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Abstract
Where policy and science intersect, there are always issues of ambiguous and conflicting lines
of evidence. Combining disparate information sources is mathematically complex; common
heuristics based on simple statistical models easily lead us astray. Here, we use Bayesian Nets
(BNs) to illustrate the complexity in reasoning under uncertainty. Data from joint research at
Resources for the Future and NASA Langley are used to populate a BN for predicting
equilibrium climate sensitivity (ECS). The information sources consist of measuring the rate
of decadal temperature rise (DTR) and measuring the rate of percentage change in cloud
radiative forcing (CRF), with both the existing configuration of satellites and with a proposed
enhanced measuring system. The goal of all measurements is to reduce uncertainty in
equilibrium climate sensitivity. Subtle aspects of probabilistic reasoning with concordant and
discordant measurements are illustrated. Relative to the current prior distribution on ECS, we
show that after 30 years of observing with the current systems, the 2σ uncertainty band for
ECS would be shrunk on average to 73% of its current value. With the enhanced systems over
the same time, it would be shrunk to 32% of its current value. The actual shrinkage depends on
the values actually observed. These results are based on models recommended by the Social
Cost of Carbon methodology and assume a Business as Usual emissions path.

1 Introduction

Confronted with unwelcome scientific advice, interested parties may seek out, or in some cases
even generate, conflicting scientific views to neutralize the unwelcome impact (Oreskes and
Conway 2010). Lacking the ability to evaluate the advice, public media striving for balance
can unwittingly promote the idea that conflicting advice can simply be ignored. Behind this
perspective is a lack of understanding among the general public about the role of disagreement
in science. In addition, there is a defective understanding, rooted in the classical statistical
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methods which most scientific researchers are taught, of how multiple lines of evidence should
be combined, as elaborated in Section 2.

The authors’ recent uncertainty decomposition of current and enhanced measurements
for equilibrium climate sensitivity (Cooke et al. 2013, 2015, 2016) provides a basis for
exploring the effects of conflicting measurements. The future measurement values invoked
for this purpose are of course hypothetical but the effects are obtained by conditionalizing a
vetted joint distribution for equilibrium climate sensitivity (ECS), the rate of decadal
temperature rise (DTR) and rate of change of cloud radiative forcing (CRF) as measured
by current and future enhanced observing systems. This analysis profits from the fact that a
prior distribution over equilibrium climate sensitivity and theoretical models connecting
ECS with DTR and CRF are provided by the US inter-agency memo on the social cost of
carbon (IWGSCC 2009, 2013). This enables a fully Bayesian analysis of these complex
interlocking measurement platforms which brings many surprising features to light. Rela-
tive to the current prior distribution on ECS, we show that after 30 years of observing with
the current systems, the 2σ uncertainty band for ECS would be shrunk on average to 73% of
its current value. With the enhanced systems over the same time, it would be shrunk to 32%
of its current value. The actual shrinkage depends on the values actually observed. These
results are conditional on the current understanding of the uncertainty of ECS (IPCC 2013;
IWGSCC 2009), as well as recent scientific advances in the decomposition of cloud
feedbacks, which dominate the uncertainty of ECS, into their individual observable com-
ponents (Soden et al. 2008; Zhou et al. 2015). To be clear, uncertainty in emissions
(including aerosols) and the effect of “slow feedbacks” outside the current SCC paradigm
are not taken into account. Whereas this paper focuses on probabilistic interpretations of
measurements and their overall impact on ECS uncertainty, another paper (Hanea et al.
2018) uses this model to explore counter-intuitive results more generally. The choice to use
climate sensitivity for this example is based on the lack of progress in reducing uncertainty
in climate sensitivity in the last 30 years of research (IPCC 2013).

The remainder of this paper is organized as follows: Section 2 reviews combining evidence
from the popular point of view and from the simple classical error models. Section 3 describes
the current and enhanced measurement platform forming the basis for this analysis. Section 4
illustrates how conflicting measurements can be almost as informative as concordant mea-
surements. Section 5 treats overall uncertainty from different combinations of measurement
platforms. A final section gathers conclusions. An appendix provides a mathematical back-
ground for the results in Section 4.

2 Simple intuitions on combining measurements

Suppose we have one measurement platform for ECS whose sources of error are known and
are unbiased. When this platform returns a value for ECS, then the true value for ECS may be
either higher or lower according to how the measurement is deflected by its noise. Unable to
know the deflection, we intuitively focus on the measured value and ignore the uncertainty.
Confronted with the results of two independent measurements, our intuitions are less clear. If
the two measurements agree, we tend to see confirmation and feel more confident in the
common result. If they strongly disagree, the effect is often to temporize and await more
evidence. Such slow deliberative thinking (Kahneman 2011) is often praised as cautious, in
contrast to precipitously acting on impulse. However, in cases where decisions cannot be
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postponed, we need probabilistic thinking. In the simple statistical error model which most
practitioners have learned, the measurements would be modeled as perturbed by independent
identically distributed additive error terms. The estimate minimizing mean square error is the
mean of the observations and the variance of the estimate is the variance of a single error term
divided by the number of observations,1 regardless whether the measurements are concordant
or discordant.

The intuition that concordant measurements should confer more confidence than discordant
measurements is not attested by the simple error model most practitioners know. There are
many other examples illustrated in Section 4. This simple error model cannot account for
“negative learning” where we become more uncertain after retrieving a measured value than
we were before (Oppenheimer and O’Neill 2008; Hanea et al. 2018). Two measurements may
return the same values but with different noise, resulting in different predictions. Two
measurements may separately produce the same prediction, yet result in a different prediction
when combined. Two strongly conflicting measurements may jointly yield a great deal of
information about the unknown quantity.

It is common to attribute such divergence between intuitions and simple error models to a
difference between classical and Bayesian approaches. Indeed, the features mentioned in the
previous paragraph can be ascribed to the interaction between measurement error and a prior
distribution on the variable of interest. Bayesian nets are used to illustrate the complexities of
combining measurements. However, the appendix shows that the distinction between classical
and Bayesian methods is more apparent than real in the contexts of multiple measurement
platforms with well-defined error properties: The key idea is that an unknown variable of
interest X can be modeled as Z + e where Z is the unknown measured value and e is the error
with a known distribution. Upon measuring Z = z, X can be ascribed the distribution of z + e.
Subsequent measurements can be seen as updating this “prior.” This ascription cannot be
described as probabilistic conditionalization as Z does not have a distribution, but it can be
described as “Renyi conditionalization” (Renyi 1970). Alternatively, we can simply compute
the conditional error distributions given the observed values and arrive at the same results
without ascribing a distribution to X. The two approaches are equivalent. The appendix gives
details and provides a simple mathematical model which mimics the results in Section 4 on
concordant and discordant measurements.

Neither the simple error model nor our simple intuitions can do justice to the complexities
of probabilistic inference with multiple lines of evidence. Real examples combined with
graphical software tools for probabilistic inference can help to hone our intuitions.

3 Measuring equilibrium climate sensitivity

An enhanced Earth Observing System (EOS) component CLARREO (Climate Absolute
Radiance and Refractivity Observatory, Wielicki et al. 2013) uses better calibration than
existing systems to observe trends in the decadal rate of global surface temperature rise, and
decadal percentage changes in CRF. This is compared with existing systems: For global
temperature rise, these are weather satellite infrared spectrometers IASI (Infrared
Atmospheric Sounder Interferometer, Hilton et al. 2012), AIRS (Atmospheric Infrared
Sounder, Aumann et al. 2003), and CrIS (Cross Track Infrared Sounder, Strow et al. 2013),

1 If the error variances are not equal, then a weighted average is used (see appendix).
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abbreviated as IAC. They look at about 1/3 of the Earth’s emitted infrared radiation where CO2

and H2O absorb radiation in varying levels (low absorption levels see to the surface, high
absorption see to 20-km altitude, others see to intermediate depths). They use this to gauge
temperature and water vapor vertical profiles from the surface to about 20-km altitude. For
reflected shortwave CRF, the existing system is the CERES system, a broadband radiation
budget instrument. It measures total reflected solar energy as a single value, and total emitted
thermal infrared energy as a second value (Wielicki et al. 1996). All references to CRF in this
paper are to reflect shortwave CRF. Note that cloud radiative forcing or CRF is also often
referred to as cloud radiative effect or CRE.

There is no correlation of the uncertainties of the CERES and IAC instruments. There is
almost no common technology, and their calibration issues are very different. The enhanced
EOS CRF employs a reflected solar spectrometer with a large 2D detector array (512 by 512
detectors) that uses scans of the sun, moon, and nearby deep space to do calibration and
international standards (SI) traceability. It shares no types of components with the IR
spectrometer, uses a 2-axis gimbal to point the entire instrument so that the exact same
optics path is used for solar, lunar, and earth viewing observations. The IR spectrometer that
measures temperature change is an interferometer that uses deep cavity blackbodies (0.9998
emissivity where 1.0 is perfect), three different temperature phase change cells to calibrate
temperature of the blackbody to SI standards, a blackbody emissivity monitor, and varies its
blackbody temperatures for calibration from 200 to 320 K. The physics of how such
instruments would change in orbit has no common element, even the electronics of these
instruments are very different.

Using the integrated assessment model DICE (Nordhaus and Sztorc 2013), certified by the
Inter-Agency Working Group on the Social Cost of Carbon IWGSCC (2009), theoretical
values for decadal temperature and percentage decadal change in CRF are determined by ECS,
the carbon cycle, and the emissions scenario, as shown in Fig. 1. The relationship between
ECS and CRF follows the decomposition of climate sensitivity into individual feedback
components such as cloud feedback (Soden et al. 2008; Zhou et al. 2015). To be clear, these
values are not measured but derived from models. Details on the relationship can be found in
Cooke et al. 2016.

The cloud feedback uncertainty in climate models is dominated by low clouds (IPCC
2013). The effect of low clouds on the climate system is in turn dominated by cloud-driven

Fig. 1 Percentage change in CRF (left) and global temperature rise (right) computed with DICE and the Business
as Usual emissions path for values of ECS varying ranging from very low (2C) to very high (10C)
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changes in Earth’s reflected solar radiation to space which is typically measured by global
mean reflected shortwave CRF (Soden et al. 2008; Zhou et al. 2015). Interannual and
decadal changes in shortwave CRF have been shown by climate models to be the key
measure of cloud feedback (Soden et al. 2008; Dessler 2010; Zhou et al. 2015, 2016; Zelinka
et al. 2017). While we use the simpler framework of Soden et al. (2008) for this demon-
stration example, newer results have shown that spatial patterns of changes in shortwave
CRF can be used to reduce the noise of short-term interannual variability in extracting long-
term low cloud feedbacks (Zhou et al. 2016). It has also been shown that use of 500 hPa
temperature change in the place of surface temperature changemay also reduce the effects of
natural variability or short-term climate change (Dessler et al. 2018; Dessler and Forster
2018). In the future, both the spatial pattern effects and 500-hPa temperature changes could
be incorporated into the framework presented in this paper. Additional climate feedbacks
could also be added. We focus on a simpler framework to provide examples of how
information from multiple lines of evidence interact.

Global temperature and change in CRF are observed against the background of natural
variability, whose effects on trend measurements are attenuated by longer observational times.
When perturbed by natural variability (var), orbit sampling uncertainty (orbit) and instrument
calibration drift (cal) over observation time t, the variance σ2 of the trend estimate is derived
from (Leroy et al. 2008):

σ2 ¼ 12 Δtð Þ–3 σ2varτvar þ σ2
calτ cal þ σ2

orbitτorbit
� �

:

The units of the one-period variance components σ2var, σ2cal, and σ2orbit are the squares of the
physical units being measured. The characteristic times τvar, τcal, and τorbit are in years and
reflect the serial correlation. Autocorrelation time scales for natural variability are dominated
by ENSO (~ 1.5 years), satellite orbit sampling by the averaging time (1 year), and instrument
calibration by instrument lifetime, here assumed to be 5 years (Leroy et al. 2008; Wielicki et al.
2013). The units of σ2 are thus [physical units squared / time squared]. The effects of noise in
observing trends are attenuated by longer observation times. The variance components are
considered to be independent normal variables with mean zero (for a detailed discussion see
Cooke et al. 2013). The statistical formulation is based on an AR(1) process that accounts for
short-term climate variability such as ENSO. Longer term climate variability such as Pacific
Decadal Oscillation can also be significant and could be included using an AR(2) or other
statistical process in future analysis (Brown et al. 2015).

4 Discordant and concordant measurements

A Bayesian Net (BN) is a graphical representation of a multivariate probability distribution.
The BN software employed here is UNINET,2 developed for the Dutch Ministry of Transport.
UNINET was designed for non-parametric continuous and discrete variables in very high
dimensions (Ale et al. 2009) using (conditional) rank correlations and the normal copula (see
Section 5). Rank correlation and the Pearson product moment correlation are typically close,
and no distinction is made in this exercise (for details on these and other aspects of UNINET,

2 UNINET is freely downloadable for academic users at http://www.lighttwist.net/wp/uninet. A short video
demonstrating the use of UNINET is available at https://youtu.be/NBz5RirkXgw
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see Hanea (2008) and Hanea et al. (2015)). If Z is an observation of random variable X with
independent error uncertainty e (X= Z+ e), then the correlation of Z and X is σx / (σ2x + σ2e)½,
where σ denotes the standard deviation. If X is a trend, then the error in observing the trend
decreases as the trend is observed over a longer time period. σe becomes small, the correlation
between Z and X goes to unity and Z becomes a perfect measurement of X (Leroy et al. 2008).
These ratios of standard deviations are used to determine the correlations in Fig. 2 below.

Figure 2 shows the Bayesian net for current (pink) and new (yellow) measurements of
the rate of decadal temperature rise (Temp) and percentage rate of change in CRF. Each
measurement adds its own instrument uncertainties which, according to the above, are
independent. Figure 2 depicts the situation after 30 years before measurements of Temp
or CRF. The marginal distributions and correlations are input to the BN which then
determines the joint distribution by simulation. Means and standard deviations of the
individual variables are shown in the boxes with histograms for each variable. The
correlations shown by each arc are determined, as above, by the ratios of standard
deviations in the observing and observed systems and the observational time. The joint
distribution can then be conditionalized on any set of values of any of the variables.
Performing a measurement corresponds to learning a unique value for one or more of the
pink and yellow variables. Conditionalization propagates this knowledge through the net
thereby reflecting the changes in our uncertainty resulting from the measurement(s).

After 30 years, the trend uncertainty due to natural variability is fairly small and the
correlations between ECS and the theoretical trends (green) are high. Greater accuracy
with the yellow systems is reflected in higher correlations with the trending variables.
The distribution for ECS is the truncated Roe Baker distribution used by IWGSCC. The
sign convention for CRF decadal change is that positive change indicates increased

Fig. 2 Bayesian Net for combining disparate information; 30 years after launch of Enhanced Earth Observing
Systems. “IAC” denotes the weather satellite infrared spectrometers IASI (EUMETSAT instrument), AIRS
(NASA instrument), and CrIS (NOAA instrument). The existing CERES system is a broadband radiation budget
instrument measuring total reflected solar energy and total emitted thermal infrared energy. The “prior”
distribution for ECS is the truncated Roe Baker distribution used by the IWGSCC. The unit on the x-axes for
the histogram for ECS is degrees centigrade [C], for Decadal Temp rise, and for the pink and yellow
measurement systems, the x-axis is [C] / decade, while for decadal change in CRF, and its pink and yellow
measurement systems, the x-axis is percentage change in CRF / decade
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downward solar energy into the climate system. Units in the figures for temperature
trends are given in K/decade and for CRF are given in % CRF/decade.

4.1 Discordant conclusions from concordant measurement results

Probabilistic intuitions are engaged by conditionalizing on possible observed values and
propagating this information through the network. For example, suppose we observe a value
for CRF (1.0) indicating high ECS with the CERES system. Figure 3 (left panel) shows the
result of propagating this information: the new measurement increases our uncertainty. The
standard deviation of ECS before observing was 1.24, after observing it is 1.34. This “negative
learning” (Oppenheimer et al. 2016) is impossible under the simple error model, yet it is very
real and can blindside the unwary: The result is greater uncertainty in ECS post measurement
than pre-measurement. The results of propagating a value for the IAC Temp (0.1 K/decade)
indicating a low value for ECS are also shown in Fig. 3 (right panel). Negative learning does
not occur in this case because the prior distribution of ECS is skewed: there is not as much
room to maneuver on the low end of ECS values.

If the measured values in Fig. 3 were returned by the enhanced systems, the shift in the
distribution of ECS would be much more dramatic (Fig. 4). This is the effect of reducing the
error uncertainty in the enhanced measurements. There is no negative learning in this case, yet
here again the results would baffle an analyst equipped only with the simple error model.
Indeed, how could the pink and yellow measurements return the same numbers yet lead to very
different conclusions for ECS? The answer is that with reduced error, the yellow measurements
pay less heed to the prior information for ECS. The interactions between measurement error
and the prior uncertainty in ECS are complex and easily under-appreciated.

4.2 E pluribus unum

The two measurements in Figs. 4 are strongly conflicting when considered in isolation. Indeed,
judging by the resultant expected values for ECS, the enhanced measurements are more
discordant than those of the current system. Combining the conflicting results is simply a
matter of conditionalizing on both pieces of information. Of course, such conflicting results are
unlikely, but if they are observed, we should expect that the enhanced CRF measurement is
deflected upward by the noise, while the enhanced_Temp measurement is deflected down-
ward. In other words, given conflicting measured values, the expected errors are negatively
correlated (see appendix). This effect is stronger for the enhanced than for the current systems.

Fig. 3 Result of observing a high value (1.0%/decade) with only the CERES_CRF system (left) or observing a
low value (0.1 K/decade) with only the IAC system (right). The gray histogram is before measurement; the black
histogram is after measurement. The left graphic has higher uncertainty (standard deviation 1.34) than before the
measurement (standard deviation 1.24) illustrating negative learning

Climatic Change (2018) 151:541–554 547



The results of propagating both signals through the network are shown in Fig. 5, for both
the current and enhanced systems. In spite of the conflict, synthesizing both signals yields a
significant reduction of uncertainty. Note that the current pink systems leave us with greater
uncertainty (standard deviation 0.678 versus 0.289) and yields a smaller shift in the mean
estimate of ECS (2.58 versus 2.31). Updating the prior of ECS on both pieces of information
constrains the posterior distribution of ECS more than one might expect. The more discordant
(yellow) measurements induce more than twice the uncertainty reduction in ECS as the more
concordant (pink) measurements.

4.3 Ex uno plures

There is a difference between conflicting and concordant signals, however. If the
enhanced_CRF result had been 0.841, and the enhanced Temp result had been 0.4, then each
measurement by itself would produce the same mean for ECS, 5.27 (left and middle panels of
Fig. 6). However, if the concordant signals are combined, then the re-enforcing effect would
raise the mean of ECS from 5.27 to 5.58 and uncertainty in ECS would drop to 0.738. Imagine
the scientists saying “your measurement gives the estimate ECS = 5.27, same as mine, so let’s
combine our results and estimate ECS = 5.58”. Once again, this is impossible to understand on
the simple error model. The explanation lies in the skewed distribution of ECS. The individual
measurements would “like” to be higher, but relatively high uncertainties (1.03 for
enhanced_CRF, 0.841 for enhanced_Temp) are unable to “drag the prior further upward.”
Combining the measurements brings the uncertainty down, allowing the mean value also to
rise. The appendix gives a simple mathematical model of this behavior.

Fig. 4 Result of observing a high value (1.0%/decade) with only the enhanced CRF system (left) and observing a
low value (0.1 K/decade) with only the enhanced Temp (right). There is no negative learning in this case, because
of the lower uncertainty in the enhanced system

Fig. 5 Result of observing both a high value (1.0%/decade) with the enhanced_CRF system and observing a low
value (0.1 K/decade) with the enhanced_Temp system (left), and similar information for the IAC and CERES
systems (right)
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Similar behavior will be obtained with lower than expected measured values. If enhanced
Temp returns 0.229 and enhanced CRF returns zero, the expectations and standard deviations
of ECS, when updated on these values individually, are respectively 0.263 ± 0.406 and 0.263
± 0.501. If ECS is updated on both measured values simultaneously, the result is 2.56 ± 0.325.

5 Overall results

The above results help develop our intuitions for probabilistic reasoning. The ECS estimates
themselves depend strongly on the presumed measured values. A more powerful analysis
computes the reduction in uncertainty averaged over all possible measurement values. More
precisely, we draw a large sample from the joint distribution pictured in Fig. 1. For each value
of each measuring platform, and for each vector of values for each combination of measuring
platforms, the conditional expectation and conditional standard deviation of ECS are comput-
ed. This computation is possible analytically because the BN realizes the correlations using the
normal copula. In other words, the marginal distributions pictured in Fig. 1 are assumed to be
transformations of standard normal variables. Conditionalization of a joint normal distribution
can be performed analytically and the results back-transformed to the original variables. The
normal copula imposes features like tail independence and symmetric rank scatter plots. More
general copula can be used to avoid these restrictions, at much higher computational expense.

Table 1 shows the results. On average, a measurement of Temp by only IAC reduces the
uncertainty (standard deviation) of ECS from 1.24 to 0.96. If we employ only the enhanced
system for measuring Temp, we find an average posterior standard deviation of ECS of 0.49.

Fig. 6 Conditioning on two enhanced measurements with identical estimates of ECS, when combined, yield a
higher estimate with lower uncertainty

Table 1 Posterior average standard deviations of ECS with different combinations of measurement systems, in
2050 following launch in 2020

Average posterior standard deviation ECS, 2050

Prior to measurement: μ = 3.39, σ = 1.24C, 2σ range = 0.81–5.77[C]
Temp IAC 0.96

Enhanced Temp 0.49
IAC and enhanced Temp 0.48

CRF CERES 1.12
Enhanced CRF 0.63
CERES and enhanced CRF 0.62

OLD IAC & CERES 0.90
Enhanced Enhanced Temp and enhanced CRF 0.41
All 0.40

Climatic Change (2018) 151:541–554 549



On average, the old (pink) systems provide little uncertainty reduction beyond that gained by
the enhanced (yellow) systems. These averages conceal the fact that the old pink systems can
still add substantial information in some cases, depending on the actual numbers.

Table 1 shows that after 30 years of observing with the current systems, the 2σ range for
ECS would be shrunk on average from its current value of 2.48 to 1.8. In the same time period,
the enhanced systems would further shrink the 2σ on average range to 0.82. The actual
shrinkage will depend on the values of the measurements.

6 Conclusion

Enhanced measurements can have economic value only if they are used. By positing a
decision context in which society adopts reduced emissions scenarios when high values of
equilibrium climate sensitivity are established with requisite confidence, the authors have
shown that the real option value of enhanced observation systems, over and above the
existing systems, runs into trillions of dollars (Cooke et al. 2015, 2016). This underscores
the broader message that probabilistic thinking has economic impact, not just in selecting
optimal measurement portfolios, but also in quantifying their social value. While there are
many challenges to developing and implementing a more rigorous and accurate long-term
climate observing system, the economic benefits suggest that this may be one of the
society’s best investments.

Valid probabilistic reasoning is subtle, and trusting untrained intuitions can lead to errors.
Scientists, science communicators, policy makers, and general public need to understand that
disagreement in science is not dysfunctional but is essential to progress. Cultivating valid
probabilistic intuitions through exercises like that performed here hope to promote this
understanding.

As final caveat, this study follows the US Interagency Memo on the Social Cost of Carbon.
A 2017 study of the National Academies of Sciences (2017) identifies many areas in which the
existing methodology can and should be improved. In particular, the state-independent carbon
cycle models (as they are called, otherwise known as a system of ordinary differential
equations) started at equilibrium cannot reproduce features observed in the data and predicted
by Earth system Models of Intermediate Complexity (EMICs).

Funding information Funding from NASA, NNX17AD55G, is gratefully acknowledged.

Appendix. Conditional expected errors

This appendix contains elementary calculations illustrating features described in
Section 4. It also illustrates that in contexts of measurement platforms with well-
defined error properties, the distinction between Bayesian and classical statistical ap-
proaches is more apparent than real. We consider an unknown quantity X observed by
variables Zi = X − ei, i = 1,2,…n where ei is normally distributed with mean 0 and
variance σi

2, denoted N(0, σi
2), and {e1, e2,…en} are mutually independent. On the

classical view, X and Zi do not have distributions. Indeed, the standard definition of
the probability that X = x given that Z = z is P(X = x AND Z = z) / P(Z = z). These
probabilities are not defined if X and or Z do not have a proper distribution. However, if
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X and Z are assigned, say, a uniform measure on the real line (which is not normalizable
and hence not a distribution), then “Renyi conditionalization” can be defined as the ratios
of these two measures.

In any event, the difference X − Zi has the distribution of ei. When (only) Zi is observed to
have value zi, X acquires the distribution N(zi,σi

2). We refer to this operation as
“conditionalization on zi”; however, since Zi does not have a distribution, the designation
“Renyi conditionalization” would be more appropriate (Renyi 1970; Cooke 1983). We analyze
the information supplied by successive observations as successive conditionalizations of the
error distributions. “∝” denotes proportionality and lower case letters zi, x denote realizations of
Zi and X. We restrict attention to two measurements Z1, Z2 but a straightforward generalization
yields the case Z1,…Zn.

If Zi = zi, i = 1,2, then the maximum likelihood estimate of X is x* = z1w1 + z2w2, where
wi = σi−2/(σ1−2 + σ2−2). In the classical framework, X does not acquire a distribution as a result
of these observations, but a distribution is assigned to x*. Instead, we assign X the distribution
N(z1, σ12) upon observing z1 and proceed to compute the distribution of X conditional on z1, z2.

Let fi and fx denote the densities of ei and X, where fx is the density of N(z1, σ12). Compute
the mean of e2 conditional on z1, z2 as follows.

f x; e2ð Þ ¼ f x xð Þ � f 2 e2ð Þ: ðA:1Þ

Conditionalize on z2 by substituting x = z2 + e2:

f 2 e2 j x; z2ð Þ∝ f x z2 þ e2ð Þ � f 2 e2ð Þ∝exp
h
−1=2 e22=σ22 þ z2 þ e2−z1ð Þ2=σ1

2
�h i

ðA:2Þ

Completing the square, the right-hand side is proportional to

exp
h
−1=2 e22 � 1=σ2

2 þ 1=σ1
2

� �
–2 e2 z1–z2ð Þ=σ1

2
� �� � ðA:3Þ

which we recognize as a normal density with mean

E e2j z1; z2ð Þ ¼ z1–z2ð Þ=σ1
2

� �
= 1=σ1

2 þ 1=σ2
2

� � ðA:4Þ
and variance

Var e2j z1; z2ð Þ ¼ 1=σ1
2 þ 1=σ2

2
� �−1

: ðA:5Þ
Without imputing the distribution N(z1,σ12) to X, we could perform the same calculation by
noting that e1 = z2 − z1 + e2 and writing

f e1; e2ð Þ ¼ f 1 e1ð Þ f 2 e2ð Þ ¼ f 1 z2−z1 þ e2ð Þ f 2 e2ð Þ: ðA:6Þ

Alternatively, we could arrive at the same result by computing fx(x|z1,z2) ∝ fx(x)f2(x − z2). The
result, intuitively speaking, is that the measurements are “corrected” with the conditional
expected errors. The size of the “correction” depends on the distance separating the measured
values z1, z2, and on the respective unconditional error variances. A direct calculation yields the

Climatic Change (2018) 151:541–554 551



familiar weighted least squares maximum likelihood estimate as the conditional expectation of
X.

E X j Z1 ¼ z1; Z2 ¼ z2ð Þ ¼ z1 þ E e1j z1; z2ð Þ ¼ z2 þ E e2j z1; z2ð Þ
¼ z1σ1

−2 þ z2σ2
−2� �

= σ1
−2 þ σ2

−2� �
: ðA:7Þ

The conditional distribution of X given z1, z2 is the distribution of z1 + (e1| z1, z2) which is the
same as z2 + (e2| z1, z2). The difference between the Bayesian and classical approaches reduces
to a question of notation.

The expression E(e1| Z1, Z2) cannot denote a random variable, as Z1,Z2 do not have
distributions. However, we can consider it as a function of unknowns Z1, Z2. The functions
E(e1| Z1, Z2), E(e2| Z1, Z2) satisfy:

E e1j Z1; Z2ð Þ ¼ Z2–Z1ð Þ=σ2
2

� �
= 1=σ1

2 þ 1=σ2
2

� � ¼ −E e2j Z1; Z2ð Þσ1
2=σ2

2: ðA:8Þ

Note that if Zi = zi, i = 1,2, then X= z2 + e2 = z1 + e1; e2 = e1 + z1 - z2, so that conditional on
{Z1 = z1, Z2 = z2}, e1 and e2 are perfectly correlated. The situation is as follows. Independently
of the distribution of X, after observing z1, z2, the conditional means of errors e1, e2 are no
longer 0 but are of opposite sign and proportional to |z1 − z2|. The conditional distributions of
e1 and e2 about their respective conditional means each have variance (1/σ12 + 1/σ22)−1 and are
perfectly positively correlated.

If X has a prior normal distribution with mean μ and variance σx2, then a similar calculation
yields the conditional expectation:

E X jZ1 ¼ z1; Z2 ¼ z2ð Þ
¼ z1σ2

2σx
2 þ z2σ1

2σx
2 þ μσ1

2σ2
2

� �
= σ2

2σx
2 þ σ1

2σx
2 þ σ1

2σ2
2

� �
: ðA:9Þ

The same result would obtain without imputing a distribution to X but considering a third
measurement Z3 with z3 = μ, σ3 = σx.

If the prior distribution of X is not normal, then these simple equations do not hold.
Equivalently, suppose the measurements Zi do not measure X directly, but some function of
X. This is indeed the case in Section 4 where DTR and CRF are functions of ECS. Putting Zi +
ei = ln(X), we can analytically derive features similar to those encountered in Section 4. After
observing z1 the variable ln(X) is distributed as N(z1, σ12) and X is lognormally distributed. E(X
| z1) = exp(z1 + σ12/2). The conditional expectation of X depends on the variance σ12 and the
conditional variance of X now depends on the observed value z1: V(X) = (exp(σ12) − 1) ×
exp(2z1 + σ12). If σ1 = σ2 and z1 = z2, then obviously E(X | z1) =E(X | z2).

To reproduce the behavior found in Section 4, suppose that the prior of ln(ECS) is
distributed as random variable Zp ~ N(0.5, 0.09), e1 as N(0,1) and e2 as N(0,0.943). Let z1 =
1.5, z2 = 1.448. Taking the prior distribution of variable Zp ~ N(0.5. 0.09) and adapting (A.9) to
the case of a single updating variable, EZp(ECS | z1) = 1.7906 and EZp(ECS | z2) = 1.7906.
Updating Zp on both observations gives EZp(ECS | z1, z2) = 1.994.
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The counter-intuitive features encountered in the text can easily be explained, within either
the Bayesian or classical paradigms, as measuring a nonlinear function of the variable of
interest with independent normal error terms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
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