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Abstract
Discrete-choice network revenue management (DC-NRM) captures both customer 
behavior and the resource-usage interaction of products, and is appropriate for air-
line and hotel revenue management, dynamic sales of bundles in advertising, and 
dynamic assortment optimization in retail. The state-space of the DC-NRM stochas-
tic dynamic program explodes and approximation methods such as the choice deter-
ministic linear program, the affine, and the piecewise-linear approximations have 
been proposed to approximate it in practice. The affine relaxation (and thereby, its 
generalization, the piecewise-linear approximation) is intractable even for the sim-
plest choice models such as the multinomial logit (MNL) choice model with a sin-
gle segment. In this paper we propose a new Lagrangian relaxation method for DC-
NRM based on an extended set of multipliers. An attractive feature of our method 
is that the number of constraints in our formulation scales linearly with the resource 
capacities. While the number of constraints in our formulation is an order of magni-
tude smaller that the piecewise-linear approximation (polynomial vs exponential), it 
obtains a bound that is as tight as the piecewise-linear bound. If we assume that the 
consideration sets of the different customer segments are small in size—a reason-
able modeling tradeoff in many practical applications—our method is an indirect 
way to obtain the piecewise-linear approximation on large problems effectively. Our 
results are not specific to a particular functional form (such as MNL), but hold for 
any discrete-choice model of demand. We show by numerical experiments that our 
Lagrangian relaxation method can provide substantial improvements over existing 
benchmark methods, both in terms of tighter upper bounds, as well as revenues from 
policies based on the relaxation.
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1  Introduction and literature review

In industries such as hotels, advertising, and airlines, the products consume one 
multiple resources (for example, multi-night stays, bundles of advertising time-
slots, multi-leg itineraries) and each product has a specific price, set based on 
the price sensitivity of the customer segment it is aimed at, the market condi-
tions, and the product characteristics. The resources are perishable; for instance, 
for an airline, empty at the moment of departure get no revenue, so the inventory 
“perishes” at departure. The firm’s revenue management function is to decide, at 
every point in time during the sale period, what products to open for sale—the 
tradeoff being selling too much at too low a price early and running out of capac-
ity, or, rejecting too many low-valuation customers and ending up with unsold 
inventory. Network revenue management (NRM) is control based on the demands 
for the entire network. Chapter 3 of Talluri and van Ryzin [23] contains the nec-
essary background on NRM.

NRM incorporating more realistic models of customer behavior, as customers 
choosing from a set of offered products, was initiated in Talluri and van Ryzin 
[22] for the single-resource problem. Discrete-choice models are parsimonious 
as they model the probability of purchase as a function of product characteristics, 
such as price and restrictions, reducing the number of parameters to estimate. The 
subsequent optimization problem can be formulated as a stochastic dynamic pro-
gram that we call discrete-choice NRM (DC-NRM) dynamic program.

The DC-NRM dynamic program is computationally intractable and hence 
many approximation methods have been proposed, starting with Gallego et  al. 
[7] and Liu and van Ryzin [15] who formulate the choice deterministic linear 
program (CDLP). Zhang and Adelman [26] propose an affine approximation to 
the value function, while Meissner and Strauss [16] propose a piecewise-linear 
approximation. Kunnumkal and Topaloglu [14] use Lagrangian relaxation ideas 
to come up with a separable approximation. All of the above mentioned approxi-
mation methods obtain upper bounds on the value function, with the piecewise-
linear approximation obtaining the tightest upper bound.

Unfortunately, most of these approximation methods themselves are intracta-
ble, even for simple choice models. Liu and van Ryzin [15] show that CDLP is 
tractable for the multinomial logit (MNL) model provided the subset of products 
of interest to the different customer segments (consideration sets) are disjoint. 
However, CDLP is NP-complete when the segment consideration sets over-
lap even under the MNL model with two customer segments (Bront et  al. [5], 
Rusmevichientong et al. [18]). Kunnumkal and Talluri [11] show that the affine 
approximation of Zhang and Adelman [26] is NP-hard for the MNL model with 
even a single segment, which implies a similar hardness result for the piecewise-
linear approximation as well. These negative results show us the limits of tracta-
bility even for the simplest choice model such as the MNL model.

One approach to obtain a tractable model is to approximate the underlying dis-
crete choice model with a simplified model that limits the number of choices. 
For example, Chen and de Mello [6] consider a buy-up/buy-down model which is 
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tractable and can be solved efficiently. In this paper, we take a different approach 
to tractability; we work with the underlying discrete-choice model but come up 
with a tractable approximation to the value function of the DC-NRM dynamic 
program. In particular, we propose a new Lagrangian relaxation method for 
DC-NRM based on an extended set of multipliers. The number of constraints in 
our formulation scales linearly with the resource capacities, making it a tracta-
ble alternative for large networks. On the other hand, we show that our extended 
Lagrangian relaxation obtains a bound that is as tight as the piecewise-linear 
bound. The biggest practical impact of our work is in showing that the complexity 
of the Lagrangian relaxation method (in terms of the number of constraints in the 
linear programming formulation of the problem) scales linearly with the resource 
capacities, while that of the piecewise-linear approximation is exponential—yet 
they arrive at the same value function approximation. If we assume that the con-
sideration sets of the different customer segments are small in size—a reasonable 
modeling tradeoff in many practical applications as we argue next—our method is 
able to solve relatively large problems, which would have been impossible if one 
were to try solving the piecewise-linear approximation directly.

Since we work with general discrete-choice models, all the negative complex-
ity results for the MNL model carry over for the Lagrangian relaxation as well as 
we show that our Lagrangian relaxation is equivalent to the piecewise-linear relaxa-
tion. The great advantage however is that the number of constraints in the Lagran-
gian relaxation depends directly on the size of the consideration sets of the differ-
ent segments. These fortunately are quite small in practice: in the airline setting for 
instance, a segment’s consideration set consists of choices (on one airline) for travel 
between an origin and destination, and typically there are only a few alternatives on 
a given date (Talluri [20]). For hotels, as the product consists of a multi-night stay 
and most customers arrive with a fixed duration of stay in mind, the consideration 
set consists of the types of rooms and products, usually not a very large number.

Research in the marketing area also gives evidence supporting that customers 
have relatively small consideration sets: Hauser and Wernerfelt [9] report aver-
age consideration set sizes of 3 brands for deodorants, 4 brands for shampoos, 2.2 
brands for air fresheners, 4 brands for laundry detergents and 4 brands for coffees. 
(Note that the study is for brands rather than choices of sizes or colors.) Another line 
of marketing research finds great value in deliberately limiting customer choices to 
a small number (Iyengar and Lepper [10]). Assuming small consideration set sizes, 
Talluri [21] and Meissner et  al. [17] study tractable approximations to CDLP for 
DC-NRM. While our segment-based relaxation has the same underlying motivation, 
the development is quite different as we work with the Lagrangian relaxation of the 
DC-NRM dynamic program.

Our final contribution in this paper is showing by numerical experiments that our 
Lagrangian relaxation method can provide substantial improvements over existing 
methods.

Our work builds on previous research on Lagrangian relaxations for NRM. 
Topaloglu [24] was the first paper to propose a time-based Lagrangian relaxa-
tion approach for the perfect segmentation case (also called the independent-class 
assumption). The Lagrangian relaxation of Topaloglu [24] associates Lagrange 
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multipliers with each product in each time period, and Kunnumkal and Talluri [13] 
show that it obtains an upper bound that coincides with the piecewise-linear bound. 
In contrast, for DC-NRM, we give an example which illustrates that the approach 
proposed by Topaloglu [24] can be weaker than the piecewise-linear approxima-
tion. This motivates our approach that associates Lagrange multipliers with every 
offer set, and obtains a bound that is as tight as the piecewise-linear bound. We note 
that the Lagrangian relaxation we propose is different from that in Topaloglu [24] 
and consequently has different structural properties. Moreover, an appealing feature 
of our method is that it extends very naturally to the case where there are multiple 
customer segments each interested in a small subset of the products. We build on 
our Lagrangian relaxation idea and propose a segment-based approximation that is a 
tractable alternative when the considerations sets of the different segments are small 
in size.

In parallel to a working version of this paper, Vossen and Zhang [25] study the 
properties of approximate linear programming methods for NRM and show that the 
affine and piecewise-linear formulations can be significantly reduced in size. Their 
reduced formulation of the piecewise-linear program for DC-NRM can be shown to 
be equivalent to our Lagrangian relaxation method (Sect. 5.4 in Vossen and Zhang 
[25]). We note however that our starting point is a Lagrangian relaxation of the DC-
NRM dynamic program and our proof technique is quite different. Moreover, we 
show that it is not possible to recover the piecewise-linear approximation upper 
bound for DC-NRM by using product-specific multipliers as in the perfect segmen-
tation case. Consequently, the expanded form, using offer-set specific multipliers 
is the best we can hope for. Finally, even though the number o of our Lagrangian 
relaxation (and the reduced piecewise-linear approximation) is linear in the number 
of resources, it is still exponential in the number of products. We propose a new 
segment-based Lagrangian relaxation that remains tractable provided the considera-
tion sets of the different customer segments are small in size.

To summarize, we make the following research contributions in this paper:

1. We propose a new Lagrangian relaxation method for DC-NRM based on an 
extended set of Lagrange multipliers.

2. The number of constraints in our Lagrangian relaxation (in the linear program-
ming formulation of the problem) scales linearly with the resource capacities 
making it a tractable alternative for large networks. Another appealing feature of 
our approach is that it decomposes the network problem into a number of single 
resource problems, which can be potentially solved in a distributed fashion.

3. We show that our Lagrangian relaxation obtains an upper bound on the value 
function as tight as the piecewise-linear bound. The number of constraints in 
the Lagrangian relaxation scales linearly with the resource capacities, while the 
piecewise-linear approximation is exponential, hence leading to a substantial 
reduction in running time in practice. This result also implies that the Lagrangian 
relaxation bound is stronger than the affine approximation bound (hence also 
CDLP) that was not known previously. It should be noted that our results are not 
specific to a particular functional form (such as MNL), but hold at a full level of 
generality, for any discrete-choice model of demand.
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4. We show how our ideas lead to a tractable method for DC-NRM (for any discrete-
choice model) when the consideration sets of the different segments are small in 
size.

5. Our numerical experiments indicate that our Lagrangian relaxation can obtain 
significantly tighter upper bounds than the benchmark methods including the 
CDLP and the affine approximation. We also extract policies from our formulation 
and show by numerical experiments that it can lead to notable improvements in 
revenue over existing methods.

The remainder of the paper is organized as follows: In Sect. 2 we describe the 
DC-NRM model, the notation, and the stochastic dynamic programming formu-
lation of the problem. Section 3 reviews the value function approximation meth-
ods in the literature including CDLP, the affine and the piecewise-linear approx-
imation methods. In Sect. 4 we describe the Lagrangian relaxation approach and 
show that it obtains a bound that is as tight as the piecewise-linear bound; we 
defer the formal proof to Sect. 5. Section 6 describes the segment-based Lagran-
gian relaxation that is tractable under the assumption of small consideration 
sets. In Sect. 7 we perform numerical experiments to compare the performance 
of the Lagrangian relaxation approach with benchmark solution methods.

2  Problem formulation

A product is a specification of a price and the set of resources that it consumes. 
For example, for an airline a product is an itinerary-fare class combination, 
where an itinerary is a combination of flight legs making up a passenger’s jour-
ney; for a hotel, a product is a multi-night stay for a particular room type at a 
certain price point.

Our model is discrete-time with � intervals, indexed by t. The booking hori-
zon begins at time t = 1 and ends at t = � ; all the resources perish instantane-
ously at time � + 1 . We make the standard assumption that the time intervals are 
fine enough so that the probability of more than one customer arriving in any 
single time period is negligible. We index resources by i, products by j, and time 
periods by t. We refer to the set of all resources as  and the set of all products 
as   . We let fj denote the revenue associated with product j and j ⊂  the sub-
set of resources it uses. Similarly, we let i ⊂   denote the subset of products 
that use resource i.

We use superscripts on vectors to index the vectors and subscripts to indicate 
their components. For example, we write the resource capacity vector associ-
ated with time period t as rt and use rt

i
 to represent the capacity on resource 

i in time period t. Therefore, r1 =
[
r1
i

]
 represents the initial capacities on the 

resources and rt =
[
rt
i

]
 denotes the remaining capacities on the resources at the 

beginning of time period t. The remaining capacity rt
i
 takes values in the set 

i =
{
0,… , r1

i

}
 and  =

∏
i i represents the state space.
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2.1  Demand model

In each time period the firm offers a subset S of its products for sale, called the offer 
set. A customer arrives with probability � and given an offer set S, an arriving cus-
tomer purchases a product j in the set S or decides not to purchase. The no-purchase 
option is indexed by 0 and is always present for the customer. We let Pj(S) denote the 
probability that the firm sells product j given that a customer arrives and the offer set 
is S. Clearly, Pj(S) = 0 if j ∉ S . The probability of no sale given a customer arrival is 
P0(S) = 1 −

∑
j∈S Pj(S) . We assume that the choice probabilities are given by an ora-

cle, as the model represents a general discrete-choice model; they could conceivably 
be calculated by a simple formula as in the case of the multinomial logit (MNL) model 
(Ben-Akiva and Lerman [3]).

2.2  DC‑NRM dynamic program

The dynamic program (DP) to determine optimal controls is as follows: Let Vt(r
t) 

denote the maximum expected revenue to go, given remaining capacity rt at the begin-
ning of period t. Then Vt(r

t) must satisfy the Bellman equation

where ei is a vector with a 1 in the ith position and 0 elsewhere and

represents the set of products that can be offered given the capacity vector r . We 
use 1[⋅] as the indicator function, 1 if true and 0 if false. The boundary conditions 
are V�+1(r) = Vt(0) = 0 for all r and for all  t, where 0 is a vector of all zeroes. 
VDP = V1(r

1) denotes the optimal expected total revenue over the booking horizon, 
given the initial capacity vector r1.

For brevity of notation, we assume that � = 1 in the remaining part of the paper. 
We note that this is without loss of generality since this is equivalent to letting 
P̃j(S) = 𝛼Pj(S) and P̃0(S) = 𝛼P0(S) + 1 − 𝛼 , and working with the choice probabilities {
P̃j(S) |∀j, S

}
.

2.3  Linear programming formulation of the DC‑NRM dynamic program

The value functions can, alternatively, be obtained by solving a linear program, follow-
ing Schweitzer and Seidmann [19]. The linear programming formulation of the DC-
NRM dynamic program has a decision variable Vt(r) for each state vector r in each 
period t and is as follows:

(1)

Vt(r
t) = max

S⊂(rt)

⎧⎪⎨⎪⎩

�
j∈S

𝛼Pj(S)
�
fj + Vt+1

�
r
t −

�
i∈j

e
i
��

+
�
𝛼P0(S) + 1 − 𝛼

�
Vt+1

�
r
t
�⎫⎪⎬⎪⎭

,

(r) =
{
j |1[j∈i] ≤ ri, ∀i

}
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with the boundary conditions that V�+1(r) = Vt(0) = 0 for all r and for all t. Both the 
dynamic program (1) and linear program DP are computationally intractable, but 
the linear program DP turns out to be useful in developing value function approxi-
mation methods.

3  Value function approximation methods

In this section, we describe three methods in the literature to approximate the 
DC-NRM dynamic program value function. We begin with the choice-based 
deterministic linear program and then outline the affine and the piecewise-linear 
approximations.

3.1  Choice‑based deterministic linear program (CDLP)

The choice-based deterministic linear program CDLP), proposed in Gallego 
et al. [7] and Liu and van Ryzin [15] is given by

In the above linear program, we interpret the decision variable �S,t as the frequency 
with which set S is offered at time period t. The objective function captures the total 
expected revenue, while the first set of constraints ensure that the total expected 

(2)

VDP =min
V

V1(r
1)

s.t.

(DP)Vt(r) ≥
∑
j

Pj(S)
[
fj + Vt+1

(
r −

∑
i∈j

e
i
)
− Vt+1(r)

]
+ Vt+1(r)

∀r ∈ , S ⊂ (r), t

Vt(r) ≥ 0 ∀r ∈ , t

(3)

VCDLP =max
�

∑
t

∑
S

[
∑
j∈S

Pj(S)fj]�S,t

s.t.

(CDLP)
∑
t

∑
S

[∑
j∈i

Pj(S)
]
�S,t ≤ r1

i
∀i

∑
S

�S,t = 1 ∀t

�S,t ≥ 0 ∀t, S.
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capacity consumed on each resource does not exceed its available capacity. The sec-
ond set of constraints ensures that the total frequencies add up to 1 at each time 
period.

Liu and van Ryzin [15] show that the optimal objective function value 
of CDLP gives an upper bound on the optimal expected revenue. That is, 
V1(r

1) ≤ VCDLP . Since CDLP has an exponential number of decision variables 
it has to be solved using column generation. Liu and van Ryzin [15] show that 
column generation is efficient for the MNL model with a single segment. How-
ever, the column generation procedure is intractable in general, NP-complete for 
MNL with just two segments (Bront et al. [5] and Rusmevichientong et al. [18]).

3.2  Affine approximation

The affine approximation, proposed by Zhang and Adelman [26], replaces the value 
function Vt(r) with the affine function �t +

∑
i Vi,tri in the linear program DP to 

obtain the following linear program:

Zhang and Adelman [26] show that the optimal objective function value of AF gives 
an upper bound on the optimal expected revenue and this bound is tighter than the 
CDLP bound. While the number of decision variables in AF is manageable, the 
number of constraints is exponential both in the number of resources as well as the 
products. Vossen and Zhang [25] show that AF has a reduced formulation where the 
number of constraints is exponential only in the number of products. Still, the prob-
lem has to be solved by constraint generation and the separation problem is intracta-
ble even for the MNL choice model with a single segment (Kunnumkal and Talluri 
[11]).

3.3  Piecewise‑linear approximation

Meissner and Strauss [16] propose the piecewise-linear approximation, which 
approximates the value function Vt(r) with 

∑
i vi,t(ri) in DP. The resulting linear pro-

gram is

VAF =min
𝜃,V

𝜃1 +
∑
i

Vi,1r
1
i

s.t.

(AF)𝜃t +
∑
i

Vi,tri ≥
∑
j

Pj(S)
[
fj −

∑
i∈j

Vi,t+1

]
+ 𝜃t+1 +

∑
i

Vi,t+1ri

∀r ∈ , S ⊂ (r), t

𝜃t,Vi,t ≥ 0∀i, t.
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Since the piecewise-linear approximation uses a more refined approximation 
architecture than the affine approximation, it is natural to expect that it obtains a 
tighter bound on the value function. Indeed, Meissner and Strauss [16] show 
VDP ≤ VPL ≤ VAF ≤ VCDLP . However, as with CDLP and AF, tractability remains 
as much, if not more, of an issue for PL as well. Note that linear program PL has 
(2� ��

∏
i r

1
i
) constraints, which is exponential both in the number of products and 

the number of resources. Moreover, the separation problem of this linear program 
is NP-complete, even for MNL with a single segment; see Kunnumkal and Talluri 
[11].

4  Lagrangian relaxation using offer‑set specific multipliers

In this section, we present our approximation method to obtain an upper bound on 
the value function of the DC-NRM dynamic program. We first describe our approach 
and then show that it obtains an upper bound that is as tight as that obtained by PL.

We begin by introducing some notation. For an offer set S, we let

be the set of resources used by the products in S. We follow the convention that 
the empty set does not use any resource. We also let i =

{
S | i ∈ S

}
 and note that 

i ∈ S if and only if S ∈ i . Therefore, i can be roughly interpreted as the collection 
of offer sets that use resource i. Optimality equation (1) can be equivalently written, 
in an expanded form, as

(4)

VPL =min
v

∑
i

vi,1(r
1
i
)

s.t.

(PL)
∑
i

vi,t(ri) ≥
∑
j

Pj(S)
[
fj +

∑
i∈j

(
vi,t+1(ri − 1) − vi,t+1(ri)

)]
+
∑
i

vi,t+1(ri)

∀r ∈ , S ⊂ (r), t

vi,𝜏+1(⋅) = 0 ∀i, t.

S =
{
i ∈  |∃j ∈ S with j ∈ i

}
,

(5)

Vt(r) = max
h

�
S

h�,S,t

⎧
⎪⎨⎪⎩

�
j∈S

Pj(S)
�
fj + Vt+1

�
r −

�
i∈j

e
i
�
− Vt+1

�
r

��⎫⎪⎬⎪⎭
+ Vt+1

�
r

�

s.t.

hi,S,t = h�,S,t ∀S, i ∈ S

(6)hi,S,t ≤ ri ∀i, S ∈ i
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where the decision variable h�,S,t can be interpreted as the frequency with which 
set S is offered at time period t. In the expanded formulation, we also have resource 
level decision variables hi,S,t , which can be interpreted as the frequency with which 
set S is offered on resource i at time period t. Constraints (5) ensure that for each set 
S, the frequencies are identical across the resources used by it, while constraints (6) 
ensure that a set is offered only if there is sufficient capacity on each resource that it 
uses. Constraints (7)-(9) ensure that the frequencies are nonnegative and add up to at 
most 1. We note that although the expanded formulation has a number of redundant 
decision variables and constraints, they turn out to be useful in the development of 
our approximation method below.

The expanded formulation still has a high dimensional state space and remains 
intractable. Our approximation method reduces the dimensionality by solving a 
number of single dimensional dynamic programs, one for each resource. We relax 
constraints (5) and associate Lagrange multipliers �i,S,t with them. This decouples 
the decisions across the different resources and makes the optimization problem 
separable across the resources. Indeed, it can be shown by induction that the value 
function approximation for the relaxed problem can be obtained by solving a num-
ber of single dimensional dynamic programs; one for each resource and an auxiliary 
dynamic program. In particular, we solve the optimality equation

for resource i with the boundary condition that ��
i,�+1

(⋅) = 0 , where the superscript 
emphasizes the dependence of the value function approximation on the Lagrange 
multipliers. Collecting the terms involving h�,S,t in the objective function of the 
relaxed problem, we solve the auxiliary dynamic program

(7)
∑

S
h�,S,t ≤ 1

(8)
∑

S∈i
hi,S,t ≤ 1∀i

(9)h�,S,t, hi,S,t ≥ 0∀S, i ∈ S

(10)

��
i,t
(ri) = max

hi

∑
S∈i

{
hi,S,t

(
�i,S,t +

∑
j∈i

Pj(S)
[
��
i,t+1

(ri − 1) − ��
i,t+1

(ri)
])}

+ ��
i,t+1

(ri)

s.t.

(6), (8), hi,S,t ≥ 0∀S ∈ i

(11)

��
�,t

= max
h�

∑
S

{
h�,S,t

[∑
j∈S

Pj(S)fj −
∑
i∈S

�i,S,t
]}

+ ��
�,t+1

s.t.

(7), h�,S,t ≥ 0∀S
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with the boundary condition that ��
�,�+1

= 0 . We use

as our value function approximation corresponding to the Lagrangian relaxation.
Lemma  1 below shows that the Lagrangian relaxation using offer-set specific 

multipliers (LRo) obtains an upper bound on the optimal expected revenue and that 
this bound is potentially weaker than the piecewise-linear bound.

Lemma 1 

Proof Appendix.   □

We obtain the tightest upper bound on the optimal expected revenue by solving

The following proposition gives the subgradients of ��
i,t
(ri) and ��

�,t
 (thereby also 

showing they are convex functions of � ). It follows that V�
t
(r) is also a convex func-

tion of � and hence the above optimization problem can be efficiently solved as a 
convex program, for example by using subgradient search (Bertsekas [4],  Chap-
ter 7). That is, for a given set of Lagrange multipliers � , we can solve the single-
dimensional dynamic programs (10) and (11) to obtain ��

i,t
(⋅) and ��

�,t
 , respectively. 

We can then use Proposition 1 below to obtain a subgradient of V�
1

(
r
1
)
 and update 

the Lagrange multipliers.
We introduce some notation for this purpose. Let h�

i,S,t
(ri) denote an optimal solu-

tion to problem (10) where the arguments emphasize the dependence of the optimal 
solution on the Lagrange multipliers and the remaining capacity on the resource. We 
define h�

�,S,t
 in a similar manner for (11). Also, let X�

i,t
 denote the random variable 

which represents the remaining capacity on resource i at time period t when we offer 
sets according to the optimal solution to problem (10). We have the following result.

Proposition 1 Let � and �̂� be two sets of Lagrange multipliers. Then,
1. 𝜗�̂�

i,t
(r

i
) ≥ 𝜗𝜆

i,t

�
r
i

�
+
∑𝜏

k=t

∑
S∈i

�∑ri

x=0
Pr{X𝜆

i,k
= x �X𝜆

i,t
= r

i
}h𝜆

i,S,t
(x)

��
�̂�
i,S,k − 𝜆

i,S,k

�
.

2. 𝜗�̂�
𝜙,t

≥ 𝜗𝜆
𝜙,t

+
∑𝜏

k=t

∑
i

∑
S∈i

h𝜆
𝜙,S,k

[�̂�𝜙,S,k − 𝜆𝜙,S,k].

Proof Appendix.   □

We note that besides showing that V�
1
(r) is a convex function of � , Proposition 1 

also gives an explicit expression for its subgradient. This allows us to use subgra-
dient search to find the optimal set of Lagrange multipliers. Proposition  2 below 
shows that by doing this, we in fact obtain the piecewise-linear bound.

(12)V�
t
(r) =

∑
i

��
i,t
(ri) + ��

�,t

VDP ≤ VPL ≤ V�
1
(r1).

VLRo = min
�

V�
1

(
r
1
)
.
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Proposition 2 

We defer the proof of Proposition 2 to the next section. Here we note some of its 
implications. Proposition 2 together with the results in Meissner and Strauss [16] 
implies that VLRo ≤ VCDLP and VLRo ≤ VAF . Therefore, LRo obtains an upper bound 
that is tighter than both CDLP and AF. It is also quite surprising that the LRo bound 
is as tight as PL since the complexity ( the number of constraints in the linear pro-
gramming formulation) of LRo is linear in the resource capacities (

∑
i r

1
i
) , while that 

of PL is exponential (
∏

i r
1
i
) . For typical DC-NRM instances, the number of con-

straints in LRo can be orders of magnitude smaller than that of PL. Moreover, since 
LRo decomposes the network problem into a number of single resource problems 
that can be solved in parallel, it may also be more suitable for distributed computing 
techniques.

In closing this section, we note that while Lagrangian relaxation ideas have 
been applied to NRM previously, there are some important differences between our 
approach and previous proposals. Under the independent-class assumption, Topalo-
glu [24] proposes relaxing the constraints that the same acceptance decisions be 
made for each product across the resources that it uses. The resulting Lagrangian 
relaxation associates a multiplier �i,j,t for each product j and each resource i ∈ i . 
Kunnumkal and Talluri [13] show that the Lagrangian relaxation with product-spe-
cific multipliers (LRp) turns out be equivalent to PL in the independent-class setting. 
We give an example in the Appendix which illustrates that the same result fails to 
hold for DC-NRM. That is, for DC-NRM, LRp can be weaker than PL (and by Prop-
osition 2, weaker than LRo as well). We also note that while LRp has a smaller num-
ber of multipliers than LRo, solving the resource level problem (27) in LRp is still 
intractable for a general discrete-choice model. Consequently, it is not clear whether 
LRp provides any significant computational benefits over LRo.

The optimality equation (11) is not redundant for DC-NRM as we show in an 
example in the Appendix which illustrates that the optimal multipliers in LRo can be 
such that 

∑
i∈S

𝜆i,S,t <
∑

j∈S Pj(S)fj . This is in contrast to the perfect segmentation 
case where it is known that the optimal Lagrange multipliers can be interpreted as 
the pro-rated fare of a product on each resource that it uses, and consequently 
v�
�,t

= 0 for all t.

5  Tightness of the Lagrangian bound

In this section we formally show that the upper bound obtained by LRo is as strong 
as the PL bound. We begin with some preliminary results in Sect. 5.1 before pro-
ceeding to the proof of Proposition 2 in Sect. 5.2.

5.1  Preliminaries

We note that optimality equation (10) can be equivalently written as

VPL = VLRo.
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where i(ri) =
{
j |1[j∈i] ≤ ri

}
 denotes the set of products that can be offered con-

sidering the available capacity on resource i. On the other hand, letting 
R(S) =

∑
j∈S Pj(S)fj denote the expected revenue from offering set S and 

��,S,t = R(S) −
∑

i∈S
�i,S,t , we can write optimality equation (11) equivalently as

If we let � = {��,S,t, �i,S,t|∀t, S, i ∈ S} and

then we can write VLRo = min�∈Λ V
�
1
(r1) . The above minimization problem can be 

represented as the linear program

Linear program LRo turns out to be useful when we make the connection between 
the LRo and PL bounds.

5.2  Proof of Proposition 2

We give a formal proof of Proposition  2. Lemma  1 implies that 
VPL ≤ min�∈Λ V

�
1
(r1) = VLRo . So it only remains to show the more difficult part: 

VPL ≥ VLRo . Let �i,t+1(ri) = vi,t+1(ri) − vi,t+1(ri − 1) and Δi,t(ri) = vi,t+1(ri) − vi,t(ri) . 
Note that �i,t+1(⋅) can be interpreted as the marginal value of capacity, while Δi,t(⋅) can 
be interpreted as the marginal value of time. The proof proceeds by considering the PL 

(13)

𝜗𝜆
i,t
(ri) = max

S⊂i(ri)

{
1[S∈i]𝜆i,S,t +

∑
j∈i

Pj(S)
[
𝜗𝜆
i,t+1

(ri − 1) − 𝜗𝜆
i,t+1

(ri)
]

+ 𝜗𝜆
i,t+1

(ri)
}

(14)𝜗𝜆
𝜙,t

= max
S⊂

{
𝜆𝜙,S,t

}
+ 𝜗𝜆

𝜙,t+1
.

(15)Λ =
{
𝜆 | 𝜆𝜙,S,t +

∑
i∈S

𝜆i,S,t = R(S), ∀S ⊂  , t
}
,

VLRo = min
𝜆,v

∑
i

vi,1(r
1
i
) + v𝜙,1

s.t.

(LRo)vi,t(ri) ≥ 1[S∈i]𝜆i,S,t +
∑
j∈i

Pj(S)
[
vi,t+1(ri − 1) − vi,t+1(ri)

]

+ vi,t+1(ri) ∀t, i, ri ∈ i, S ⊂ i(ri)

v𝜙,t ≥ 𝜆𝜙,S,t + v𝜙,t+1 ∀t, S∑
i∈S

𝜆i,S,t + 𝜆𝜙,S,t = R(S) ∀t, S

v𝜙,𝜏+1 = 0, vi,𝜏+1(⋅) = 0 ∀i.
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separation problem: For each period t, given values of {vi,t(ri) |∀t, i, ri ∈ i} , to check 
if

is less than or equal to zero. If yes, constraint (4) is satisfied at time period t for 
all r and S ⊂ (r) . Otherwise, we find a violated constraint and add it to the linear 
program.

Equation (16) can be written as

Using R(S) =
∑

j∈S Pj(S)fj and the facts that Pj(S) = 0 for j ∉ S , and 1[S∈i] = 1 for 
j ∈ S and i ∈ j , we can write Φt(v) as

Next, consider the optimization problem

Πt(v) can be interpreted as a Lagrangian relaxation of Φt(v) which is obtained 
by relaxing the requirement that the same offer set decision be made for all the 
resources. This can be shown formally by following the same steps that lead to 
optimality equations (10) and (11), and we omit the details. Here we only note that 
equations (10) and (11) are equivalent to equations (13) and (14), respectively. Fur-
thermore, note the similarity between the terms on the right hand side of the equa-
tion defining Πt(v) and the right hand sides of optimality equations (13) and (14).

We show below that Φt(v) = Πt(v) and use this result to show that VPL ≥ VLRo . 
We begin with some preliminary results. Lemma 2 shows that Πt(v) is an upper 
bound on Φt(v) . This is intuitive if we interpret Πt(v) as being a relaxation of 
Φt(v) . We defer the formal proof to the Appendix.

Lemma 2 Φt(v) ≤ Πt(v).

(16)
Φt(v) = max

r∈,S⊂(r)

�
j∈S

Pj(S)

⎡
⎢⎢⎣
fj +

�
i∈j

[vi,t+1(ri − 1) − vi,t+1(ri)]

⎤
⎥⎥⎦

+
�
i

�
vi,t+1(ri) − vi,t(ri)

�

Φt(v) = max
r∈,S⊂(r)

�
j

Pj(S)

⎡
⎢⎢⎣
fj −

�
i∈j

𝜓i,t+1(ri)

⎤
⎥⎥⎦
+
�
i

Δi,t(ri).

(17)Φt(v) = max
r∈,S⊂(r)

R(S) −
∑
j∈S

Pj(S)
∑
i∈j

1[S∈i]𝜓i,t+1(ri) +
∑
i

Δi,t(ri).

Πt(v) =min
𝜆∈Λ

{∑
i

max
ri∈i,S⊂i(ri)

{
1[S∈i]𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}

+max
S⊂

{𝜆𝜙,S,t}

}
.
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It remains to show that Φt(v) ≥ Πt(v) . At a high level, this is because the opti-
mal Lagrange multipliers are able to coordinate the offer set decisions across the 
different resources. As a result, we are able to construct an offer set that is feasi-
ble to the maximization problem on the right hand side of (17) from the optimal 
solution to Πt(v) . The following lemma shows that we can restrict ourselves to 
sets in i = {S | i ∈ S} when solving the optimization problem for resource i.

Lemma 3 

Proof Appendix.   □

If we let wi,t = maxri∈i,S⊂Qi(ri)

�
1[S∈i]𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)
�

 
and w𝜙,t = maxS⊂ {𝜆𝜙,S,t} , then Lemma 3 implies that we can write Πt(v) as the 
linear program

In the following, we analyze the structure of a particular optimal solution to LPΠt(v)
 

that allows us to construct a feasible solution to Φt(v) , which in turn shows that 
Φt(v) ≥ Πt(v) . We introduce some notation that will be useful for this purpose. 
Given a solution (�,w) to LPΠt(v)

 , let

max
ri∈i,S⊂Qi(ri)

{
1[S∈i]𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}

= max

{
Δi,t(0), max

ri∈{1,…,r1
i
},S∈i

{𝜆i,S,t −
∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)}

}
.

(18)

Πt(v) = min
�,w

w�,t +
∑
i

wi,t

s.t.

(LPΠt(v)
)wi,t ≥ Δi,t(0) ∀i

(19)wi,t ≥ �i,S,t −
∑
j∈i

Pj(S)�i,t+1(r) + Δi,t(r) ∀i, r ∈ {1,… , r1
i
}, S ∈ i

(20)w�,t ≥ ��,S,t ∀S

(21)w�,t ≥ 0

(22)��,S,t +
∑
i∈S

�i,S,t = R(S) ∀S.

�i,S,t(r) = wi,t −

[
�i,S,t −

∑
j∈i

Pj(S)�i,t+1(r) + Δi,t(r)

]
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denote the slack in constraint (19) for resource i, offer set S ∈ i and r ∈ {1,… , r1
i
} . 

Let

denote the set of capacity levels for which constraint (19) is binding for resource i 
and offer set S. We use the arguments (�,w) emphasize the dependence of the set of 
binding constraints on the given solution. Observe that if Bi,S(�,w) is empty, then 
wi,t > 𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(r) + Δi,t(r) for all r ∈ {1,… , ri,1}.
From now on, we use a concept of optimal solutions with minimal set of bind-

ing constraints. The linear program (LPΠt(v)
) has a finite optimal solution and 

possibly multiple ones. Naturally, any optimal solution has a set of binding con-
straints out of (18)–(22). Given any optimal solution, we can look for another 
optimal solution whose set of binding constraints is a strict subset of those of 
the previous optimal solution. If there is no such optimal solution, we consider 
that as having a minimal set of binding constraints. Lemmas 4-6 together imply 
that an optimal solution with a minimal set of binding constraints coordinates the 
offer set decision across the different resources. Letting (�̂�, ŵ) be an optimal solu-
tion to LPΠt(v)

 with a minimal number of binding constraints.

Lemma 4 Fix a set S. Either
(i) Bi,S(�̂�, ŵ) is nonempty for all i ∈ S and ŵ𝜙,t = �̂�𝜙,S,t, or
(ii) Bi,S(�̂�, ŵ) is empty for all i ∈ S and ŵ𝜙,t > �̂�𝜙,S,t.

Proof Suppose that the statement of the lemma is false. First consider the case 
where Bi,S(�̂�, ŵ) is nonempty but Bl,S(�̂�, ŵ) is empty for i, l ∈ S . Let 
𝜖 = minr∈{1,…,r1

l
}{𝜉l,S,t(r)} > 0 . Let (�̃, w̃) be given by �𝜆 = �̂� − 𝛿ei,S,t + 𝛿el,S,t and 

�w = ŵ for some � ∈ (0, �) , where ei,j,k is a vector with a 1 in component (i, j, k) and 
zeroes everywhere else. Note that (�̃, w̃) is identical to (�̂�, ŵ) except that 
�𝜆i,S,t = �̂�i,S,t − 𝛿 and �𝜆l,S,t = �̂�l,S,t + 𝛿 . We show that (�̃, w̃) is an optimal solution with 
a strictly fewer number of binding constraints which gives us a contradiction.

Notice that we only need to check constraint (19) for resources i and l and offer 
set S as all other resources and offer sets continue to have the same � ’s and w’s as 
before. For resource i, since Bi,S(�̂�, ŵ) is nonempty, there exists r ∈ {1,… , r1

i
} such 

that ŵi,t = �̂�i,S,t −
∑

j∈i
Pj(S)𝜓i,t+1(r) + Δi,t(r) . We have

which means that the number of binding constraints (19) for resource i and 
offer set S decreases by at least one. For resource l and offer set S, w̃

l,t
−

[�𝜆l,S,t −
∑

j∈l
Pj(S)𝜓l,t+1(r) + Δl,t(r)] = ŵl,t − [�̂�l,S,t −

∑
j∈l

Pj(S)𝜓l,t+1(r) + Δl,t(r)]

−𝛿 > 0 , for all r ∈ {1,… , r1
l
} , where the inequality follows from the definition of 

� . Therefore, all constraints (19) continue to be nonbinding for resource l and offer 

Bi,S(�,w) =
{
r ∈ {1,… , r1

i
} | �i,S,t(r) = 0

}

�wi,t =ŵi,t = �̂�i,S,t −
∑
j∈i

Pj(S)𝜓i,t+1(r) + Δi,t(r) > �𝜆i,S,t

−
∑
j∈i

Pj(S)𝜓i,t+1(r) + Δi,t(r),
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set S. Overall, (�̃, w̃) has strictly fewer binding constraints than (�̂�, ŵ) , which gives a 
contradiction.

The above arguments imply that either Bi,S(�̂�, ŵ) is nonempty for all i ∈ S or 
Bi,S(�̂�, ŵ) is empty for all i ∈ S . Suppose the Bi,S(�̂�, ŵ) is nonempty for all i ∈ S but 
ŵ𝜙,t > �̂�𝜙,St . In this case, pick a resource i ∈ S and let �𝜆 = �̂� − 𝛿ei,S,t + 𝛿e𝜙,S,t and 
�w = ŵ , where � ∈ (0, �) and 𝜖 = ŵ𝜙,t − �̂�𝜙,S,t . It can be verified that the number of 
binding constraints (19) for resource i and offer set S strictly decreases from (�̂�, ŵ) to 
(�̃, w̃) , while the number of binding constraints (20) remains unchanged, leading to a 
contradiction. This proves part (i) of the lemma.

On the other hand, if Bi,S(�̂�, ŵ) is empty for all i ∈ S but ŵ𝜙,t = �̂�𝜙,S,t . Pick a 
resource i ∈ S . Since Bi,S(�̂�, ŵ) is empty, we have 𝜖 = minr∈{1,…,r1

i
}{𝜉i,S,t(r)} > 0 . 

Let �𝜆 = �̂� + 𝛿ei,S,t − 𝛿e𝜙,S,t , where � ∈ (0, �) , and �w = ŵ . It can be verified that the 
number of binding constraints (19) for resource i and offer set S is exactly the same 
for (�̂�, ŵ) and (�̃, w̃) , while the number of binding constraints (20) decreases by one 
( �w𝜙,t = ŵ𝜙,t = �̂�𝜙,S,t >

�𝜆𝜙,S,t ). As a result, (�̃, w̃) has strictly fewer binding constraints 
than (�̂�, ŵ) , which gives a contradiction. This proves part (ii) of the lemma.   □

Let

and

where the ̂ on the sets is to remind the reader of the dependence on (�̂�, ŵ) . Note that 
̂i can be interpreted as the collection of offer sets for which constraint (19) is bind-
ing for resource i. ̂𝜙 has a similar interpretation, but for constraint (20).

Lemma 5 Let (�̂�, ŵ) be an optimal solution to LPΠt(v)
 with a minimal number of 

binding constraints.
(i) ̂i is nonempty for all i ∈ ̂+.
(ii) If S ∈ ̂i , then S ∈ ̂𝜙 (note that by definition the empty set does not consume 

any resources and so � ∉ ̂i).

Proof For part (i), for i ∈ ̂+ , ŵi,t > Δi,t(0) . Since (�̂�, ŵ) is optimal there exists S ∈ i 
and r ∈

{
1,… , r1

i

}
 such that ŵi,t = �̂�i,S,t −

∑
j∈S Pj(S)𝜓i,t+1(r) + Δi,t(r) > Δi,t(0) 

(otherwise, we can reduce ŵi,t contradicting optimality). Therefore Bi,S(�̂�, ŵ) is non-
empty and so S ∈ ̂i and ̂i is nonempty.

For part (ii), S ∈ ̂i implies that i ∈ S . So we have a set S with Bi,S(�̂�, ŵ) non-
empty. By Lemma 4, ŵ𝜙,t = �̂�𝜙,S,t and so S ∈ ̂𝜙 .   □

Lemma 6 shows that we can find an offer set for which constraint (19) is bind-
ing for all resources i. This turns out to be crucial for showing that Φt(v) ≥ Πt(v).

̂i =
{
S ∈ i |Bi,S(�̂�, ŵ) is nonempty

}
,

̂𝜙 =
{
S ⊂  | ŵ𝜙,t = �̂�𝜙,S,t

}
,

̂+ =
{
i | ŵi,t > Δi,t(0)

}
,
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Lemma 6 Let (�̂�, ŵ) be an optimal solution to LPΠt(v)
 with a minimal number of 

binding constraints. If ̂+ is nonempty, then ∩i∈̂+ ̂i is nonempty.

Proof If |̂+| = 1 , then the statement holds trivially by part (i) of Lemma 5. Con-
sider the case |̂+| > 1 . If ∩i∈̂+ ̂i is empty, then this implies the following: Fix a 
resource i ∈ ̂+ . Part (i) of Lemma 5 implies that ̂i is nonempty. Then for every 
S ∈ ̂i there exists l ∈ ̂+ such that S ∉ ̂l . Note that since l ∈ ̂+ , ŵl,t > Δl,t(0).

So let i ∈ ̂+ , Ŝ ∈ ̂i and l ∈ ̂+ with Ŝ ∉ ̂l . If Ŝ ∉ ̂l , there are two possibilities. 
First, Ŝ ∈ l but Bl,Ŝ(�̂�, ŵ) is empty. But since Ŝ ∈ ̂i , Bi,Ŝ(�̂�, ŵ) is nonempty, which 
this contradicts part (i) of Lemma 4.

The other possibility is that Ŝ ∉ l . Let

where we define the minimum over an empty set to be infinity (the second term could 
be empty). Let � ∈ (0, �) and (�̃, w̃) be given by �𝜆 = �̂� − 𝛿

∑
S∈̂l

e
l,S,t + 𝛿

∑
S∈̂l

e
𝜙,S,t 

and �w = ŵ − 𝛿el,t + 𝛿e𝜙,t . Therefore, we have �𝜆l,S,t = �̂�l,S,t − 𝛿 , �𝜆𝜙,S,t = �̂�𝜙,S,t + 𝛿 for 
all S ∈ ̂l . Similarly, �wl,t = ŵl,t − 𝛿 and �w𝜙,t = ŵ𝜙,t + 𝛿 . All other terms remain the 
same.

We check that (�̃, w̃) is feasible and look at the set of binding constraints associ-
ated with this solution. We look at the constraints in LPΠt(v)

 one by one and compare 
the the number of binding constraints in (�̂�, ŵ) with the number in (�̃, w̃).

Constraints (21) and (22): Since �w𝜙,t > ŵ𝜙,t , constraint (21) continues to hold for 
(�̃, w̃) and the number of binding constraints do not increase. By construction (�̃, w̃) 
satisfies constraint (22).

Constraints (18): Note that we need to check constraints (18) and (19) only for 
resource l. For resource l, we have �wl,t = ŵl,t − 𝛿 > Δl,t(0) and so constraint (18) 
continues to be nonbinding.

Constraints (19): For S ∈ l�̂l and r ∈ {1,… , r1
l
} , we have �w

l,t
= ŵ

l,t
− 𝛿 > ŵ

l,t

−𝜉l,S,t(r) = �̂�l,S,t −
∑

j∈i
Pj(S)𝜓l,t+1(r) + Δl,t(r) = �𝜆l,S,t −

∑
j∈i

Pj(S)𝜓l,t+1(r) + Δl,t(r)  . 
Note that the last equality holds by definition of �̃  . So constraint (19) remains 
nonbinding.

For S ∈ ̂l and r ∈ {1,… , r1
l
}�Bl,S(�̂�, ŵ) , �wl,t = ŵl,t − 𝛿 > �̂�l,S,t −

∑
j∈i

Pj(S)�l,t+1(r) + Δl,t(r) − � = �̃l,S,t −
∑

j∈i
Pj(S)�l,t+1(r) + Δl,t(r) . Therefore, con-

straint (19) continues to be nonbinding. For S ∈ ̂l and r ∈ Bl,S(�̂�, ŵ) , �wl,t
= ŵ

l,t
− 𝛿 =

�̂�l,t − 𝛿 −
∑

j∈i
Pj(S)𝜓l,t+1(r) + Δl,t(r) = �𝜆l,t −

∑
j∈i

Pj(S)𝜓l,t+1(r) + Δl,t(r) . So con-
straints (19) are binding for all such S and r. Note that these constraints, by defini-
tion, were also binding in (�̂�, ŵ) . So, (�̃, w̃) satisfies constraints (18) and (19) for 
resource l and the number of binding constraints is exactly the same as in (�̂�, ŵ).

Constraint (20): For S ∈ ̂l , by definition Bl,S(�̂�, ŵ) is nonempty. Part (i) of 
Lemma 4 implies that ŵ𝜙,t = �̂�𝜙,S,t , which means that constraint (20) is binding. We 
have �w𝜙,t = ŵ𝜙,t + 𝛿 = �̂�𝜙,St + 𝛿 = �𝜆𝜙,S,t and so constraint (20) holds and continues 
to be binding. For S ∉ ̂l , �𝜆l,S,t = �̂�l,S,t . Therefore, �w𝜙,t = ŵ𝜙,t + 𝛿 ≥ �𝜆l,S,t . So con-
straint (20) holds and the number of binding constraints do not increase.

𝜖 = min

{
ŵl,t − Δl,t(0), min

S∈l�̂l,r∈{1,…,r1
l }

{
𝜉l,S,t(r)

}}
> 0
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Now we argue that the number of binding constraints (20) strictly decreases 
from (�̂�, ŵ) to (�̃, w̃) . For the set Ŝ , since Ŝ ∈ ̂i , Bi,Ŝ(�̂�, ŵ) is nonempty. By, part 
(i) of Lemma  4, ŵ𝜙,t = �̂�𝜙,Ŝ,t and so the constraint is binding in (�̂�, ŵ) . But 
�w𝜙,t = ŵ𝜙,t + 𝛿 > �̂�𝜙,Ŝ,t =

�𝜆𝜙,Ŝ,t and the constraint is nonbinding in (�̃, w̃) . Overall, 
(�̃, w̃) has strictly fewer number of binding constraints (20) and they are a subset of 
the set of binding constraints of (�̂�, ŵ) contradicting minimality.

Since ŵ𝜙,t +
∑

i ŵi,t = �w𝜙,t +
∑

i �wi,t , (�̃, w̃) is optimal and this gives a contradic-
tion.   □

We are now ready to show that Φt(v) ≥ Πt(v).

Proposition 3 Φt(v) ≥ Πt(v).

Proof Let (�̂�, ŵ) be an optimal solution to LPΠt(v)
 with a minimal number of binding 

constraints. We consider two cases.
Case 1: Suppose that ̂i is empty for all i. This means that for all S ∈ i , Bi,S(�̂�, ŵ) 

is empty. It follows that ŵi,t = Δi,t(0) for all i (otherwise we can reduce ŵi,t contra-
dicting optimality). Part (ii) of Lemma 4 implies that ŵ𝜙,t > �̂�𝜙,S,t for all S. It follows 
that ŵ𝜙,t = 0 . Therefore, Πt(v) =

∑
i Δi,t(0) . Note that r = 0 and S = � is feasible 

for Φt(v) and the objective function value associated with this solution is 
∑

i Δi,t(0) . 
Therefore Φt(v) ≥

∑
i Δi,t(0) = Πt(v).

Case 2: Suppose that ̂i is nonempty for some i. We consider two subcases.
Case 2.a ̂+ is empty. We choose a resource l such that ̂l is nonempty 

and choose Ŝ ∈ ̂l such that Bl,Ŝ(�̂�, ŵ) is nonempty. By part (i) of Lemma  4, 
Bi,Ŝ(�̂�, ŵ) is nonempty for all i ∈ Ŝ and ŵ𝜙,t = �̂�𝜙,Ŝ,t . So, for all i ∈ Ŝ , we have 
ŵi,t = �̂�i,Ŝ,t −

∑
j∈i

Pj(Ŝ)𝜓i,t+1(r̂i) + Δi,t(r̂i) , where r̂i ∈ Bi,Ŝ(�̂�, ŵ) . Note that r̂i ≥ 1 for 
all i ∈ Ŝ . On the other hand, since ̂+ is empty. we have ŵi,t = Δi,t(0) for all i. In 
particular, ŵi,t = Δi,t(0) for all i ∉ S . Putting everything together,

where the last equality follows since (�̂�, ŵ) satisfies constraint (22) and

Πt(v) =ŵ𝜙,t +
∑
i∈Ŝ

ŵi,t +
∑
i∉Ŝ

ŵi,t

=�̂�𝜙,Ŝ,t +
∑
i∈Ŝ

[
�̂�i,Ŝ,t −

∑
j∈i

Pj(Ŝ)𝜓i,t+1(r̂i) + Δi,t(r̂i)

]
+
∑
i∉Ŝ

Δi,t(0)

=R(Ŝ) −
∑
j∈S

∑
i∈j

1[
Ŝ∈i

]Pj(Ŝ)𝜓i,t+1(r̂i) +
∑
i∈Ŝ

Δi,t(r̂i) +
∑
i∉Ŝ

Δi,t(0)

≤Φt(v)
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The inequality follows from (17) by noting that Ŝ and r , where ri = r̂i for i ∈ Ŝ and 
ri = 0 otherwise, is feasible to Φt(v) . To see this, observe that for all j ∈ Ŝ , if 
1[

i∈j

] = 1 , then i ∈ Ŝ and so ri = r̂i ≥ 1 . Therefore, for all j ∈ Ŝ , 1[
i∈j

] ≤ ri for all i 
and so Ŝ ⊂ (r).

Case 2.b ̂+ is nonempty. Let Ŝ = ∩i∈̂+ ̂i , which by Lemma 6 is nonempty. Note 
that Ŝ ∈ ̂i ⊂ i for all i ∈ ̂+ . Now every i ∈ ̂+ satisfies ŵi,t > Δi,t(0) . Therefore 
if i ∉ Ŝ then ŵi,t = Δi,t(0) . Since Ŝ ∈ ̂l for some l, BlŜ(�̂�, ŵ) is nonempty. Part (i) 
of Lemma 4 implies that Bi,Ŝ(�̂�, ŵ) is nonempty for all i ∈ Ŝ and that ŵ𝜙,t = �̂�𝜙,Ŝ,t . 
Since Bi,Ŝ(�̂�, ŵ) is nonempty for i ∈ Ŝ , there exists r̂i ∈

{
1,… , r1

i

}
 such that 

ŵi,t = �̂�i,Ŝ,t −
∑

j∈i
Pj(Ŝ)𝜓i,t+1(r̂i) + Δi,t(r̂i) ( ̂ri need not be unique, we can pick any 

r ∈ Bi,Ŝ(�̂�, ŵ) ). We have

where the inequality follows from (17) by noting that Ŝ and r is feasible to Φt(v) 
where ri = r̂i ≥ 1 for i ∈ Ŝ and ri = 0 otherwise.   □

Lemma 2 and Proposition 3 together imply that Φt(v) = Πt(v) . We are now ready 
to show that VPL ≥ VLRo . Note that we can write PL as VPL = minv

∑
i vi,1(r

1
i
) sub-

ject to 0 ≥ Φt(v) for all t with the boundary condition that vi,�+1(⋅) = 0 . Letting 
V = minv

∑
i vi,1(r

1
i
) +

∑
t Φt(v) subject to 0 ≥ Φt(v) for all t with the same boundary 

condition, it follows that VPL ≥ V . Using the fact that Φt(v) = Πt(v) together with the 
linear programming formulation LPΠt(v)

 of Πt(v) , we can write V as

∑
i∈S

∑
j∈i

Pj(S)�i,t+1(ri) =
∑
i

∑
j∈i

1[i∈S]Pj(S)�i,t+1(ri)

=
∑
j

∑
i∈j

1[i∈S]Pj(S)�i,t+1(ri)

=
∑
j∈S

∑
i∈j

1[S∈i]Pj(S)�i,t+1(ri).

Πt(v) =�̂�𝜙,Ŝ,t +
∑
i∈Ŝ

[
�̂�i,Ŝ,t −

∑
j∈i

Pj(Ŝ)𝜓i,t+1(r̂i) + Δi,t(r̂i)

]
+
∑
i∉Ŝ

Δi,t(0)

=R(Ŝ) −
∑
j∈Ŝ

Pj(Ŝ)
∑
i∈j

1[
Ŝ∈i

]𝜓i,t+1(r̂i) +
∑
i∈Ŝ

Δi,t(r̂i) +
∑
i∉Ŝ

Δi,t(0)

≤Φt(v)
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With the change of variables �i,t(ri) = vi,t(ri) +
∑�

s=t
wi,s and ��,t =

∑�

s=t
w�,s , we 

can write the above linear program as

which is exactly LRo. Therefore, VPL ≥ VLRo .   □

6  Segment‑based Lagrangian relaxation

Although the number of constraints in LRo scales linearly with the resource capaci-
ties, it is still exponential in the number of products. In this section, we present a 
tractable approximation that applies to settings where the total demand is comprised 
of multiple customer segments with small consideration sets. We first describe the 
demand model and then present the tractable variant of LRo, which we refer to as 
segment-based Lagrangian relaxation (sLRo).

V = min
v

∑
i

vi,1(r
1
i
) +

∑
t

(
w𝜙,t +

∑
i

wi,t

)

s.t.

wi,t + vi,t(ri)

≥ max
S⊂i(ri)

{
1[S∈i]𝜆i,S,t +

∑
j∈i

Pj(S)
[
vi,t+1(ri − 1) − vi,t+1(ri)

]
+ vi,t+1(ri)

}

∀t, ri ∈ i

w𝜙,t ≥ max
S⊂

{
𝜆𝜙,S,t

}
∀t

w𝜙,t ≥ 0 ∀t

𝜆𝜙,S,t +
∑
i∈S

𝜆i,S,t = R(S) ∀t, S ⊂ 

vi,𝜏+1(⋅) = 0 ∀i.

V = min
𝜗

∑
i

𝜗i,1(r
1
i
) + 𝜗𝜙1

s.t.

𝜗i,t(ri) ≥ max
S⊂i(ri)

{
1[S∈i]𝜆i,S,t +

∑
j∈i

Pj(S)[𝜗i,t+1(ri − 1) − 𝜗i,t+1(ri)] + 𝜗i,t+1(ri)

}

∀t, ri ∈ i

𝜗𝜙,t ≥ max
S⊂

{
𝜆𝜙,S,t

}
+ 𝜗𝜙,t+1 ∀t

𝜆𝜙,S,t +
∑
i∈S

𝜆i,S,t = R(S) ∀t, S ⊂ 

𝜗i,𝜏+1(⋅) = 0 ∀i
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6.1  Demand model with multiple customer segments

We consider the case where the total demand is comprised of demand from multiple 
customer segments. Modeling demand in this manner can be a way to capture heter-
ogenous customer preferences. Moreover, each customer segment is interested only 
in a small subset of the products (its consideration set). Small consideration sets 
are a reasonable modeling tradeoff in many situations that also finds support in the 
empirical and behavioral literature. We let  denote the set of customer segments. 
Customer segment g ∈  has a consideration set  g ⊂   of products that it consid-
ers for purchase. A segment g customer is indifferent to a product outside its consid-
eration set, in the sense that the customer’s choice probabilities are not affected by 
products offered outside its consideration set. We assume that the consideration sets 
of the different customer segments are known to the firm by a previous process of 
estimation and analysis. We also assume that the consideration sets of the different 
segments are small enough for its power set to be enumerable.

In each period, we have exactly one customer arrival and an arriving customer 
belongs to segment g with probability �g . Since the total arrival rate is 1, we have ∑

g �
g = 1 . We let Pg

j
(S) denote the probability that a segment g arrival purchases 

product j when S is the offer set. Since a segment g customer is indifferent to prod-
ucts outside its consideration set, we have Pg

j
(S) = P

g

j
(S ∩  g) = P

g

j
(Sg) , where 

Sg = S ∩  g.

6.2  Tractable Lagrangian relaxation

We modify the Lagrangian relaxation approach for the case with multiple customer 
segments in the following manner: We introduce segment-based decision variables 
h
g

i,Sg,t
 , which denote the frequency with which set Sg ⊂  g is offered to segment g on 

resource i at time period t. As in LRo, we relax the condition that the frequencies be 
identical across the resources by associating Lagrange multipliers �g

i,Sg,t
 with them 

and solve the optimality equation

for resource i, with the boundary condition that ��
i,�+1

(⋅) = 0 , where 
i = {g|∃j ∈  g with j ∈ i} can be interpreted as the set of customer segments that 
use resource i. We modify optimality equation (11) in a similar manner for the case 
with multiple segments:

𝜗𝜆
i,t
(ri) = max

hi

∑
g∈i

𝛼g

{∑
Sg∈i

h
g

i,Sg,t

(
𝜆
g

i,Sg,t
+
∑

j∈i

P
g

j
(Sg)

[
𝜗𝜆
i,t+1

(ri − 1) − 𝜗𝜆
i,t+1

(ri)
])}

+ 𝜗𝜆
i,t+1

(ri)

s.t.

h
g

i,Sg,t
≤ ri ∀g ∈ i, S

g ⊂  g, Sg ∈ i∑
Sg∈i

h
g

i,Sg,t
≤ 1∀g ∈ i

h
g

i,Sg,t
≥ 0∀g ∈ i, S

g ⊂  g, Sg ∈ i
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with the boundary condition that ��
�,�+1

= 0.
We refer to the above described modification as the segment-based Lagran-

gian relaxation (sLRo). Many of the results from Sect. 4 carry over to sLRo. In 
particular, V�

t
(r) =

∑
i �

�
i,t
(ri) + ��

�,t
 gives us an upper bound on the value func-

tion. We find the tightest upper bound by solving

V�
t
(r) is a convex function of � and an expression for its subgradient can be derived 

in a manner analogous to Proposition 1; we omit the details. Therefore, we can solve 
minimization problem (23) using subgradient search. However, sLRo can be weaker 
than LRo and we can have VLRo < VsLRo . Still, an advantage of sLRo is its compu-
tational tractability. Note that solving LRo requires (2| |) Lagrange multipliers 
which quickly becomes intractable. On the other hand, sLRo requires (

∑
g 2

� g�) 
Lagrange multipliers, a much more manageable number provided the consideration 
set for each segment is small in size. Moreover, when the consideration sets of the 
segments overlap, it is possible to further tighten sLRo by adding the product-cut 
equalities (PC-equalities) described in Meissner et al. [17] and Talluri [21]; we omit 
the details.

7  Computational experiments

In this section, we compare the upper bound and revenue performance of sLRo 
with benchmark solution methods. We consider two choice models in our 
numerical experiments. The first one is the MNL choice model and the second 
is the exponomial choice model. We begin by describing the two choice models 
and then describe the different benchmark solution methods and the experimen-
tal setup.

7.1  MNL choice model with multiple customer segments

The total demand is comprised of multiple customer segments and within each seg-
ment choice is according to the MNL model. The MNL model associates a prefer-
ence weight �g

j
 with product j that is in the consideration set of segment g. Similarly 

𝜗𝜆
𝜙,t

= max
h𝜙

∑
g
𝛼g

{∑
Sg
h
g

𝜙,Sg,t

[∑
j∈Sg

fjP
g

j
(Sg) −

∑
i∈Sg

𝜆
g

i,Sg,t

]}
+ 𝜗𝜆

𝜙,t+1

s.t.∑
Sg
h
g

𝜙,Sg,t
≤ 1∀g

h
g

𝜙,Sg,t
≥ 0∀g, Sg ⊂  g

(23)VsLRo = min
�

V�
1
(r1).
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it associates a preference weight �g

0
 with a segment g arrival not purchasing any-

thing. The probability that a segment g arrival purchases product j when S is the 
offer set is (Ben-Akiva and Lerman [3])

while the probability it purchases none of the offered products is

In our computational experiments, we have  g ∩  g� = � so that the consideration 
sets of the segments are disjoint.

7.2  Exponomial choice model with multiple customer segments

We again have that the total demand is comprised of multiple customer segments. 
Each segment has a preference weight (ideal utility) associated with purchasing a 
product that is in its consideration set and a preference weight associated with not 
purchasing anything. However, each segment’s choice is governed by the expono-
mial choice model (Alptekinoğlu and Semple [2]). That is, if the preference weights 
are ordered so that �g

0
≤ �

g

1
≤ …�

g
nl
 , where ng is the number of products in the con-

sideration set of segment g that are part of the offer set, then the probability that a 
segment g arrival purchases product j when S is the offer set is (Alptekinoğlu and 
Semple [2])

In our computational experiments, we have  g ∩  g� = � so that the consideration 
sets of the segments are disjoint.

7.3  Benchmark methods

Choice Deterministic Linear Program (CDLP) This is the solution method described 
in Sect. 3.1. If customer choice is according to the MNL model and the considera-
tion sets are disjoint, then CDLP has an equivalent, compact sales based formulation 
that is described in Gallego et al. [8]. Therefor, we solve CDLP as a compact lin-
ear program. On the other hand, if customer choice is according to the exponomial 
model, to our knowledge there is no compact formulation of CDLP. Since CDLP 
has a large number of variables, we use column generation to solve CDLP. To our 
knowledge, there is no efficient method to solve the column generation sub-problem 

P
g

j
(S) =

�
g

j

�
g

0
+
∑

k∈S∩ g �
g

k

,

P
g

0
(S) =

�
g

0

�
g

0
+
∑

k∈S∩ g �
g

k

.

P
g

j
(S) =

exp
�
−
∑ng

k=j
[�

g

k
− �

g

j
]
�

ng − j + 1
−

j−1�
q=1

exp
�
−
∑ng

k=q
[�

g

k
− �

g
q]
�

(ng − q)(ng − q + 1)
.
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under the exponomial choice model and so we enumerate over the offer sets to solve 
the column generation sub-problem. The disjoint nature of the consideration sets 
makes the CDLP column generation sub-problem separable by the customer seg-
ments and this makes the enumeration procedure manageable. We stop the column 
generation procedure when we are within 1% of optimality. We obtain a bound on 
the optimality gap by using the optimal dual variables from the restricted master 
problem (see for example, Proposition 3 in Adelman [1]).

Affine Approximation (AF) This is the solution method described in Sect. 3.2. We 
use the reduced formulation described in Vossen and Zhang [25] to solve AF. While 
the number of variables in the reduced formulation is manageable, it still has a large 
number of constraints. We solve AF by generating constraints on the fly and stop 
when we are within 1% of optimality (Adelman [1]). For the MNL choice model, the 
separation problem of AF can be solved as a mixed-integer linear program (Zhang 
and Adelman [26]). However, we are not aware of a similar formulation for the 
exponomial choice model. Solving the separation problem by brute force involves 
enumerating over all possible offer sets and resource levels and becomes intractable.

Segment-based Lagrangian Relaxation (sLRo) This is the solution method 
described in Sect. 6. In our computational experiments, we use subgradient search 
to solve problem (23). We use a step size of 250∕

√
k at iteration k of the subgradient 

algorithm and run the algorithm for 200 iterations. Although, our step size selection 
does not guarantee convergence (Bertsekas [4], Chapter 7), it provided good solu-
tions and stable performance in our test problems.

7.4  Hub‑and‑spoke network

We have a network with a single hub serving N spokes. There is one flight from 
each spoke to the hub and one flight from the hub to each spoke, so that there are 2N 
flights in total. Figure 1 shows the structure of the network with N = 6 . Note that the 
flight legs correspond to the resources in our DC-NRM formulation.

The total number of fare-products is 2N(N + 1) . There are 4N fare-products con-
necting hub-to-spoke and spoke-to-hub origin-destination pairs. Of these, half are 
high fare-products whose revenues are drawn from the Poisson distribution with a 
mean of 30, while the remaining are low fare-products whose revenues are drawn 
from the Poisson distribution with a mean of 10. There are 2N(N − 1) fare products 

Fig. 1  Structure of the airline 
network with a single hub and 
six spokes
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connecting spoke-to-spoke origin-destination pairs. Half of them are high fare-prod-
ucts whose revenues are drawn from the Poisson distribution with a mean of 300, 
while the remaining are low fare-products whose revenues are drawn from the Pois-
son distribution with a mean of 100.

Each origin-destination pair is associated with a customer segment and a segment 
is only interested in the fare-products connecting its origin-destination pair. For the 
MNL choice model, the preference weights of the high fare-products are drawn from 
the Poisson distribution with a mean of 200, while that of the low fare-products are 
drawn from the Poisson distribution with a mean of 80. The no-purchase preference 
weights are drawn from the Poisson distribution with a mean of 10. We remark that 
we set the problem parameters in the same manner as Meissner and Strauss [16]. For 
the exponomial choice model, the preference weight (ideal utility) of each product 
is drawn uniformly from the interval [−4, 18] , while the preference weight for the 
no-purchase option is set to 1. We follow Alptekinoğlu and Semple [2] in setting the 
parameters of the exponomial choice model.

We measure the tightness of the leg capacities using the nominal load factor. 
Letting

be the offer set that maximizes expected revenues from segment g when there is 
ample capacity on all the flight legs, the nominal load factor is

We have � = 400 time periods in all of our test problems. We label our test problems 
by the pair (N, �) where N ∈ {10, 12, 14} and � ∈ {1.0, 1.2} , which gives us a total 
of six test problems for each choice model.

Sg∗ ∈ argmax Sg⊂ g

∑
j∈Sg

Pj(S
g)fj

� =

∑
t

∑
i

�∑
g �

g[
∑

j∈i
P
g

j
(Sg∗)]

�
∑

i r
1
i

.

Table 1  Comparison of the upper bounds on the optimal expected total revenue and the CPU times for 
the test problems with the MNL choice model

Problem Upper bound % Gap with sLRo CPU s

(N, � ) CDLP AF sLRo CDLP AF CDLP AF sLRo

(10, 1.0) 30,296 30,025 29,495 2.72 1.80 0.60 655.67 302.41
(10, 1.2) 29,345 29,069 28,265 3.82 2.84 0.58 954.98 259.06
(12, 1.0) 29,863 29,543 28,988 3.02 1.91 0.97 1004.97 381.74
(12, 1.2) 29,109 28,754 27,801 4.71 3.43 0.96 1707.46 320.48
(14, 1.0) 29,820 29,417 28,803 3.53 2.13 1.49 1800.82 467.31
(14, 1.2) 28,946 28,468 27,442 5.48 3.74 1.49 3081.48 389.43

Avg. 3.88 2.64
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We first describe the results for the test problems where choice is according to 
the MNL model. Table 1 gives the upper bounds obtained by the different solution 
methods along with their run times. The first column in the table describes the prob-
lem characteristics by using (N, �) . The second to fourth columns, respectively, give 
the upper bounds obtained by CDLP, AF and sLRo. The next two columns, respec-
tively, give the percentage gap between the upper bounds obtained by CDLP and 
AF with respect to sLRo. The last three columns give the CPU seconds required by 
CDLP, AF and sLRo, respectively. All of our computational experiments are carried 
out on a Core i7 desktop with 3.4-Ghz CPU and 16-GB RAM. We use CPLEX 12.2 
to solve the CDLP and AF linear programs. We implement the subgradient search 
algorithm to solve sLRo in C++. We see that sLRo obtains significantly tighter upper 
bounds than CDLP and AF. The average gap between the upper bounds obtained by 
CDLP and sLRo is around 4%, while that between AF and sLRo is around 3%. In 
terms of computation time, CDLP has a compact linear programming representation 
for the MNL model and so it solves in a fraction of a second. The running times of 
AF and sLRo are in minutes. However sLRo solves much faster than AF and the dif-
ferences in run times are more noticeable as the size of the network, as measured by 
the number of spokes, increases.

We next compare the revenue performance of the three solution methods. We 
evaluate revenues through simulation and use common random numbers in our sim-
ulations. All three solution methods obtain value function approximations of the 

Table 2  Comparison of the 
expected revenues for the test 
problems with the MNL choice 
model

Problem Expected revenue % Gap with sLRo

(N, � ) CDLP AF sLRo CDLP AF

(10, 1.0) 28,727 28,830 29,390 2.26 ✓ 1.91 ✓
(10, 1.2) 27,434 27,495 27,974 1.93 ✓ 1.71 ✓
(12, 1.0) 28,196 28,405 28,803 2.11 ✓ 1.38 ✓
(12, 1.2) 26,796 27,337 27,432 2.32 ✓ 0.35 ⊙
(14, 1.0) 28,161 28,527 28,551 1.37 ✓ 0.09 ⊙
(14, 1.2) 26,441 26,605 26,881 1.64 ✓ 1.03 ✓

Avg. 1.94 1.08

Table 3  Comparison of the 
upper bounds on the optimal 
expected total revenue and the 
CPU times for the test problems 
with the exponomial choice 
model

Problem Upper bound % Gap with sLRo CPU s

(N, � ) CDLP sLRo CDLP CDLP sLRo

(10, 1.0) 18,966 18,102 4.77 11.68 245.66
(10, 1.2) 18,241 17,283 5.54 15.78 210.11
(12, 1.0) 18,024 17,246 4.51 30.04 277.27
(12, 1.2) 17,395 16,526 5.26 38.23 245.68
(14, 1.0) 20,613 20,001 3.06 35.30 330.26
(14, 1.2) 19,930 19,001 4.89 57.93 292.71

Avg. 4.67
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form Ṽt(r) that we use to make the control decisions. In the case of CDLP, we use 
�Vt(r) =

∑
i �̂�iri , where �̂� = {�̂�i|∀i} are the optimal values of the dual variables asso-

ciated with constraints (3). For AF, we use �Vt(r) = �̂�t +
∑

i V̂i,tri , where �̂� = {�̂�t|∀t} , 
V̂ = {V̂i,t|∀i, t} is an optimal solution to AF. For sLRo, we use 
�Vt(r) =

∑
i 𝜗

�̂�
i,t
(ri) + 𝜗�̂�

𝜙,t
 , where �̂� is an optimal solution to problem (23). For each 

solution method, we use the corresponding value function approximation Ṽt(r) , and 
if rt is the vector of remaining resource capacities at time period t, we use the policy 
of offering the set that attains the maximum in the optimization problem

We refresh the respective value function approximations periodically by reoptimiz-
ing the solution methods at five equally spaced intervals over the booking horizon. 
Table 2 reports the expected revenues obtained by the three solution methods. The 
columns have a similar interpretation as in Table 1, except that they give revenues. 
In the last two columns, we use ✓ to indicate that sLRo generates higher revenues 
than the corresponding benchmark method at the 95% level and ⊙ if the revenue dif-
ferences are not statistically significant at the 95% level. sLRo on average generates 
revenues that are about 2% higher than CDLP and about 1% higher than AF.

Now we describe the results for the test problems where choice is according 
to the exponomial model. Table  3 gives the upper bounds obtained by CDLP 
and sLRo along with their run times. As mentioned, solving the AF separation 
problem becomes intractable for the exponomial choice model and so we do not 
have AF as a benchmark solution method in the table. We see that sLRo contin-
ues to obtain significantly tighter upper bounds than CDLP and the sLRo bound 
is on average about 5% tighter than the CDLP bound. sLRo is agnostic to the 
form of the choice model and its solution time does not change very much com-
pared to the MNL case. However, for the exponomial choice model, CDLP has 
to be solved using column generation and consequently the solution times are 
larger compared to the MNL case. Still, CDLP solves in under a minute even 

max
S⊂(rt)

⎧⎪⎨⎪⎩

�
j∈S

Pj(S)
�
fj + �Vt+1

�
r
t −

�
i∈j

e
i
��

+ P0(S)�Vt+1

�
r
t
�⎫⎪⎬⎪⎭

.

Table 4  Comparison of the 
expected revenues for the test 
problems with the exponomial 
choice model

Problem Expected revenue % Gap with sLRo

(N, � ) CDLP sLRo CDLP

(10, 1.0) 18,932 19,756 4.17 ✓
(10, 1.2) 17,530 18,636 5.93 ✓
(12, 1.0) 16,031 17,086 6.18 ✓
(12, 1.2) 15,079 16,332 7.67 ✓
(14, 1.0) 17,238 18,096 4.74 ✓
(14, 1.2) 15,847 17,178 7.75 ✓

Avg. 6.07
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for the exponomial choice model. Table 4 gives the expected revenues obtained 
by CDLP and sLRo. The results are similar to the MNL case and we see that 
sLRo obtains significantly higher revenues than CDLP, with an average revenue 
improvement of around 6%.

8  Conclusions

In this paper we develop a new Lagrangian relaxation approach for DC-NRM with 
strong theoretical properties and numerical performance. We show that the Lagrangian 
relaxation equals the piecewise-linear approximation with the number of constraints 
scaling linearly with the resource capacities, compared to the exponential number when 
solving the piecewise-linear approximation directly. We build on these ideas and pro-
posed a segment-based relaxation that is tractable when the consideration sets of the 
different customer segments are small. Our numerical experiments show that the pro-
posed approach can provide significant benefits, both in terms of tighter upper bounds 
and higher expected revenues. Finally, we note that our results apply at the highest level 
of generality, for any discrete-choice model of customer demand behavior. An interest-
ing future research direction is to see if more tractable methods can be obtained by 
specializing to specific choice models such as MNL or nested logit.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.  

Appendix

Proof of Lemma 1

The first inequality follows from Meissner and Strauss [16]. So, we only show the sec-
ond inequality. Let

where || is the total number of resources. Fix t, r and Ŝ ⊂ (r) . Since Ŝ ⊂ (r) , 
1[j∈i] ≤ ri for all j ∈ Ŝ , which implies that 1[i∈Ŝ] = maxj∈Ŝ 1[j∈i] ≤ ri . It follows 
that setting ĥi,Ŝ,t = 1 for all i ∈ Ŝ and ĥi,S,t = 0 for all S ≠ Ŝ and i ∈ S yields a feasi-
ble solution to optimality equation (10) and we have

We also have that ĥ𝜙,Ŝ,t = 1 and ĥ𝜙,S,t = 0 for S ≠ Ŝ is feasible to optimality equation 
(11) and we have

(24)v̄i,t(ri) = 𝜗𝜆
i,t
(ri) + 𝜗𝜆

𝜙,t
∕|| ∀t, i, ri ∈ i

(25)𝜗𝜆
i,t
(ri) ≥ 1[i∈Ŝ]

{
𝜆i,Ŝ,t +

∑
j∈i

Pj(Ŝ)
[
𝜗𝜆
i,t+1

(ri − 1) − 𝜗𝜆
i,t+1

(ri)
]}

+ 𝜗𝜆
i,t+1

(ri).

http://creativecommons.org/licenses/by/4.0/
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Plugging (25) and (26) into (24)

Therefore, v̄ = {v̄it(ri)|∀i, t, ri} satisfies constraints (4) and is feasible for PL. Its 
objective function value is 

∑
i v̄i,1(r

1
i
) =

∑
i 𝜗

𝜆
i,1
(r1

i
) + 𝜗𝜆

𝜙,1
= V𝜆

1
(r1) . Therefore, 

VPL ≤ V�
1
(r1) .   □

Proof of Proposition 1

We show the results by induction over the time periods. We begin with the first part of 
the proposition. It is easy to show the result for the last time period. So we assume that 
the result holds for time period t + 1 and show that it holds for time period t. We have

(26)𝜗𝜆
𝜙,t

≥
∑
j∈Ŝ

Pj(Ŝ)fj −
∑
i∈Ŝ

𝜆i,Ŝ,t + 𝜗𝜆
𝜙,t+1

.

∑
i

v̄i,t(ri) =
∑
i

𝜗𝜆
i,t
(ri) + 𝜗𝜆

𝜙,t

≥
∑
j∈Ŝ

Pj(Ŝ)fj +
∑
i∈Ŝ

∑
j∈i

Pj(Ŝ)
[
𝜗𝜆
i,t+1

(ri − 1) − 𝜗𝜆
i,t+1

(ri)
]
+
∑
i

𝜗𝜆
i,t+1

(ri) + 𝜗𝜆
𝜙,t+1

=
∑
j∈Ŝ

Pj(Ŝ)
[
fj +

∑
i∈j

v̄i,t+1(ri − 1) − v̄i,t+1(ri)
]
+
∑
i

v̄i,t+1(ri).

𝜗�̂�
i,t
(ri) ≥

∑
S∈i

h𝜆
i,S,t

(ri)�̂�i,S,t + 𝜗�̂�
i,t+1

(ri − 1)
[∑
S∈i

h𝜆
i,S,t

(ri)
∑
j∈i

Pj(S)
]

+ 𝜗�̂�
i,t+1

(ri)
[
1 −

∑
S∈i

h𝜆
i,S,t

(ri)
∑
j∈i

Pj(S)
]

≥ 𝜗𝜆
i,t
(ri) +

∑
S∈i

h𝜆
i,S,t

(ri)[�̂�i,S,t − 𝜆i,S,t]

+
[ 𝜏∑
k=t+1

∑
S∈i

{ ri∑
x=0

Pr{X𝜆
i,k

= x |X𝜆
i,t+1

= ri − 1}h𝜆
i,S,k

(x)
}
[�̂�i,S,k − 𝜆i,S,k]

]
Pr{X𝜆

i,t+1

= ri − 1 |X𝜆
i,t
= ri}

+
[ 𝜏∑
k=t+1

∑
S∈i

{ ri∑
x=0

Pr{X𝜆
i,k

= x |X𝜆
i,t+1

= ri}h
𝜆
i,S,k

(x)
}
[�̂�i,S,k − 𝜆i,S,k]

]
Pr{X𝜆

i,t+1

= ri |X𝜆
i,t
= ri}

= 𝜗𝜆
i,t
(ri) +

𝜏∑
k=t

∑
S∈i

{ ri∑
x=0

Pr{X𝜆
i,k

= x |X𝜆
i,t
= ri}h

𝜆
i,S,k

(x)
}
[�̂�i,S,k − 𝜆i,S,k],
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where the first inequality holds since {h�
i,S,t

(ri)|∀S ∈ i} is a feasible solu-
tion to problem (10) when the Lagrange multipliers are �̂� . The sec-
ond inequality holds by the induction assumption, and uses the facts that ∑

S∈i

�
h�
i,S,t

(ri)
∑

j∈i
Pj(S)

�
= Pr{X�

i,t+1
= ri − 1 �X�

i,t
= ri} and 1 −

∑
S∈i

�
h
�
i,S,t

(r
i
)

∑
j∈i

Pj(S)
�
= Pr{X�

i,t+1
= ri �X�

i,t
= ri} . On the other hand, the last equality follows 

by noting that

This concludes the proof of the first part of the proposition.
The proof of the second part proceeds in a similar fashion. We assume that the 

result holds for time period t + 1 and show that it holds for time period t. We have

where the first inequality holds because {h�
�,S,t

|∀S} is feasible for problem (14) when 
the Lagrange multipliers are �̂� and the second inequality follows from the induction 
assumption.   □

Proof of Lemma 2

Proof The proof is similar to that of Lemma 1. Let r∗, S∗ be an optimal solution to 
Φt(v) . Since S∗ ⊂ (r∗) ⊂ i(r

∗
i
) , we have

Therefore, for any � ∈ Λ , we have

Pr
{
X�
i,k

= x |X�
i,t
= ri

}

= Pr
{
X�
i,k

= x |X�
i,t
= ri,X

�
i,t+1

= ri

}
Pr

{
X�
i,t+1

= ri |X�
i,t
= ri

}

+ Pr
{
X�
i,k

= x |X�
i,t
= ri,X

�
i,t+1

= ri − 1
}
Pr

{
X�
i,t+1

= ri − 1 |X�
i,t
= ri

}

= Pr
{
X�
i,k

= x |X�
i,t+1

= ri

}
Pr

{
X�
i,t+1

= ri |X�
i,t
= ri

}

+ Pr
{
X�
i,k

= x |X�
i,t+1

= ri − 1
}
Pr

{
X�
i,t+1

= ri − 1 |X�
i,t
= ri

}
.

𝜗�̂�
𝜙,t

≥
∑
S

h𝜆
𝜙,S,t

[∑
j∈S

Pj(S)fj −
∑
i∈S

�̂�i,S,t
]
+ 𝜗�̂�

𝜙,t+1

≥𝜗𝜆
𝜙,t

+

𝜏∑
k=t

∑
i

∑
S∈i

h𝜆
𝜙,S,k

[
�̂�𝜙,S,k − 𝜆𝜙,S,k

]
,

max
ri∈i,S⊂i(ri)

{
1[S∈i]𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}
≥ 1[S∗∈i]𝜆i,S∗,t

−
∑
j∈i

Pj(S
∗)𝜓i,t+1(r

∗
i
) + Δi,t(r

∗
i
).
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It follows that Φt(v) ≤ Πt(v) .   □

 Proof of Lemma 3 

Proof Note that if S ⊂ Qi(0) , then j ∉ i for all j ∈ S and we have S ∉ i . Therefore, 
maxS⊂Qi(0)

{1[S∈i]𝜆i,S,t −
∑

j∈i
Pj(S)𝜓i,t+1(0) + Δi,t(0)} = Δi,t(0).

For ri ∈ {1,… , r1
i
} , Qi(ri) =  = i ∪ c

i
 . We have

Putting everything together

where the last equality follows from Δi,t(⋅) being a decreasing function. We note that 
Δi,t(ri) ≤ Δi,t(ri − 1) is equivalent to vi,t(ri) − vi,t(ri − 1) ≥ vi,t+1(ri) − vi,t+1(ri − 1) , 
and the latter inequality follows Kunnumkal and Talluri [12] (Lemma 1). Therefore 

∑
i

max
ri∈i,S⊂i(ri)

{
1[S∈i]𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}
+max

S⊂

{
𝜆𝜙,S,t

}

≥
∑
i

[
1[S∗∈i]𝜆i,S∗,t −

∑
j∈i

Pj(S
∗)𝜓i,t+1(r

∗
i
) + Δi,t(r

∗
i
)

]
+ 𝜆𝜙,S∗,t

=
∑
i∈S∗

𝜆i,S∗,t + 𝜆𝜙,S∗,t −
∑
j

Pj(S
∗)
∑
i∈j

𝜓i,t+1(r
∗
i
) +

∑
i

Δi,t(r
∗
i
)

= R(S∗) −
∑
j

Pj(S
∗)
∑
i∈j

𝜓i,t+1(r
∗
i
) +

∑
i

Δi,t(r
∗
i
) = Φt(v).

max
S⊂

{
1[S∈i]𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}

= max

{
max
S∈i

{
𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}
, max
S∈c

i

{
Δi,t(ri)

}}

= max

{
max
S∈i

{
𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}
,Δi,t(ri)

}
.

max
ri∈i,S⊂Qi(ri)

{1[S∈i]𝜆i,S,t −
∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)}

= max

{
Δi,t(0), max

ri∈{1,…,r1
i
}

{
max
S∈i

{
𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}
,Δi,t(ri)

}}

= max

{
Δi,t(0), max

ri∈{1,…,r1
i
},S∈i

{
𝜆i,S,t −

∑
j∈i

Pj(S)𝜓i,t+1(ri) + Δi,t(ri)

}}
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Δi,t(0) dominates Δi,t(ri) . Note that we do not make an assumption that vi,t(0) = 0 for 
any t, and consequently cannot immediately assume Δi,t(0) = 0 ≥ Δi,t(ri) .   □

Lagrangian relaxation using product‑specific multipliers

We first describe the Lagrangian relaxation approach using product-specific mul-
tipliers (LRp) and then give an example which illustrates it can be weaker than PL 
for DC-NRM. Under the independent-class assumption, Topaloglu [24] proposes 
relaxing the constraints that the same acceptance decisions be made for each product 
across the resources that it uses by associating Lagrange multipliers with them. The 
relaxation associates a multiplier �i,j,t for each product j and i ∈ j , and can be inter-
preted as the portion of the revenue of product j that is allocated to resource i. The 
Lagrangian relaxation approach of Topaloglu [24] can be easily extended to DC-
NRM. We solve the optimality equation

for resource i, where i(ri) =
{
j |1[j∈i] ≤ ri

}
 . It is possible to show that 

∑
i �

�
i,t
(ri) 

is an upper bound on Vt(r) (Kunnumkal and Topaloglu [14]). So, we can find the 
tightest upper bound on the optimal expected revenue by solving

where the constraint 
∑

i∈j
�i,j,t = fj ensures that the Lagrange multipliers correspond 

to a valid fare allocation. In contrast to the independent demands setting (where 
VPL = VLRp ), as the following example illustrates, we can have VPL < VLRp for 
DC-NRM.

Example 1 Consider a network revenue management problem with two products, 
two resources and a single time period in the booking horizon. The first product uses 
only the first resource, while the second product uses only the second resource, and 
we have a single unit of capacity on each resource. Note that in the airline context, 
this example corresponds to a parallel flights network. The revenues associated with 
the products are f1 = 10 and f2 = 1 . The choice probabilities are given in Table 5. In 
the Lagrangian relaxation, since we have Lagrange multipliers only for j ∈ i , we 

(27)𝜈𝜆
i,t
(ri) = max

S⊂i(ri)

∑
j∈i

Pj(S)
[
𝜆i,j,t + 𝜈𝜆

i,t+1
(ri − 1) − 𝜈𝜆

i,t+1
(ri)

]
+ 𝜈𝜆

i,t+1
(ri)

VLRp = min�
� � ∑i∈j

�i,j,t=fj, ∀j,t
�
�
i

��
i,1
(r1

i
),

Table 5  Choice probabilities S P
1

(S) P
2

(S)

{1} 1/2 0
{2} 0 10/11
{1, 2} 1/12 10/12
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have only two multipliers �1,1,1 and �2,2,1 . Moreover, the constraint 
∑

i∈j
�i,j,t = fj 

implies that �1,1,1 = f1 and �2,2,1 = f2 . Noting that there is only a single time period in 
the booking horizon and that i(1) =   for i = 1, 2,

and

so that VLRp = 65∕11.

On the other hand, the linear program associated with the piecewise-linear 
approximation is

Note that the first, second, third and fourth constraints correspond to the states vec-
tors [1, 1], [1, 0], [0, 1] and [0, 0], respectively. It is easy to verify that an optimal 
solution to PL is v1,1(1) = 5, v1,1(0) = 10∕11, v2,1(1) = 0, v2,1(0) = 0 and we have 
VPL = 5 < VLRp.

Optimal LRo multipliers

We give an example below which illustrates that 
∑

i∈j
�i,j,t = fj for all j fails to hold 

for LRo multipliers.

Example 2 Consider a network revenue management problem with two products, 
two resources and a single time period in the booking horizon. The first product 

𝜈𝜆
1,1
(1) = max

S⊂
{P1(S)f1} = 5

𝜈𝜆
2,1
(1) = max

S⊂
{P2(S)f2} = 10∕11

V
PL = min

v
v1,1(1) + v2,1(1)

s.t

v1,1(1) + v2,1(1) ≥ max{P1({1, 2})f1 + P2({1, 2})f2,P1({1})f1,P2({2})f2, 0}

v1,1(1) + v2,1(0) ≥ max{P1({1})f1, 0}

v1,1(0) + v2,1(1) ≥ max{P2({2})f2, 0}

v1,1(0) + v2,1(0) ≥ 0.

Table 6  Choice probabilities S P
1

(S) P
2

(S)

{1} 50/99 0
{2} 0 51/101
{1, 2} 1/2 1/2
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uses only the first resource, while the second product uses only the second resource, 
and we have a single unit of capacity on each resource. Note that in the airline con-
text, this example corresponds to a parallel flights network. The revenues associ-
ated with the products are f1 = 99 and f2 = 101 . The choice probabilities are given 
in Table 6. Letting S1 = {1}, S2 = {2} and S3 = {1, 2} , we have 

∑
j∈S1

Pj(S1)fj = 50 , ∑
j∈S2

Pj(S2)fj = 51 and 
∑

j∈S3
Pj(S3)fj = 100 , S1

= {1},S2
= {2} and S3

= {1, 2} . 
If we impose the constraint 

∑
i∈S

�i,S,t =
∑

j∈S Pj(S)fj on the Lagrange multipli-
ers, then we have �1,S1,1 = 50, �2,S2,1 = 51 and �1,S3,1 + �2,S3,1 = 100 . We have 
��
1,1
(1) = max{50, �1,S3,1} and ��

2,1
(1) = max{51, �2,S3,1} . It can be verified that

where the last equality follows from Proposition 2. Therefore, the optimal LRo mul-
tipliers in the above example satisfy 

∑
i∈S

𝜆i,S,t <
∑

j∈S Pj(S)fj.
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