log10 prob. = −10 at a Z̃∗ that is (much) larger than the Gaussian value ≈ 6.36.

– Even then a decent code length m∗ � mcross can often be achieved, e.g. (q = 10, c =
5 and c = 6), (q = 16, c = 6 and c = 7). This is possible because the Rm curve still
quickly descends as a function of Z̃ even when Z̃ lies to the right of the crossover point.

6 Note that μ̃maj is only slightly larger than the μ̃ of the ‘optimal’ μ̃-reducing strategy discussed in [20],
because our choice κ ≈ 1/q implies that majority voting is very close to optimal. Also note that μ̃maj weakly
depends on c, but is independent of m.
7 An entry like ‘<100’ means that high powers of k are required in the series expansion in order to determine
mcross more accurately, and we did not invest the necessary time.
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Fig. 5 Logarithmic plot of the
probability Rm (Z̃) of accusing a
fixed innocent user, as a function
of the scaled threshold Z̃ .
Parameter settings as listed in the
graph

– For large coalitions the Gaussian approximation holds. The proportionality constant in
m∗ ∝ c2 ln(1/ε1) has a minimum as a function of c where the Gaussian regime sets in.
With growing c, the Z̃∗ approaches 6.36, which is the value at which Ω(Z̃) = 10−10.

Remark This is not the final word on the majority voting attack. Better results can probably
be achieved with different choices of κ . This is left for future work.

6 Numerics for the interleaving strategy

6.1 Behaviour of Rm(Z̃) for the interleaving attack

False positive probabilities were computed as described in Sect. 5.2, except for two differ-
ences: (i) The starting point for the power series in k is Corollary 9, so there is no need to
compute the Kb parameters. (ii) The shape of Rm now does not depend on c.

An example is shown in Fig. 5. We have observed for q ≥ 3 that a crossing point of the Rm

and Ω curve as in Fig. 3 can occur for small κ (e.g. q = 3, κ = 0.34, m = 104). However,
we mostly studied somewhat larger κ than in Sect. 5, in order to obtain shorter codes, and
for these there were no crossings.

As a general rule we have observed that increasing q worsens the convergence to the Gauss-
ian limit. We conjecture that this is caused by the faster dwindling left tail, (1/|u|)3+2κ[q−1],
while the right tail remains equally heavy.

6.2 Sufficient code length for the interleaving attack

Theorem 7 For the interleaving strategy, the μ̃ parameter becomes

μ̃inter = q
B
(
κ + 1

2 , κ[q − 1] + 1
2

)

B(κ, κ[q − 1]) . (44)

Proof From the definition of μ̃ it follows that it can be computed as an expectation value in
a single content segment, μ̃ = E[σy g1(py) + (c − σy)g0(py)], with E the expectation over
p, σ and y, and g1 and g0 as defined in (8). The Ey(. . .) expectation is given by

∑
y

σy
c (. . .).

We write

σy

c

[
σy g1(py) + (c − σy)g0(py)

] = py
σy − cpy

√
py(1 − py)

+ 1

c

(σy − cpy)
2

√
py(1 − py)

. (45)

From the properties of the multinomial distribution we get Eσ [σy − cpy] = 0 and Eσ [(σy −
cpy)

2] = cpy(1 − py). Next, the expectation Ep over the full vector p reduces to the
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Fig. 6 The factor 2/μ̃2
inter (see

Eq. 13) as a function of κ for
various alphabet sizes

expectation over the component py , for which we use the marginal pdf f (p) (Lemma 2).
This gives

μ̃inter =
∑

y

1

B(κ, κ[q − 1])
1∫

0

d py p−1+κ
y (1 − py)

−1+κ[q−1]
√

py(1 − py). (46)

The result of the integration does not depend on y, so the
∑

y yields a factor q . The integral

yields B
(
κ + 1

2 , κ[q − 1] + 1
2

)
. ��

Figure 6 shows the effect of μ̃inter on the code length for various q and κ . For the interleaving
attack, the factor 2/μ̃2, which appears as a multiplier in the Gaussian limit expression (13)
for the code length, is a decreasing function of κ and q . Increasing the alphabet has a large
impact when q is small, but very little impact when q is large.

In the case of the interleaving attack, Eq. 43 for finding the sufficient code length m∗
has more structure than in the case of majority voting. To be completely explicit about the
dependence on the various variables we write μ̃inter(q, κ) and Rqκm(Z̃). Since μ̃inter and
Rqκm do not depend on c, it makes sense to isolate c and reorganize (43) as

c = √
m

μ̃inter(q, κ)

Rinv
qκm(ε1)

. (47)

This equation gives an upper bound on the coalition size that can be resisted by the code.
The easiest way to handle the numerics is to choose (for fixed q, κ, ε1) a set of values for m,
and then compute Z̃∗ and c as a function of m. (The results for c are not integer in general,
but it is implicitly understood that they should be rounded down.) We therefore present our
results in a slightly different form than in Sect. 5.3.

Figure 7 shows how Z̃∗ and m∗ converge to their Gaussian limits as a function of the code
length. The c on the horizontal axis is a parametrization of m, representing the coalition size
that can be resisted by the code. The limiting value for Z̃∗ is Ω inv(ε1). The limiting value for
m∗ is mlimit = [cΩ inv(ε1)/μ̃]2. We have plotted the fraction m∗/mlimit = [Z̃∗/Ω inv(ε1)]2.

Note that the factor [Ω inv(ε1)]2 in the expression for mlimit is noticeably smaller than
the bound 2 ln(1/ε1). This means that the code can be made even shorter. The ratio
[Ω inv(ε1)]2/[2 ln(1/ε1)] is plotted in Fig. 8. Figure 9 shows the familiar code length propor-
tionality constant m/(c2 ln ε−1

1 ).
The case of the binary alphabet (q = 2) is rather special. If κ is set to 1

2 , then the left
tail of ϕ(u) becomes so heavy that E(|u|3) = ∞, severely hampering convergence to the
Gaussian limit. Tardos [23] introduced a cutoff parameter t � 1 so that pα ∈ (t, 1 − t),
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Fig. 7 Convergence to the Gaussian limit for the interleaving attack, for ε1 = 10−10. Left: Code length m∗
compared to the Gaussian value [cΩ inv(ε1)/μ̃]2, as a function of the coalition size c. Right: Z̃∗ as a function
of c

which curbs the tail, yielding E(|u|3) < ∞. (Tardos did not formulate it in this way; for him
it was a technical trick that allows for the use of the Markov inequality in a crucial part of
a security proof.) We do not set κ exactly to 1

2 and we do not use the cutoff t , but instead
we consider κ ≥ 0.55. This is close enough to get a good impression of the behaviour of
the original Tardos code, but large enough to get numerical results quickly. For κ closer to 1

2
our method requires many more powers of k to be kept, leading to long computation times.
We observe a difference between q = 2 and q ≥ 3. In the binary case, the results are better
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Fig. 8 The factor [Ω inv(ε1)]2 compared to the bound 2 ln(1/ε1)

Fig. 9 Interleaving attack. The often studied proportionality constant in m∗ ∝ c2 ln 1
ε1

, as a function of c,
for various q and κ

than Gaussian in a large portion of parameter space, and already at small coalition sizes. For
q ≥ 3, the Gaussian limit is approached ‘from the other side’, i.e. with results that are worse
than the Gaussian limit.

From the numerics we conclude that the attack vs. defense game is quite complex. In the
asymptotic limit, the μ̃-minimizing strategy of [20] is the best attack; the best defense was
shown to be setting κ a bit larger than 1/q; in that regime the attack is basically majority
voting. In the small c regime the interleaving attack is a potent strategy. It can be effectively
defended against by choosing κ as large as possible; this facilitates convergence to the Gauss-
ian limit and at the same time increases μ̃. However, κ cannot be increased indefinitely, for
otherwise the defense against other attacks becomes too weak. (The μ̃-minimizing attack of
[20] becomes too powerful.) Finding a balance between these effects is left for future work.
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7 Summary and future work

We have analyzed the q-ary Tardos fingerprinting scheme in the restricted digit model. We
have introduced a new parametrization Ψb(x) of the attack strategy. It has the advantage that
it no longer depends on any symbol index α; furthermore, it allows for pre-computation of
the parameters Kb = Ex|bΨb(x).

We have shown for κq ≈ 1 that the majority voting strategy minimizes μ̃. We have deter-
mined the probability distribution of the accusation of an innocent user due to a single content
segment. Using the Fourier approach we have used this to set up a series expansion for the
systematic computation of the total accusation probability for an innocent user. As a first test
of our method we have numerically evaluated our expansions for ε1 = 10−10 and various
parameter settings. We have done this for two attacks that are of special interest, the majority
voting attack and the interleaving attack. We have found that the ‘shape’ parameter κ plays a
crucial role. When κ is chosen so as to maximize μ̃ in the face of a μ̃-reducing attack, then
convergence to the Gaussian limit is quite bad, especially for large alphabets. Increasing κ

dramatically improves the convergence. At the same time the μ̃ decreases; hence, the game
of attack and defense is quite complex, involving the ratio of Rinv

m (ε1) and μ̃ instead of a
single one of these parameters. A full study of general attacks, for different ε1, is left for
future work.

It would be interesting to see if the approach developed here can be applied to informa-
tion-theoretic accusation methods.
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Appendices

Appendix A: Proof of Theorem 3

We have Pr[S j > Z ] = Pr
[∑m

i=1 S(i)
j > Z

]
for innocent j . The ‘Pr’ refers to the whole set

of random variables p, σ , y. The terms S(i)
j are independent, identically distributed random

variables. This allows us to write

Pr[S j > Z ] =
∞∫

−∞
du1ϕ(u1) · · ·

∞∫

−∞
dumϕ(um) Θ(u1 + · · · + um − Z). (48)

Here Θ is the Heaviside step function. Next we use a well known integral representation of
the step function,

Θ(x) = lim
η↓0

1

2π i

∞∫

−∞
dλ

eiλx

λ − iη
. (49)
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Substituting (49) into (48) and rearranging the order of the integrations, we get

Pr[S j > Z ] = lim
η↓0

∞∫

−∞

dλ

2π i

e−iλZ

λ − iη

m∏

a=1

⎡

⎣

∞∫

−∞
dua ϕ(ua)eiλua

⎤

⎦

= lim
η↓0

∞∫

−∞

dλ

2π i

e−iλZ

λ − iη

[
ϕ̃(−λ)

]m = − lim
η↓0

∞∫

−∞

dk

2π i

eik Z/
√

m

k + iη

[

ϕ̃(
k√
m

)

]m

. (50)

In the last line of (50) we changed the integration variable to k = −λ
√

m in order to
get the ‘scaled’ threshold Z/

√
m in the integrand, which makes it easier to visualize the

result using Fig. 1. We define D(k) = (2π)−1eik Z/
√

m
[
ϕ̃( k√

m
)
]m

for brevity and write

D(k) = Deven(k)+ Dodd(k). The power expansion of Dodd around k = 0 has dominant term
ka , where a > 0 (Corollary 4). We write

lim
η↓0

∞∫

−∞
dk

D(k)

k + iη
= lim

η↓0

∞∫

−∞
dk

(k − iη)D(k)

k2 + η2 = lim
η↓0

∞∫

−∞
dk

k Dodd(k)

k2 + η2 − iπ D(0). (51)

Here we made use of a standard representation of the delta function, δ(k) = 1
π

limη→0 η/

(k2 + η2). We also used the fact that in the remaining integration the Deven vanishes since it
gets multiplied by an odd function of k. Then we use that a > 0 in the power series of Dodd.
This causes the integrand to behave like k−1+a in the limit η → 0, i.e. the integral near k = 0
is convergent even when η is precisely zero. Thus we can set η = 0 in this integral.

Pr[S j > Z ] = i lim
η↓0

∞∫

−∞
dk

D(k)

k + iη
= i

∞∫

−∞
dk

D(k)

k
+ π D(0). (52)

��

Appendix B: Proof of Theorem 4

We start from Corollary 4 and write a general power series expansion,

ϕ̃(k) = 1 − 1
2 k2 +

∞∑

t=0

γt |k|rt , (53)

where the rt ≥ 3 are powers and the γt ∈ C are coefficients of the form iβt sgn k times a
real factor. In this expression the desired relation ϕ̃(−k) = [ϕ̃(k)]∗ evidently holds, and the
properties ϕ̃(0) = 1, ϕ̃′(0) = 0, ϕ̃′′(0) = −1, |ϕ̃′′′(0)| < ∞ are clearly present. Then we
write

[

ϕ̃

(
k√
m

)]m

= exp

[

m ln ϕ̃(
k√
m

)

]

= e− 1
2 k2

exp

[

m
∞∑

t=0

( |k|√
m

)r ′
t

δt

]

, (54)

where the powers r ′
t ≥ 3 and coefficients δt ∝ iβ

′
t sgn k are obtained (laboriously) by substi-

tuting (53) into the Taylor series for the logarithm, ln(1+ε) = ε−ε2/2+ε3/3−ε4/4+ . . ..
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It is worth noting that m disappears from the k2 term, but not from the others. Equation 32
is obtained from (54) by using the Taylor series for the exp function,

exp ε = 1 + ε + ε2/2! + ε3/3! + . . . (55)

and (again laboriously) collecting terms with equal powers of k.
Since we started out with powers rt ≥ 3, we end up with powers νt ≥ 3. A power |k|νt

may occur together with many different powers of m. This is seen as follows. The series
expansion of ln ϕ̃(k/

√
m) is a power series in |k|/√m. Then the logarithm is multiplied by

m, and a power |k|r ′
always occurs together with m1−r ′/2. Next, the k-expansion of exp mixes

up the powers of m. For instance, the power k6 occurs as mδ6(|k|/√m)6 ∝ k6m−2 but also
as a term [mδ3(|k|/√m)3]2/2! ∝ k6m−1.

The ‘worst case’ (many factors m resulting from high powers of ε in (55)) occurs when
νt is a multiple of 3, say νt = 3 j ; there the power k3 j can be built up from a term
[mδ3(|k|/√m)3] j/j !, which is proportional to k3 j m j−3 j/2 = kνt m−νt /6. All the j factors
scale as m(|k|/√m)3 = |k|3/√m. This is the least negative power of m that can occur relative
to the power of k. For other powers νt , the ‘building blocks’ from which kνt is built up cannot
all scale in this way; at least one of the factors has faster decay.8 This proves the statement
about the at least m−νt /6 decay.

Finally, (33) follows by applying Lemma 9 and Corollary 2 to evaluate the integrals that
arise when (32) is substituted into Theorem 3. ��

Appendix C: Proof of Lemma 14

The case b < c/q

A symbol that occurs fewer than c/q times cannot have the majority. Consider the extreme
case where all the other symbols also occur b times: then the total number of symbols received
by the coalition would be q · b < c.

The case b > c/2

Since the colluder strategy is majority voting, we have Ψb(x) = 1 for b > c/2. (This
follows from the fact that none of the components xa can exceed c/2 due to the sum rule∑

a xa = c − b < c/2.) The result (42) follows after substitution of Ψb(x) = 1 into (24),
summing up (

∑
x) the probabilities to 1, and finally writing the Beta functions in terms of

Gamma functions according to (2).

The case b = c/2

Now Ψb(x) = 1 unless xβ = c/2 for some β ∈ {1, · · · , q − 1}; in that case Ψb(x) = 1/2
since there are two equivalent symbols to choose from. We have

8 For instance, the least negative power of m multiplying k7 is obtained from the ε2 term in (55) and is given
by 2[mδ3(|k|/√m)3][mδ4(|k|/√m)4]/2! ∝ [|k|3/

√
m][|k|4/m].
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Kc/2 =
∑

x:xβ �=c/2

Pq−1

(
x| c

2

)
+

q−1∑

a=1

(
c/2

c/2

)
B
(
κ1q−1 + c

2ea
)

B(κ1q−1)
· 1

2

=
∑

x

Pq−1

(
x| c

2

)
− 1

2

q−1∑

a=1

B(κ1q−1 + c
2ea)

B(κ1q−1)

= 1 − q − 1

2

B(κ1q−1 + c
2ea)

B(κ1q−1)
. (56)

In the last line we used the fact that the a is arbitrary. Finally, without loss of generality we
can set a = 1.

The case c/q < b < c/2

We have Ψb(x) = 0 whenever x j > b for some index j . Hence we only have to sum over
x j ≤ b. When x j < b for all j , then Ψb(x) = 1. Furthermore, when there are exactly �

indices with x j = b, then Ψb(x) = 1/(� + 1).
We reorganize the x-sum in (24) to take the multiplicity � into account: � of the compo-

nents are set to b and the leftover summation variables x1 to xq−1−� range between 0 and
b − 1.

∑

x

Ψb(x)(· · · ) →
q−1∑

�=0

1

� + 1

(
q − 1

�

) b−1∑

x1=0

· · ·
b−1∑

xq−1−�=0

δ�b+x1+···+xq−1−�,c−b (· · · ).

(57)

Here the factor
(q−1

�

)
pops up because the summand in (24) is fully symmetric under permu-

tations of x. The Kronecker delta takes care of the constraint that the components of x add
up to c − b. Notice that we let � get as large as q − 1, even though it may be impossible to
satisfy the x-sum constraint for large �; this is taken care of by the Kronecker delta, which
sets the constraint-violating terms to zero.

Next we use a sum representation of the Kronecker δ as follows,

δz,0 = 1

N

N−1∑

a=0

taz
b , (58)

with z = (�+ 1)b + x1 +· · ·+ xq−1−� − c and tb = ei2π/Nb . This is a correct representation
only if Nb is larger than the maximum |z| that can occur. Hence, in order for (58) to work for
the δ in (57), Nb must be larger than the maximum value of |(�+1)b+ x1 +· · ·+ xq−1−� −c|
that may occur for any �. Taking into account that the range of b is c/q ≤ b < c/2, and that
x j ≤ b − 1, the bound on Nb as stated in the Lemma follows after some algebra.

We shift the a-sum completely to the left, through the x-sum and the �-sum. Next we
write the upper Beta function in (24), for given multiplicity �, as

B
(
κ1q−1 + x

) = [Γ (κ + b)]� ∏q−1−�
j=1 Γ (κ + x j )

Γ (c − b + κ[q − 1]) , (59)

and the multinomial as
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(
c − b

x

)

= (c − b)!
[b!]� ∏q−1−�

j=1 x j !
. (60)

All the expressions depending on the x j variables are fully factorized; the part of the summand
that contains the x j is given by

q−1−�∏

j=1

⎡

⎣
b−1∑

x j =0

Γ (κ + x j )

x j ! t
ax j
b

⎤

⎦ = (Gba)q−1−�. (61)

Next we evaluate the �-sum analytically. It is given by

q−1∑

�=0

1

� + 1

(
q − 1

�

)

v� = (1 + v)q − 1

qv
(62)

with

v = Γ (b + κ)tab
b

b!Gba
. (63)

Finally the result (42) follows after some elementary rewriting. ��

Appendix D: Proof of Theorem 5

We start by considering the probability of a certain accusation value u occurring for an
innocent user, for fixed p and y. (We omit all column indices.) There are only two discrete
possibilities: (i) g1(py) if the user’s symbol is y; this occurs with probability py ; (ii) g0(py)

if the user’s symbol is not y; this occurs with probability 1 − py . Hence we can write this
distribution as a sum of two delta peaks as follows,

ϕ(u|p, y) = pyδ(u − g1(py)) + (1 − py)δ(u − g0(py)). (64)

The full ϕ(u), without conditioning, is obtained by taking the expectation over y and p. Since
the expectation over y involves the parameters θy|σ , the expectation over σ has to be done as
well.

ϕ(u) = EpEσ |p
∑

y∈Q
θy|σ ϕ(u|p, y). (65)

Next we note that ϕ(u|p, y) depends only on py . Hence we can write ϕ(u|py), and

ϕ(u) =
∑

y∈Q
Epy Eσ |py θy|σ ϕ(u|py) =

∑

y∈Q
Epy Eσy |py Eσ \y |σy θy|σ ϕ(u|py). (66)

Now we use Eσ \y |σy θy|σ = Kσy , the binomial form (21) of Eσy |py and the marginal distribu-
tion of py (Lemma 2). The dummy summation variable σy is replaced by the notation b in
order to stress the fact that it does not depend on y. Substitution of all these ingredients gives

ϕ(u) =
∑

y∈Q

1∫

0

d py f (py)

c∑

b=0

(
c

b

)

pb
y(1 − py)

c−b Kb ϕ(u|py)

= q

B(κ, κ[q − 1])
c∑

b=1

(
c

b

)

Kb

1∫

0

d py p−1+κ+b
y (1 − py)

−1+κ[q−1+]c−bϕ(u|py).

(67)
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In the last line we have used that K0 = 0 and that the integral over py yields the same result
for every y. In order to evaluate the py-integral we have to rewrite the delta functions of (64)
into the form δ(py − · · · ). We use the rule

δ(u − w(p)) = δ(p − winv(u))

|dw/d p| (68)

for any monotonic function w(p), which yields

δ(u − g1(p)) = Θ(u)
2u

(1 + u2)2 δ

(

p − 1

1 + u2

)

δ(u − g0(p)) = Θ(−u)
2|u|

(1 + u2)2 δ

(

p − u2

1 + u2

)

. (69)

After some algebra, it is then seen that the py-integral evaluates to

2

(1 + u2)c+κq+1

[

Θ(u)(u2)
κ[q−1]+c−σy− 1

2 + Θ(−u)(u2)
κ+σy− 1

2

]

. (70)

Splitting ϕ into a part containing Θ(u) and a part containing Θ(−u) finally yields the end
result. ��
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