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Abstract

In this paper, we analyze and compare the finite sample properties of alternative
factor extraction procedures in the context of non-stationary Dynamic Factor Models
(DFMs). On top of considering procedures already available in the literature, we
extend the hybrid method based on the combination of principal components and
Kalman filter and smoothing algorithms to non-stationary models. We show that if the
idiosyncratic noises are stationary, procedures based on extracting the factors using the
non-stationary original series work better than those based on differenced variables.
We apply the methodology to the analysis of cross-border risk sharing by fitting non-
stationary DFM to aggregate Gross Domestic Product and consumption of a set of
21 industrialized countries from the Organization for Economic Co-operation and
Development (OECD). The goal is to check if international risk sharing is a short- or
long-run issue.
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1 Introduction

Dynamic Factor Models (DFMs) were first introduced in economics by Geweke (1977)
and Sargent and Sims (1977) with the aim of extracting the underlying common
factors in a system of time series. In macroeconomics, these common factors are
useful for building indicators and to predict key variables of the economy, among many
other applications. Recently, econometricians have to deal with data sets consisting
of hundreds of series, making the use of large-dimensional DFMs very attractive in
practice; see Breitung and Eickmeier (2006), Bai and Ng (2008), Stock and Watson
(2011), Breitung and Choi (2013) and Bai and Wang (2016) for reviews of the existing
literature.

It is well known that macroeconomic time series are frequently non-stationary and
cointegrated. The connection between cointegration and common factors is analyzed
by Stock and Watson (1988), Johansen (1991), Vahid and Engle (1993), Escribano
and Pefia (1994), Gonzalo and Granger (1995), Bai (2004), Bai and Ng (2004), Moon
and Perron (2004), Banerjee et al. (2014, 2017), Barigozzi et al. (2016, 2017) and
Barigozzi and Luciani (2017), among others.

In the context of univariate time series, itis common to deal with non-stationarity by
differencing. However, when dealing with multivariate systems, differencing should be
considered with care; see Box and Tiao (1977). Itis well known that, when differencing
a cointegrated system, the long-run information, crucial to understand comovements
between the variables, is lost; see Seong et al. (2013) who point out that differencing
is an inefficient transformation to stationarity in the presence of cointegration. Canova
(1998) qualifies the detrending issue as “delicate and controversial” and compares the
properties of the cyclical components of a system of seven real macroeconomic series
obtained using seven univariate and three multivariate techniques. He concludes that
the properties of the extracted business cycles vary widely across detrending methods.
Sims (2012) claims that “when cointegration may be present, simply getting rid of the
non-stationarity by differencing individual series so that they are all stationary throws
away vast amounts of information and may distort inference.”

As a consequence of this controversy, the number of works dealing with non-
stationary and possibly cointegrated DFMs is increasing. In the context of non-
stationary systems, Bai (2004) proposes factor extraction implementing principal
components (PC) to data in levels and derives the rates of convergence and limit-
ing distributions of the estimated common trends, loading weights and the common
component when the idiosyncratic components are stationary; see Engel et al. (2015)
for an application to exchange rates. However, Barigozzi et al. (2016, 2017) point out
that stationarity of the idiosyncratic components would produce cointegration rela-
tions for the observed system that are not observed in the large sets of time series
that are standard in the DFMs literature as, for example, those of Stock and Watson
(2012) and Forni et al. (2009). One possible explanation could be that the idiosyncratic
component in those datasets is likely to be non-stationary, and consequently, an esti-
mation strategy robust to the assumption that some of the idiosyncratic components
are non-stationary could be preferred.

Alternatively, PC can be implemented to first-differenced data with the estimated
factors obtained either by integration of their estimated first differences as proposed by
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Bai and Ng (2004) or by projecting the original system onto the space spanned by the
estimated loadings as proposed by Barigozzi et al. (2016)." Bai and Ng (2004) prove
the consistency of PC factor estimates when they are obtained from first-differenced
data using the “differencing and recumulating” method; see Greenway et al. (2018)
who obtain recumulated factors in the context of exchange rates.

Finally, Bai and Ng (2004) carry out a Monte Carlo analysis to evaluate and com-
pare the finite sample properties of implementing PC procedures to data in levels
or to their first differences and show that the non-stationary common factors can be
properly recovered by both approaches when the idiosyncratic components are station-
ary. However, when the idiosyncratic components are non-stationary, PC cannot be
directly implemented to the original data and it is convenient to use the “differencing
and recumulating” method.”

PC-based approaches have a major limitation in that they are not exploiting in any
way the dynamic nature of the factors, nor the serial and cross-sectional dependence.
Consequently, they are not efficient. Instead of implementing PC procedures, factor
extraction can be carried out using two-step Kalman Smoothing (2SKS) techniques
based on combining PC factor extraction and a Kalman Smoother. The main advantage
of the 2SKS comes from the flexibility of the Kalman filter to explicitly model the factor
dynamics. In the stationary case, Doz et al. (2011, 2012) show that 2SKS outperforms
PC in terms of the precision of the factor estimates and derive its asymptotic properties;
see also Poncela and Ruiz (2016). 2SKS has been implemented to non-stationary
systems by Seong et al. (2013) in a low-dimensional setting and in Quah and Sargent
(1993) in alarge but finite cross-sectional dimension case with orthogonal idiosyncratic
components.

The contributions of this paper are twofold. First, we extend the analysis of Bai and
Ng (2004, 2010) comparing the factors extracted using PC implemented to the orig-
inal non-stationary system with those obtained by “differencing and recumulating.”
We consider a wide range of structures of the idiosyncratic noises, including het-
eroscedasticity and temporal and/or cross-sectional dependences. We also consider
systems with two factors with the factors being either both non-stationary or one sta-
tionary and another non-stationary. With respect to the idiosyncratic components, we
consider cases in which all of them are either stationary or non-stationary and cases
in which some of them are stationary and others are not. Finally, we compare PC
and 2SKS factor extraction procedures.> We analyze the performance of the 2SKS
procedure when extracting factors using the first-differenced data and estimating the

! In this paper, we focus on DFMs without deterministic trends. In this case, both approaches are equivalent.

2 Other authors dealing with non-stationary DFMs are Eickmeier (2009), who analyze the comovements
and heterogeneity in the euro area by fitting a non-stationary DFM similar to Bai and Ng (2004), augmented
with a structural factor setup from Forni and Reichlin (1998). Also, Bai and Ng (2004) extend the results of
Bai and Ng (2004), and Forni et al. (2014) who evaluate the role of news shocks in generating the business
cycle. Finally, Choi (2017) extends the Generalized PC estimator (GPCE) to the case of unit roots in the
common factors, deriving the asymptotic distribution of the common factors and factor loadings. He shows
that the GPCE is more efficient than the traditional PC estimator.

3 In this paper, we focus on non-stationary DFMs based on time domain. For non-stationary DFMs based
on frequency domain, see Eichler et al. (2011).
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original factors by recumulating. Furthermore, we propose a new 2SKS procedure
which can be implemented to the original non-stationary system.*

The second contribution of this paper is an empirical application in which we extract
common factors from a non-stationary system of aggregate output and consumption
variables of a set of 21 industrialized countries of the Organization for Economic
Co-operation and Development (OECD). International risk sharing focuses on cross-
border mechanisms to smooth consumption when a country is hit by an output shock.
The goal is to check if Gross Domestic Product (GDP) fluctuations are directly passed
to consumption or can be at least partially cross-border smoothed, allowing to check
the resilience of domestic consumption when the national economies are hit by GDP
shocks. The use of possible non-stationary DFMs allows to distinguish between long-
run and short-run issues in consumption smoothing through international risk sharing.
As it has been recognized since Lucas (1987), smoothing purely transitory fluctuations
in consumption will result in very small welfare benefits. However, Artis and Hoffmann
(2012) point out that if shocks are persistent, the benefits from better consumption
insurance may be huge. Since this issue has been hardly addressed in the literature, it
is still an open question which the degree of risk sharing at lower frequencies is. As far
as we know, this is the first time that non-stationary DFMs are used in this context.’ In
fact, any method able to address this issue will be useful for policy making: not only
the benefits from insuring permanent shocks are higher, but also the channels to do so
are different; see, Artis and Hoffmann (2008).

The rest of this paper is structured as follows. Section 2 describes the DFM and the
factor extraction procedures considered. Section 3 presents the results of Monte Carlo
experiments. Section 4 contains the empirical application to measure risk sharing.
Finally, Sect. 5 concludes.

2 Factor Extraction Algorithms
In this section, we introduce notation and describe the DFM considered in this paper.

Furthermore, the PC and 2SKS factor extraction procedures are described both when
implemented to original and first-differenced data.

2.1 Dynamic Factor Model

We consider the following static DFM where the unobserved common factors, F;, and
the idiosyncratic noises, &;,follow potentially non-stationary VAR(1) processes:

4 In independent work, Barigozzi and Luciani (2017) also propose a generalization of Doz et al. (2011,
2012) to the non-stationary case. They show empirically that the 2SKS extraction is more efficient than
integrating the PC estimator of the first differences of the factors. However, they do not consider the
comparison with recumulating the 2SKS estimates.

5 From the point of view of financial flows, Byrne and Fiess (2016) use PANIC for capital inflows in
emerging markets. These inflows are part of the capital markets for risk sharing according to the traditional
channel decomposition of Asdrubali et al. (1996). However, they do not check the effects on consumption
smoothing.
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Yl:PF[+8[, (1)
Fr = ®F 1 +n, )
& =T¢e—1+a, 3)
where Y; = (yi;, ..., yny) and & = (eqy, ..., eny) are N x 1 vectors of the vari-
ables observed at time ¢ and idiosyncratic noises, respectively. The common factors,
F, = (Fy, ..., F,), and the factor disturbances, n, = (91, ..., n), are r x 1

vectors, with » (r < N) being the number of common factors which is assumed to
be known. The N x 1 vector of idiosyncratic disturbances, a;, is distributed inde-
pendently from the factor disturbances, 7;, for all leads and lags. Furthermore, 7,
and a; are assumed to be Gaussian white noises with positive definite covariance
matrices X, = diag(anzl, ""anr) and ¥,, respectively. P = (py,..., py)’ is the
N x r matrix of factor loadings, where, p; = (pi1,..., pir)’ is an r x 1 vector.
Finally, ® = diag(¢;,...,¢,) and I' = diag(yy,...,yn) are r x r and N x N
matrices containing the autoregressive parameters of the factors and idiosyncratic
components, respectively, which can be equal to one; see, for example, Stock and
Watson (1989) and Barigozzi and Luciani (2017) for static DFMs for non-stationary
data.

Note that, according to economic theory, there is full agreement that some fac-
tors (related with, for example, technology shocks) may have permanent effects
while others (such as monetary policy shocks) have only transitory ones. Further-
more, there are also arguments to assume non-stationary idiosyncratic components.
Barigozzi et al. (2016, 2017) point out that stationarity of the idiosyncratic compo-
nents would produce an amount of cointegration relations for the observed system
that it is not consistent with that found in the systems that are standard in the DFMs
literature as, for example, those of Stock and Watson (2002) and Forni et al. (2009).
The idiosyncratic component in those datasets is likely to be non-stationary. The
implausibility of a stationary idiosyncratic component is also confirmed empirically
by Barigozzi et al. (2016) in a large macroeconomic system of quarterly series
describing the US economy with about half of the estimated idiosyncratic com-
ponents found to be non-stationary according to the test proposed by Bai and Ng
(2004).

The DFM in Egs. (1)—(3) is not identified. To solve the identification problem
and uniquely define the factors, a normalization is necessary. In the context of PC
factor extraction, it is common to impose the restriction P’P/N = I, and F’F being
diagonal, where F' = (Fy, ..., Fr) is the r x T matrix of common factors; see, for
example, Bai and Wang (2014) and Barigozzi et al. (2016). Bai and Ng (2013) consider
alternative identification restrictions in the context of PC factor extraction.

2.2 PC Factor Extraction

The most popular factor extraction procedures in large datasets are based on PC.
The distinctive feature of PC is that it allows a consistent factor extraction in large
datasets without assuming any particular error distribution and specifications of the
factors and idiosyncratic noises further than the correlation of the latter being weak
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and the variability of the common factors being not too small.® Furthermore, PC is
computationally simple which explains its wide implementation among practitioners
when dealing with very large systems of economic variables.

PC factor extraction separates the common component, P F;, from the idiosyncratic
component, &;, through cross-sectional averages of Y; in such a way that when N and T
tend to infinity, the effect of the idiosyncratic component converges to zero remaining
only the effects associated with the common factors. PC estimators of P and F; are
obtained as the solution to the following least squares problem

min V,.(P, F) @
Fi,...Fr.P

subject to the identification restrictions P'P/N = I, and F'F being diagonal, where
V.(P,F) = ﬁ Zthl(Y, — PF,)'(Y; — PF;). The solution to (4) is obtained by
setting pPrecL equal to /N times the eigenvectors corresponding to the r largest
eigenvalues of YY where Y = (Y1,...,Yr)isan N x T matrix of observations. The

corresponding PC estimator of F using data in levels is given by
FPCL _ y—1pPCLy 5)

Alternatively, when the common factors are 7(0), Bai and Ng (2002) consider the
restriction FF'/T = I, with P’ P being diagonal, such that the estimator of the matrix
of common factors, FFCL is by rows +/T times the eigenvectors corresponding to
the r largest eigenvalues of the T x T matrix Y'Y, with estimated factor loadings,
PPCL — y FPCL' )T When the common factors are /(1), Bai (2004) proposes to
use the restriction FF’/T? = I, with P’ P being diagonal. In this case, F7CL is by
rows T times the eigenvectors corresponding to the » largest eigenvalues of the 7 x T
matrix Y'Y and PPCL = y pPCL /T?. These latter restrictions are less costly when
N > T, while the former are less costly when N < T'.

In the context of stationary systems, if the common factors are pervasive and the
serial and cross-sectional correlations of the idiosyncratic components are weak, Bai
(2003) proves the consistency of £7€L, PPCL and the common component, deriving
their asymptotic distributions when N and 7 tend simultaneously to infinity, allowing
for heteroscedasticity in both the temporal and cross-sectional dimensions; see, also,
Bai and Ng (2002) and Stock and Watson (2002). Bai (2004) extends these asymptotic
results to PC factor extraction in the DFM in Eqgs. (1)—(3) when F; is /(1) and ¢&; is
1(0). When the idiosyncratic components are /(1), Bai and Ng (2008) show that PC
factor extraction implemented to data in levels yields inconsistent estimates of the
common factors.

Alternatively, instead of extracting the factors implementing PC to the original data,
Bai and Ng (2004) propose differencing the data in a univariate fashion and extract
the factors from the following differenced model

AY; = Pfi +e, (6)

6 Onatski (2012) considers a DFM in which the explanatory power of the factors does not strongly dominate
the explanatory power of the idiosyncratic components.
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Jr =@ fio1 +uy, (7
e — Fet_l + vy, (8)

where f; = AF;, uy = Any, e; = Ag; and v, = Aa, with A = (1 — L) and L being
the lag operator such that LY, = Y,_;. The weights are estimated as ~/N times the
first ¥ normalized eigenvectors of the N x N sample covariance matrix of AY; and
denoted by PPCD The corresponding estimated factors are given by

~

fi = N"1PPCP'AY, t=2,...,T. ©)

Once the factors are extracted from the first-differenced variables, the estimated
factors can be obtained either by integration of their estimated first differences as pro-
posed by Bai and Ng (2004) or by projecting the original system onto the space spanned
by the estimated loadings as proposed by Barigozzi et al. (2016). The “differencing
and recumulating” estimated factor is given by

t
FPCP=3"f, t1=2,....T. (10)
s=2

Note that assuming Yy = 0, the estimated differenced factor at time ¢t = 1 is given
by fi=N —LpPCDy, and consequently, the estimated recumulated factor coincides
with the projected factor which is given by

EPLL = N1PPCDy, p =1, T. (11

Bai and Ng (2004) and Barigozzi et al. (2016) show that 1:",P €D and 1:",3 LL respec-
tively, are consistent estimators for a rotation of F; up to a level shift regardless of
whether the idiosyncratic component, &;, is 1(0) or I(1). Note that the factor estima-
tors proposed by Bai and Ng (2004) and Barigozzi et al. (2016) are asymptotically
equivalent with some finite sample differences when there are deterministic trends in
the DFMs. Note that the elements in ft are orthogonal, but those in 1:",1’ €D are not.
This fact makes difficult the interpretation of this latest estimator.

For the properties of the PC-extracted factor when implemented to the original non-
stationary system, it is crucial knowing whether the idiosyncratic errors are stationary
or not. Bai and Ng (2004) propose the PANIC procedure to determine the order of
integration of both the common factors and idiosyncratic components. Its objective
is to determine the number of non-stationary common factors, ri, and to test if the
idiosyncratic noises are non-stationary. If there is only one factor, PANIC tests are
carried out through simple unit root test. If there are multiple factors, Bai and Ng
(2004) consider two tests to determine the number of independent stochastic trends
underlying the r common factors. The first test filters the factors under the assumption
that they have a finite VAR representation. The second corrects for serial correlation of
arbitrary form. On the other hand, when testing the non-stationarity of the idiosyncratic
noises, univariate unit root tests have lower power, and consequently, the following
pooled test is proposed
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5 23N logs; —2N
VAN ’

where s; is the p-value corresponding to the Dickey—Fuller test of the ith idiosyncratic
residuals. Pooled tests could not be used in the original data because of strong cross-
correlation due to the common factors, but they can be used in the specific components
since this strong cross-correlation has been removed after extracting the common
factors. Bai and Ng (2010) analyze the finite sample properties of the pooled test.

12)

2.3 Two-Step Kalman Smoother

The 2SKS procedure was proposed by Doz et al. (2011) for stationary DFMs. There-
fore, 2SKS can be implemented to AY;. The 2SKS factor extraction procedure is based
on combining PC and Kalman Smoother techniques. First, the common factors and
factor loadings are estimated using PC obtaining PPCD and f, and the correspond-
ing idiosyncratic and factor residuals, & = AY — PPCP f and 4, = f, — & fi_,
where @ is the ordinary least squares (OLS) estimator of the regression of f, on

f,_l. These residuals are used to estimate the covariance matrices W = diag (f)e)

where 3, = 6¢//(T — 1) with é = (é5,...,ér) is an N x (T — 1) matrix and
fl,] = uu'/(T — 1) where u = (ilp, ..., ur) is an r x (T — 1) matrix. Assuming
that fo ~ N(0, X ), the unconditional covariance of the factors can be estimated
as vec(X7) = (I, — ® ® ®)~'vec(,). After writing the DFM in Egs. (6)—(8) in
state-space form, with the system matrices substituted by PPCP, ¥, &, 2, and 3,
the Kalman smoother is run to obtain an updated estimation of the factors denoted by
ﬁK 5. Finally, estimates of the common factors, ﬁ,K 5D are obtained by recumulating
analogously to Eq. (10).

Doz etal. (2011) prove the consistency of ftK S when N and T are large considering
assumptions slightly different to those in Bai and Ng (2002), Stock and Watson (2002)
and Bai (2003) but with a similar role. The 2SKS works well in finite samples obtaining
more accurate factor estimates of f; = AF; even in the presence of correlation and
heteroscedasticity in the idiosyncratic noises; see Doz et al. (2011).”

Considering the possibility of non-stationary common factors, we propose to extend
the 2SKS algorithm as follows®

1. Obtain PC estimates of P and F; with data in levels given by expression (5).

Compute the idiosyncratic residuals & = ¥ — PPCLFPCL and the covariance
matrix of the idiosyncratic residuals U= diag <ﬁ8)

2. For each estimated factor, F f: cL j =1,...,r,carry out the Augmented-Dickey—
Fuller (ADF) test. '

7 Doz et al. (2012) propose iterating the 2SKS procedure until convergence is achieved in terms of two
consecutive log-likelihood values.

8 Barigozzi and Luciani (2017) propose an alternative extension in which, in order to isolate common
trends and stationary factors, they use a nonparametric approach which identifies the common trends as
those linear combinations of the factors obtained by the leading eigenvectors of a transformation of the
long-run covariance matrix as proposed by Pefia and Poncela (2006), Pan and Yao (2008), Lam et al. (2011)
and Zhang et al. (2018).
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(a) If the null hypothesis of a unit root is rejected, obtain the OLS estimate of
the autoregressive coefficient, ¢;, the residuals i ;; = F PCL _ ¢, Fj Pl and

the sample variance of the factor disturbance, o Zt_] u? /T The 1n1t1a1
state of the factor is assumed to have zero mean and variance estimated by

63 =62/0— ).
(b) If the null hypothesis is not rejected, then ¢3 ; = 1 and the residuals are
computed as il it = AF ].I;CL. Calculate the variance of the factor residuals,

Zl - F PCL? /(T —1). Assume a diffuse prior for the initial factor

w1th mean zero and variance a,% = Kk, where « is a large constant that empir-

ically performs well (for instance, k = 107); see Harvey and Phillips (1979),
Burridge and Wallis (1985) and Harvey (1989).°

3. Obtain ® = diag(¢y, ..., d,), 2,1 = diag(agl,...,&gr), Sp o= diag(&};l,...,
&7 ) and use them together with PP“L and W in the KS to obtain the estimated
common factors FKSL.

3 Finite Sample Performance

In this section, we carry out Monte Carlo experiments in order to study the performance
of the factor extraction procedures described in the previous section.

The experiments are based on R = 500 replicas generated by the DFM in Eqgs.
(1)—(3) with sample sizes T = (100,500) and N = (12,50, 200). The factor
loadings are generated once as P ~ U [0, 1], and the autoregressive matrix of the
idiosyncratic components is diagonal, ' = y I, with y = (—0.8,0,0.7, 1).10 We
consider three specifications of dependence of the idiosyncratic noises: a) homoscedas-
tic and cross-sectionally uncorrelated, with £, = 0021 where auz = (0.1, 1,10); b)
heteroscedastic and cross-sectionally uncorrelated with the variances generated by
0l ~U[0.05,0.15], 02 ~ U[0.5,1.5] and 02 ~ U [5, 15]; ¢) homoscedastic and
cross-sectionally correlated with weak cross-correlation generated following Kapetan-
ios (2010) as £!/2¢, where ¥ = [07 ;1,01 = 0j; ~ U(=0.1,0.1) for |i — j| <5
fori, j = 1,...N. Finally, with respect to the unobserved factors, we consider four
different data generating processes (DGPs). The first DGP, denoted as model 1 (M1),
hasr =1, ® = 1 and 0’3 = 1 so that the factor is given by a random walk. The
second and third models (M2 and M3) introduce a second random walk with r = 2
and ® = [ while ¥, = I (M2) and X,, = diag(1, 5) (M3). Finally, the fourth model
considered (M4) also has two factors, but one is stationary while the other is not. In
particular, in model M4, ¥, = I and ® = diag(1, 0.5).

9 Koopman (1997) gives an exact solution for the initialization of the Kalman filter and smoothing for state-
space models with diffuse initial conditions.

10 Alternatively, we generate artificial systems by model M1 where the temporal dependence of the idiosyn-
cratic errors is I' = diag(— 0.8y /2, 11y 2) and I' = diag(01 /2, 0.71 s2). The results are very similar
to those when all idiosyncratic errors have the same dependence with y = — 0.8 and y = 0, respectively.
It seems that the results are driven by the smallest temporal dependence among the idiosyncratic noises.
These results are available upon request.
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For each DGP considered, the common factors are estimated using the procedures
described in Sect. 2 obtaining FF¢P and FXSP| based on “differencing and recu-
mulating,” and ﬁtP cL ﬁtGP CE and ﬁtK 5L based on data in levels.!! Following Bai
(2004), the performance of the factor extraction procedures is evaluated by computing

the sample correlation between the true factor, F;, and a rotation of the estimated
factors, S; Ft(] ), estimated by the following regression

Figure 1 plots the Box-plots of the sample correlations between the true and
rotated estimated factors obtained through the Monte Carlo replicates when the
systems are generated by the M1 model with homoscedastic idiosyncratic errors
with oaz = 10 when the temporal and cross-sectional dimensions are (N,7T) =
(12, 50), (12, 100), (50, 100), (200, 100) and (200, 500).

Several conclusions are obtained from Fig. 1. First, all procedures based on dif-
ferencing and recumulating are similar among them. The same can be said about
the procedures based on extracting factors directly from the data in levels. Second,
regardless of N and T, the correlations of the “differencing and recumulating” PC
procedure can be rather low when the temporal dependence of the idiosyncratic com-
ponent is negative. Furthermore, using the “differencing and recumulating” estimator
implemented with the 2SKS procedure, named KSP in the graph, generates even
smaller correlations, mainly when y = — 0.8. Note that, when the serial dependence
of the idiosyncratic components is such that y < 0.5, the variance of the differenced
idiosyncratic component, 062, is larger than the corresponding variance of the original
component, 082; see, for example, Corona et al. (2017). Consequently, the performance
of the procedures using data in first differences deteriorates in this case. However, if
y > 0.5, then 062 < 082 and, consequently, the procedures based on “differencing
and recumulating” may have advantages. Third, if the idiosyncratic noises are white
noise, the 2SKS procedures implemented to raw data generate correlations which are
always close to 1. Note that the two-step procedure proposed in this paper does a
remarkably good job. Only when the cross-sectional and temporal dimensions are
very large, the procedures based on first differences estimate factors with correlations
close to one. Fourth, if the dependence of the idiosyncratic noises is positive, differ-
encing or extracting the factors using the original non-stationary system yields similar
correlations. Only when N and 7 are relatively small, differencing performs worse.
Finally, when the idiosyncratic errors are non-stationary, i.e., y = 1, extracting the
factors using differenced or original data yields similar moderate correlations. Only
when N is very large, we observe the result established by the asymptotic theory with
the procedures based on “differencing and recumulating” having correlations close to
one while the non-consistent procedures based on original non-stationary data having
smaller correlations.

1T Note that, in the context of the DFM considered in this paper, the Monte Carlo results for the procedure
proposed by Barigozzi et al. (2016) (BLL) are almost identical to those obtained by the procedure proposed
by Bai and Ng (2004). Results from the GPCE and BLL procedures are available from the authors upon
request.
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Fig. 1 Box-plots of the sample correlations between {8j FtPCD}, {Sj FtKSD}, {8]. F,PCL} and {8;. FIKSL}

with {F;}. We consider the M1 model with homoscedasticity in idiosyncratic errors with aaz = 10. First
row indicates N = 12 and T = 50; second row N = 12 and T = 100; third row N = 50 and T = 100;
fourth row N =200 and 7" = 100 and fifth row N = 200 and 7" = 500. The first column plots y = —0.8,
second column y = 0, third column y = 0.7 and fourth column y =1

The Box-plots in Fig. 1 help to understand the role of the dynamic dependence
of the idiosyncratic noises on the performance of the alternative factor extraction
procedures considered. In order to evaluate the effect of the variance of the disturbance
of the idiosyncratic noises, Fig. 2 shows the Box-plots of the correlations of the
common factor estimates and the simulated ones for model M1 with y = —0.8
and the same dimensions considered above and aaz = 0.1, 1 and 10. Note that if %2 is
small, then all procedures have correlations close to 1 regardless of the cross-sectional
and temporal dimensions and whether they are based on first differences or original
data. The deterioration of the procedures based on “differencing and recumulating”
is already observed for aaz = 1 with the exception of very large N and 7. Finally, in
Fig. 3, we study the role of the variance of the idiosyncratic noises when y = 1. In this
case, it is clearly better to take first differences to the original series. The performance
of the procedures based on extracting factors from the original data is only reasonable
when 62 = 0.1.

To evaluate the precision of the factor estimates and summarizing the results, we
carry out a response surface analysis by regressing the sample correlation averages on
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Fig. 2 Box-plots of the sample correlations between {3; EFPCEDy, {3; l:‘rKSD}, {S; ﬁ,PCL} and {3; ﬁtKSL}
with {F;}. We consider the M1 model with homoscedasticity in idiosyncratic errors with y = — 0.8. First
row indicates N = 12 and T = 50; second row N = 12 and T = 100 ; third row N = 50 and T = 100;
fourth row N = 200 and 7' = 100; and fifth row N = 200 and 7" = 500. The first column plots aaz =0.1,
second column o2 = 1 and third column o2 = 10

the cross-sectional and temporal dimensions, N and 7', and the temporal dependence
and variance of the idiosyncratic noises, y and aaz, for model M1 with homoscedastic,
heteroscedastic and cross-correlated idiosyncratic noises. In the case of heteroscedas-
tic idiosyncratic errors, the value of aaz considered as regressor is the expected value of
the variances for each idiosyncratic noise. The regression parameter estimates together
with the corresponding standard errors and adjusted R? are reported in Table 1. First,
we can observe that the average correlation of the procedures based on “differencing
and recumulating” is clearly smaller than that of the procedures implemented to orig-
inal data. As above, we also observe that the correlations are similar among methods
based on first differences and among methods based on original systems. Second, it
is also clear that the correlations between the true factors and the rotated estimates
obtained using procedures based on differenced data increase with y, the temporal
dependence of the idiosyncratic noise. This result could be expected given that, as
explained above, when y < 0.5, the variance of the differenced idiosyncratic compo-
nent, aez, is larger than the corresponding original variance, 052 ,» and consequently, the
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Fig. 3 Box-plots of the sample correlations between {5} EFPCEDy, {3;. EESDy {8} EFPCLY and {3} FKSLy
with {F;}. We consider the M1 model with homoscedasticity in idiosyncratic errors with = 1. First row
indicates N = 12 and T = 50; second row N = 12 and T = 100; third row N = 50 and T = 100; fourth
row N = 200 and T = 100; and fifth row N = 200 and T = 500. First column plots craz = 0.1, second
column aaz = 1 and third column 03 =10

recovery of the common factors is less precise. Furthermore, note that the increase in
the correlations between true and rotated extracted factors is larger for KSL than for
the PCL procedure, as expected given the flexibility of the Kalman filter to explicitly
model the idiosyncratic dynamics. However, the correlations decrease with y when
the factor extraction procedures are implemented to original data. Third, increasing
aaz negatively affects factor extraction for all procedures. However, for the same rea-
sons explained above, the effect of o2 is less important if the factors are extracted
using original non-stationary observations than when they are extracted using first-
differenced data. Finally, Table 1 shows that the results are almost the same regardless
of the particular specifications of the idiosyncratic components. It is remarkable that,
for the particular specifications of the heteroscedasticity considered in this paper, the
correlations between the true and rotated estimated factors obtained when the PCL
and GPCE procedures are implemented are very similar.
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Table 1 Response surface
analysis by regressing sample
correlations averages on the
sample size, serial correlation
and the variance of the
idiosyncratic disturbance

@ Springer

Dependent variable: sample correlation averages

Regressor PCD KSD PCL KSL

M1 with homoscedastic idiosyncratic errors

Constant 0.8517 0.7901 0.9548 0.9611
(0.0445) (0.0591) (0.0316) (0.0315)
N 0.0002 0.0004 0.0001 0.0001
(0.0002) (0.0003) (0.0002) (0.0002)
T 0.0003 0.0003 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0001)
y 0.1331 0.2145 —0.1009 —0.1062
(0.0281) (0.0374) (0.0200) (0.0199)
craz —0.0296 —0.0353 —0.0100 —0.0090
(0.0044) (0.0058) (0.0031) (0.0031)
R? 0.5035 0.5026 0.3175 0.3215
M1 with heteroscedastic idiosyncratic errors
Constant 0.8454 0.7879 0.9542 0.9618
(0.0440) (0.0580) (0.0317) (0.0314)
N 0.0003 0.0004 0.0001 0.0001
(0.0002) (0.0003) (0.0002) (0.0002)
T 0.0003 0.0003 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0001)
y 0.1309 0.2150 —0.0993 —0.1043
(0.0278) (0.0367) (0.0200) (0.0198)
aaz —0.0322 —0.0367 —0.0108 —0.0091
(0.0043) (0.0057) (0.0031) (0.0031)
R? 0.5362 0.5236 0.3139 0.3162
M1 with cross-correlated idiosyncratic errors
Constant 0.8537 0.7929 0.9538 0.9599
(0.0439) (0.0583) (0.0316) (0.0313)
N 0.0002 0.0003 0.0001 0.0001
(0.0002) (0.0003) (0.0002) (0.0002)
T 0.0003 0.0003 0.0001 0.0000
(0.0001) (0.0001) (0.0001) (0.0001)
y 0.1296 0.2116 —0.0986 —0.1040
(0.0278) (0.0369) (0.0199) (0.0198)
%2 —0.0299 —0.0358 —0.0105 —0.0093
(0.0043) (0.0057) (0.0031) (0.0031)
R? 0.5097 0.5098 0.3166 0.3205

Standard errors between parentheses



Estimating Non-stationary Common Factors: Implications for. . . 51

& homoscedastic & heteroscedastic & cross-sectionally correlated
r=1 r=2 r=1 r=2 r=1 r=2
- - T - 1 - '
. i . ' - i
o | i © | i o | i
o 1 o 1 o 1
~ | = 1 = 1
i 1 i
© | i o | ' o | i
=) i =} ' S i
Sa — ! a - i a = i
= | i = | ' = | i
S i < i < i
o i ~ :1 ~ :1
o ' o 1 o !
i ' i
= 1 = 1 1 1
o =E i = A ! = - ! ==
-4 -4 - - o Y | -4 J
S80o® S8oa S8oa 8Sgoa S8o@a 8Sgoa
a ¥ o x a¥aox a ¥ o x o X o X o XY ax o ¥ axX
r=1 r=2 r=1 r=2 r=1 r=2
- - [ -~ - i - - [
] -1 ] I ] I
o | i @ | i @ | i
o 1 o 1 (=] 1
- 1 - 1 - 1
o | i o | i o | i
o 1 o 1 o ]
go. — H a = \ o N i
= ] i = | ' = i
=) i =} ' S i
- 1 - I . |
o i o~ i o~ i
o ] o 1 o ]
-4 1 . i . |
i ' i
1z I T 1 1z 1
oo A A oo A A [ R R | oo A oo A oo A
[SIN7) o ® o ® [S7) oo [SI7}
geee e gere e eeae Q¢
r=1 r=2 r=1 r=2 r=1 r=2
IR - I - T
. 1 4 ' - i
o | i @ | i @ | i
o 1 (=] 1 (=] 1
= i . ' . i
o | i o | i o | i
o o o
STa . | o . i o . i
= ' I '
= | i = ' = i
o 1 o 1 o ]
- 1 - i - |
N._I i EE N__{ i N__{ i
o 1 o 1 o ]
] - . - :‘[I - : II
o d = i E od =E EEI o = EIE
[ Y oo A oo <A oo A oo A oo A
»n O R »n O 9 »n O @0 n O N n O »n O
geee peLee gere peLee eeRe Q¢

=
2L
Fig. 4 Box-plots of the sample correlations between {3} I:“,PCD}, {3;. I:“,KSD}, {S} I:",PCL} and {3} I:“,KSL}
with {F;}. We consider the N = 50 and 7' = 100 with O’az = 10 and y = — 0.8. First row plots M2 model,

second row M3 model and third row M4 model. First column indicates the homoscedasticity, second column
heteroscedasticity and third column cross-sectionally correlated idiosyncratic errors

Finally, we consider the three models with two factors. Figure 4 plots the Box-
plots of the correlations across the Monte Carlo experiments between the true and
rotated estimated common factors through the Monte Carlo experiments for mod-
els M2, M3 and M4 (by rows) with Uaz = 10 and y = —0.8. In each case, we
consider homoscedastic, heteroscedastic and cross-correlated idiosyncratic errors (by
columns). The cross-sectional and temporal dimensions are N = 50 and 7" = 100.
First of all, as far as the two factors are non-stationary, models M2 and M3, we can
observe the same patterns as those described for the case of one single factor. How-
ever, when one factor is a random walk and the second factor is stationary, model
M4, none of the procedures estimate this factor adequately. The results are drastically
deteriorated when extracting the stationary common factor.'? Finally, Fig. 5 plots the
Box-plots of the correlations across Monte Carlo replicates when the idiosyncratic

12 The results are similar even if the cross-sectional and temporal dimensions are increased.

@ Springer



52 F.Corona et al.

& homoscedastic & heteroscedastic & cross-sectionally correlated
r=1 r=2 r=1 r=2 r=1 r=2
-~ — [l -~ — ! -~ — [l
EANEEE: EANREE: ENNEEE
@ | i @ | i @ | i
o 1 o 1 o 1
- ' i i _ 1
o | i o | | < | |
o 1 o 1 o 1
Yo S : a A ! a A :
- 1 - 1 = !
o | i o 1 o i
- ' i i _ '
~ 1 o~ i o i
o 7] i o 7 ! o 7 !
= 1 1 1 1
o H o H o H
ood 2t aoaaodd ao - oo 2 oo [ Y a Q|
o [SI7) [SI7] °o® o ® oQ
82&3( 82&! 8@0.! 82&! EQQX ggn_x
r=1 r=2 r=1 r=2 r=1 r=2
~— — [l ~ — [ ~ — [l
F T | == Fx :==1 3 :--:I::ll.
@ | i o | i o | i
o 1 o 1 o 1
- 1 . i . 1
o | 1 o | i o | i
™ o 1 o 1 o 1
2o ! a T : & !
= i = i = I
=] 1 =] i =] '
= 1 = 1 - Il
~ i o~ i o~ i
= I = i =) '
1 i 1
. 1 7 1 T 1
o H o H o H
00 =4 00 = = 00 = =4 00 = 4 00 = 00 = 4
o oo [SI7] °o® [S7] [SI7)
e¢ax Q¢ax g¢ax Q¢ix g¢ax R¢dx
r=1 r=2 r=1 r=2 r=1 r=2
- T - - T ‘-—E T
s ' HIT ' HI !
o ] 111 o | | o | :11
o 1 o 1 o 1
- I . i . 1
o | i o | i < | i
] 1 o 1 o 1
=
Sao — ! a -1 ! o . H
= I = | = 1
o 1 o 1 o 1
- ' i i _ 1
o 1 o i o~ i
o | 1 o | 1 o Il
' i I
= 1 =1 ¥ = 1
o — $ o - i o - :
oo A J oo A A oo A A [a e R o R oo A A
o [SI7) o2 °o® [SI7] oQ
82&! 820.& 8@&.& 82&! 82&! an_x

Fig. 5 Box-plots of the sample correlations between {3} EFPCDy, {S} EESDy {S; EFPCLY and {3;. EXSLy

with {F;}. We consider the N = 50 and T = 100 with 03 = l and y = 1. First row plots M2 model,
second row M3 model and third row M4 model. First column indicates the homoscedasticity, second column
heteroscedasticity and third column cross-sectionally correlated idiosyncratic errors

noise is /(1) and oaz = 1. As expected, we can observe that the common factors are
better extracted when we use first-differenced data.

In the context of determination of the number of factors, Corona et al. (2017) con-
clude that if ¢; is stationary, with autoregressive parameters smaller than 0.5 while
F; is non-stationary, then overdifferencing the idiosyncratic components may intro-
duce distortions on the determination of the number of factors given that the relation
between the variances of the common and idiosyncratic components is modified with
the variances of A F; decreasing and the variances of e; increasing in relation to the
variance of F; and &;, respectively. Recall as well that some procedures do not yield
consistent estimates when the idiosyncratic noises are 7(1).
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4 Empirical Analysis

International or cross-border risk sharing focuses on the smoothing of consumption
when a country is hit by an output shock. In an ideal world of perfect risk sharing,
consumption should be insured. However, in practice, risk sharing is far from being
full or complete and a percentage of GDP shocks are passed into consumption and not
smoothed.

In a time series context, risk sharing has been traditionally addressed in the litera-
ture as a short-run issue and, consequently, analyzed within the context of stationary
models. Nevertheless, more recently, some authors question this view and bring in
the long-run perspective to the problem, although the results are not conclusive. For
instance, Becker and Hoffmann (2006) and Pierucci and Ventura (2010) analyze risk
sharing within a cointegration context. Artis and Hoffmann (2008, 2012) argue that
risk sharing has increased at lower frequencies and relate their results to the permanent
income hypothesis. On the contrary, Leibrecht and Scharler (2008), using cointegra-
tion techniques and vector error correction models, found that while consumption risk
sharing in the short run was around 30%, it only accounts for a 10% in the long run.
Fuleky et al. (2015) deviate from the usual homogeneous economies assumption. They
provide country-specific measures of risk sharing both in the short and the long run and
conclude that countries performing poorly in the short run, relative to other countries,
also tend to have poor performance over the long run. As regards factor models, Del
Negro (2002) implement a stationary DFM to disentangle movements in US state out-
put and consumption due to national, regional or state-specific factors. Very recently,
for capital flows, Byrne and Fiess (2016) apply non-stationary factor models to analyze
the common and idiosyncratic elements in emerging markets’ capital inflows.

The variables in risk sharing are usually computed in deviations from the aggregate
(see, among many others, the seminal paper by Asdrubali et al. 1996) even in the
non-stationary framework (see, for instance, Becker and Hoffmann 2006; Artis and
Hoffmann 2008, 2012, or Pierucci and Ventura 2010). The aim is to create the series
of pure idiosyncratic or domestic shocks. Other than that, a common factor would
pick up that consumption is generally 2/3 or more of GDP. These variables are usually
known in the literature of risk sharing as idiosyncratic GDP and consumption, or GDP
and consumption shocks. In order to avoid confusions with the idiosyncratic errors in
the DFM literature, we will use the terms GDP and consumption shocks, respectively.

The economic interpretation of the common factor analysis in our model should be
as follows. If there is full risk sharing, consumption and output shocks cannot share
a common factor since these two variables should be orthogonal in an ideal case of
complete risk sharing where, under certain assumptions, domestic consumption should
be a constant fraction of the aggregate world output. Hence, lack of complete full risk
sharing should be detected through commonalities between output and consumption
shocks. If we can find non-stationary common factors among them, we could conclude
that there is no risk sharing in the long run.

Our sample covers the following 21 industrialized OECD countries: Australia
(AUS), Austria (AUT), Belgium (BEL), Canada (CAN), Denmark (DEN), Finland
(FIN), France (FRA), Germany (DEU), Greece (GRC), Ireland (IRL), Italy (ITA),
Japan (JPN), Netherlands (NLD), New Zealand (NZL), Norway (NOR), Portugal
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(PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), United Kingdom (GBR)
and United States (USA). The data are annual observations of GDP and Consumption
(C) from National Accounts and cover the time span 1960-2014 with N = 42 and
T = 55. The main source of data is AMECO, the annual macroeconomic database of
the European Commission’s Directorate General for Economic and Financial Affairs
(DG ECFIN), which provides harmonized statistics on all of the variables required to
perform the analysis. Real GDP and consumption corrected from power purchasing
parity are converted into per capita variables. We build aggregate GDP and C for the
set of countries included in the analysis following the weighting procedure described
in Beyer et al. (2001), where the aggregation is performed directly on growth rates
(first difference of logs) but using time-varying weights of countries that are given by
their relative share in real GDP, in levels. The aggregate GDP and consumption growth
rates are integrated to get the log of the aggregate variables. To define the idiosyncratic
variables or gaps in log levels, we subtract the log of the aggregate from the log level
of a specific country. The resulting gap could be interpret as the log of the percentage
of a particular country GDP (consumption) over the aggregate variable (see Giannone
and Reichlin 2006, for the same interpretation).

Unit root tests are performed for the GDP and consumption gaps for all countries
and, overall, we can consider that the series are /(1). In order to determine the number
of common factors, we implement the procedure proposed by Onatski (2010) and
choose r = 5 regardless whether it is implemented to data in levels or first differences;
see Corona et al. (2017) for a comparison on alternative procedures to determine the
number of common factors in non-stationary DFMs.

Since we do not know if the idiosyncratic errors are stationary or not, we differentiate
the data and extract 5 common factors using PCD. These 5 common factors explain
60% of the total variability in the model with data in first differences. Then, we
recumulate the extracted common factors and the specific components. We use PANIC
to check if the idiosyncratic errors are non-stationary. We performed individual tests
for each idiosyncratic error and the pooled test proposed by Bai and Ng (2004) where
the pooled statistic of the log of the p-values (s;) of the individual tests follows a
standard normal distribution.

Both the individual tests over the idiosyncratic components as well as the pooled test
(the S statistic was 0.19) indicate the idiosyncratic components are non-stationary. In
this case, we have to choose any of the methods to extract the common factors that work
with the data in first differences, since if the errors are non-stationary, the procedures
that work with the data in levels do not yield to consistent estimates. This was reflected
in our simulations by the low correlations between the generated common factors and
the estimated ones.

The rationale for finding that the idiosyncratic errors are non-stationary should be as
follows. A large part of the commonality has been removed when generating the data
as the variables that enter into the model are already in deviations from the aggregate.
This aggregate might proxy world comovements. Nevertheless, there are still strong
correlations in the data that we remove through the common factors. If what it is left is
non-stationary, as it might seem the case, it means that there are persistent movements
that are generated internally and not shared among countries or due to interactions
with third countries, as it might happen with the USA and Mexico. Another way of
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looking at this result is as follows: if after removing r1 non-stationary common factors,
what is left is stationary, it means that we should find 2N — r; cointegrating relations
among the data. This is not the case, and therefore, we conclude that in our model after
removing r common factors (7] being non-stationary), what is left is non-stationary
as well.

We proceed using PCD to recover the common factors and the factor loadings. As
mentioned before, we applied the “differencing and recumulating” method suggested
by Bai and Ng (2004), although any method that works with the data in first differences
could be used as well. We test how many of the common factors are non-stationary.
The extracted sample factors in first differences are orthogonal as this condition is
imposed for identification purposes; however, the recuamulated common factors do not
need to be orthogonal. Therefore, we test how many of the common factors are non-
stationary using the variant of the test for common trends of Stock and Watson (1988)
proposed by Bai and Ng (2004). Basically, the test consists of deciding how many
of the eigenvalues of the first-order autoregressive matrix after correcting for serial
correlation in the residuals are close enough to 1. The estimated eigenvalues are 0.66,
0.83, 0.90, 0.91 and 1.02. We cannot reject the null hypothesis of 5 common trends,
even though the fifth eigenvalue is only 0.66. Since T is not so large, we can conclude
that there are 5 common factors in the data and, at least, 4 of them are non-stationary
factors.

The next step is to decide if the factor loadings are different from zero and if we
find loadings different from zero associated with GDP and consumption for the same
country. Since the factor loading matrix is the same for the model in first differences
than for the model in levels, and in the model in levels the idiosyncratic errors are
I(1), we perform inference about the factor loadings using the factor model in first
differences (the asymptotic distribution of the loadings is given in Bai 2003).

We analyze the factor loadings of the first common factor (see Fig. 6) related to
GDP. The factor loadings could be considered different from zero for all countries
but Australia, Canada, Denmark, UK and Switzerland. It gives positive weights to the
Anglo-Saxon countries (USA, CAN, GBR, NZL and AUS) although it can be only
considered different from zero for USA and New Zealand while the weights have the
opposite sign for the rest of European countries (other than the UK) and Japan. Within
the last set, the highest, in absolute value, are given to Greece, Portugal and Spain
followed by Japan. We can interpret it as a wealth factor.

Curious enough, Greece, Portugal and Spain (jointly with Ireland and Italy that
also have significant factor loadings of the same sign) constitute the so called PIIGS
group, peripheral European countries where risk sharing has collapsed during the last
recession and subsequent sovereign debt crisis. Kalemki-Ozcan et al. (2014) point out
that the governments of these countries did not save during the expansionary phases
of the business cycle and were not able to borrow on the international markets during
the crisis due to the high levels of outstanding public debt. Ireland is also included
in this set although its case is slightly different, with government deficits related to
banking failures; see Kalemki-Ozcan et al. (2014). This might be the reason why
Ireland is included in this group instead of within the Anglo-Saxon countries. Japan
has experienced a long-lasting recession and sluggish output growth since the early
1990s.
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Fig.6 Top panel ﬁlz, middle panel p;| forGDP (i = 1, ... 21) and bottom panel pi1 forC(i =22,...42).
We plot the corresponding 95% confidence intervals for P (middle and bottom panels). The estimations are
obtained using PCD

The factor loadings associated with consumption shocks seem to follow very closely
those of output shocks, indicating lack of risk sharing. This interpretation should be
in accordance with Becker and Hoffmann (2006) and Pierucci and Ventura (2010).

The second common factor gives the highest positive weight to New Zealand. On
the negative side appears Japan. The next 2 common factors are devoted to separate
Greece from other countries. Basically, the third common factor separates Greece from
Portugal and the fourth one to separates Greece from Ireland and Norway. The fifth
common factor loads on several countries and has a difficult interpretation.

There are 21 x 5 = 105 loadings associated with each country for GDP and the
same quantity associated with consumption. We find that when a loading is significant
for GDP for one country, it is usually significant and of the same sign for consumption
for the same country, indicating lack of risk sharing. Only in 27 out of the 105 possible
cases, factor loadings were significant for one of the variables (GDP or consumption)
and not for the other (which could be an indication of risk sharing). The fact that most
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of the common factors are non-stationary indicates that it is harder to find risk sharing
in the long run than in the short run.

5 Conclusions

In this paper, we contribute to the literature on non-stationary DFMs in two differ-
ent directions. First, we examine the finite sample performance of alternative factor
extraction procedures when estimating non-stationary common factors in the context
of large DFMs. We consider the case where the common factors are cointegrated
with the observed series (and, therefore, the idiosyncratic errors are stationary) and
the case where they are not (and, then, the idiosyncratic errors are non-stationary).
Second, we fit a non-stationary DFM to analyze the existence of risk sharing among
OECD industrialized economies.

With respect to the finite sample performance of factor extraction procedures, we
first extend the results in Bai (2004), Bai and Ng (2010) on the behavior of PC when
implemented to original non-stationary observations or to their fist differences by
considering a larger range of situations about the properties of the underlying factors
and/or about the idiosyncratic noises. As expected, we show that, when the idiosyn-
cratic errors are non-stationary, PC based on estimating the common factors using
non-stationary time series in levels do not perform well and that the procedures based
on first differences should be used; see Bai and Ng (2008).

Furthermore, we extend the hybrid method by Doz et al. (2011) based on com-
bining PC and Kalman smoothing, applying the technique to original non-stationary
observations. We show that the finite sample properties of the hybrid method are very
similar to those of the corresponding PC procedure both when they are applied to
non-stationary levels and to their first differences. When the idiosyncratic errors are
stationary, the methods based on levels have a clear advantage while if the errors
are non-stationary, the approaches based on estimating the common factors using the
levels do not perform well and the procedures based on first differences should be
used.

Finally, the empirical application shows that for a non-stationary system of 21
OECD industrialized economies, at least four common factors are non-stationary, such
that consumption and GDP share common trends. Furthermore, we apply PANIC to
the estimated idiosyncratic errors, concluding that this component is non-stationary.
Hence, these facts suggest the lack of full risk sharing in the short but specially in the
long run.

From a policy point of view, there is a need of measures to increase the resilience of
the different economies to output shocks. Of course, these measures can be different
depending on whether we focus on long-run or short-run consumption smoothing.

The nature of shocks is usually linked in most economic theories with different types
of shocks: permanent shocks are usually related to the supply side while transitory
or business cycle shocks are usually linked to the demand side. Policy measures, if
automatic stabilizers do not work out, should be of different nature: structural in case
of permanent shocks and discretionary in the case of transitory shocks. If, however,
we should rely on automatic stabilizers, those should also work through different

@ Springer



58 F.Corona et al.

channels depending on the nature of shocks. Becker and Hoffmann (2006) and Artis
and Hoffmann (2008) point out that insurance against permanent shocks requires ex-
ante diversification which is generally only possible through state-contingent assets
such as equities, whereas transitory variation in income can also be smoothed ex-post
through borrowing and lending, for instance, through loans.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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