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Abstract
Clustering is one of the fundamental tools for preliminary analysis of data.While most
of the clustering methods are designed for continuous data, sparse high-dimensional
binary representations became very popular in various domains such as text mining
or cheminformatics. The application of classical clustering tools to this type of data
usually proves to be very inefficient, both in terms of computational complexity as
well as in terms of the utility of the results. In this paper we propose a mixture model,
SparseMix, for clustering of sparse high dimensional binary data, which connects
model-based with centroid-based clustering. Every group is described by a represen-
tative and a probability distribution modeling dispersion from this representative. In
contrast to classical mixture models based on the EM algorithm, SparseMix: is spe-
cially designed for the processing of sparse data; can be efficiently realized by an
on-line Hartigan optimization algorithm; describes every cluster by the most repre-
sentative vector. We have performed extensive experimental studies on various types
of data, which confirmed that SparseMix builds partitions with a higher compatibility
with reference grouping than related methods. Moreover, constructed representatives
often better reveal the internal structure of data.
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1 Introduction

Clustering, one of the fundamental tasks of machine learning, relies on grouping simi-
lar data points togetherwhile keepingdissimilar ones separate. It is hard to overestimate
the role of clustering in present data analysis. Cluster analysis has been widely used
in text mining to collect similar documents together (Baker and McCallum 1998); in
biology to build groups of genes with related expression patterns (Fränti et al. 2003);
in social networks to detect clusters of communities (Papadopoulos et al. 2012) and
many other branches of science.

While most of the clustering methods are designed for continuous data, binary
attributes becomevery common in various domains. In textmining, sentences (or docu-
ments) are often representedwith the use of the set-of-words representation (YingZhao
2005; Guansong Pang 2015; Juan and Vidal 2002). In this case, a document is identi-
fied with a binary vector, where bit 1 at the i-th coordinate indicates that the i-th word
from a given dictionary appears in this document.1 In cheminformatics, a chemical
compound is also described by a binary vector, where every bit denotes the presence or
absence of a predefined chemical pattern (Ewing et al. 2006; Klekota and Roth 2008).
Since the number of possible patterns (words) is large, the resulting representation
is high dimensional. Another characteristic of a typical binary representation is its
sparsity. In text processing the number of words contained in a sentence is relatively
low compared to the total number of words in a dictionary. In consequence, most
coordinates are occupied by zeros, while only selected ones are nonzero.

On one hand, the aforementioned sparse high dimensional binary representation is
very intuitive for the user, which is also important for interpretable machine learning
(Ribeiro et al. 2016). On the other hand, it is extremely hard to handle by classical
clustering algorithms. One reason behind that is commonly known as the curse of
dimensionality. Since in high dimensional spaces any randomly chosen pairs of points
have roughly similar Euclidean distances, then it is not a proper measure of dissim-
ilarity (Steinbach et al. 2004; Mali and Mitra 2003). Moreover, direct application of
standard clustering tools to this type of data may lead to a substantial increase of com-
putational cost, which disqualifies a method from a practical use. Subspace clustering,
which aims at approximating a data set by a union of low-dimensional subspaces,
is a typical approach for handling high dimensional data (Li et al. 2018; Lu et al.
2012; You et al. 2016; Struski et al. 2017; Rahmani and Atia 2017). Nevertheless,
these techniques have problems with binary data, because they also use Euclidean
distances in their criterion functions. Moreover, they are unable to process extremely
high dimensional data due to the non-linear computational complexity with respect to
data dimension.2 In consequence, clustering algorithms have to be designed directly
for this type of data to obtain satisfactory results in reasonable time.

In this paper we introduce a version of model-based clustering, SparseMix, which
efficiently processes high dimensional sparse binary data.3 Our model splits the data

1 Another possibility is to use bag-of-words or tf-idf transform.
2 They often apply linear regression or principal component analysis to match an affine subspace to data
points, which result in a quadratic or cubic computational complexity with respect to data dimension.
3 An implementation of SparseMix algorithm, together with some example data sets, is available on
GitHub: https://github.com/hajtos/SparseMIX.
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Fig. 1 Representatives of handwritten digits fromMNIST database produced by SparseMix. Observe that
SparseMix created two clusters for the digit 1 (written vertically and diagonally), while examples of the
digit 5 were split into other clusters (see Fig. 7 for details)

into groups and creates probabilistic distributions for those groups (see Sect. 3). The
points are assigned in a way that minimizes the entropy of the distributions. In con-
trast to classical mixture models using Bernoulli variables or latent trait models, our
approach is designed for sparse data and can be efficiently optimized by an on-line
Hartigan algorithm, which converges faster and finds better solutions than batch pro-
cedures like EM (Sect. 4).

SparseMix builds a bridge betweenmixture models and centroid-based clustering,
and describes every cluster by its representative (a single vector characterizing the
most popular cluster patterns) and a probability distribution modeling dispersion from
this representative. The relationship between the form of the representative and the
associated cluster distribution is controlled by an additional parameter of the model.
By placing a parameter selection problem on solid mathematical ground, we show
that we can move from a model providing the best compression rate of data to the
one obtaining high speed performance (Sect. 4.3 and Theorem 1). Our method is
additionally regularized by the cost of clusters’ identification. It allows to reduce
clusters on-line and fulfills an idea similar to the maximum a posteriori clustering
and other approaches that taking a model’s complexity into account (Barbará et al.
2002; Plumbley 2002; Silvestre et al. 2014; Bontemps et al. 2013). We present a
theoretical and experimental analysis how the number of clusters depends on the main
characteristics of the data set (Example 1 and Sect. 5.2).

The paper contains extensive experiments performed on various types of data,
including text corpora, chemical and biological data sets, as well as the MNIST image
database, see Sect. 5. The results show that SparseMix provides a higher compatibility
with reference partition than existing methods based on mixture models and similarity
measures. Visual inspection of clusters representatives obtained by SparseMix on the
MNIST data set suggests high quality of its results, see Fig. 1. Moreover, its running
time is significantly lower than that of relatedmodel-based algorithms and comparable
to methods implemented in the Cluto package, which are optimized for processing
large data sets, see Sect. 5.3.

This paper is an extension to our conference paper Śmieja et al. (2016) with the
following new content:

1. We introduce a cluster representative, which provides a sparser representation of
a cluster’s instances and describes the most common patterns of the cluster.

2. We analyze the impact of the cluster representative on fitting a Bernoulli model to
the cluster distribution (Theorem 1) and illustrate exemplary representatives for
the MNIST data set.

3. An additional trade-off parameter β is introduced to the cost function, which
weights the importance of model complexity. Its selection allows us to decide
whether the model should aim to reduce clusters.
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4. We extend a theoretical analysis of the model by inspecting various conditions
influencing clusters’ reduction, see Example 1. Moreover, we verify the clustering
reduction problem in the experimental study, see Sect. 5.2.

5. An efficient implementation of the algorithm is discussed in detail, see Sect. 4.
6. We consider larger data sets (e.g. MNIST and Reuters), compare our method with

a wider spectrum of clustering algorithms (maximum likelihood approaches, sub-
space clustering and dimensionality reduction techniques) and verify the stability
of the algorithms.

2 Related work

In this section we refer to typical approaches for clustering binary data including
distance-based and model-based techniques. Moreover, we discuss regularization
methods, which allow to select optimal number of clusters.

2.1 Distance-based clustering

A lot of clustering methods are expressed in a geometric framework, where the sim-
ilarity between objects is defined with the use of the Euclidean metric, e.g. k-means
(MacQueen et al. 1967). Although a geometric description of clustering can be insight-
ful for continuous data, it becomes less informative in the case of high dimensional
binary (or discrete) vectors, where the Euclidean distance is not natural.

To adapt these approaches to binary data sets, the authors consider, for instance,
k-medoids or k-modes (Huang 1998; Chan et al. 2004) with a dissimilarity measure
designed for this special type of data, such as Hamming, Jaccard or Tanimoto mea-
sures (Li 2005). Evaluation of possible dissimilarity metrics for categorical data can
be found in dos Santos and Zárate (2015), Bai et al. (2011). To obtain a more flexible
structure of clusters, one can also use hierarchical methods (Zhao and Karypis 2002),
density-based clustering (Wen et al. 2002) or model-based techniques (Spurek 2017;
Spurek et al. 2017). One of important publicly available tools for efficient clustering
of high dimensional binary data is the Cluto package (Karypis 2002). It is built on
a sophisticated multi-level graph partitioning engine and offers many different cri-
teria that can be used to derive both partitional, hierarchical and spectral clustering
algorithms.

Another straightforward way for clustering high dimensional data relies on reduc-
ing the initial data’s dimension through a preprocessing step. This allows to transform
the data into a continuous low dimensional space where typical clustering meth-
ods are applied efficiently. Such dimensionality reduction can be performed with
the use of linear methods, such as PCA (principal component analysis) (Indhumathi
and Sathiyabama 2010), or non-linear techniques, such as deep autoencoders (Jang
et al. 2017; Serrà and Karatzoglou 2017). Although this approach allows for using any
clustering algorithm on the reduced data space, it leads to a loss of information about
the original data after performing the dimensionality reduction.
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Subspace clustering is a class of techniques designed to deal with high dimensional
data by approximating themusingmultiple low-dimensional subspaces (Li et al. 2017).
This area received considerable attention in the last years and many techniques have
been, proposed including iterative methods, statistical approaches and spectral clus-
tering based methods (You et al. 2016; Tsakiris and Vidal 2017; Struski et al. 2017;
Rahmani and Atia 2017). Although these methods give very good results on continu-
ous data such as images (Lu et al. 2012), they are rarely applied to binary data, because
they also use the Euclidean distance in their cost functions. Moreover, they are unable
to process extremely high dimensional data due to the quadratic or cubic computational
complexity with respect to the number of dimensions in the data (Struski et al. 2017).
In consequence, a lot of algorithms apply dimensionality reduction as a preprocessing
step (Lu et al. 2012).

2.2 Model-based techniques

Model-based clustering (McLachlan andPeel 2004),where data ismodeled as a sample
from a parametric mixture of probability distributions, is commonly used for grouping
continuous data using Gaussian models, but has also been adapted for processing
binary data. In the simplest case, the probabilitymodel of each cluster is composed of a
sequence of independent Bernoulli variables (ormultinomial distributions), describing
the probabilities on subsequent attributes (Celeux and Govaert 1991; Juan and Vidal
2002). Sincemany attributes are usually statistically irrelevant and independent of true
categories, they may be removed or associated with small weights (Graham andMiller
2006; Bouguila 2010). This partially links mixture models with subspace clustering
of discrete data (Yamamoto and Hayashi 2015; Chen et al. 2016). Since the use of
multinomial distributions formally requires an independence of attributes, different
smoothing techniqueswere proposed, such as applyingDirichlet distributions as a prior
to the multinomial (Bouguila and ElGuebaly 2009). Another version of using mixture
models for binary variables tries to maximize the probability that the data points
are generated around cluster centers with the smallest possible dispersion (Celeux
and Govaert 1991). This technique is closely related to our approach. However, our
model allows for using any cluster representatives (not only cluster centers) and is
significantly faster due to the use of sparse coders.

A mixture of latent trait analyzers is a specialized type of mixture model for cat-
egorical data, where a continuous univariate of a multivariate latent variable is used
to describe the dependence in categorical attributes (Vermunt 2007; Gollini and Mur-
phy 2014). Although this technique recently received high interest in the literature
(Langseth and Nielsen 2009; Cagnone and Viroli 2012), it is potentially difficult to fit
themodel, because the likelihood function involves an integral that cannot be evaluated
analytically.Moreover, its use is computationally expensive for large high dimensional
data sets (Tang et al. 2015).

Information-theoretic clustering relies on minimizing the entropy of a partition or
maximizing the mutual information between the data and its discretized form Li et al.
(2004), Tishby et al. (1999), Dhillon and Guan (2003). Although both approaches are
similar and can be explained as a minimization of the coding cost, the first creates
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“hard clusters”, where an instance is classified to exactly one category, while the
second allows for soft assignments (Strouse and Schwab 2016). Celeux and Govaert
(1991) established a close connection between entropy-based techniques for discrete
data and model-based clustering using Bernoulli variables. In particular, the entropy
criterion can be formally derived using the maximum likelihood of the classification
task.

To the best of the authors’ knowledge, neither model-based clustering nor
information-theoretic methods have been optimized for processing sparse high-
dimensional binary data. Our method can be seen as a combination of k-medoids
with model-based clustering (in the sense that it describes a cluster by a single repre-
sentative and a multivariate probability model), which is efficiently realized for sparse
high-dimensional binary data.

2.3 Model selection criteria

Clustering methods usually assume that the number of clusters is known. However,
most model-based techniques can be combined with additional tools, which, to some
extent, allow to select an optimal number of groups (Grantham 2014).

A standard approach for detecting the number of clusters is to conduct a series of sta-
tistical tests. The idea relies on comparing likelihood ratios between models obtained
for different numbers of groups (McLachlan 1987;Ghosh et al. 2006). Anothermethod
is to use a penalized likelihood, which combines the obtained likelihood with a mea-
sure of model complexity. A straightforward procedure fits models with different
numbers of clusters and selects the one with the optimal penalized likelihood criterion
(McLachlan and Peel 2004). Typical measures for model complexity are the Akaike
Information Criterion (AIC) (Bozdogan and Sclove 1984) and the Bayesian Informa-
tion Criterion (BIC) (Schwarz et al. 1978). Although these criteria can be directly
applied to Gaussian Mixture Models, an additional parameter has to be estimated for
the mixture of Bernoulli models to balance the importance between a model’s quality
and its complexity (Bontemps et al. 2013). Alternatively, one can use coding based
criteria, such as the Minimum Message Length (MML) (Baxter and Oliver 2000;
Bouguila and Ziou 2007) or the Minimum Description Length (MDL) (Barbará et al.
2002) principles. The idea is to find the number of coders (clusters), which mini-
mizes the amount of information needed to transmit the data efficiently from sender
to receiver. In addition to detecting the number of clusters, these criteria also allow
for eliminating redundant attributes. Coding criteria usually are used for comparing
two models (like AIC or BIC criteria). Silvestre et al. (2015) showed how to apply
the MML criterion simultaneously with a clustering method. This is similar to our
algorithm, which reduces redundant clusters on-line.

Finally, it is possible to use a fully Bayesian approach, which treats the number of
clusters as a random variable. By defining a prior distribution on the number of clusters
K , we can estimate its number using themaximum a posteriori method (MAP) (Nobile
et al. 2004). Although this approach is theoretically justified, it may be difficult to
optimize in practice (Richardson and Green 1997; Nobile and Fearnside 2007). To
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our best knowledge, currently there are no available implementations achieving this
technique for the Bernoulli mixture model.

3 Clusteringmodel

The goal of clustering is to split data into groups that contain elements characterized
by similar patterns. In our approach, the elements are similar if they can be efficiently
compressed by the same algorithm. We begin this section by presenting a model for
compressing elements within a single cluster. Next, we combine these partial encoders
and define a final clustering objective function.

3.1 Compressionmodel for a single cluster

Let us assume that X ⊂ {0, 1}D is a data set (cluster) containing D-dimensional
binary vectors. We implicitly assume that X represents sparse data, i.e. the number of
positions occupied by non-zero bits is relatively low.

A typical way for encoding such data is to directly remember the values at each
coordinate (Barbará et al. 2002; Li et al. 2004). Since, in practice, D is often large, this
straightforward technique might be computationally inefficient. Moreover, due to the
sparsity of data, positions occupied by zeros are not very informative while the less
frequent non-zero bits carry substantial knowledge. Therefore, instead of remembering
all the bits of every vector, it might bemore convenient to encode positions occupied by
non-zero values. It occurs that this strategy can be efficiently implemented by on-line
algorithms.

To realize the aforementioned goal, we first select a representative (prototype)
m ∈ {0, 1}D of a cluster X . Next, for each data point x = (x1, . . . , xD) ∈ X we
construct a corresponding vector

xor(x,m) = (|x1 − m1|, . . . , |xD − mD|) ∈ {0, 1}D

of differences with m. If a representative is chosen as the most probable point of a
cluster (the centroid of a cluster), then the data set of differences will be, on average,
at least as sparse as the original data set X . An efficient way for storing such sparse
data relies on encoding the numbers of coordinates with non-zero bits. Concluding, the
original data X is compressed by remembering a representative and encoding resulting
vectors of differences in an efficient manner, see Fig. 2.

We now precisely follow the above idea and calculate the cost of coding in this
scheme, whichwill be the basis of our clustering criterion function. Let the distribution
at the i-th coordinate of x ∈ X be described by a Bernoulli random variable taking
value 1with a probability pi ∈ [0, 1] and 0with a probability (1−pi ), i.e. pi = P(xi =
1). For a fixed T ∈ [0, 1], we consider a representative m = m(T ) = (m1, . . . ,mD)

defined by
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Fig. 2 Sparse data coding

mi =
{
0, pi ≤ T ,

1, pi > T ,

Although a representative m(T ) depends on T , we usually discard this parameter and
simply write m, when T is known from the context. The i-th coordinate of X is more
likely to attain a value of 1, if pi > 1

2 and, in consequence, for T = 1
2 the representative

m coincides with the most probable point of X .
Given a representative m, we consider the differences xor(x,m), for x ∈ X , and

denote such a data set by

Dm(X) = {xor(x,m) : x ∈ X}.

The probability qi = qi (T ) of bit 1 at the i-th position in Dm(X) equals

qi =
{
pi , pi ≤ T ,

1 − pi , pi > T .

Let us notice that qi ≤ pi , for T ≥ 1
2 , which makes Dm(X) at least as sparse as X ,

see Fig. 3.
To design an efficient coder for Dm(X), it is sufficient to remember the positions of

d ∈ Dm(X) with non-zero bits. Thus, we transform a random vector q into a random
variable Q by:

Qi = qi
Z

,

where Z = Z(T ) = ∑D
j=1 q j is a normalization factor. A distribution Q = Q(T ) =

{Qi : qi > 0} describes the probabilities over variables that are 1 at least once.
The Shannon entropy theory states that the code-lengths in an optimal prefix-free

coding depend strictly on the associated probability distribution (Cover and Thomas
2012). Given a distributionQ of non-zero positions it is possible to construct |Q| ≤ D
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Fig. 3 Relation between probabilities pi and qi

codes, eachwith the length4 − log Qi . The short codes correspond to themost frequent
symbols, while the longest ones are related to rare objects. Given an arbitrary element
d = (d1, . . . , dD) ∈ Dm(X) we encode its non-zero coordinates and obtain that its
compression requires

∑
i :di=1

− log Qi

bits. The above codes are optimal if every di is generated independently from the
others. Otherwise, the data could be compressed further.

This leads to the SparseMix objective function for a single cluster, which gives
the average cost of compressing a single element of X by our sparse coder:

Definition 1 (one cluster cost function)Let X ⊂ {0, 1}D be a data set and let T ∈ [0, 1]
be fixed. The SparseMix objective function for a single cluster is given by:5

CT (X) = C(Dm(X)) =
D∑
i=1

qi (− log Qi ). (1)

Observe that, given probabilities p1, . . . , pD , the selection of T determines the
form of m and Dm(X). The above cost coincides with the optimal compression under
the assumption of independence imposed on the attributes of d ∈ Dm(X). If this
assumption does not hold, this coding scheme gives a suboptimal compression, but
such codes can still be constructed.

Remark 1 To be able to decode the initial data set, we would also need to remember
the probabilities p1, . . . , pD determining the form of the representative m and the
corresponding probabilityQ used for constructing the codewords. These are themodel
parameters, which, in a practical coding scheme, are stored once in the header. Since
they do not affect the asymptotic value of data compression, we do not include them
in the final cost function.6

4 in the limiting case.
5 We put: 0 · log 0 = 0.
6 Nevertheless. these probabilities should be accounted in model selection criteria as AIC or BIC.
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Moreover, to reconstruct the original data we should distinguish between the
encoded representations of subsequent vectors. It could be realized by reserving an
additional symbol for separating two encoded vectors or by remembering the number
of non-zero positions in every vector. Although this is necessary for the coding task,
it is less important for clustering and therefore we decided not to include it in the cost
function.

The following theorem demonstrates that T = 1
2 provides the best compression

rate of a single cluster. Making use of the analogy between the Shannon compression
theory and data modeling, it shows that with T1 ≥ 1

2 our model allows for a better
fitting of a Bernoulli model to the cluster distribution than using T2 greater than T1.

Theorem 1 Let X ⊂ {0, 1}D be a data set and let 1
2 ≤ T1 ≤ T2 ≤ 1 be fixed.

If m(T1),m(T2) are two representatives and the mean number of non-zero bits in
Dm1(X) is not lower than 1, i.e. Z(T1) ≥ 1, then:

CT1(X) ≤ CT2(X).

Proof See Appendix A. ��

3.2 Clustering criterion function

A single encoder allows us to compress simple data. To efficiently encode real data
sets, which usually origin from several sources, it is profitable to construct multiple
coding algorithms, each designed for one homogeneous part of the data. Finding an
optimal set of algorithms leads to a natural division of the data, which is the basic idea
behind our model. Below, we describe the construction of our clustering objective
function, which combines the partial cost functions of the clusters.

Let us assume that we are given a partition of X containing k groups X1, . . . , Xk

(pairwise disjoint subsets of X such that X = X1 ∪ . . . ∪ Xk), where every subset Xi

is described by its own coding algorithm. Observe that to encode an instance x ∈ Xi

using such a multiple coding model one needs to remember its group identifier and
the code of x defined by the i-th encoder, i.e.,

code(x) = [code(i), codei (x)]. (2)

Such a strategy enables unique decoding, because the retrieved coding algorithm
subsequently allows us to discover the exact instance (see Fig. 4). The compression
procedure should find a division of X and design k coding algorithms, whichminimize
the expected length of code given by (2).

The coding algorithms for each cluster are designed as described in the previous
subsection. More precisely, let pi = (pi1, . . . , p

i
D) be a vector, where pij is the prob-

ability that the j-th coordinate in the i-th cluster is non-zero, for i = 1, . . . , k. Next,
given a fixed T , for each cluster Xi we construct a representativemi = (mi

1, . . . ,m
i
D)

and calculate the associated probability distributions qi = (qi1, . . . , q
i
D) and Qi =
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Fig. 4 Multi-encoder model

{Qi
1, . . . , Q

i
D} on the set of differences Dmi (Xi ). The average code-length for com-

pressing a single vector in the i-th cluster is given by (see (1)):

CT (Xi ) = C(Dmi (Xi )) =
D∑
j=1

qij (− log Qi
j ). (3)

To remember clusters’ identifiers, we again follow Shannon’s theory of coding
(Tabor andSpurek 2014; Smieja andTabor 2012).Given a probability Pi = P(x ∈ Xi )

of generating an instance from a cluster Xi (the prior probability), the optimal code-
length of the i-th identifier is given by

C(i) = − log Pi . (4)

Since the introduction of any new cluster increases the cost of clusters’ identifica-
tion, it might occur that maintaining a smaller number of groups is more profitable.
Therefore, this model will have a tendency to adjust the sizes of clusters and, in con-
sequence, some groups might finally disappear (can be reduced).

The SparseMix cost function combines the cost of clusters’ identification with the
cost of encoding their elements. To add higher flexibility to the model, we introduce
an additional parameter β, which allows to weight the cost of clusters’ identification.
Specifically, if the number of clusters is known a priori, we should put β = 0 to
prevent from reducing any groups. On the other hand, to encourage the model to
remove clusters we can increase the value of β. By default β = 1, which gives a
typical coding model:

Definition 2 (clustering cost function)Let X = {0, 1}D be a data set of D-dimensional
binary vectors and let X1, . . . , Xk be a partition of X into pairwise disjoint subsets.
For a fixed T ∈ [0, 1] and β ≥ 0 the SparseMix clustering objective function equals:

Cβ,T (X1, . . . , Xk) =
k∑

i=1

Pi · (CT (Xi ) + β · C(i)) , (5)

where Pi is the probability of a cluster Xi , C(i) is the cost of encoding its identifier
(4) and CT (Xi ) is the average code-length of compressing elements of Xi (3).

As can be seen, every cluster is described by a single representative and a probability
distribution modeling dispersion from a representative. Therefore, our model can be
interpreted as a combination of k-medoids with model-based clustering. It is worth

123
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Fig. 5 Optimal number of clusters for data generated by the mixture of sources given by (7). Blue regions
show the combinations of mixture parameters which lead to one cluster, while white areas correspond to two
clusters. 5a presents the case when every source is characterized by the same number of bits d = 1

2 D, 5b
corresponds to the situation when each source produces the same number of instances, while 5c is the
combination of both previous cases (Color figure online)

mentioning that for T = 1, we always get a representative m = 0. In consequence,
D0(X) = X and a distribution in every cluster is directly fitted to the original data.

The cost of clusters’ identification allows us to reduce unnecessary clusters. To get
more insight into this mechanism, we present the following example. For simplicity,
we use T = β = 1.

Example 1 By P(p, α, d), for p, α ∈ [0, 1] and d ∈ {0, . . . , D}, we denote a D-
dimensional probability distribution, which generates bit 1 at the i-th position with
probability:

pi =
{

α p, i = 1, . . . , d,

(1 − α)p, i = d + 1, . . . , D.
(6)

Let us consider a data set generated by the mixture of two sources:

ωP(p, α, d) + (1 − ω)P(p, 1 − α, d), (7)

for ω ∈ [0, 1].
To visualize the situation, we can arrange a data set in a matrix, where rows cor-

respond to instances generated by the mixture components, while the columns are
related to their attributes:

ω {
1 − ω {

(
α p

(1 − α)p︸ ︷︷ ︸
d

(1 − α)p
α p︸ ︷︷ ︸
D−d

)

The matrix entries show the probability of generating bit 1 at a given coordinate
belonging to one of the four matrix regions. The parameter α determines the similarity
between the instances generated from the underlying distributions. For α = 1

2 , both
components are identical, while for α ∈ {0, 1} we get their perfect distinction.
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We compare the cost of using a single cluster for all instances with the cost of
splitting the data into two optimal groups (clusters are perfectly fitted to the sources
generating the data). For the reader’s convenience, we put the details of the calculations
in B. The analysis of the results is presented below. We consider three cases:

1. Sources are characterized by the same number of bits. The influence of ω and α

on the number of clusters, for a fixed d = 1
2D, is presented in Fig. 5a. Generally, if

sources are well-separated, i.e. α /∈ (0.2, 0.8), then SparseMixwill always create
two clusters regardless of the mixing proportion. This confirms that SparseMix
is not sensitive to unbalanced sources generating the data if only they are distinct.

2. Sources contain the same number of instances. The Fig. 5b shows the relation
between d and α when the mixing parameter ω = 1

2 . If one source is identified
by a significantly lower number of attributes than the other (d << D), then
SparseMix will merge both sources into a single cluster. Since one source is
characterized by a small number of features, it might be more costly to encode
the cluster identifier than its attributes. In other words, the clusters are merged
together, because the cost of cluster identification outweighs the cost of encoding
the source elements.

3. Both proportions of dimensions and instances for themixture sources are balanced.
If we set equal proportions for the source and dimension coefficients, then the
number of clusters depends on the average number of non-zero bits in the data
L = pd, see Fig. 5c. For high density of data, we can easily distinguish the sources
and, in consequence, SparseMixwill end up with two clusters. On the other hand,
in the case of sparse data, we use less memory for remembering its elements and
the cost of clusters’ identification grows compared to the cost of encoding the
elements within the groups.

4 Fast optimization algorithm

In this section, we present an on-line algorithm for optimizing the SparseMix cost
function and discuss its computational complexity. Before that, let us first show how
to estimate the probabilities involved in the formula (5).

4.1 Estimation of the cost function

We assume that a data set X ⊂ {0, 1}D is split into k groups X1, . . . , Xk , where
n = |X | and ni = |Xi |. Let us denote by

nij =
∑
x∈Xi

x j

the number of objects in Xi with the j-th position occupied by value 1. This allows
us to estimate the probability pij of bit 1 at the j-th coordinate in Xi as
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pij = nij
ni

and, consequently, rewrite the representative mi = (mi
1, . . . ,m

i
D) of the i-th cluster

as

mi
j =

⎧⎪⎨
⎪⎩
0,

nij
ni

≤ T ,

1,
nij
ni

> T .

To calculate the formula for CT (Xi ), we first estimate the probability qij of bit 1 at
the j-th coordinate in Dmi (Xi ),

qij =

⎧⎪⎨
⎪⎩

nij
ni

,
nij
ni

≤ T ,

ni−nij
ni

,
nij
ni

> T .

If we denote by

Ni
j =

⎧⎪⎨
⎪⎩
nij ,

nij
ni

≤ T ,

ni − nij ,
nij
ni

> T
(8)

the number of vectors in Dmi (Xi ) with the j-th coordinate occupied by bit 1 and by

Si =
D∑
j=1

Ni
j

the total number of non-zero entries in Dmi (Xi ), then we can estimate the probability
Qi

j as:

Qi
j = Ni

j

Si
.

This allows us to rewrite the cost function for a cluster Xi as

CT (Xi ) =
D∑
j=1

qij

(
− log Qi

j

)

=
∑

j :pij≤T

nij
ni

(
− log

Ni
j

Si

)
+

∑
j :pij>T

(
1 − nij

ni

)(
− log

Ni
j

Si

)
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= 1

ni

D∑
j=1

Ni
j (− log Ni

j + log Si )

= 1

ni

⎛
⎝Si log Si +

D∑
j=1

Ni
j (− log Ni

j )

⎞
⎠ .

Finally, since the probability Pi of the i-th cluster can be estimated as Pi = ni
n ,

then the optimal code-length of a cluster identifier equals

C(i) = − log
ni
n

.

In consequence, the overall cost function is computed as:

Cβ,T (X) =
k∑

i=1

ni
n

(β · C(i) + CT (Xi )))

=
k∑

i=1

ni
n

⎛
⎝β ·

(
− log

ni
n

)
+ 1

ni

⎡
⎣Si log Si +

D∑
j=1

Ni
j (− log Ni

j )

⎤
⎦
⎞
⎠

= β log n + 1

n

k∑
i=1

⎛
⎝βni (− log ni ) + Si log Si +

D∑
j=1

Ni
j (− log Ni

j )

⎞
⎠ .

4.2 Optimization algorithm

To obtain an optimal partition of X , the SparseMix cost function has to beminimized.
For this purpose, we adapt amodified version of theHartigan procedure, which is com-
monly applied in an on-line version of k-means (Hartigan and Wong 1979). Although
the complexity of a single iteration of the Hartigan algorithm is often higher than in
batch procedures such as EM, the model converges in a significantly lower number
of iterations and usually finds better minima [see Śmieja and Geiger (2017) for the
experimental comparison in the case of cross-entropy clustering].

The minimization procedure consists of two parts: initialization and iteration. In
the initialization stage, k ≥ 2 nonempty groups are formed in an arbitrary manner.
In the simplest case, it could be a random initialization, but to obtain better results
one can also apply a kind of k-means++ seeding. In the iteration step the elements are
reassigned between clusters in order to minimize the value of the criterion function.
Additionally, due to the cost of clusters’ identification, some groups may lose their
elements and finally disappear. In practice, a cluster is reduced if its size falls below
a given threshold ε · |X |, for a fixed ε > 0.
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A detailed algorithm is presented below (β and T are fixed):

1: INPUT:
2: X ⊂ {0, 1}D – data set
3: k – initial number of clusters
4: ε > 0 – cluster reduction parameter
5: OUTPUT:
6: Partition X of X
7: INITIALIZATION:
8: Y = {Y1, . . . , Yk } – random partition of X into k groups
9: ITERATION:
10: repeat
11: for all x ∈ X do
12: Yx ← get cluster of x
13: Y ← arg max

Y∈Y{CT (Yx ) + CT (Y ) − CT (Yx \ {x}) − CT (Y ∪ {x})}
14: if Y 
= Yx then
15: switch x from Yx to Y
16: update probability models of Yx and Y
17: if |Yx | < ε · |X | then
18: delete cluster Yx and assign its elements to these clusters which minimize the SparseMix

cost function
19: end if
20: end if
21: end for
22: until no switch for all subsequent elements of X

The outlined algorithm is not deterministic, i.e. its result depends on the initial parti-
tion. Therefore, the algorithm should be restarted multiple times to find a reasonable
solution.

The proposed algorithm has to traverse all data points and all clusters to find the
best assignment. Its computational complexity depends on the procedure for updating
clustermodels and recalculating theSparseMix cost function after switching elements
between clusters (see lines 13 and 16). Below, we discuss the details of an efficient
recalculation of this cost.

We start by showing how to update CT (Xi ) when we add x to the cluster Xi , i.e.
how to compute CT (Xi ∪ {x}) given CT (Xi ). The situation when we remove x from
a cluster is analogous. The updating of nij and ni is immediate (by a symbol with a
hat ŷ we denote the updated value of a variable y):

n̂ij = nij + x j and n̂i = ni + 1.

In particular, nij only changes its value on these positions j where x j is non-zero.

Recalculation of Ni
j is more complex, since it is calculated by using one of the two

formulas involved in (8), depending on the relation between
nij
ni

and T . We consider
four cases:

1. If nij ≤ (ni + 1)T − 1, then before and after the update we use the first formula
of (8):
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N̂ i
j = Ni

j + x j .

Moreover, this value changes only when x j = 1.
2. If nij > (ni + 1)T , then before and after the update we use the second formula:

N̂ i
j = Ni

j + (1 − x j ).

It is changed only when x j = 0.
3. If x j = 0 and nij ∈ (ni T , (ni + 1)T ] then we switch from the second to the first

formula and

N̂ i
j = nij .

Otherwise, it remains unchanged.
4. If x j = 1 and nij ∈ ((ni + 1)T − 1, ni T ] then we switch from the first to the

second formula and

N̂ i
j = ni − nij .

Otherwise, it remains unchanged.

Due to the sparsity of X there are only a few coordinates of x satisfying x j = 1.
In consequence, the complexity of updates in the cases 1 and 4 depends only on the
number of non-zero bits in X . On the other hand, although x j = 0 happens often, the
situation when nij > ni T is rare (for T ≥ 1

2 ), because X is sparse. Clearly, Si changes

only if N j
i is changed as well.

Finally, to get the new cost of a cluster, we need to recalculate
∑D

j=1 N
i
j (− log Ni

j ).

If we remember its old value h(Ni
1, . . . , N

i
D) = ∑D

j=1 N
i
j (− log Ni

j ), then it is suffi-

cient to update it on coordinates j such that N j
i 
= N̂ j

i by:

h(N̂ i
1, . . . , N̂

i
D) = h(Ni

1, . . . , N
i
D) −

∑
j :Ni

j 
=N̂ i
j

(
N̂ i

j (− log N̂ i
j ) − Ni

j (− log Ni
j )
)

.

4.3 Computational complexity

We analyze the computational complexity of the whole algorithm.
We start with calculating the cost of switching an element from one cluster to

another. As discussed above, given x ∈ X the recalculation of Ni
j , for j = 1, . . . , D,

dominates the cost of updating any other quantity. Namely, we need to make updates
on ci (x) coordinates, where:
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ci (x) = ci,T (x) = |{ j : nij ∈ ((ni + 1)T − 1, ni T ] and x j = 1}|
+|{ j : nij ∈ (ni T , (ni + 1)T ] and x j = 0}|
+|{ j : nij ≤ (ni + 1)T − 1 and x j = 1}|
+|{ j : nij > (ni + 1)T and x j = 0}|
≤ |{ j : x j = 1}| + |{ j : nij > (ni + 1)T − 1}|
≤ |{ j : x j = 1}| + |{ j : pij > T − 1−T

ni
}|.

(9)

Therefore, ci (x) is bounded from above by the number of non-zero bits in x and the
number of coordinateswhere the probability pij of bit 1 exceeds the threshold T− 1−T

ni
.

For T = 1
2 , this threshold equals ni−1

2ni
≈ 1

2 , while for T = 1 it attains a value of 1
and, in consequence, ci (x) is exactly the number of coordinates with non-zero bits in
x . It is also easy to see that ci,T1(x) ≥ ci,T2(x) if

1
2 ≤ T1 < T2, i.e. the updates are

faster for higher T .
In a single iteration, we need to visit every point and consider its possible switch to

everyother cluster. The requirednumber of operations is, thus, bounded fromaboveby:

∑
x∈X

k∑
i=1

ci (x) ≤ ∑
x∈X

k∑
i=1

|{ j : x j = 1}| + ∑
x∈X

k∑
i=1

∣∣∣{ j : pij > T − 1−T
ni

}∣∣∣
= k

∑
x∈X

|{ j : x j = 1}| + n
k∑

i=1

∣∣∣{ j : pij > T − 1−T
ni

}∣∣∣
(10)

The first term of (10) equals:

k
∑
x∈X

|{ j : x j = 1}| = k · N ,

where N = ∑
x∈X

|{ j : x j = 1}| is the total number of non-zero bits in the whole data

set X . For T = 1, the second term vanishes and, in consequence, the complexity of
the algorithm is linear with respect to the number of non-zero bits in a data set X and
the number of clusters.

To get the complexity for T ∈ [ 12 , 1), we calculate the second term of (10):

k∑
i=1

|{ j : pij > T − 1−T
ni

}| =
k∑

i=1

∣∣∣∣
{
j : nij

ni
> T − 1−T

ni

}∣∣∣∣
=

k∑
i=1

|{ j : nij > T (ni + 1) − 1}|

=
k∑

i=1

D∑
j=1

1{nij>T (ni+1)−1}

=
k∑

i=1

D∑
j=1

1{ ∑
x∈Xi

x j>T (ni+1)−1

},
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where1A is the indicator function, i.e.1A = 1, if a condition A is true and 0 otherwise.
The condition inside the characteristic function is satisfied if the i-th cluster has

more than T (ni + 1) − 1 non-zero entries at the j-th attribute. To consider the worst
case,wewant to satisfy this condition themaximal number of times. Thus,we calculate
howmany groups of T (ni +1)−1 non-zero bits we can create from their total number
N . We have:

k∑
i=1

D∑
j=1

1{ ∑
x∈Xi

x j>T (ni+1)−1

} ≤
k∑

i=1

N

T (ni + 1) − 1
.

This expression depends on the clusters sizes. In the worst case, we have one big
cluster and k − 1 tiny groups, which may results in an almost linear complexity with
respect to the data dimension. This is, however, unusual. In most cases, all clusters
have approximately the same number of instances, i.e. ni = n

k . If we assume T = 1
2

(the worst case for complexity), then

k∑
i=1

N

T (ni + 1) − 1
= k

N
1
2

( n
k + 1

)− 1
= Nk

n−2k
2k

= 2Nk2

n − 2k

Taking together the above considerations, for equally sized-clusters the second term
of (10) is bounded by:

n
2Nk2

n − 2k
= 2Nk2

1

1 − 2k
n

.

Thenumber of instancesn is usually significantly greater than the number of clusters
k. If we assume that n = rk, for r > 1, then

2Nk2
1

1 − 2k
n

= 2Nk2
1

1 − 2k
rk

= 2Nk2
r

r − 2
≈ 2Nk2,

for large r . Thus, for equally-sized clusters and any T ∈ [ 12 , 1), the computational
complexity is, at most, still linear with respect to the number of non-zero bits in X
and quadratic with respect to the number of clusters.

5 Experiments

In this section we evaluate the performance of our algorithm and analyze its behavior
in various clustering tasks. We compare its results with related methods. To denote
our method we write SparseMix(β, T ), where β and T are the parameters of its cost
function 2.
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Table 1 Summary of the data sets used in experiments

Dataset Size Dimensions Avg. no. of non-zero bits Classes

Reuters 291 127 47 236 55.58 18

20newsgroups 18 846 187 397 151.13 20

7newsgroups 6 997 26 411 99.49 7

Farm-ads 4 143 54 877 197.23 2

Questions 5 452 3 029 4.04 6

Sentiment 1 000 2 750 7.50 2

SMS 5 574 7 259 13.51 2

Chemical data 3 374 4 860 65.45 5

Mushroom 8 124 119 21 2

Splice 3 190 287 60 2

mnist 70 000 784 150.08 10

5.1 Quality of clusters

In this experiment we evaluated our method over various binary data sets, summarized
in Table 1, and compared its results with related methods listed at the beginning of
this section. Since we considered data sets designed for classification, we compared
the obtained clusterings with a reference partition.

Their agreement was measured by Adjusted Rand Index (ARI) (Hubert and Arabie
1985), which is an extension of Rand Index (RI). RI counts the number of point pairs
for which their relation with regards to a partition(i.e. are they in the same cluster
or not) is the same for both partitions, divided by the number of all possible pairs.
Although RI takes values between 0 and 1, it is usually significantly greater than 0 for
random groupings. Thus, RI is additionally renormalized as:

ARI = RI − E(RI )

max(RI ) − E(RI )
,

where E(RI ) and max(RI ) are the mean and maximal values of RI, respectively. ARI
attains a maximal value of 1 for identical partitions, while for a random clustering7 the
expected ARI is 0. We also used two additional measures for verifying the quality of
the results, Normalized Mutual Information and Clustering Accuracy. For the reader’s
convenience, we include these results in Appendix C.

We used seven text data sets: Reuters (a subset of documents from the Reuters
Corpus Volume 1 Version 2 categorized into 18 topics) (Lewis et al. 2004), Questions
(Li andRoth 2002), 20newsgroups, 7newsgroups (a subset containing only 7 classes of
20newsgroups), Farm-ads, SMS Spam Collection and Sentiment Labeled Sentences
retrieved fromUCI repository (Asuncion 2007). Each data set was encoded in a binary
form with the use of the set-of-words representation: given a dictionary of words, a

7 ARImight take negative values,when the producedpartition is less compatiblewith the reference grouping
than a random assignment.
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document (or sentence) is represented as a binary vector, where coordinates indicate
the presence or absence of words from a dictionary.

We considered a real data set containing chemical compounds acting on 5-HT1A
receptor ligands (Warszycki et al. 2013). This is one of the proteins responsible for
the regulation of the central nervous system. This data set was manually labeled by an
expert in a hierarchical form. We narrowed that classification tree down to 5 classes:
tetralines, alkylamines, piperidines, aimides and other piperazines. Each compound
was represented by its Klekota–Roth fingerprint, which encodes 4860 chemical pat-
terns in a binary vector (Yap 2011).

We also took a molecular biology data set (splice), which describes primate
splice-junction gene sequences. Moreover, we used a data set containing mushrooms
described in terms of physical characteristics, where the goal is to predict whether a
mushroom is poisonous or edible. Both data sets were selected from the UCI reposi-
tory.

Finally, we evaluated all methods on theMNIST data set (LeCun et al. 1998), which
is a collection of handwritten digits made into gray scale. To produce binary images,
pixels with intensity greater than 0 were turned into bit 1.

We considered two types of Bernoulli mixture models. The first one is a classical
mixture model, which relies on the maximum likelihood principle (ML) (Elmore et al.
2004).Weused theRpackage “mixtools” (Benaglia et al. 2009) for its implementation.
The second method is based on classification maximum likelihood (CML) (Li et al.
2004). While ML models every data point as a sample from a mixture of probability
distributions, CML assigns every example to a single component. CML coincides with
applying entropy as a clustering criterion (Celeux and Govaert 1991).

We also used two distance-based algorithms. The first one is k-medoids (Huang
1998), which focuses on minimizing the average distance between data points and the
corresponding clusters’ medoids (a generalization of a mean). We used the implemen-
tation of k-medoids from the cluster R package8 with a Jaccard similarity measure.9

We also considered the Cluto software (Karypis 2002), which is an optimized pack-
age for clustering large data sets. We ran the algorithm “direct” with a cosine distance
function,10 which means that the package will calculate the final clustering directly,
rather than bisecting the data multiple times.

The aforementioned methods are designed to deal with binary data. To apply a
typical clustering technique to such data, one could use a method of dimensionality
reduction as a preprocessing step. In the experiments, we used PCA to reduce the data
dimension to 100 principal components. Next, we used the k-means algorithm on the
reduced space.

Finally, we used two subspace clustering methods: ORGEN (You et al. 2016) and
LSR (Lu et al. 2012), which are often applied to continuous data. In the case of
high dimensional data, LSR reduces their dimension with the use of PCA. In our
experiments, we reduced the data to 100 principal components.

8 https://cran.r-project.org/web/packages/cluster.
9 We also considered the Hamming and cosine distances, but the Jaccard distance provided the best results.
10 http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/manual.pdf.
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Since all of the aforementionedmethods are non-deterministic (their results depends
on the initialization), each was run 50 times with different initial partitions and the
best result was selected according to the method’s inner metric.

Allmethodswere runwith the correct number of groups. Since the expected number
of groupswas given,SparseMixwas runwithβ = 0 to prevent the clusters’ reduction.
We examined its two parametrizations: (a) T = 1

2 , where a cluster representative is
taken as the most probable point; (b) T = 1, where a representative is a zero vector.

The results presented in Table 2 show significant disproportions between the two
best performing methods (SparseMix and Cluto) and the other examined algorithms.
The highest differences can be observed in the case of 7newsgroups and farm-adds
data sets. Due to a large number of examples or attributes, most algorithms, except
SparseMix, Cluto and PCA-k-means, failed to run on the 20newsgroups and Reuters
data, where only SparseMix produced reasonable results. In the case of the questions
and sentiment data sets, neither method showed results significantly better than a
random partitioning. Let us observe that these sets are extremely sparse, which could
make the appropriate grouping of their examples very difficult. In the mushroom
example, on the other hand, all methods seemed to perform equally good. Slightly
higher differences can be observed on MNIST and the chemical data sets, where
ML and CML obtained good results. Finally, SparseMix with T = 1

2 significantly
outperformed other methods for splice. Let us observe that both subspace clustering
techniques were inappropriate for clustering this type of data. Moreover, reducing the
data dimension by PCA led to the loss of information and, in consequence, recovering
the true clustering structure was impossible.

Although SparseMix, ML and CML focus on optimizing similar cost functions,
they use different algorithms, which could be the main reason for the differences in
their results.SparseMix applies an on-lineHartigan procedure,which updates clusters
parameters at every switch, while ML and CML are based on the EM algorithm and
perform updates after an entire iteration. On-line updates allow for better model fitting
and, in consequence, lead to finding better local minima. This partially explains the
more accurate clustering results of SparseMix compared to related mixture models.

To summarize the results, we ranked themethods on each data set (the best perform-
ing method got rank 1, second best got rank 2, etc.). Figure 6 presents a box plot of the
ranks averaged over all data sets. The vertical lines show the range of the ranks, while
the horizontal line in the middle denotes the median. It can be seen that both variants
of SparseMix were equally good and outperformed the other methods. Although the
median rank of cluto was only slightly worse, its variance was significantly higher.
This means that this model was not well suited for many data sets.

To further illustrate the effects of SparseMixwepresent its detailed results obtained
on theMNIST data set. Figure 7 shows a confusionmatrix and clusters’ representatives
(first row) produced by SparseMix with T = 1

2 . It is clear that most of the clusters’
representatives resemble actual hand-drawn digits. It can be seen that SparseMix
had trouble distinguishing between the digits 4 and 9, mixing them up a bit in their
respective clusters. The digit 5 also could not be properly separated, resulting in its
scatter among other clusters. The digit 1 occupied two separate clusters, once for being
written vertically and once for being written diagonally. Nevertheless, this example
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Fig. 6 Ranking of the examined methods. Reuters and 20newsgroups were not taken into account, because
most of the methods were unable to process this data. LSR and ORGEN were removed from this analysis
since they failed to run on some of the data sets

Fig. 7 Heat map of confusion matrix and clusters’ representatives (first row) returned by applying
SparseMix to the MNIST data set. Rows correspond to reference digits, while columns correspond to
clusters produced by SparseMix

showed that SparseMix is able to find reasonable clusters representatives that reflect
their content in a strictly unsupervised way.
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5.2 Detecting the number of clusters

In practice, the number of clusters may be unknown and a clustering method has to
detect this number. In this section, we compare the performance of our method with
a typical model-based approach when the number of clusters is unknown.

Our method uses the cost of clusters identification, which is a regularization term
and allows for reducing redundant clusters on-line. In consequence, SparseMix starts
with a number of clusters defined by the user and removes unnecessary groups in the
clustering process. Final effects depend on the selection of the parameter β, which
controls the trade-off between the quality of the model and its complexity. For high
β, the cost of maintaining clusters could outweigh the cost of coding elements within
clusters and SparseMix collapses them to a single cluster. On the other hand, for
small β the cost of coding clusters identifiers could be irrelevant. Since the number
of clusters is usually significantly lower than the number of non-zero attributes in a
vector, we should put β greater than 1. Intuitively, both terms will be balanced for β

close to the average number of non-zero bits in a data set.Wewill verify this hypothesis
in the following experiment.

To analyze the impact of β on the clustering results, we ran SparseMix with 10
groups for β = 0, 1, 2, . . .. We reported the final number of clusters and ARI for the
returned partitions. The results presented in Fig. 8 indicate that the process of clusters’
reduction does not have a negative effect on clusters quality. Indeed, ARI values
obtained when SparseMix ended with the correct number of groups were close to
the ones obtained for β = 0 when clusters reduction was not used11 (see Table 2).
The Figure also demnstrates that to enable cluster reduction, β should be lower than
the average number of non-zero entries in a data set. Nevertheless, we were unable to
provide a strict rule for selecting its optimal value.

In model-based clustering the number of clusters is usually chosen using infor-
mation measures, such as Bayesian Information Criterion (BIC), or using related
approaches, such as maximum aposteriori estimation (MAP), minimum message
length (MML) or minimum description length principle (MDL). A typical approach
relies on evaluating a clustering method on a data set with various numbers of clusters
k and calculating the likelihood function combined with the complexity of the model
M:

likelihood(M) + λpenalty(M),

where λ is a user-defined parameter. The optimal partition is the one with a minimal
value of the above criterion function. Such an approach was analyzed by Bontemps
et al. (2013) and implemented in the R package ClustMMDD12 for the mixture of
Bernoulli models. We use this method with a penalty function given by:

penalty(M) = 1

2
dim(M) log(n)

11 exceptions are farm-ads and splice data.
12 https://cran.r-project.org/web/packages/ClustMMDD/index.html.
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Fig. 8 Influence of β on clustering results. SparseMix was initialized with 10 groups. We reported the
final number of groups (green) and the corresponding ARI score (red). The vertical blue line denotes the
average number of non-zero bits in a data set while the horizontal dotted line indicates the ground-truth
number of clusters (Color figure online)
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where dim(M) is the number of free parameters of the model M. This criterion
corresponds to BIC for λ = 1.

The results illustrated in the Fig. 9 show a high sensitivity of this approach to the
change of trade-off parameter λ. Although an additional penalty term allows to select
the best model, there is no unified methodology for choosing the parameter13 λ. In
the case of a typical Gaussian mixture model, an analogical BIC formula does not
contain additional parameters, which makes it easy to use in practice. However, for
the Bernoulli mixture model, the analogical approach needs to specify the values of
parameter λ, which could limit its practical usefulness.

In conclusion, SparseMix allows for an effective reduction of the number of clus-
ters by selecting a β close to the average number of non-zero bits in a data set. In
contrast, selecting a reasonable value of the trade-off parameter in penalty criteria for
model-based clustering may be more difficult. Nevertheless, the number of clusters in
a ground truth partition does not have to determine the optimal partition for a given
clustering task. One could also find a “natural” clustering structure, which is different
from the reference partition, but reveals interesting patterns in the data set.

5.3 Time comparison

In real-world applications, the clustering algorithm has to process large portions of
data in a limited amount of time. In consequence, high computational complexity may
disqualify a method from practical usage. In this experiment we focus on comparing
the evaluation time of our algorithm with other methods. We tested the dependence
on the number of data points as well as on the number of attributes. For this illustra-
tion, we used the chemical data set from the previous subsection. From now on, we
consider only algorithms which work on the original data directly, without additional
preprocessing.

In the first scenario, we randomly selected a subset of the data containing a given
percentage of instances, while in the second simulation, we chose a given percentage
of attributes. The clustering algorithms were run on such prepared subsets of data.
The results presented in Fig. 10 show that both versions of SparseMix were as fast
as the Cluto package, which is an optimized software for processing large data sets.
The other algorithms were significantly slower. It might be caused both by a specific
clustering procedure as well as by an inefficient programming language used for their
implementations.

The interesting thing is that SparseMix with T = 1
2 was often slightly faster than

SparseMix with T = 1, which at first glance contradicts the theoretical analysis of
our algorithm. To investigate this observation, we counted the number of iterations
needed for convergence of both methods. It is clear from Fig. 11 that SparseMixwith
T = 1

2 needed less iterations to find a local minimum than with T = 1, which fully
explains the relation between their running times. SparseMix with T = 1

2 needed
less than 20 iterations to converge. Since the scale of the graph is logarithmic, the
difference in its cost decreased exponentially. Such a fast convergence follows from
the fact that the SparseMix cost function can be optimized by applying an on-line

13 see Bontemps et al. (2013) for specific heuristics.
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Fig. 9 Detecting the number of clusters byML approach.We reported the optimal number of groups (green)
and the corresponding ARI score (red) for various weights λ attached to a penalty term (see Sect. 5.2 for
details). The horizontal dotted line indicates the ground-truth number of clusters (Color figure online)
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Fig. 10 The running times on chemical data set with respect to the number of points and attributes given in
logarithmic scale. Parameter β was fixed at 0 to match the previous experiments on this data set

Fig. 11 The difference between the cost in each iteration and the cost of the final clustering of SparseMix
with T = 0.5 11a and T = 1 11a, given in logarithmic scale

Hartigan algorithm (it is computationally impossible to use an on-line strategy for
CML or ML models).

To further analyze the efficiency of our algorithm, we performed an analogical
experiment on the Reuters data. We ran only SparseMix and Cluto because other
algorithmswere unable to process such a large data set. The results presented in Fig. 12
show some disproportion between the considered methods. One can observe that our
algorithms were 2–5 times slower than Cluto. Nevertheless, Fig. 12 demonstrates that
the complexity of SparseMix is close to linear with respect to the number of data
points and the number of attributes. In consequence, more efficient implementation
should increase the speed of our method.
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Fig. 12 The running times of SparseMix and Cluto on Reuters data set with respect to the number of
points 10a and to the number attributes 10b. β was fixed at 0 to match the previous experiments on this
dataset

5.4 Clustering stability

In this experiment, we examined the stability of the considered clustering algorithms
in the presence of changes in the data. More precisely, we tested whether a method
was able to preserve clustering results when some data instances or attributes were
removed. In practical applications, high stability of an algorithm can be used to speed
up the clustering procedure. If a method does not change its result when using a
lower number of instances or attributes, we can safely perform clustering on a reduced
data set and assign the remaining instances to the nearest clusters. We again used the
chemical data set for this experiment. In this simulation we only ran SparseMix with
T = 1

2 (our preliminary studies showed that parameter T does not visibly influence
overall results).

First, we investigated the influence of the number of instances on the clustering
results. For this purpose, we performed the clustering of the whole data set X and ran-
domly selected p percent of its instances X p (we considered p = 0.1, 0.2, . . . , 0.9).
Stability was measured by calculating the ARI between the clusters X p

1 , . . . , X p
k cre-

ated from the selected fraction of data X p and from the whole data set (restricted to the
same instances), i.e. (X1 ∩ X p), . . . , (Xk ∩ X p). To reduce the effect of randomness,
this procedure was repeated 5 times and the final results were averaged. The results
presented in Fig. 13a show that for a small number of data points Cluto gave the highest
stability, but as the number of instances grew, SparseMix performed better.

In the second part of the experiment, we examined how the clustering results
changed when a smaller number of attributes were taken into account. The proce-
dure was analogical to the previous one: we compared the clustering results obtained
on the whole data set with the ones produced on data set with randomly selected p
percent of attributes (as before we considered p = 0.1, 0.2, . . . , 0.9). One can observe
in Fig. 13b that SparseMix obtained the highest stability on all subsets of data. The
performance of Cluto was significantly worse than previously – in particular, ML
showed a higher stability.
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Fig. 13 Compatibility between clustering results obtained on the whole data set and its fixed percentage.
Changes in β and T provided similar results

5.5 Sensitivity to imbalanced data

In the following section, we examined the sensitivity of the clustering algorithms to
data imbalance, which very often proves to be a crucial trait of an algorithm (Chawla
2009). This extends the theoretical analysis presented in Example 1.

First, we examinedwhether the algorithm is able to detect clusters of different sizes.
For this purpose, we considered a data set X ⊂ {0, 1}D , for D = 100 and |X | = 1000,
generated from a distribution

ωP(p, α, d) + (1 − ω)P(p, 1 − α, d),

where p = 0.1, α = 0.05 and d = D
2 were fixed and ω changed from 0 to 1.

We refer the reader to Example 1 for the definition of the distribution P and its
interpretation. The mixing parameter ω induces the fraction of examples produced by
these two sources. We would expect that a clustering method will be able to discover
true distributions, so the resulting sizes of the clusters will be, roughly, ω|X | and (1−
ω)|X |. However, as ω approaches either to 0 or 1, the data becomes very imbalanced,
which makes the task of separating them more difficult. We considered SparseMix
with β = 0 and β = 1 to account for different costs of maintaining clusters (our
preliminary studies showed that parameter T does not visibly influence overall results
and thus we used T = 1

2 ).
Figure 14a reports the fraction of the data that belongs to thefirst cluster. The optimal

solution is y = ω.We can see that the k-medoidsmethod did not respond to the changes
inω. Other algorithms seemed to performwell on themid section, but gradually steered
off the optimal line as ω approached 0 or 1. The highest robustness to imbalanced data
was obtained by ML and SparseMix with β = 1 (cost of clusters identification was
taken into account). If the cost of maintaining clusters is not considered (β = 0), then
SparseMix tends to create more balanced groups. These results are consistent with a
discussion outlined before Definition 2 and in Example 1.
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Fig. 14 The ratio of cluster sizes for data sets generated from imbalanced sources: we varied the number
of instances generated from each source a and the number of attributes characteristic for each source b

In the second experiment, we investigated the influence of attribute imbalance on
the clustering results. For this purpose we sampled a data set from the mixture of
distributions given by:

1

2
P(p, α, d) + 1

2
P(p, 1 − α, d),

where p = 0.1, α = 0.05, |X | = 1000 and D = 100 were constants, while d ranged
from 0 to D. When d < D, then the second source is identified by a smaller number
of bits than the first one. Therefore, by changing the value of the parameter d we scale
the number of features characteristic for each component. This time, we expect that
the clusters will remain equally-sized regardless of the parameter d.

Figure 14b presents the fraction of data that belongs to the first cluster (perfect
solution is given by y = 1

2 ). It can be observed that SparseMix with β = 1 was
very sensitive to attribute imbalance. According to the conclusion given in Example 1,
the cost of encoding elements within a cluster is outweighed by the cost of clusters’
identification, as α → 0 (or 1), which results in the reduction of the lighter group.
Since the data is sampled from an underlying distribution and SparseMix flows to a
local minimum, some attempts result in creating one group, while the others produce
two clusters, which explains why the corresponding line is not equal to 1, for α < 0.2.
This effect was not apparent when SparseMix used β = 0, because there was no cost
of creating an additional cluster. Its results were comparable to ML and CML, which
also do not use any cost of clusters’ identification.

6 Conclusion

In this paper, we proposed SparseMix, a new approach for the clustering of sparse
high dimensional binary data. Our results showed that SparseMix is not only more
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accurate than related model-based clustering algorithms, but also significantly faster.
Its evaluation time is comparable to algorithms implemented in the Cluto package,
the software optimized for processing large data sets, but its clusters quality is better.
SparseMix provides a description of each cluster by its representative and the disper-
sion from this representative. Experimental results demonstrated that representatives
obtained for the MNIST data set provide high resemblance to the original examples
of handwritten digits. The model was theoretically analyzed.
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A Proof of Theorem 1

We will show that CT2(X) − CT1(X) ≥ 0. We have:

CT2(X) − CT1(X) =
D∑
i=1

(qi (T1) log Qi (T1) − qi (T2) log Qi (T2))

=
∑

i :pi≤T1

(
pi log

pi
Z(T1)

− pi log
pi

Z(T2)

)

+
∑

i :T1≤pi≤T2

(
(1 − pi ) log

1 − pi
Z(T1)

− pi log
pi

Z(T2)

)

+
∑

i :pi≥T2

(
(1 − pi ) log

1 − pi
Z(T1)

− (1 − pi ) log
1 − pi
Z(T2)

)

= log
Z(T2)

Z(T1)

⎛
⎝ ∑

i :pi≤T1

pi +
∑

i :pi≥T2

(1 − pi )

⎞
⎠

+
∑

i :T1≤pi≤T2

(1 − pi ) log(1 − pi ) − pi log pi

+
∑

i :T1≤pi≤T2

pi log Z(T2) − (1 − pi ) log Z(T1).

Observe that Z(T1) ≤ Z(T2) and thus log Z(T2)
Z(T1)

≥ 0. Consequently,

CT2(X) − CT1(X) ≥
∑

i :T1≤pi≤T2

((1 − pi ) log(1 − pi ) − pi log pi

+pi log Z(T2) − (1 − pi ) log Z(T1)) .
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The above expression is non-negative if the function:

f (p) = p(− log p) − (1 − p)(− log(1 − p)) + p log Z(T2) − (1 − p) log Z(T1)

is non-negative for every T1 ≤ p ≤ T2.
A derivative of f equals:

f ′(p) = − log p(1 − p) + log(Z(T1)Z(T2)) − 2

= − log p(1 − p) + log
Z(T1)Z(T2)

4
.

It is greater than zero when:

log
Z(T1)Z(T2)

4
≥ log p(1 − p),

which simplifies to:

Z(T1)Z(T2)

4
≥ p(1 − p).

Since Z(T2) ≥ Z(T1) ≥ 1, then Z(T1)Z(T2) ≥ 1. Moreover, due to the fact that
p(1 − p) ≤ 1

4 , for p ∈ [0, 1], we have

Z(T1)Z(T2)

4
≥ 1

4
≥ p(1 − p),

which means that for every p satisfying T1 ≤ p ≤ T2 the function f is nondecreasing.
Finally,

f

(
1

2

)
= 1

2
log

Z(T2)

Z(T1)
≥ 0,

and consequently, f (p) ≥ 0, for 1
2 ≤ T1 ≤ p ≤ T2 ≤ 1. This means that the best

compression is achieved for T = 1
2 .

B Clusters reduction—details of Example 1

We compare the cost of using a single cluster for all instances with the cost of splitting
the data into two optimal groups (first ω|X | examples are assigned to the first group
while the remaining instances are assigned to the second cluster). For the convenience
of calculations, we define the function:

D(x, d) := xd + (1 − x)(D − d),
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The conditional probability Q1
i that the i-th position holds a non-zero value in the

first cluster equals:

Q1
i =

{ α
D(α,d)

, j = 1, . . . , d,

1−α
D(α,d)

, j = d + 1, . . . , D.

while for the second group:

Q2
i =

{ 1−α
D(1−α,d)

, j = 1, . . . , d,

α
D(1−α,d)

, j = d + 1, . . . , D.

Then, the cost of using two clusters equals:

C(X1, X2) = ω(− logω) + (1 − ω)(− log(1 − ω))

−ω

(
dα p log

α

D(α, d)
+ (D − d)(1 − α)p log

1 − α

D(α, d)

)

− (1 − ω)

(
d(1−α)p log

1−α

D(1−α, d)
+(D−d)α p log

α

D(1 − α, d)

)
= p (ωD(α, d) log D(α, d) + (1 − ω)D(1 − α, d) log D(1 − α, d)

−αD(ω, d) logα − (1 − α)D(1 − ω, d) log(1 − α)) + h(ω, 1 − ω).

(11)

To calculate the cost of one cluster, let us put β = ωα + (1 − ω)(1 − α). Then,
(1 − β) = ω(1 − α) + (1 − ω)α and the conditional probability Qi is given by

Qi =
⎧⎨
⎩

β
D(β,d)

, j = 1, . . . , d,

1−β
D(β,d)

, j = d + 1, . . . , D.

The cost of one cluster can be written as follows:

C(X) = −dpβ log
β

D(β, d)
− (D − d)p(1 − β) log

1 − β

D(β, d)

= p(D(β, d) log D(β, d) − dβ logβ − (D − d)(1 − β) log(1 − β)). (12)

It is more profitable to use one cluster instead of two if (12) is lower than (11).
Since it is difficult to analyze this relation in general, we consider three special cases:

1. Dimensions are balanced. We fix the dimension parameter d = 1
2D. Then

D(α, d) = D(ω, d) = D(β, d) = d and the formula (11) simplifies to:

C(X1, X2) = pd (log d + h(α, 1 − α)) + h(ω, 1 − ω),
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1618 M. Śmieja et al.

while (12) equals:

C(X) = pd (h(β, 1 − β) + log d) .

2. Sources are balanced. If we fix the mixing proportion ω = 1
2 then the cost of two

clusters is:

C(X1, X2) = −1

2
p (h(D(α, d), D(1 − α, d)) + Dh(α, 1 − α)) + log 2

and for one cluster we have

C(X) = 1

2
pD log D.

3. Both dimensions and sources are balanced. For fixed d = 1
2D and ω = 1

2 the cost
of two clusters is given by

C(X1, X2) = dp(h(α, 1 − α) + log d) + log 2,

while for one cluster we have

C(X) = pd log D.

C Quality of clusters—detailed results

Besides the values of ARI presented in the main part of the paper, we also used two
additionalmeasures to verify the quality of the results:NormalizedMutual Information
(NMI) (Vinh et al. 2010) and Clustering Accuracy (He et al. 2006).

Mutual Information (MI) between two partitions X ,Y is defined by:

MI (X ,Y) =
∑
Xi∈Y

∑
Y j∈Y

p(Xi ,Y j ) log
p(Xi ,Y j )

p(Xi )p(Y j )
,

where p(Xi ) is the probability that a randomly selected data point belongs to cluster
Xi and p(Xi ,Y j ) is the joint probability that an arbitrary data point belongs to the
clusters Xi as well as Y j at the same time. Since MI can take values greater than 1,
NMI is its normalization:

NMI (X ,Y) = MI (X ,Y)√
H(X ) · H(Y)

,

where H(X ) = −∑
Xi∈X p(Xi ) log p(Xi ) is the entropy of X . The maximal value,

1, is attained for identical partitions, but random groupings might result in a value
greater than 0.
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Clustering Accuracy (AC) is an adaptation of the classical classification accuracy
to the case of unlabeled clusters. Let ri and si be cluster labels for a data point xi ∈ X
provided by two partitions X ,Y . AC is defined by:

AC =
∑

xi∈X δ(si ,map(ri ))

|X | ,

where δ(x, y) = 1, for x = y and 0 otherwise, while map(ri ) is the permutation
function that maps each cluster label ri in X to the equivalent label in Y in such a
way as to maximize the above criteria. The optimal permutation can be feasibly found
using the Hungarian Algorithm.

The results presented in Tables 3 and 4 are highly correlated with the ones reported
in Table 2.
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