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Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of 
Parkinson’s disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial 
cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulat-
ing the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms 
of action of DBS, we evaluated the effect of STN–DBS in regulating motor symptoms, astrocyte reactivity, and cytokine 
expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimula-
tion (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved 
motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) 
of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant 
protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflamma-
tory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability 
to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its 
possible relationship with the effectiveness of DBS in neurodegenerative disorders.
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Introduction

Deep brain stimulation (DBS) has been used worldwide 
in clinical practice with excellent results in several neu-
rological diseases, including movement disorders, espe-
cially Parkinson’s disease (PD) (Benabid 2003). Surgical 
candidates are those who either became refractory to con-
ventional treatments or developed serious drug-induced 
side effects. DBS, as used to treat PD patients, involves 
applying high-frequency stimulation (HFS) through elec-
trodes implanted in strategic nuclei, with the ability to 
adjust stimulation parameters to achieve optimal thera-
peutic benefits (Cicchetti and Barker 2014). Subthalamic 
nucleus (STN) DBS leads to improvements in motor 
symptoms, including rigidity, tremor, and bradykinesia, as 
well as L-DOPA-induced dyskinesias (Krack et al. 1997; 
Hamani et al. 2004; Goodman et al. 2006), improving 
patient’s quality of life (Lagrange et al. 2002; Diamond 
and Jankovic 2005). Despite the widespread effectiveness 
of this technique, the specific mechanisms though which 
DBS improves clinical symptoms are still unclear. Data 
generated so far supports a role for DBS in modulating 
neurotransmission by altering the firing pattern of neu-
rons (Beurrier et al. 2001; Dostrovsky and Lozano 2002; 
Hamani et al. 2011; Chiken and Nambu 2016). However, 
the output response of the STN after DBS is still unclear 
and contradictory (Benazzouz et al. 2000; Hamani et al. 
2004, 2017; Harnack and Kupsch 2010; Hashimoto et al. 
2013; Florence et al. 2016). While DBS does not seem to 
prevent dopaminergic degeneration in PD patients (Pibool-
nurak et al. 2007), in preclinical experiment stimulation, 
it has been shown to protect against dopaminergic loss in 
the nigrostriatal pathway (Maesawa et al. 2004; Spieles-
Engemann et al. 2010).

The importance of glial response in the neurodegenera-
tive process of PD has been previously described (McGeer 
and McGeer 2008; Stott and Barker 2014). In response to 
a brain insult, reactive glial cells, such as astrocyte and 
microglia, release cytokines and reactive oxygen species 
(Dauer and Przedborski 2003; Sofroniew and Vinters 
2010), which may contribute to neuronal cell damage 
and neurodegeneration (Anglade et al. 1997; Obeso et al. 
2004). The transcriptional regulation of cytokines is medi-
ated by the activation of the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB). The primary 
mechanism for canonical NF-κB activation includes the 
inducible degradation of the nuclear factor of kappa light 
polypeptide gene enhancer in B-cell inhibitor (IκB)-α 
(Duh et al. 1989; Verma et al. 1995; Gupta et al. 2010).

Reactive astrocytes can undergo a phenotypic switch 
from classical inflammatory (A1) to alternative anti-
inflammatory (A2), in analogy to the M1/M2 polarization 

for microglia/macrophage (Liddelow et al. 2017). It has 
been widely recognized that astrocytes adopt neurotoxic 
or neuroprotective phenotypes depending on the nature 
of the immune or inflammatory microenvironment (Jang 
et al. 2013; Jha et al. 2015). Thus, the inflammation-medi-
ated neurodegenerative response depends not only on the 
presence of reactive astrocytes at the injury site, but also 
on their A1 or A2 functional polarization. Astrocytes are 
essential components of chemical synapses integrating the 
tripartite synapse (Araque et al. 1999; Perea et al. 2009). 
By releasing and uptaking neurotransmitters such as 
GABA, glycine, and glutamate, astrocytes are able to opti-
mize and modulate neuronal communication (Sofroniew 
and Vinters 2010). However, in their A1 polarization state, 
the inflammatory phenotype inhibits the glutamate reup-
take transporters altering the formation and quality of new 
synapses (Korn et al. 2005; Liddelow et al. 2017); hence, 
controlling inflammation is essential to regulate the syn-
apses disruption. The role of DBS in reducing hippocam-
pal neuroinflammation in epileptic rats has been previ-
ously described (Amorim et al. 2015), and the importance 
of astrocytes in response to stimulation has been discussed 
(Fenoy et al. 2014), but not yet tested. We postulated that 
DBS/HFS modulates classical inflammatory activation of 
astrocytes, contributing to the overall control of neuroin-
flammation in PD. To test this hypothesis, we character-
ized the effects of STN–DBS on the astrocytic phenotype 
of the globus pallidus (GP), an output nucleus of the STN, 
as well as on motor symptoms induced by 6-hydroxydo-
pamine (6-OHDA) in a rat model of PD. In addition, to 
further understand the effects of DBS in astrocytes, we 
delivered HSF to cultured astrocytes prior to stimulation 
with tumor necrosis factor (TNF)-α, which has been found 
to be increased in PD (Boka et al. 1994; Mogi et al. 2000; 
Nagatsu and Sawada 2005; Sawada et al. 2006). Our find-
ings uncover a previously unknown role of HFS/DBS in 
astrocyte activation and advance our understanding of the 
mechanism involved in DBS in brain areas surrounding 
the stimulation target.

Materials and Methods

Experimental Animals

A total of 40 male Wistar rats (200–250 g) were used in 
this study. Rats were housed in acrylic boxes (3 rats per 
box) for at least a week before the experimental procedures 
were initiated. The animals were maintained in appropriate 
rooms with controlled light/dark cycle (12/12 h) and tem-
perature (22 ± 2 °C) with wood shavings and free access 
to water and rat chow pellets. All animal experiments were 
conducted and reported in accordance with the ARRIVE 
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guidelines (https​://www.nc3rs​.org.uk/arriv​e-guide​lines​). 
The protocols used during the execution of this project 
were approved by the Ethics Committee on the Use of 
Animals (CEUA) at Hospital Sírio-Libanês (SP, BRA), 
under protocol number CEUA 2016/04.

Surgical Procedures for PD Model Induction 
and Electrode Implantation

Animals were anesthetized with isoflurane (4% induction, 
2.5% maintenance in 100% oxygen) associated with local 
anesthesia (2% lidocaine, 100 μL/animal on the scalp). 
Twelve µg of 6-hydroxydopamine (6-OHDA, Sigma-
Aldrich, MO, USA) diluted in 2 μL of 0.9% saline with 
0.2% ascorbic acid was injected into two different points 
of the left striatum (6 μg/µL of 6-OHDA in each point) 
(Chudler and Lu 2008) under stereotaxic conditions. 
The injections were performed using a Hamilton syringe 
at the following coordinates: + 2.7  mm mediolateral, 
0.0 mm anteroposterior, and + 4.5 mm dorsoventral (first 
point); + 3.2 mm mediolateral, + 0.5 mm anteroposterior, 
and + 4.5 mm dorsoventral (second point), according to 
the rat brain atlas (Paxinos and Watson 2005). Control 
groups included animals injected with 1 μL of saline in 
two different points of the left striatum. At the end of the 
injection, the needle was held in place for an additional 
5 min to prevent backflow of the solution. In addition 
to 6-OHDA injections, a separate group of animals was 
implanted with insulated stainless steel electrodes (250 μm 
in diameter with 0.55 mm of surface exposed, Plastic One, 
CA, USA) into the left STN during the same surgical 
procedure. These electrodes were used as cathodes and 
implanted in the following coordinates: + 2.5 mm medi-
olateral, − 3.7 mm anteroposterior, and + 7.5 mm dors-
oventral (Paxinos and Watson 2005). Screws implanted on 
the skull over the midbrain (− 6.0 anteroposterior and + 2.5 
lateral) were used as anodes (Paxinos and Watson 2005). 
Electrodes were fixed to the skull with dental acrylic 
cement. After the striatal injection and implantation of 
the electrode, animals were treated with meloxicam®, a 
non-steroidal anti-inflammatory drug (NSAID) (0.5 mg/
kg, SQ, Ourofino Pet, SP, BRA) and penicillin/streptomy-
cin as prophylactic antibiotics (0.2 mg/kg, i.p., Zoetis, SP, 
BRA). Rats were returned to their home cages and moni-
tored until complete recovery from anesthesia. The regular 
diet was supplemented with a dietary supplement (Ensure, 
Abbott, SP, BRA) once a day for 3 consecutive days to 
ensure full recovery of the animals after the nigrostriatal 
injury. Following euthanasia, the location of the implants 
was confirmed through the Nissl-stained section.

DBS Protocol

Seven days after PD model induction and electrode implan-
tation, a group of 6-OHDA animals were treated with 5 
sessions of DBS (6-OHDA + DBS ON—biphasic cathodic 
pulses at 130 Hz, 60 µsec pulse width, 0.1 mA, 2 h/day) 
using a portable stimulator (St Jude MTS, St Jude Medical, 
Plano, TX, USA). DBS was applied for 5 days from 9:00 
AM to 11:00 AM. Control animals received 6-OHDA injec-
tions and had electrodes implanted, but no stimulation was 
delivered (6-OHDA + DBS OFF).

Experimental Design—In Vivo

Forty rats were randomly assigned to receive striatal 
6-OHDA or saline injections under stereotaxic conditions, 
as described above. During the same surgical procedure, 
a separate group of animals had electrodes implanted into 
the left STN. Experimental groups were divided as follows: 
(1) Animals injected with striatal saline (n = 8), (2) Ani-
mals injected with striatal 6-OHDA (n = 8), (3) Animals 
injected with striatal 6-OHDA + DBS OFF (only electrode 
implanted) (n = 12), and (4) Animals injected with striatal 
6-OHDA + DBS ON (stimulated) (n = 12). Seven days after 
the surgical procedure, animals were evaluated using immo-
bility and rotation behavioral tests. From the 8th to the 12th 
day after the surgical procedure, 6-OHDA + DBS ON rats 
received DBS, as described above. After the last stimulation 
session (12 days after the surgical procedure), all experi-
mental groups were re-evaluated in the immobility test. 
Immediately after the last behavioral test, half of the ani-
mals underwent transcardiac perfusion and their brains were 
collected to verify the correct positioning of the STN–DBS 
electrodes and for the evaluation of immunoreactivity (IR) 
for tyrosine hydroxylase (TH) in the substantia nigra (SN) 
and glial fibrillary acidic protein (GFAP) in the GP. Addi-
tionally, the other half of the animals were randomly selected 
and fresh brain tissue containing GP was quickly collected. 
Both electrode placement and cytokine levels (interleukin 
(IL)-1β, IL-6, IL-10, and interferon (IFN)-γ) were evalu-
ated (Fig. 1a).

Apomorphine‑Induced Rotational Behavior

Apomorphine-induced rotational behavior was evaluated 
in order to validate the PD model, since the number of 
asymmetric rotations correlates with the degree of nigral 
degeneration, as previously demonstrated (Domenici et al. 
2019). Rotational asymmetric behavior was evaluated using 

https://www.nc3rs.org.uk/arrive-guidelines
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an automatic rotometer system (Rota-Count 8, Colum-
bus Instruments, OH, USA) 7 days after striatal saline or 
6-OHDA injections. Animals receiving saline, 6-OHDA, 
6-OHDA + DBS OFF,  and 6-OHDA + DBS ON were 
injected with the dopaminergic agonist, apomorphine (1 mg/
Kg, s.c., Tocris Bioscience, BZ, UK), dissolved in 0.9% 
saline, and evaluated over 30 min, as previously described 
(Zhang et al. 2008). The criterion for rotation was a 180° 
turn toward the side contralateral to the lesion. To reduce 
stress, rats were exposed to the automatic rotometer system 
for 30 min one day before the rotational test. None of the 
animals injected with 6-OHDA failed to present asymmetric 
rotational behavior and therefore no animals were excluded 

from the study. Rats injected with saline in striatum were 
also evaluated.

Behavioral Immobility

Seven days after PD model induction and following the 
fifth DBS session (day 12), animals were evaluated in the 
bar test to measure akinesia (typical catalepsy test). Saline 
control animals and 6-OHDA-injected animals that were 
not subjected to DBS were also evaluated after 12 days of 
striatal injections. The immobility test consists of plac-
ing an animal in an unusual posture and recording the 

Fig. 1   Effect of STN-DBS on apomorphine-induced rotational 
behavior and immobility induced by 6-OHDA. a In vivo experimen-
tal design. b Nissl staining analysis to confirm electrode implanta-
tion in the STN. Representation of 6-OHDA-induced PD model in 
saline, 6-OHDA, and 6-OHDA + electrode OFF groups. c–e Immu-
nohistochemistry for TH in the striatum showing 6-OHDA-induced 
dopaminergic degeneration in the SN. Images are representative of 
four independent experiments. f Apomorphine-induced rotational 

behavior was evaluated in order to confirm the dopaminergic deficit. 
Values represent the mean + SEM (n = 4–8). *p < 0.05; **p < 0.001 
vs. control saline group. g In vivo evaluation of immobility test fol-
lowing STN–DBS. Values represent the mean + SEM (n = 8 per 
group). ***p < 0.0001 vs. control saline group and $$$p < 0.0001 vs. 
6-OHDA group. h Comparison between the immobility test perfor-
mance before and after STN–DBS (immobility in the bar vs. before 
HFS in seconds) (n = 8 per group)
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time that the animal takes to correct his posture (Sanberg 
1980). Behavioral immobility was characterized by mus-
cle rigidity and failure to correct an imposed posture for 
a prolonged period. In this test, the animals were posi-
tioned with both forepaws on a 9-cm horizontal bar (0.9 
cm diameter). The time course during which the animal 
remained motionless in this imposed posture was consid-
ered the bar test elapsed time (with a cutoff time of 120 s). 
The behavioral immobility endpoint was considered when 
both forepaws were removed from the bar or when the 
animal moved its head in an exploratory manner.

Immunohistochemistry

After the last behavioral test (12 days), animals were anes-
thetized with ketamine/xylazine (0.5/2.3 mg/Kg, respec-
tively, i.p.) and then submitted to transcardial perfusion 
with 0.9% saline solution, followed by 4% paraformalde-
hyde (PFA) dissolved in 0.1 M phosphate buffer (PB, pH 
7.4). Their brains were collected and postfixed in PFA for 
4 h, followed by incubation with 30% sucrose solution in 
PB for 48 h at 4 °C. Tissue sections (40 μm), obtained 
using a freezing sliding microtome, were kept under con-
stant agitation and subjected to the following steps: (a) 
Incubation for 12–16 h at 4 °C with specific primary anti-
bodies to mouse anti-TH (1:1000, MAB5280, Millipore, 
MA, USA) or mouse anti-GFAP (1:1000, G3893, Sigma-
Aldrich) diluted in 0.3% triton X-100, containing 5% nor-
mal donkey serum (Jackson ImmunoResearch, ME, USA); 
(b) Incubation for 2 h at room temperature with bioti-
nylated secondary antibodies (1:200, Jackson ImmunoRe-
search), and (c) Incubation with avidin–biotin-peroxidase 
complex (1:100, ABC Elite kit, Vector Labs, CA, USA). 
Labeling was developed with 0.05% diaminobenzidine tet-
rahydrochloride (DAB, Sigma-Aldrich) and 0.03% hydro-
gen peroxide in PB. Tissue sections were washed between 
each step (3 × 10 min). The sections were mounted on 
glass slides, air-dried, dehydrated, and coverslipped. 
Finally, images were obtained utilizing a light microscope 
(Eclipse E1000, Nikon, NY, USA). The regions of inter-
est, including the SN (from bregma − 6.60 to − 6.00 mm 
anteroposterior, − 1.00 to − 3.2 mm mediolateral, and − 7.2 
to − 8.8 mm dorsoventral) and GP (from bregma − 1.44 
to 3.72 mm anteroposterior, − 2.4 to − 3.8 mm mediolat-
eral ,and − 5.00 to − 7.8 mm dorsoventral), were identified 
based on a stereotaxic atlas (Paxinos and Watson 2005). 
Using ImageJ software (National Institutes of Health, MD, 
USA; https​://rsbwe​b.nih.gov/ij/), the TH–IR and the num-
ber of GFAP-positive cells were analyzed per area (mm2). 
Measurements were taken from five sections per animal 
and five animals per group.

Luminex

After the last behavioral test (12 days), half of the animals 
were euthanized by decapitation, the GP was freshly dis-
sected and gently homogenized at 4 °C in radioimmuno-
precipitation assay (RIPA) buffer (50 mM Tris, 150 mM 
NaCl, 1 mM EDTA, 0.1% SDS, 0.5% deoxycholate, 1% 
NP-40) with fresh protease inhibitors. The Luminex 
assay was used to quantify levels of IL-1β, IL-6, IL-10, 
and IFN-γ (RECYTMAG-65 K, Millipore). The assay 
was carried out in accordance with the manufacturer’s 
recommendations.

Nissl Staining

The confirmation of electrode placement in the STN was 
evaluated by a retrospective analysis of Nissl-stained 
coronal sections. In half of the animals in each group, 
the fixed brain sections obtained using a freezing slid-
ing microtome, as described above, were mounted onto 
gelatin-subbed slides. In the other half of the animals, 
slices approximately 2 cm thick containing the GP were 
freshly collected and frozen in OCT compound (Sigma-
Aldrich). Tissue sections (20 μm) were obtained using a 
cryostat and mounted onto gelatin-subbed slides. Brain 
sections were then incubated in cresyl violet solution (1 g 
of cresyl violet + 10 mL of 100% acetic acid and 1 L of 
distilled water) for 30 min at room temperature, washed in 
distilled water, dehydrated in an ascending ethanol series 
(70%, 95%, and 100%), and incubated in xylene solution. 
Sections were mounted in Permount Mounting Medium 
and the images were acquired using a light microscope 
(Eclipse E1000, Nikon).

Cell Culture and HFS Stimulation

C8-D1A mouse type I astrocytes (CRL-2541, ATTC, MD, 
USA) were cultured in DMEM/F12 media (Invitrogen, 
MA, USA) supplemented with 10% fetal bovine serum 
(FBS), 2 mM/L L-glutamine, 100 units/mL penicillin, and 
100 mg/mL streptomycin. Cells were plated on collagen-
coated culture dishes and the medium was changed every 
2 days until cells reached 80% confluence. Cells were used 
between passages 4 to 10 and seeded at a density of 2 × 105 
cells per 60 mm2 dish for experiments.

https://rsbweb.nih.gov/ij/
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Experimental Design—In Vitro

TNF-α was used to stimulate astrocytes mimicking higher 
concentrations found in response to induced PD model 
(Boka et al. 1994; Mogi et al. 2000; Nagatsu and Sawada 
2005). Cells were incubated in 0.1% FBS in DMEM/F12 
media overnight and stimulated with TNF-α (100 ng/mL, 
PeproTech, NJ, USA) for 1, 3, 6 or 24 h (Fig. 3a). IL-6 and 
monocyte chemoattractant protein (MCP)-1 mRNA levels 
were analyzed. In each experiment, cultures exposed to 
TNF-α were compared with PBS control conditions. In 
order to analyze NFκ-B activation, IκB-α degradation was 
investigated at different time points following TNF-α stim-
ulation for 15, 30, or 60 min (Fig. 3b). For the investiga-
tion of HFS, cells were cultured in plastic dishes and two 
monopolar tungsten electrodes were submerged in media 
with care taken to ensure no direct contact with the cell 
layer. The electrodes were connected to the same portable 
stimulator (St Jude MTS) used for in vivo experiments. 
Cultured astrocytes were stimulated with biphasic cathodic 
pulses at 130 Hz (0.1 mA and 60 μsec pulse width) for 
6 h through. Cells were subjected to HFS for 6 h and dur-
ing the last hour of stimulation TNF-α was added to the 
culture media. IL-6 and MCP-1 levels were analyzed at 
the mRNA and protein levels (Fig. 4a). Additionally, cells 
were subjected to HFS for 6 h and during the last 15 min 
of stimulation TNF-α was added to the culture media and 
NFκ-B activation was evaluated. Both IκB-α degradation 
(in whole cell lysate) and p65 nuclear translocation (in 
subcellular fractionation) were analyzed. Additional con-
trol conditions included cells with or without TNF-α and 
not electrically stimulated (Fig. 5a).

Real‑Time Polymerase Chain Reaction 
(RT‑PCR)

Total RNA was extracted with the RNeasy Plus kit (Qia-
gen, MA, USA). Reverse transcription was performed 
using Superscript II reverse transcriptase (Invitrogen) 
with random primers and cDNA was purified with the 
QIAquick kit (Qiagen). cDNA was amplified with primers 
against IL-6 (F:GTC​TAT​ACC​ACT​TCA​CAA​GTC,R:TGC​
ATC​ATC​GTT​GTT​CAT​AC), MCP-1 (F:AGC​ACC​AGC​
CAA​CTC​TCA​CT, R:TCT​GGA​CCC​ATT​CCT​TCT​TG), 
and RPL (housekeeping gene—F:ATG​ACA​AGA​AAA​
AGC​GGA​TG, R:CTT​TTC​TGC​CTG​TTT​CCG​TA) using 
Platinum Taq DNA polymerase (Invitrogen,) in the pres-
ence of SYBR green I. Reactions were carried out in glass 
capillaries, using the LightCycler 1.2 (Roche, MA, USA) 
real time thermocycler. Data analysis was performed using 

the mak3 module of the qpcR software library in the R 
environment.

Western Blotting

Whole Cell Lysate

Whole cell lysate was prepared using triton buffer (25 mM 
HEPES, 100 mM NaCl, 1 mM EDTA, and 1% Triton x-100) 
with 10 μg/mL aprotinin, 10 μg/mL leupeptin, 1 mM PMSF, 
and Halt phosphatase inhibitor cocktail (78,428, Thermo 
Fisher Scientific, CA, USA). Samples were processed using 
a tissue homogenizer before sonification and centrifuga-
tion. The Bradford assay (Bio-Rad, CA, USA) was used to 
measure protein concentrations. The samples were diluted 
in Laemmli buffer for separation using SDS-PAGE. Follow-
ing electrophoretic separation, proteins were transferred to a 
PVDF membrane (0.2 μm in diameter, Millipore), blocked 
for 1 h at room temperature with 5% BSA in Tris-Saline 
buffer, and the membranes were incubated overnight at 4 °C 
with the rabbit anti-IκB-α (1:2000, #ab32518, Abcam, UK) 
or rabbit anti-β-tubulin (1:5000, #ab6046, Abcam) diluted in 
0.1% Tween-20 (TBST). The membranes were then washed 
with TBST and incubated for 2 h with the appropriate per-
oxidase-labeled secondary antibodies (1:2000, Amersham 
Biosciences, NJ, USA) diluted in TBST. The excess conju-
gate was removed with an added further wash cycle and the 
antigens were developed using the chemiluminescence ECL 
Kit (Amersham Biosciences) and analyzed for the density 
of the labeled bands using the ImageJ software. The anti-β-
tubulin was used as loading control and the control group 
was normalized to 100 for comparison with other groups.

Subcellular Fractionation

Whole cell lysate was prepared from cultured astrocytes 
using NP-40 buffer (0.1% NP40 with PBS). Homogenates 
were centrifuged at 10,000 rpm. The supernatant (cyto-
solic fraction) was collected and the nuclear pellet was 
resuspended in NP-40 buffer and further pelleted. The final 
nuclear pellet was then resuspended in 0.1% Triton and 
Laemmli buffer (Bio-Rad) for separation by SDS-PAGE, as 
described above. The membranes were incubated overnight 
at 4 °C with the rabbit anti-p65 (1:1000, #8242, Cell Signal-
ing, MA, USA), rabbit anti-Histone 3 (1:500, #07–354, Mil-
lipore), or rabbit anti-β-tubulin (1:5000, Millipore) diluted 
in TBST. The membranes were then washed with TBST and 
incubated for 2 h with the appropriate peroxidase-labeled 
secondary antibodies (1:2000, Amersham Biosciences) 
diluted in TBST. The excess conjugate was removed with 
a further wash cycle and the antigens were developed using 
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the chemiluminescence ECL Kit (Amersham Biosciences) 
and analyzed for the density of the labeled bands using the 
ImageJ software. Histone 3 and β-tubulin were used as load-
ing controls for nuclear and cytosolic fractions.

ELISA

Whole cell lysate was prepared from cultured astrocytes 
using a radioimmunoprecipitation assay (RIPA) buffer 
(50 mM Tris, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.5% 
deoxycholate, and 1% NP-40) with fresh protease inhibitors. 
MCP-1 expression analysis in cell lysate and cell supernatant 
was performed according to the manufacturer’s instructions 
(R&D, Minneapolis, MN, USA).

Statistical Analysis

For animal studies, results obtained were expressed as 
means ± standard error of the mean (SEM). For cell culture 
results, data are expressed as means ± standard deviation of 
the mean (SD). Data were analyzed using GraphPad Prism 
(CA, USA) and statistical significance was assessed using 
ANOVA, followed by Tukey’s multiple comparison post 
hoc tests. Analysis of akinesia before and after DBS was 
calculated using the paired t-test. In all cases, p < 0.05 was 
considered statistically significant.

Results

STN‑DBS Improves Motor Impairment

Rats subjected to a unilateral 6-OHDA-induced PD model 
presented loss of TH-IR in the SN pars compacta (Fig. 1d 
and e) and asymmetric rotation to the contralateral side of the 
lesion (1-w-ANOVA; F(2,15) = 7.524, p = 0.0067, followed by 
Tukey’s post hoc test; Fig. 1f) when compared with saline-
injected control rats (Fig. 1c and f). Electrode localization in 
the STN was confirmed with Nissl staining, as represented in 
Fig. 1b. Eight animals had electrodes incorrectly positioned 
and were excluded from the study (data not shown). The 
electrode implantation per se (6-OHDA + DBS OFF group) 
did not prevent either 6-OHDA-induced loss of TH-IR 
(Fig. 1e) or asymmetric rotational behavior (Fig. 1f). As for 
the immobility test, striatal 6-OHDA increased the latency 
spent in the bar when compared to the saline group (Fig. 1g). 
The presence of the electrode itself (6-OHDA + DBS OFF 
group) significantly decreased the time spent in the bar 
when compared with the 6-OHDA group (1-w-ANOVA; 
F(3,31) = 142.3, p < 0.0001, followed by Tukey’s post hoc test; 
Fig. 1g). STN-DBS reduced neurotoxin-induced behavioral 

immobility when compared to the 6-OHDA group (Fig. 1g) 
and baseline responses before DBS (Fig. 1h).

STN‑DBS Does not Alter the Hyperplasia 
of Astrocytes, but Changes the Inflammatory 
Pattern in the Globus Pallidus

Thirteen days following its administration, 6-OHDA 
induced hyperplasia of astrocytes in the GP (1-w-ANOVA; 
F(3,15) = 43.86, p < 0.0001, followed by Tukey’s post hoc 
test; Fig. 2b and e), when compared to saline-injected con-
trols (Fig. 2a and e). In addition, while no difference in 
IL-1β expression was observed in the GP (1-w-ANOVA; 
F(3,15) = 5.518, p > 0.05, followed by Tukey’s post hoc test; 
Fig. 2f), 6-OHDA induced a significant decrease in IL-6 
protein levels (1-w-ANOVA; F(3,15) = 18.54, p < 0.0001, fol-
lowed by Tukey’s post hoc test; Fig. 2g) and an increase in 
IL-10 (1-w-ANOVA; F(3,15) = 19.97, p < 0.0001, Fig. 2h) and 
IFN-γ expression (1-w-ANOVA; F(3,15) = 27.60, p < 0.0001, 
followed by Tukey’s post hoc test; Fig. 2i) when compared 
to saline-injected control animals. DBS OFF was not 
able to attenuate 6-OHDA-induced astrocytic hyperplasia 
(Fig. 2a–d) in the GP, when compared to saline-injected 
control animals. In addition, DBS (6-OHDA + DBS ON 
group) significantly inhibited the effect of 6-OHDA on the 
hyperplasia phenomenon of astrocytes (Fig. 2e). Regarding 
cytokine levels, DBS-stimulated 6-OHDA animals presented 
decreased IL-1β expression, when compared to saline con-
trol animals (Fig. 2f), and completely attenuated IL-10 and 
IFN-γ expression (Fig. 2h and i, respectively), when com-
pared to 6-OHDA-injected animals.

TNF‑α Induces Classical Inflammatory 
Activation of Astrocytes In Vitro

To determine whether cultured resting astrocytes (A0 sub-
type) would exhibit characteristics of classical inflamma-
tory astrocytes (A1-like subtype) (Fig. 3c), cells were treated 
with TNF-α at different time points (1, 3, 6, and 24 h) and 
the expression of IL-6 and MCP-1 mRNA was analyzed. As 
expected, IL-6 mRNA levels (1-w-ANOVA; F(4,19) = 4.925, 
p = 0.0097; followed by Tukey’s post hoc test; Fig. 3d) and 
MCP-1 levels (1-w-ANOVA; F(4,19) = 10.46, p = 0.0072; fol-
lowed by Tukey’s post hoc test; Fig. 3e) were found to be 
significantly upregulated following TNF-α treatment when 
compared with non-stimulated control cells. To investigate 
the time course of NF-κB activation in astrocytes in vitro, 
IκB-α degradation was monitored following TNF-α treat-
ment for 15, 30, and 60 min. IκB-α protein levels were 
found to be significantly decreased 15 min after the TNF-α 
treatment and returned to baseline levels 60  min after 
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stimulation, when compared with control non-stimulated 
cells (1-w-ANOVA; F(4,19) = 3.68, p = 0.0171, followed by 
Tukey’s post hoc test; Fig. 3f).

HFS Prevents MCP‑1, but not IL‑6 Induction 
in Cultured Astrocytes Following TNF‑α 
Treatment

To investigate whether HFS inhibits TNF-α-induced 
cytokine expression, astrocytes were exposed to 6 h of 
HFS and TNF-α was added to the culture media during 
the last hour of HFS stimulation (see experimental design 
in Fig. 4a). Similar to our in vivo findings (Fig. 2g), HFS 
ON did not prevent TNF-α-stimulated IL-6 mRNA levels 
induction, as shown in Fig. 4b (1-w-ANOVA; F(3,19) = 3.994, 
p = 0.1071; followed by Tukey’s post hoc test). On the other 
hand, HFS ON prevented TNF-α-induced increases in 
MCP-1 mRNA levels (F(3,19) = 14.96, p = 0.0002; followed 
by Tukey’s post hoc test; Fig. 4c). Corroborating our mRNA 
expression data, HFS ON prevented TNF-α-induced MCP-1 
protein levels in cell lysates (1-w-ANOVA; F(3,19) = 12.93, 
p = 0.0002; followed by Tukey’s post hoc test; Fig. 4d) 
and in the culture supernatant (F(3,19) = 35.09, p < 0.0001; 

Fig. 4e). The presence of the electrode itself (TNF-α + HFS 
OFF group) did not prevent TNF-α-stimulated cytokine 
induction (TNF-α vs. TNF-α + HFS OFF group) (Fig. 4b–e).

HFS Inhibits NF‑κB Signaling Pathway 
in Astrocytes

Because NF-κB is known to regulate transcription of MCP-1 
(Rovin et al. 1995), we hypothesized that HFS affects the 
NF-κB signaling pathway. To investigate whether HFS inter-
feres with the TNF-α-induced NF-κB activation in cultured 
astrocytes, the protein expression of the NF-κB inhibitor 
IκB-α was evaluated. Because IκB-α protein expression 
was found to be significantly decreased 15 min after TNF-α 
stimulation (Fig. 3f), we exposed astrocytes to HFS for 6 h, 
added TNF-α to their culture media during the last 15 min 
of stimulation (see experimental design in Fig. 5a), and 
evaluated IκB-α degradation. HFS significantly prevented 
IκB-α protein degradation (1-w-ANOVA; F(3,19) = 9.050, 
p = 0.0012; followed by Tukey’s post hoc test; Fig. 5b). In 
addition, HFS also prevented TNF-α-induced p65 trans-
location to the nuclear fraction in cultured astrocytes 

Fig. 2   Pallidal inflammation following STN–DBS in vivo. a–d Pho-
tomicrographs of immunoreactivity for GFAP in saline (a), 6-OHDA 
(b), 6-OHDA + DBS OFF, (c) and 6-OHDA + DBS ON (d) and e 
quantification of GFAP + cells in the GP (n = 4). f–i In vivo evalua-

tion of expression levels of IL-1β (f), IL-6 (g), IL-10, (h) and IFN-γ 
(i) in the GP. Values represent the mean + SEM of four independent 
experiments. *p < 0.05; **p < 0.001, ***p < 0.0001 vs. saline-injected 
control animals. $$p < 0.001 vs. 6-OHDA group
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Fig. 3   Effect of TNF-α on astrocyte activation in vitro. a, b In vitro 
experimental design and c, scheme representing astrocyte phenotypic 
switch from resting A0 to classical inflammatory A1. d, e Astro-
cytes were stimulated with TNF-α for 1, 3, 6, or 24 h and IL-6 (d) 
and MCP-1 (e) mRNA levels were analyzed by RT-PCR. Bar graphs 
represent means ± SD of five independent experiments normalized to 

RPL. **p < 0.001 when compared to control non-stimulated cells. f 
Astrocytes were stimulated with TNF-α (0, 15, 30 and 60 min) and 
IκB-α protein expression was evaluated by western blotting and nor-
malized to β-tubulin. Bar graphs represent means ± SD of five inde-
pendent experiments. *p < 0.05 vs. control non-stimulated cells

Fig. 4   Effect of HFS on TNF-α-stimulated cytokine induction. a 
In  vitro experimental design. Astrocytes were stimulated with HFS 
(HFS ON) for 6  h, TNF-α was added to the culture media during 
the last hour of stimulation, and cytokine mRNAs and proteins were 
measured. b,  c IL-6 (b) and MCP-1 mRNA expression (c) were 
analyzed by RT-PCR and normalized to RPL. Bar graphs represent 

means ± SD of five independent experiments. *p < 0.05, ***p < 0.001 
vs. control non-stimulated cells and #p < 0.05 vs. TNF-α-treated 
cells. d, e MCP-1 protein expression was measured by ELISA in 
cell lysates (d) and in cell culture supernatant (e). Bar graphs rep-
resent means ± SD of five independent experiments. *p < 0.05 and 
***p < 0.001 vs. control non-stimulated cells
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(1-w-ANOVA; F(3,19) = 12.45, p = 0.0015; followed by Tuk-
ey’s post hoc test; Fig. 5c).

Discussion

STN–DBS has been widely used for the treatment of 
advanced PD when long-term treatment with dopaminer-
gic agents induces debilitating side effects (Kumar et al. 
1998; Benabid et al. 2009; Cury et al. 2016; dos-Santos-
Pereira et al. 2016). DBS at intermediate stages of PD has 
been shown to provide superior benefits when compared 
to advanced PD, preventing severe complications resulting 
from medication at high doses, tolerability, and optimiza-
tion of the technique’s effectiveness. Early DBS has been 
shown to improve quality of life and delay the appearance 
of motor fluctuations, dyskinesias, and functional disability 
(Charles et al. 2012; Hacker et al. 2015, 2016). Consider-
ing all the aforementioned observations, we have chosen to 
use a DBS protocol at the early-onset of 6-OHDA-induced 

PD, in which approximately 50% of dopaminergic neuronal 
loss is observed in the SN 7 days after a 6-OHDA injection, 
mimicking the neuronal loss observed in patients at earlier 
stages of PD (Marsden 1990; Lang and Lozano 1998; Dauer 
and Przedborski 2003; Ross et al. 2004).

We show that STN–DBS was able to improve motor 
impairment (akinesia) induced by 6-OHDA. In addition, our 
data is consistent with clinical studies in which STN–DBS 
significantly enhanced daily activities and improved motor 
symptoms in the “off” medication condition (Kleiner-Fis-
man et al. 2006). Remarkably, it has been observed that the 
electrode insertion effect in the STN per se seems to effec-
tively improve PD symptoms (Benazzouz et al. 1993; Ben-
abid et al. 1994), probably by mimicking the effects of STN 
inactivation (Florence et al. 2016; Hamani et al. 2017). In 
our study, we observed a 25% reduction in the time animals 
spent in the bar in the 6-OHDA + DBS OFF group when 
compared to 6-OHDA animals with no electrode implanted. 
Because of the small dimensions of the STN, this response 
could have occurred due to a STN microlesion effect 

Fig. 5   Effect of HFS on the NF-κB signaling pathway. a, b NF-κB 
signaling pathway was assessed by Western blot in astrocytes submit-
ted to HFS (HFS ON, 6 h) and TNF-α (15 min) (a), and the IκB-α 
protein expression was evaluated in whole cell lysates using Western 
blotting and corrected for β-tubulin (b). c Astrocytes were stimulated 

with HFS and the p65 protein expression was evaluated in the nuclear 
fraction using Western blotting and corrected according to histone 3. 
Bar graphs represent means ± SD of five independent experiments. 
*p < 0.05 when compared to control no TNF-α; #p < 0.05 when com-
pared to TNF-α + ; $p < 0.05 when compared to TNF-α + HFS OFF
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(Fig. 1b). A limitation of our in vivo experimental approach 
is that the ratio of electrode size to target in rodents is very 
different from that observed in humans. We note, however, 
that microlesion effects are also commonly observed in clini-
cal practice.

Several PD models in rats have been shown to induce glial 
cell activation in the SN and striatum (McGeer and McGeer 
2008; Sanchez-Guajardo et al. 2015; Booth et al. 2017; Joers 
et al. 2017). GFAP staining has been widely used as a marker 
of reactive astrocytes. Its increased expression is character-
istic of astrocytic hyperplasia/hypertrophy (Sofroniew and 
Vinters 2010) which is a hallmark of neuropathological con-
ditions such as Alzheimer’s and PD (McGeer and McGeer 
2008). Reactive gliosis around implanted DBS electrodes 
has been reported (Stock et al. 1979; Haberler et al. 2000; 
Sun et al. 2008). In astrocytes, electrical stimulation induces 
hyperpolarization and low input resistance compared to neu-
rons (Amzica and Neckelmann 1999; Amzica et al. 2002; 
Mishima et al. 2007). As a consequence, HFS/DBS induces 
an increase in adenosine and glutamate levels in astrocytes 
and seems to induce astrocytic Ca2+ waves that propagate 
away from the stimulation site (Bekar et al. 2008; Tawfik 
et al. 2010). Additional studies have proposed that HFS may 
protect the brain by regulating astrocytes (Fenoy et al. 2014). 
Recently, Jang and collaborators demonstrated that HFS 
induces the release of extracellular matrix proteins, such as 
insulin growth factor (IGF)-1 pathway, from human astro-
cytes in vitro (Jang et al. 2019), which protects neurons from 
excitotoxicity (Chen et al. 2019). However, the HFS/DBS 
effect on inflammatory astrocytes and its ability to affect the 
astrocytic secretory phenotype is completely unknown. Our 
in vivo data obtained from GP immunostained for GFAP 
demonstrates that STN–DBS partially reverses the effect of 
6-OHDA on the hyperplasia phenomenon, which suggests 
an inhibition of astrocytic activation by DBS. It is important 
to note that astrocytic hyperplasia and increases in GFAP 
expression have also been described in conditions where 
astrocytes are believed to play an anti-inflammatory neu-
roprotective role (alternative A2 phenotype) (Barreto et al. 
2011; Liddelow et al. 2017). Since DBS does not prevent 
6-OHDA-induced astrocytic hyperplasia in the GP, future 
investigation should focus on whether DBS promotes astro-
cytic alternative anti-inflammatory (A2) activation.

Reactive astrogliosis is associated with increased release 
of pro-inflammatory cytokines such as TNF-α and IFN-γ, 
promoting inflammatory activation of microglial cells that 
further contributes to synaptic damage and neurodegenera-
tion (McGeer and McGeer 2011). Several inflammatory 
cytokines including TNF-α, IFN-γ, and MCP-1 have been 
described in brain tissue, spinal fluid, and peripheral blood 
of PD patients (Gao and Hong 2008; Reale et al. 2009; Whit-
ton 2009; Banks and Erickson 2010; Collins et al. 2012). We 
demonstrate that 6-OHDA not only induced an increase in 

the number of GFAP-positive cells in the GP 13 days after 
PD model induction, but also in IFN-γ induction. In addi-
tion, 6-OHDA-induced IFN-γ was completely attenuated by 
STN-DBS. IFN-γ is a pro-inflammatory cytokine that acts as 
a potent glial activator (Schroder et al. 2004) and polarizes 
M0 subtype (resting state) macrophages/microglia to M1 
subtype (pro-inflammatory state) (Chistiakov et al. 2018). 
In animal studies, increases in this cytokine are associated 
with the loss of dopaminergic neurons, nigrostriatal degen-
eration, and motor impairment (Mount et al. 2007; Barcia 
et al. 2011; Chakrabarty et al. 2011). In PD patients, high 
levels of IFN-γ have been detected in the SN, striatum, cer-
ebrospinal fluid, and plasma (Mogi et al. 1996; Hunot et al. 
1999; Mount et al. 2007), which seems to contribute to the 
induction and maintenance of the neurodegenerative process 
(Gerhard et al. 2006; Brodacki et al. 2008). Our report is the 
first to show that the striatal 6-OHDA model produces palli-
dal IFN-γ induction and that STN-DBS can reverse this phe-
nomenon. Consistent with our findings, STN-DBS decreased 
IFN-γ derived from T-helper-1 cells in PD, which seems to 
correlate with DBS efficacy (Soreq et al. 2013).

IL-10 is an anti-inflammatory cytokine released by glial 
cells in the central nervous system (CNS), and in response 
to 6-OHDA, it is also produced by T-helper-2 cells (Soreq 
et al. 2013). In the present study, we found an increase in 
pallidal IL-10 levels in response to 6-OHDA, which was 
completely abolished by DBS. Since IL-10 was shown to 
be a potent IFN-γ inhibitor (Aharoni et al. 2000; Rengarajan 
et al. 2000), the increase in IL-10 levels following 6-OHDA 
may serve to inhibit or attenuate IFN-γ production in an 
attempt to control the inflammatory response. Hence, the 
decreased levels of IL-10 after DBS may be a consequence 
of stimulation-induced decrease of IFN-γ.

Previous studies have shown that STN–DBS was able to 
decrease IL-6 expression in epileptic rats (Amorim et al. 
2015; Chen et al. 2017). We found that IL-6 protein lev-
els are significantly downregulated in the GP following 
6-OHDA, when compared to saline-injected control rats. 
No detectable differences in pallidal IL-6 levels were found 
between 6-OHDA and 6-OHDA + DBS ON groups. Other 
studies showed no difference in IL-6 protein levels in both 
SN and striatum 12 days after 6-OHDA-induced PD in rats 
(Koprich et al. 2008).

Our data demonstrates that DBS significantly decreases 
6-OHDA-induced astrocytic hyperplasia in the GP. 
Because of the importance of astrocytes in modulating 
the synaptic environment, these cells have been consid-
ered key mediators of DBS efficacy (Fenoy et al. 2014). In 
addition, astrocytes are an important source of pro-inflam-
matory cytokines and play a pivotal role in brain inflam-
mation (Sofroniew 2014). We therefore used a model of 
mouse cultured astrocytes exposed to HFS and TNF-α to 
mimic in vivo DBS in PD and test whether HFS regulates 
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cytokine induction in astrocytes. While HFS does not 
seem to inhibit increased IL-6 mRNA levels, our data sug-
gests that HFS significantly attenuates TNF-α-stimulated 
MCP-1 induction at both the protein and mRNA levels. 
MCP-1 is a potent monocyte-attracting chemokine and 
has also been shown to attract M1 microglia to inflamma-
tion sites (Hinojosa et al. 2011), contributing to further 
enhance local brain neuroinflammation (Deshmane et al. 
2009). The fact that HFS failed to prevent TNF-α-induced 
IL-6 expression suggests that HFS specifically affects the 
secretion of determined cytokines and potentially specific 
transcription factors. While transcriptional regulation of 
IL-6 in astrocytes is mediated by both the pro-inflam-
matory transcription factor NF-κB and the transcription 
factor activated by tyrosine kinases STAT3 (Hirano et al. 
2000), MCP-1 expression is mainly regulated by NF-κB 
(Rovin et al. 1995; Schwamborn et al. 2003; Widera et al. 
2004; Kigerl et al. 2009). NF-κB is a major CNS transcrip-
tion factor and plays a pivotal role in glial cell function 
(O’Neill and Kaltschmidt 1997). Cytokines such as TNF-α 
activate the NF-κB signaling pathway by inducing the deg-
radation of IκB-α, an NF-κB cytoplasmic inhibitor protein 
(Baeuerle and Baltimore 1988). Once IκB-α is degraded, 
the NF-κB p65 subunit translocates into the nuclei, activat-
ing the transcription of inflammatory cytokines (Baldwin 
1996). In this study, we report that HFS not only regulates 
cytokine induction, but is also a novel regulator of NF-κB 
activation in astrocytes. Our results indicate that HFS 
prevents IκB-α degradation and inhibits TNF-α-induced 
p65 nuclear translocation, supporting an uncovered anti-
inflammatory role for HFS in astrocytes. A limitation of 
our in vitro study is that experiments were performed in 
an astrocyte mouse cell line rather than a rat cell line. 
However, the concordance between in vitro and in vivo 
data makes this unlikely to be an issue.

We propose that one of the mechanisms by which DBS/
HFS inhibits neuroinflammation and improves motor 
impairment following PD is by decreasing astrocyte A1 
subtype activation and microglia attractant, hence attenu-
ating the overall inflammatory process (Fig. 6). Our find-
ings demonstrate for the first time that DBS/HFS has a 
crucial role in inflammation inhibition, potentially regulat-
ing NF-κB activation. We suggest that DBS/HFS inhibits 
classical astrocytic activation, decreasing overall inflam-
mation, while improving PD symptoms.
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Fig. 6   Representative DBS/HFS 
scheme suggested mechanism. 
Six-OHDA induces inflamma-
tion within the GP by activating 
A1, which attracts microglia 
cells and increases cytokines. 
STN–DBS/HFS while only 
slightly changing the number of 
astrocytes attenuates the classi-
cal inflammatory A1 astrocyte 
subtype by inhibiting NF-κB 
activation and cytokine release. 
The less activated astrocytes 
decrease microglia attraction 
reflecting in the inhibition of 
local cytokine release leading to 
improvement of inflammation 
within the GP
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