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Abstract
When building a space catalogue, it is necessary to acquire multiple observations of the
same object for the estimated state to be considered meaningful. A first concern is then
to establish whether different sets of observations belong to the same object, which is the
associationproblem.Due to illumination constraints and adoptedobservation strategies, small
objects may be detected on short arcs, which contain little information about the curvature
of the orbit. Thus, a single detection is usually of little value in determining the orbital
state due to the very large associated uncertainty. In this work, we propose a method that
both recognizes associated observations and sequentially reduces the solution uncertainty
when two or more sets of observations are associated. The six-dimensional (6D) association
problem is addressed as a cascade of 2D and 4D optimization problems. The performance of
the algorithm is assessed using objects in geostationary Earth orbit, with observations spread
over short arcs.

Keywords Initial orbit determination · Data association · Space debris

1 Introduction

Updating and maintaining a catalogue of resident space objects (RSOs) is fundamental for
keeping the space environment collision-free, predicting space events and performing activ-
ities. Due to the development of new observing hardware and the increasing number of
RSOs, the number of observations available is increasing by the day. However, these data
are not all equivalent: some are planned re-acquisitions for a specific object, while others
are obtained when surveying the sky and thus need to be associated with an RSO. Once an
observation is known to pertain to a specific object, the catalogue can be updated and the
uncertainty associated with its state reduced. Observations that are not linked to any object
in the catalogue are called uncorrelated tracks (UCTs). The main sources of UCTs are oper-
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ational satellites manoeuvres, break-up events, small objects that are occasionally observed
and newly launched satellites (Pastor-Rodríguez et al. 2018). When a new object is observed,
initial orbit determination (IOD) techniques can compute a solution orbit. The uncertainty
of this solution can, however, be very large, and consequently a single track is of little value
unless it is associated with other tracks of the same object (Lei et al. 2018). When three or
four UCTs are associated, the state estimate is considered meaningful and the object is then
added to the catalogue (Hill et al. 2012).

In the literature, a number ofmethods have been proposed to tackle the problemof associat-
ing UCTs. For example, in the fixed-gate association technique the threshold for association
is computed on the position difference between two UCTs. However, this technique has
some limitations, in that it does not consider relative velocities and the association volume
is based neither on the estimated uncertainties of the tracks, nor on how these uncertainties
change with time (Hill et al. 2012). Other methods do take into account track uncertainty and
compute a distance-like metric to measure the closeness of two UCTs when the orbits and
uncertainties are propagated to a common epoch (Lei et al. 2018). For most Earth-orbiting
space objects, the state uncertainty of the track is assumed to be Gaussian (Vittaldev et al.
2015): the covariance matrix is then representative of the state uncertainty. Hill et al. (2008)
proposed the covariance-based track association method, which derives the association vol-
ume from the covariance matrix for each UCT. The method propagates the two covariance
matrices to a common epoch and then calculates how closely the two tracks correlate. This
statistical quantity is called Mahalanobis distance and follows a Chi-squared distribution.

The most challenging problem, however, is the uncertainty propagation. Hence, several
combinations of different coordinates and propagation techniques have been proposed, which
improve the success rate of the associationmethod (Hill et al. 2012). InHussein et al. (2015b),
the unscented transform (Julier et al. 2000) is used to propagate the covariances including
second-order effects.Hussein et al. (2014, 2015a, b, 2016) also proposed associationmethods
using information theoretic criteria, including the Bhattacharyya information divergence and
the mutual information. All methods mentioned so far assume initial Gaussian statistics and
consider only the mapped means and covariances. However, due to strong nonlinearities
in orbital dynamics, the propagated uncertainties can quickly become non-Gaussian. Some
methods go beyond theGaussian assumption andmap the uncertainty by using state transition
tensors (Park and Scheeres 2006) or Gaussian mixture models (Terejanu et al. 2008; DeMars
and Jah 2013). All these approaches fall within the “single frame methods”, which are most
suitable for sparse data and decide the best association per target given a specific figure
of merit. More recently, there has been increased interest in the so-called multiple frame
methods: they temporarily keep multiple associations per target and sequentially eliminate
them with further observations. They are more suitable when re-acquisition is performed
within a limited amount of time, such as for catalogue build-up. An example of this is the
multiple hypothesis tracking method (Aristoff et al. 2014).

In this paper, we introduce a method that addresses some of the issues and limitations in
linking different types of new observations to a previously obtained track determined from a
short arc observation, thus placing our approach within the above-mentioned “single frame
methods”. The track is computed as the solution of a least squares (LS) problem, while the
uncertainty region is defined considering nonlinearities in the mapping between observations
and state. For this purpose, the two-dimensional extension of the line-of-variation (LOV)
algorithm, that is the gradient extremal surface (GES) (Principe et al. 2019), is used to define
an initial two-dimensional uncertainty box, as explained in Sect. 2.3.Whenever new observa-
tions are acquired, this box is nonlinearly propagated to the time of the newobservations using
automatic domain splitting (ADS) techniques to guarantee accuracy, and a target function is
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computed to perform the association.We formulate different target functions according to the
following three different types of new observation: a sparse single optical observation, a too-
short arc (TSA) and another track. The main difference between the scenarios is the length
of the observed arc, which determines the possibility of carrying out orbit determination and
thus the associated uncertainty dimension. Different from a short arc, a TSA, also known as
tracklet, is not sufficient to determine an orbit. The TSA is typically linearly approximated
and its partial information stored in a four-dimensional vector known as attributable. Given
the two degrees of freedomof the solution, the orbit can only be determinedwhen two ormore
TSAs are associated. This is known as the linkage process in the asteroid research community
(Gronchi et al. 2015) or observation-to-observation association (OTOA). In the case of space
debris, the definition of TSA depends on the orbital period of the object. In general, when
the observed arc length is shorter than 0.2% of the orbital period, we are dealing with a TSA
(Milani et al. 2004). In the case of a geostationary earth orbit (GEO), it translates into obser-
vations taken in a 2–3-min span. In Pirovano et al. (2018), a detailed analysis of observation
conditions for IOD can be found. In the literature, both the tracklet-to-track and the single
observation to track association scenarios are referred to as observation-to-track association
(OTTA), since the new observations cannot determine the state. For clarity purposes, in this
manuscript we will refer to OTTA only for the case of a single observation, while we will
call tracklet-to-track association the case in which a TSA is observed. When two tracks are
available, we adopt the classical nomenclature of track-to-track association (TTTA).

Once the different target functions are defined, the association problem is reduced to
a sequence of three main steps: i) the use of polynomial bounder to quickly prune away
regions in which the target function is high; ii) 2D optimization in the remaining domains to
compute the minimum of the target function; iii) when necessary, running an additional 4D
optimization to check whether uncertainties in the 4 neglected directions significantly affect
the target function. Addressing the 6D association problem as a series of 2D and 4D sub-
problems is beneficial in terms of computational cost. In particular, the high-order nonlinear
propagationmaps only a two-dimensional domain and is thus very efficient. This paper builds
on results obtained in Principe et al. (2019, 2017), Pirovano et al. (2018).

2 Relevant background

This section describes the mathematical background necessary for the algorithm developed
in the paper. Firstly, Sects. 2.1 and 2.2, respectively, describe the differential algebra (DA)
framework and the ADS tool, a routine developed to ensure accurate polynomial representa-
tions. Section 2.3 defines the method exploited to determine the confidence region associated
with the orbit determination (OD) solution initially obtained through a LS. This method is
the GES.

2.1 Differential algebra framework

DA is a computing technique that substitutes the classical implementation of real algebrawith
the implementation of a new algebra of Taylor polynomials, enabling the efficient computa-
tion of the derivatives of functions within a computer environment Berz (1999). In DA, any
function f of v variables that is Ck+1 differentiable in the domain of interest can be expanded
into its Taylor polynomial up to an arbitrary order k with limited computational effort. These
properties are assumed to hold for any function dealt with in this work. The notation for this
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is: f ≈ T (k)
f . An important tool exploited in this work is the polynomial bounder, which

estimates the bounds of a polynomial over a specific domain. The implementation of DA
used in this work is contained in the C++ library differential algebra computational engine
(DACE), available for download on GitHub. 1

2.2 Automatic domain splitting

DA tools provide an approximation of a function f by using a Taylor polynomial of an
arbitrary order k. As one moves away from the center of the expansion, the approximation’s
accuracy decreases and thus a crucial issue is to estimate the truncation error of the Taylor
polynomial in the domain of interest. If the estimated truncation error is larger than a required
accuracy for the problem at hand, the initial domain is subsequently halved into smaller
domains, and the Taylor approximation of f around the center point of each of the new
domains is computed. The splitting process is stopped once the prescribed accuracy is met
over the entire initial domain. As a result, the error of the new polynomial expansions in each
sub-domain is reduced, while the union of the expansions still covers the entire initial set,
effectively creating amesh. This procedure for estimating and controlling the truncation error
of Taylor approximations is referred to as ADS. Details of its implementation can be found
inWittig et al. (2015). The algorithm presented in this paper takes full advantage of the ADS.

2.3 Least squares solution and its confidence region

After refining and IODsolutionwith aLS routine, the confidence region of theLS solution can
be defined from an optimization perspective as the region Z including orbits with acceptable
values of the target function J (x) within a certain variation K 2 (Milani and Gronchi 2010):

Z(K ) = {
x ∈ A ⊆ R

n : J (x) − J (x∗) ≤ K 2} , (1)

where x∗ is the solution of the LS and the control value K 2 can be determined with the F-test
method (Seber and Wild 2003). In the classical 2nd-order approximation, the confidence
region is represented by an ellipsoid with axes aligned with the eigenvectors of the Hessian
matrix of J and size determined by its eigenvalues. The weak direction, which is the main
direction of uncertainty in the OD problem, is aligned with the eigenvector v1 corresponding
to the smallest eigenvalue of H . This direction ismeaningful because, under some conditions,
the uncertainty region can be approximated as a unidimensional set along the weak direction,
leading to the introduction of the LOV (Milani et al. 2005) in astrodynamics. However, in
the case of short observation arcs, nonlinearities in the mapping between observations and
state are relevant and thus terms above 2nd-order in the expression of J (x) are also needed.
The resulting weak direction may be curve. The concept of the LOV can then be extended
to directions other than v1, when nonlinearities are relevant in more than one direction. In
Principe et al. (2019), it was shown that nonlinearities are only significant in 2 directions
for the short-arcs problem and it is then sufficient to run the LOV algorithm along the two
main directions of uncertainty, v1 and v2, with v2 being the eigenvector corresponding to
the second smallest eigenvalue of H . In Fig. 1, the resulting LOV1 and LOV2 are shown to
depart from the corresponding eigenvectors (i.e. the semiaxes of the ellipsoid), thus justifying
the computational cost of the procedure. Although not evidently curved, the two LOVs
have different lengths with respect to the corresponding ellipsoid axes. Hence, the nonlinear

1 https://github.com/dacelib/dace.
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Fig. 1 LOV1 and LOV2 compared to the 2nd-order ellipsoid semiaxes on the {vvv1,vvv2}−plane for an object in
GEO (NORAD Catalog number 36830)

analysis leads to an uncertainty region that was different from the linear approach. This can
be noted comparing the grey box (enclosing the “linear” confidence region) against the red
one (enclosing the nonlinear set). The GES algorithm (Principe et al. 2019), which is the 2D
extension of the LOV, can then be used to correctly represent the structure of the confidence
region with a nonlinear approach. Even though the confidence region associated with the LS
solution is in general an n-dimensional region, in many cases of practical interest this region
is stretched along two directions, and can be approximated as a 2D set. In mathematics,
this concept is known as principal component analysis, a statistical procedure that uses an
orthogonal transformation to convert a set of possibly correlated variables into a set of linearly
uncorrelated variables called principal components. This transformation is defined in such a
way that the first principal component has the largest possible variance and hence accounts
for most of the variability in the dataset. Each subsequent component contains the highest
variance in the remaining orthogonal directions. Since the first principal components account
formost of the variability, dimensionality reduction can be introduced to decrease the problem
complexity without substantial loss of information, which in our case coincides with two
principal components. Exploiting this result from Principe et al. (2019), we now continue this
two-dimensional analysis to investigate its usefulness in an observation correlation problem.

In this work, the uncertainty region is considered as a two-dimensional box that encloses
both the 2nd-order ellipse and the GES to keep a conservative approach. Accordingly, a map
is introduced to transform a point x̃0 on the plane {vvv1,vvv2}, into a point x0 belonging to the
full-dimensional space:

x0 = V x̃0, (2)

with V being the matrix whose columns are vvv1 and vvv2.

3 Association and domain pruning

As introduced in Sect. 2, whenever a set of observations is available, an IOD solution is
initially computed and then refined using a LS. This solution will be referred to as track from
now on. The track uncertainty is very large when the object is observed on a short arc, even
when approximated as a two-dimensional region. To reduce the uncertainty, new observations
have to be acquired. The association and uncertainty pruning (AUP) algorithm presented here
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Fig. 2 Flowchart of the AUP algorithm with initialization of track and different types of new observations.
The blue rectangle is explained in detail in Fig. 4

takes newly available data and looks for compatibility with the track in question. For this
purpose, a residual function Jk is computed, which serves as a discriminating factor to decide
whether portions of the initial uncertainty region are compatible with the new observation.
Figure 2 shows the flowchart for the association process with different types of observations.
In Sect. 3.1, the different expressions of Jk are shown, keeping in mind that they are all
computed in the two-dimensional domain introduced above. Portions of the initial uncertainty
that do not comply with the new information are then pruned away. A null intersection (i.e.
no portion of the initial region retained) implies no correlation.

3.1 Target function

The form of the target function depends on the type of newly acquired data. In the following,
we give the different expressions of the target function Jk that, regardless of the type of
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observations, is a function of two variables v1 and v2, approximated as a mesh of Taylor
polynomials, thanks to the use of DA and ADS to maintain high accuracy.

3.1.1 Observation-to-track

Let us first consider the case when a single observation is acquired, which comprises m
independent measurements at a single epoch. That is, at time tk new measurements yk are
acquired, with yk being an m-dimensional vector. For an optical observation, each measure-
ment ismade of right ascension and declination (thusm = 2),with corresponding covariances
and time of observation. Modelled measurements ŷk = h(xk) are then computed from the
available track and tested against the actual measurements yk , obtaining the residual function

Jk(v1, v2) = 1

2

m∑

j=1

[
yk, j − ŷk, j (v1, v2)

]2

σ 2
j

= 1

2

m∑

j=1

ξ2j (v1, v2), (3)

where σ 2
j is the covariance of the j th measurement. Each observation is modelled as an

independent Gaussian random variable. Equation (3) shows that 2Jk is the sum of the
squares of m independent standard normal random variables: it then follows a Chi-squared
distribution with 2 degrees of freedom, Jk ∼ 1

2χ
2(2). Thus, depending on the confidence

level desired, the threshold T can be chosen from the Chi-squared quantiles. In the following,
this value will be indicated by qχ2(m, α), where m coincides with the degrees of freedom
and (1 − α) is the confidence level.

3.1.2 Tracklet-to-track

In most cases, observation strategies are able to gather a trail of measurements rather than
a single observation. When the observed arc is not long enough to run IOD+LS, it is still
possible to extract valuable information from the tracklet: indeed a trail of observations
contains information about the rate of change of the observed measurements. The following
paragraph shows the statistical manipulations required to compute it, where a more in-depth
analysis is carried out.

When the vector of right ascensions and declinations is linearly regressed with respect to
time using the classical equation of linear regression

Ŷ = β̂0 + β̂X, (4)

one can estimate the rate of change of the observations:

[
α̂

δ̂

]
=

[
α̂0

δ̂0

]
+

[ ˆ̇α
ˆ̇δ

]

t . (5)

The overall information, which can be exploited for the association, is contained in the
so-called attributable vector A = (α, α̇, δ, δ̇)T (Milani et al. 2004). A convenient choice is
to perform the regression at central time of observation, so that β̂0 and β̂ are uncorrelated.

Then, A = (α̂C , ˆ̇α, δ̂C , ˆ̇δ).
The quantity

T = β̂ − β

s
β̂

∼ tN−2 (6)
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is known to follow a Student’s T distribution (Casella and Berger 2002), where β̂ stands for
any of the four estimated coefficients that constituteA, N is the number of fitted parameters,
and s

β̂
is standard estimate (SE) of the coefficient β̂. By construction, the attributable elements

are uncorrelated and thus the covariance �A = Cov(A) is a diagonal matrix. The elements
are a function of N , the root mean square error (RMSE) of the regression sŶ and the tracklet
length 	t :

�A = diag

[
sα̂
N

,
12sα̂

N (N + 1)(N − 1)	t2
,
s
δ̂

N
,

12s
δ̂

N (N + 1)(N − 1)	t2

]
. (7)

Finally, the residual function Jk can be expressed as

Jk(v1, v2) = 1

2

(
A − Â(v1, v2)

)T
�−1

A
(
A − Â(v1, v2)

)
, (8)

where k is the central time of observation, Â is the predicted attributable, while A is the
observed one. In the case of a tracklet, Jk ∼ 1

2χ
2(4), the threshold T can thus be chosen

accordingly.

3.1.3 Track-to-track

The third and last case comprises a trail of observations long enough to compute a track. We
then need to determine whether the two tracks belong to the same object. Let x2(t2) and P
be the solution and covariance matrix of the newly acquired track, respectively. Similarly,
x1(t1; v1, v2) is the solution of the initial track. x1(t1; v1, v2) is then propagated to the time
of the new track, obtaining x1(t2; v1, v2). The residual function Jk can finally be expressed
as:

Jk(v1, v2) = 1

2
zT P−1z, (9)

where

z = x2(t2) − x1(t2; v1, v2). (10)

When another track is acquired, Jk ∼ 1
2χ

2(6).

3.2 Orthogonal correction

Once Jk is updated according to the new type of observation, it is a function defined on
{vvv1,vvv2}, that is the plane of the slowest rate of change. Following principal component
analysis, one can estimate the loss in information as a result of dimensionality reduction
through the eigenvalues of the discarded directions:

Var_Lost =
∑6

i=3 λi
∑6

i=1 λi
%. (11)

For the work at hand, the eigenvalues of the four dimensions discarded are always several
orders of magnitude smaller than the two principal directions, causing a mean loss of 10−7%.
However, once the uncertainty is propagated and the residual function calculated, this loss
is not assured to stay constant and limited. The true minimum of the residual function will
not lie exactly on the plane, meaning that the 2D restriction will introduce an error which
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can invalidate the approximation min Jk ≈ min J Vk , where J Vk is the restriction of Jk onto
V = {vvv1,vvv2}. The association qualitymight thus be affected. To avoid this issue,we introduce
a map to analyse the variation of Jk in the subspace VC = {v1, v2}⊥ = {v3, . . . , v6}, which
is the 4D region initially neglected.

Let xVk be the point for which J Vk is minimal. As the confidence region is narrow in the

space VC , we can approximate the map M : VC → J V
C

k by a single Taylor polynomial

around xVk and find its minimum xV
C

k . The minimum xk of Jk in the full-dimensional space

is then approximated by (xVk , xV
C

k ), and it is assumed min Jk = Jk(xk) ≈ Jk(xVk , xV
C

k ).
The strategy of splitting the 6D optimization into a cascade of 2D and 4D sub-problems is

supported by the limited coupling between the two sub-spaces that show up in Jk . This was
assessed by computing theTaylor expansion of Jk in the 6D space and checking themagnitude
of coefficients of the corresponding monomials. However, an a priori and rigorous estimate
of these terms is not available. Thus, a statistical analysis of the difference between the
minimum found in 6D and that resulting from the search in the two orthogonal spaces is
presented in Sect. 4.3 to validate our strategy.

3.3 Association and uncertainty pruning algorithm overview

As shown in Sect. 2.3, the uncertainty region can be approximated as a two-dimensional set
on V . Assuming new observations are acquired at time tk , the state x̃xx0 (see Eq. 2) defined over
the uncertainty region can be propagated to tk , obtaining xk = f (x0) = f (V x̃0), where the
function f represents the dynamics. xk is then projected onto the observations space for the
observations and tracklets cases and the appropriate J Vk is computed. Points x̃0 for which J Vk
is small are good candidate orbits according to newly acquired measurements. Thus, portions
of the initial uncertainty region in which J Vk is larger than an established threshold T ,

J Vk > T , (12)

can be pruned away. This is not performed on a point-wise sampling base. DA can be used
to approximate map points x̃0 into J Vk with a Taylor polynomial up to an arbitrary order.
However, the accuracy of the approximation tends to decrease drastically when the initial
confidence region is large and/or the propagation time is long, due to high nonlinearity of the
dynamics (Wittig et al. 2015). Hence, a single polynomial expansion may not be sufficient
to accurately cover the entire confidence region: thus, the ADS introduced in Sect. 2.2 is
applied to the 2D confidence region in (vvv1,vvv2). The result is a mesh of sub-domains where
each polynomial approximation accurately describes the confidence region as shown in Fig.
3. J Vk is then expressed as:

J Vk =
Ns⋃

i=1

J Vk,i , (13)

where Ns is the number of sub-domains and J Vk,i is the polynomial expansion over the i th
sub-domain. This analytical representation allows a polynomial bounder to estimate the range
of the function. Thus, an initial pruning can be performed by excluding domains where the
lower bound of the range over the i th sub-domain exceeds the threshold T: LB(J Vk,i ) > T .
The search for the minimum in 2D is then carried out for each remaining sub-domain using
an optimizer, which proved to be more efficient than a grid search due to the rapid changes
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Fig. 3 Plot of the split Jk
function (white) over the
{vvv1,vvv2}−plane for an
observation of object 36830 after
6 h as a track, with new
uncertainty after association
(black). The true state retrieved
from TLEs is contained in the
new uncertainty. The colour map
shows the value of Jk in
logarithmic scale

in the objective function. The BFGS algorithm from dlib2 is used to perform a constrained
optimization. This method is appropriate because splitting the domain into sub-domains due
to nonlinearities reduces the likelihood of having multiple minima within each sub-domain.
The sub-domains are then ordered in increasing values of the minima, and only those with
minimumbelow the threshold are retained. For the others, the orthogonal correction defined in
Sect. 3.2 is calculated again using theBFGSoptimizer. This step endswhenever an acceptable
minimum cannot be found for four consecutive sub-domains or the list is entirely inspected.
In the end, the uncertainty kept is the union of those sub-domains where the minimum is
found below the threshold either in the 2D or 4D search. In this way, the mesh created by the
ADS for accuracy reasons is also exploited for uncertainty reduction. The pruning is shown
by the black box in Fig. 3. The algorithm that updates the residual function Jk , performs
association and sequentially prunes the uncertainty region is the AUP algorithm, which is
detailed in Algorithm 1 and summarized in Fig. 4.

4 Result analysis

The association and uncertainty pruning algorithm was tested with objects in GEO, whose
TLEs are available in Appendix 1. In particular, objects 26470, 36830, 37816 and objects
38778, 39285, 40364 have very similar orbital parameters and the association task is thus
challenging. Data were obtained by adding Gaussian white noise ε with standard deviation
of σ = 0.5 arcsec to simulated optical observations. It is to be noted that in this paper we
have used Keplerian dynamics both for the uncertainty propagation and for the simulation of
observations. The effects of unmodelled perturbations and real measurement errors are left
for future investigation. However, working in a semi-analytical environment, the algorithm
can receive as input any type of dynamics wanted. This means that perturbations may be
added with no modifications to the current algorithm.

Lastly, the order for the DA variables is chosen. It is to be noted that both high-order
and low-order polynomial expansions have large computational cost. The former requires

2 http://dlib.net/optimization.html#find_min_box_constrained.
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Fig. 4 Detailed flowchart of the update of J following initial pruning by the bounder, then 2D optimization
and finally 4D optimization

computing several monomials, while the latter results in a large number of sub-domains to
accurately describe the region. As a trade-off, 6th-order polynomial approximation is thus
used.

The initial uncertaintywas obtained by applying theLSmethod to a track of 8 observations.
This region was such as to ensure a confidence level of 99.9% and then approximated as a 2D
set as described in Sect. 2.3. Two different scenarios were analysed. In the first one, which
will be referred to as scenario A, the observations of the initial track were 2 minutes apart
and follow-up observations were then acquired after 24, 48, 72 h. In the second scenario,
referred to as scenario B, observations of the initial track were 60s apart and the follow-up
observations acquired after 1, 3, 6 h. Scenario A follows a typical re-acquisition schedule
for GEO satellites, while scenario B represents a possible schedule for catalogue build-
up.
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Algorithm 1 Association and Uncertainty Pruning
1: T ← qχ2 (m, α).
2: Ns ← Number of sub-domains.
3: for i = 1 : NS do
4: Estimate lower bound LBJ

i of JVk,i with polynomial bounder (see Sec. 2.1).

5: if LBJ
i ≤ T then

6: Find ji = min
(
JVk,i

)
. {with BFGS algorithm}

7: Save j Vi in list of minima.
8: end if
9: end for
10: A ← list of minima sorted for increasing values.
11: a ← size of A.
12: count← 0
13: while count< 4 and s < a do
14: if As < T then
15: Save sub-domain in final list.
16: else if As > T then
17: Perform 4D optimization and find min

(
j V

c
s

)
. {with BFGS algorithm}

18: if j V
c

s < T then
19: Save sub-domain in final list.
20: else
21: Discard sub-domain.
22: count ← count+1.
23: end if
24: end if
25: s ← s + 1.
26: end while

4.1 Computation time and pruning percentage

The algorithm was initially tested to analyse both the computation time and the pruning per-
centage of the different steps of the algorithm: the polynomial bounder, the 2D optimization
and the 4D optimization. Such an analysis allowed us to determine whether all steps of the
algorithm were efficient and/or worth the computational cost. Each bar of the pruning plot
in Fig. 5b consists of 250 simulations in scenario A and re-observation after 24 h, while the
computation time is averaged on correlated and uncorrelated simulations. Two sets of clus-
tered GEO objects were used for these simulations: objects 36830, 37816 and objects 38778,
39285, 40364. Their observation was simulated from the location of the TFRM observatory
(Spain) on consecutive nights starting from 14 January 2016. This date was chosen to ensure
visibility of the satellites following sky background luminosity, object illumination and object
elevation constraints. Figure 5a shows the computation time for the propagation and pruning
routines. A computational analysis for the GES had previously been performed by Principe
et al. (2019). Propagation takes around 99% of the total computation time for all three cases.
The small difference lies in the type of data to be obtained at the new epoch: for example, the
function to project on the attributable space is highly nonlinear and thus requires the ADS
to perform more splits, hence increasing the total amount of propagation time for the track-
let scenario. Furthermore, propagating in DA may cost as much as two order of magnitude
more in time than propagating in double precision. However, as underlined in Pirovano et al.
(2018), the cost of propagating a state in DA comes with two main advantages: first of all,
the possibility to then evaluate every possible initial condition as a function evaluation rather
than a new propagation and secondly, the availability of higher-order terms, necessary to

123



Data association and uncertainty pruning for tracks Page 13 of 23 6

(a) Time spent in each part of the code (b) pruning percentage after one day.

Fig. 5 Average time and pruning percentage for correlated and uncorrelated observations of clustered objects
in GEO

understand the influence that each variable has on the solution. The BFGS algorithm highly
relies on both of them to find the correct optimum, and thus the cost of propagating a poly-
nomial is balanced when performing association using an optimization method. To assess
the efficiency of the three pruning steps, one can compare the computation time against the
pruning percentage in Fig. 5b. It can be immediately noted that the DA built-in polynomial
bounder routine eliminates more than 98% of uncertainty in a very small amount of time,
thus proving its efficiency. However, this tool alone is not sufficient for association, as it
can be noted in the uncorrelated cases where only the 2D and 4D searches discard the last
1% of domains. This result supports the implementation of these two further steps to assess
correlation. The 2D search is mostly effective in the observation and track scenarios, where
it always finds at least one sub-domain in all simulations, thus proving the effectiveness of
searching the {vvv1,vvv2}−plane. The 4D search is mostly effective in the tracklet scenario,
where the highly nonlinear function to project on the attributable space sometimes does not
find an optimum below the threshold in 2D, but correlation is recovered with the 4D search.
Overall, the 2D and 4D searches take roughly 1% of the computation time but precisely
pinpoint correlated and uncorrelated observations.

4.2 Algorithm validation

To test the accuracy of the analytic maps and the correct implementation of the optimization
tools—in particular addressing a 6D problem with a cascade of 2D and 4D problems—a
simple test was carried out. The GES region associated with the LS solution is scaled on
I = {[−1, 1] × [−1, 1]} interval, which means that any new observation that falls on this
plane has to be associated with the existent track and the uncertainty domain kept has to
contain this new observation. To prove this, the following test was constructed: the LS solu-
tion xxx LS was perturbed by a δxxx = V δx̃xx , where δx̃xx ∈ S = {[−2, 2] × [−2, 2]}, following a
uniform distribution over S. The new perturbed state xxx p = xxx LS + δxxx was then propagated to
a second epoch where observations were simulated. This test was carried out on the track-to-
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Fig. 6 Perturbations on {vvv1,vvv2}-plane to test association. Crosses show no correlation, while circles are
enclosed by the sub-domain retained during correlation

track scenario. After obtaining the second track, correlationwas looked for. Onewould expect
to correlate the observations when δx̃xx ∈ I , while no correlation was expected for δx̃xx ∈ S\I .
Figure 6 shows the outcome of 100 simulations: the crosses and circles represent the perturba-
tion δx̃xx , which is enclosed in a sub-domain (white rectangle) whenever in I and not correlated
with any pruned domain when outside. A further enforcement of this positive outcome is the
fact that all correlations were performed in 2D and never in 4D, by test construction.

4.3 Minimum search in 6D versus 2D+4D

A second test was carried out to validate the choice of splitting the search for the minimum
in the residual function to a two-step optimization. The minima found by firstly searching
{v1, v2} and later {v1, v2}⊥ were compared to the full 6D approach, where the BFGS algo-
rithm was run on all six principal directions simultaneously. Figure 7 shows a simulated
association case for object 25516 in both scenarios A and B for the track-to-track case. Sce-
narioA involvesmore splits in 6D than in 2D, and this causes an increase in the computational
cost in addition to the overhead introduced by the higher number of DA variables. It is to
be noted that in all but one case, the splits were performed in the two principal directions,
thus confirming the much lager influence that they have on the target function. In scenario B,
the splitting structure was identical in 2D and 6D. One can see that despite retaining fewer
sub-domains in scenario A, the two-step search never discarded the box containing the true
solution. Given the 1-to-1 relationship between the sub-domains in scenario B, it was easy to
compare theminima found in the 2D, 2D+4D and 6D case in each sub-domain. Table 1 shows
the quantiles for the statistical distribution of the relative errors. As can be seen, a large differ-
ence is introduced when searching for the minima only in two dimensions (thus showing that
the residual function is steep in the entire domain), but this difference becomes very small
when the orthogonal correction is applied. Indeed, 75% of theminima found for all cases have
a relative error of less than 5% with respect to the true minimum in 6D. Overall the two-step
search alleviated the computational cost by considering less DA variables simultaneously
and performing less splits, while achieving a satisfying level of accuracy on the result.

4.4 Association results

In a real-world scenario, one has to establish whether two different sets of observations are
compatible, meaning correlation between observations may exist. These two sets are here
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Fig. 7 Association results for object 25516 in scenarios A and B with pruning performed both in 2D+4D and
6D

Table 1 Relative error between minima found in 2D, 2D+4D and 6D search for object 25516 observed in
scenario B

1H 3H 6H

q0.25(%) q0.5(%) q0.75(%) q0.25(%) q0.5(%) q0.75(%) q0.25(%) q0.5(%) q0.75(%)

|min JVi −
2D

min Ji
6D

|
min Ji
6D

23.2 40.7 94.2 13.1 19.5 42.4 8.4 18.1 40.4

|min JV
C

i −
2D+4D

min Ji
6D

|
min Ji
6D

0.08 0.13 0.18 3e–6 0.3 1.1 0.9 1.3 5.1

analysed as a track and a single observation, a track and a tracklet or two different tracks.
Association results were then assessed in terms of false positive and false negative rates. False
negative means that the algorithm fails to identify observations belonging to the same object,
thus effectively creating multiple instances of a same object, while false positive means that
observations are associated although they belong to different objects.

4.4.1 Scenario A

The two above-mentioned rates do depend on the chosen threshold (Eq. 12), as well as
the type of follow-up observations. In Fig. 8a, the case of a single follow-up observation
is shown. Statistic considerations described in Sect. 3.1 suggested T = 1

2qχ2(2, 0.001) =
6.91 to fix the upper limit of false negative to 0.1%. However, this value of T led to false
negative rates of 5, 10 and 25%, in the case of 2D approximation of the uncertainty set,
when re-observing the object after 24, 48 and 72 h, respectively. This issue could be worked
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(a) Single observation.
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(b) Tracklet.
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(c) Track.

Fig. 8 False negative and false positive rates in scenario A

out by appropriately tuning the threshold T . The tuning, however, takes time and is case
dependent—e.g. the time interval before the follow-up observation affects the choice of
the optimal threshold. In addition, increasing the threshold could increase the rate of false
positive. The 4D optimization allows us to solve this issue avoiding the tuning. With the
4D optimization, indeed the resulting rates of false positive and false negative drastically
decreased, resulting in zero false positives over 250 simulations for each case. In the case of
a tracklet, due to large nonlinearities in the target function, the 4Doptimizationwas evenmore
relevant as illustrated in Fig. 8b. The chosen threshold was T = 1

2qχ2(4, 0.001) = 9.24.
The 2D approximation led to 20, 45 and 70% of false negative rates after 1, 2, 3 days,
respectively. Again, these values dropped down, when including the 4D optimization. This
behaviour confirmed the considerations described in Sect. 4.1 about the effect of the 4D
optimization in the case of a tracklet. Similar results were obtained in the case of a track,
with T = 1

2qχ2(6, 0.001) = 11.23. The 4D optimization significantly reduced the false
negative rate, as depicted in Fig. 8c.

Figure 9 displays false positive and false negative rates with a covariance-based lin-
ear track-to-track association method in scenario A. The statistical threshold, namely
T = 1

2qχ2(6, 0.001) = 11.23, led to high false negative rates, hence the necessity to properly
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Fig. 9 False negative and false positive rates with covariance-based linear track-to-track association method
in scenario A

tune this value. The optimal threshold can be found at the intersection of the curves repre-
senting the two rates, and depends on the follow-up interval. With a follow-up interval of 24
h, the optimal threshold would be around 80, which led to false positive and negative rates of
15%. In contrast, in the case of re-observations after 48 and 72h the optimal threshold was
between 40 and 45, with resulting false rates of 10%.

4.4.2 Scenario B

In scenario B, the rate of false positives with a single observation was very high, due to
both larger initial uncertainty set (due to the shorter arc used to determine the initial track)
and shorter follow-up interval—see Fig. 10a. Exploiting all observations of the follow-up
tracklet came in handy: with the knowledge of the angular-rate indeed different objects could
be discriminated despite the short follow-up interval. The false positive rate then decreased
and became as small as in scenario A, as illustrated in Fig. 10b. A similar plot was obtained
in Fig. 10c with a follow-up track. In both cases, only one false positive was obtained and no
false negatives. This result is also evident in Fig. 11 where a case where no correlation was
analysed. The initial track was computed with a batch of 8 observations of object 37816 taken
60 s apart. Then, object 36830 was observed 1h later. Figure 11a shows the Jk computed with
a sparse observation. The short follow-up interval did not allow us to discriminate the two
objects: the algorithm failed and associated the observations, resulting in a false positive. In
the case of a tracklet, the resulting value of Jk was larger and the observations uncorrelated,
as shown in Fig. 11b. Similarly, Fig. 11c illustrates the distribution of Jk with a track. Having
more information about the object state, the minimum of the target function was larger than
in the tracklet case, making it easier to discard uncorrelated observations.

It is to be noted that with this approach the threshold only depends on the type of re-
observations and not on the time between re-acquisitions.

4.5 Domain pruning results

During the solution of the association problem, the AUP algorithm sequentially reduced the
initial uncertainty region. When new observations were acquired, the initial domain was
propagated from t0 to tk . Then, sub-domains in which the minimum value of Jk was greater
than T were pruned away. T was the same threshold as in the association task: T = 6.91 for
a single observation, T = 9.24 for a tracklet and T = 11.23 for a track.
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(a) Single observation.
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(b) Tracklet.
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(c) Track.

Fig. 10 False negative and false positive rates in scenario B

(a) Single observation (b) Tracklet (c) Track

Fig. 11 Value of Jk with a single observation, a tracklet or a track of the object 36830, both observed after 1
h from the initial track. The initial uncertainty set of the track was obtained with LS with 8 observations 60 s
apart of the object 37816. The colour map shows the value of Jk in logarithmic scale

4.5.1 Scenario A

Figure 12 displays the sequential pruning of the initial domain in scenario A for the object
36830. Figure 12a illustrates that with a single observation 98.4375% of the domain was
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(a) Single observation

(b) Tracklet

(c) Track

Fig. 12 Sequential pruning of the domain for the object 36830 in scenario A. The 2D domain is defined by
eigenvectors v1 and v2 associated with the two largest eigenvalues of the covariance matrix γ 2

1 and γ 2
2 . The

axes are scaled according to γ 2
1 and γ 2

2 . The colour map shows the value of Jk in logarithmic scale. The black
dot is the true solution
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pruned away after 24 h, 99.2188%after 48 h. The last re-observation after 72 hwas ineffective,
with no further sub-domain discarded. The split direction was approximately aligned with
the valley of Jk , and hence the minimum of every sub-domain was below the threshold. In
contrast, Fig. 12b shows that with a tracklet 99.2188% of the domain was pruned away after
24 h and 99.9023% after 48 and 99.9268% after 72 h. Thus, a slightly larger percentage of the
domainwas pruned awaywhen considering thewhole tracklet. It is to be noted that if tracklets
had been treated as a sequence of sparse observations, one would have obtained the same
pruning result as only considering the first observation, given the very small propagation time
in between observations and hence the absence of further split. Thus, gathering information
of very close observations in a tracklet rather than considering them as a sequence of sparse
observations improved the percentage of pruning, due to the larger number of splits. With a
track, the pruning of the domain is shown in Fig. 12c. The percentage of pruned domain was
99.8047% and 99.9756% after 24 and 48 h, respectively. In the case of the track, the retained
domain after 48h was so small that it did not split when the new track was acquired after 72
h. It is finally worth noting that in all cases the reduced domain contained the true solution
retrieved from TLEs, represented by a black dot.

4.5.2 Scenario B

Similar results were obtained in scenario B, as shown in Fig. 13. With a single observation,
93.75% of the initial domain was pruned after 1 h, 99.2188% after 3 h and 99.9023% after
6 h. In contrast, acquiring a tracklet led to prune 97.6563% of the initial domain after 1 h,
99.5117% after 4 h and 99.9512% after 6 h. Finally, with a track 93.75% of the initial domain
was pruned after 1 h, 99.6094% after 4h and 99.9023% after 6 h. The pruning proved to
be more effective when time separation was longer. With the first two re-observations, the
percentage of cut domain was smaller than in scenario A, while the third re-observation
led to a higher percentage of pruned domain in scenario B in all cases. However, the initial
uncertainty set was significantly larger in scenario B, due to shorter observational arc of the
initial track. Hence, a larger percentage of pruned domain does not necessarily mean smaller
uncertainty set.

5 Conclusions

In this work, we focused our investigation on the data association problem in which at least
one track is determined on a short arc and the GES, the two-dimensional extension of the
LOV, was used to estimate its uncertainty. This region was then nonlinearly propagated with
Keplerian dynamics to the time of new observations. A target function was then computed
over the uncertainty region. This function depended on the type of acquired observations:
cases with single observations, tracklets and whole tracks were analysed. Taking advantage
of ADS techniques, the uncertainty domain was split into sub-domains to ensure an accurate
representation of the target function. In each sub-domain, the minimum of the target function
was computed and the sub-domains incompatible with the new observations were pruned
away. This computation involved, when necessary, more than one step: polynomial bounder,
2D optimization and 4D optimization. All steps contributed to the pruning process, with
different computational costs and accuracy levels. Propagation took most of the computation
time. The polynomial bounder cut away more than 98% of the uncertainty region in all cases
while occupying a mere 0.05% of the computation time, but it was not accurate enough to
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(a) Single observation

(b) Tracklet

(c) Track

Fig. 13 Sequential pruning of the domain for the object 36830 in scenario B. The 2D domain is defined by
eigenvectors v1 and v2 associated with the two largest eigenvalues of the covariance matrix γ 2

1 and γ 2
2 . The

axes are scaled accordingly to γ 2
1 and γ 2

2 . The colour map shows the value of Jk in logarithmic scale. The
black dot is the true solution
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discard uncorrelated objects, indeed the last 1–2% of the domain was discarded by the two
optimizations. These optimizations only took around 1% of the computation time, but could
accurately discriminate between correlated and uncorrelated objects, with very low rates of
false positive and negative. In particular, the 4D optimization prevented us from tuning the
threshold of the target function used to determine whether observations were correlated.

With short follow-up intervals, the target function computed with a tracklet or a track
proved to discard uncorrelated observations more accurately than the single observation
scenario. The resulting false positive rates were indeed much lower. Finally, in the case of
longer time separations and correlated objects, the overall percentage of pruned domain was
in general larger.

Future work will undertake the analysis of real observations and perturbed dynamics as
a 2D+4D problem, as shown in this paper for the Keplerian case. We will investigate the
influence that the mismodellings will have on the two-dimensional definition of the residual
function and the role of the 4D orthogonal correction to recover correlation.
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Appendix A: Objects data

Data of the objects used in the simulations are reported in Table 2.

Table 2 Orbital parameters of the objects used to test the algorithm

NORAD 25516 26470 36830 37381 37816 38778 39285 40364

Epoch JED 2457400.8 2457400.8 2457400.4 2457400.4 2457400.2 2458542.7 2458542.7 2458542.8

a km 42429.2 42164.6 42164.8 43673.7 42164.9 42163.4 42164.7 42164.9

e – 0.000406 0.000602 0.000327 0.026542 0.000462 0.000213 0.000244 0.000392

i deg 4.435 0.605 0.057 6.921 0.059 0.090 0.058 0.030


 deg 63.743 85.243 214.869 42.199 12.181 246.234 25.447 53.975

ω deg 221.738 205.157 78.136 222.755 265.355 18.356 307.700 334.343

M deg 296.665 279.812 129.034 237.351 82.401 7.276 298.992 257.815
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