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Abstract
We report for the first time 100% benzyl alcohol yield from the liquid phase (T = 353 K, P = 9 bar) hydrogenation of benzal-
dehyde over Au/Al2O3. Under the same reaction conditions, a benchmark Pt/Al2O3 catalyst promoted the formation of toluene 
and benzene as hydrogenolysis by-products. Reaction kinetics was subjected to a Hammett treatment and the reaction constant 
(ρ = 0.9) was found to be consistent with a nucleophilic mechanism. A solvent (alcohol, water and alcohol + water) effect is 
demonstrated and ascribed to competitive adsorption where solvation by polar (water) facilitates benzaldehyde activation.

Graphic Abstract
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1  Introduction

The production of benzyl alcohol by the selective reduction 
of benzaldehyde is an important commercial process with 
multiple applications as solvent for inks, paints and lacquers 
[1]. Oxide supported Ru [2], Pd [3, 4], Ni [5, 6] Cu [7] and 
Pt [8, 9] catalysts have been employed, typically in batch 
liquid phase at high pressure (20–40 bar) [1, 2, 5, 8, 10, 
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11]. The target of 100% benzyl alcohol yield (Scheme 1, 
path I) remains a challenge as undesired hydrogenolysis (to 
toluene and/or benzene, paths II–V [12]) is difficult to cir-
cumvent with reported alcohol yields in the 40–75% range 
[2–6, 9, 13]. Application of Au in hydrogenation, though 
less developed than use in oxidation, has been the focus of 
recent research [14–19]. In their review, Hari and Yaakob 
[20] established the potential of Au for selective liquid phase 
hydrogenation with enhanced alcohol selectivity in the con-
version of aldehydes such as crotonaldehyde [21] and cit-
ral [22]. We provide here the first reported application of 
(Al2O3) supported Au in the liquid phase hydrogenation of 
benzaldehyde.

Gold delivers lower activity when compared with con-
ventional transition metal catalysts due to a less effective 
activation/dissociation of H2 [23, 24]. Hydrogenation activ-
ity in liquid phase operation can be influenced by the sol-
vent [25]. This has been related to differences in dielectric 
constant (ε) [26–28], bonding capacity (α) [28, 29] and H2 
solubility [26]. Aramendía et al. [30] and Bertero et al. [27] 
found that the rate of acetophenone hydrogenation decreased 
with increasing ε of C1–C3 alcohols, which they ascribed to 
solvation effects that influenced reactant adsorption. On the 
other hand, Wan et al. [28] observed an increased hydrogen-
ation rate with increasing α, linked to interaction between 

protic solvents and 2-butanone by hydrogen bonding that 
lowered the activation energy barrier. Drelinkiewicza et al. 
[26] concluded that acetophenone hydrogenation was more 
influenced by solvent polarity than H2 solubility. Organic 
solvents such as ethanol [3, 4, 9, 10, 13], dioxane [5] and 
alkanes (n-octane [3] and dodecane [31]) have been used in 
the liquid phase hydrogenation of benzaldehyde. Water as 
a benign green reaction medium has not been considered to 
any great extent. It is nonetheless worth flagging the work of 
Wang and co-workers [32] who demonstrated higher activity 
in the chemoselective hydrogenation of α, β-unsaturated car-
bonyl compounds over Au/CeO2 in water relative to organic 
solvents (ethanol, isopropanol, dioxane and cyclohexane).

In this work, we examine the role of solvent (n-pentanol, 
n-butanol, ethanol, H2O and ethanol + H2O mixtures) in 
determining benzaldehyde hydrogenation over Au/Al2O3. 
We have targeted 100% benzyl alcohol yield as an objective. 
The effect of para-positioned substituents (–OCH3, –CH3, 
–CH2CN and –CN) on rate has also been considered. Given 
the established application of supported Pt in benzaldehyde 
hydrogenation [8, 10, 11], we employed a commercial Pt/
Al2O3 as a suitable benchmark catalyst.

2 � Experimental

2.1 � Materials

The Al2O3 support and (0.7% w/w) Pt/Al2O3 were pur-
chased from Puralox (Condea Vista. Co.) and Alfa Aesar, 
respectively. The gold precursor (HAuCl4; 99.999%, Sigma-
Aldrich) and urea (≥ 99%; Riedel-de Häen) were used as 
received. All the gases used (H2, N2, O2 and He) were of 
high purity (99.9%, BOC gases). The reactants (p-methoxy-
benzaldehyde, p-tolualdehyde, benzaldehyde, benzyl alcohol 
and p-cyanobenzaldehyde; ≥ 98%, Aldrich; p-formylphenyl 
acetonitrile, 96.5%, Apollo Scientific) and solvents (ethanol, 
butanol, pentanol; ≥ 99.5%, Aldrich) were used as supplied 
without further purification.

2.2 � Catalyst Preparation and Activation

A 1% w/w Au/Al2O3 was prepared by deposition–precipita-
tion using urea as basification agent. An aqueous mixture 
of urea (tenfold excess) and HAuCl4 in water (100 cm3, 
25 × 10−3 g cm−3, pH = 2) was added to the support (ca. 
10 g). The suspension was stirred and heated to 353 K (at 
2 K min−1) and the pH progressively increased to ca. 7 after 
3 h as a result of thermally induced urea decomposition.

(1)
NH2 − CO − NH2 + 3H2O

T=353K
�����������������������������→ 2NH+

4
+ 2OH− + CO2

Scheme  1   Reaction pathway associated with benzaldehyde hydro-
genation; pathway to the target alcohol (open arrow), by-products 
detected in this work (solid arrows) and reported in the literature [12] 
(dashed arrows)
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The solid obtained was separated by centrifugation, 
washed with deionised water (with centrifugation between 
each washing) and dried in He (45 cm3 min−1) at 2 K min−1 
to 373 K, which was maintained for 5 h. Au/Al2O3 and Pt/
Al2O3 were crushed and sieved to 75 μm average particle 
diameter (ATM fine test sieves) and activated in 60 cm3 
min−1 H2 at 2 K min−1 to 523 K (Au/Al2O3 [33]) and 773 K 
(Pt/Al2O3) [34]). Post activation, samples were cooled to 
298 K and passivated in 1% v/v O2/He for ex situ analysis.

2.3 � Catalyst Characterisation

The metal (Au and Pt) content was measured by inductively 
coupled plasma-optical emission spectrometry (ICP-OES, 
Vista-PRO, Varian Inc.) from the (fivefold) diluted extract 
in HF (10 cm3, 0.1 M). Catalyst activation and chemisorp-
tion (at 353 K) measurements were conducted using the 
commercial CHEM-BET 3000 (Quantachrome) unit. The 
sample was loaded into a U-shaped quartz cell (3.76 mm 
i.d.), heated in 17 cm3 min−1 (Brooks mass flow controlled), 
5% v/v H2/N2 at 2 K min−1 to 523–773 K and maintained 
until the signal returned to baseline. Samples were swept 
with 65 cm3 min−1 N2 for 1.5 h, cooled to 353 K and sub-
jected to H2 chemisorption using a pulse (10–50 µl) titration 
procedure. Hydrogen pulse introduction was repeated until 
the signal area was constant, indicating surface saturation. 
Metal particle morphology (size and shape) was determined 
by scanning transmission (JEOL 2200FS field emission 
gun-equipped TEM unit) electron microscopy (STEM), 
employing Gatan DigitalMicrograph 1.82 for data acquisi-
tion/manipulation. Samples were dispersed in acetone and 
deposited on a holey carbon/Cu grid (300 Mesh). Up to 1000 
individual particles were counted and the surface area mean 
metal (Au, Pt) diameter (dSTEM) calculated from

where ni is the number of particles of diameter di.

2.4 � Catalytic System

The liquid phase hydrogenation reactions (T = 353  K; 
P = 9.0 bar) were carried out in a commercial batch stirred 
stainless steel reactor (100 cm3 autoclave, Parr reactor) 
equipped with a H2 supply system (GCE-Druva). The tem-
perature was maintained at 353 ± 1 K using a process con-
troller (Scientific & Medicine Products Ltd). At the begin-
ning of each run, the aldehyde (or benzyl alcohol) solution 
(40 cm3 of pentanol, butanol, ethanol, H2O or ethanol + H2O; 
0.05 M) and catalyst were charged and flushed three times 

(2)dSTEM =

∑

i

n
i
d
i

∑

i

n
i

with N2. The system was heated to the reaction temperature, 
pressurised and the stirring engaged (time t = 0 for reaction). 
In a series of blank tests, there was negligible conversion in 
the absence of catalyst or without H2. The initial molar reac-
tant to metal ratio spanned the range 2 × 103–11 × 103. A liq-
uid sampling system via syringe with in-line filters allowed a 
controlled withdrawal of aliquots (≤ 1.0 cm3) from the reac-
tor. The concentration of reactant/product was determined 
from the total mass balance in the reaction mixture. Frac-
tional conversion of benzaldehyde (XBenzaldehyde) is defined as

where subindex ‘0’ refers to initial concentration. Benzalde-
hyde consumption rate (R, mol mol−1

metal h−1) was determined 
from a linear regression of the temporal benzaldehyde con-
centration profiles at XBenzaldehyde < 0.35 [35] according to:

where nmetal is the metal concentration (molmetal cm−3). Turn-
over frequency (TOF, s−1) was calculated using metal dis-
persion measurements from STEM as described elsewhere 
[36]. Selectivity to benzyl alcohol (SBenzyl alcohol) is given by

Product composition was determined by gas chroma-
tography using a Perkin-Elmer AutoSystem XL chromato-
graph equipped with a programmed split/splitless injector 
and a flame ionisation detector, employing a DB-1 capil-
lary column (i.d. = 0.33 mm, length = 50 m, film thick-
ness = 0.20 μm). Data acquisition and manipulation were 
performed using the TotalChrom Workstation (Version 6.3.2 
for Windows) chromatography data system. Repeated reac-
tion runs with the same batch of catalyst delivered raw data 
reproducibility and carbon mass balances within ± 5%.

3 � Results and Discussion

3.1 � Catalyst Characterisation

The metal loading, particle size (from STEM analysis) and 
H2 chemisorption values are given in Table 1. Both sup-
ported catalysts exhibit similar loading where the metal 
phase takes the form of pseudo-spherical particles (Fig. 1I) 
over the 1–8 nm size range (Fig. 1II). This equivalence 
permits a direct comparison of catalytic response. Hydro-
gen uptake on supported Au is sensitive to metal size and 

(3)XBenzaldehyde (−) =
CBenzaldehyde,0 − CBenzaldehyde

CBenzaldehyde,0

(4)R (mol mol−1
metal

h−1) =

(

ΔCBenzaldehyde

Δt

)

⋅

(

1

nmetal

)

(5)SBenzyl alcohol (%) =
CBenzyl alcohol

CBenzaldehyde,0 − CBenzaldehyde

× 100
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dissociative adsorption is favoured on smaller (1–10 nm) 
particles [37]. The eightfold lower H2 uptake on Au/Al2O3 
relative to Pt/Al2O3 (Table 1) can be linked to the high 
activation barrier for H2 adsorption on Au [38] and greater 
capacity of Pt to dissociate H2 [39, 40].

3.2 � Liquid Phase Hydrogenation of Benzaldehyde

Reaction selectivity is challenging in benzaldehyde hydro-
genation [1–6, 9, 13] with possible by-products, as shown in 

Scheme 1. Step I represents the target carbonyl group reduc-
tion. Subsequent hydrogenolysis results in the formation of 
benzene (step II) and toluene (step III) [41, 42]. Benzene 
and toluene can also be formed directly from benzaldehyde 
(steps IV and V) [41]. Further hydrogenation of benzyl alco-
hol to cyclohexylmethanol (step VI) has been reported for 
reaction over Ru/C [43] with toluene reduction to methyl-
clohexane (step VII) over Ni/Al2O3 [6]. Under all reaction 
conditions used in this study, benzaldehyde was converted 
solely to the target benzyl alcohol over Au/Al2O3.

3.2.1 � Reaction Under Kinetic Control

Benzaldehyde hydrogenation rate was determined from 
the linear variation of concentration with time, as shown 
in Fig. 2I. We carried out a series of tests in order to mini-
mise diffusion and mass transfer limitations and ensure the 
reaction was operated under kinetic control. The effect of 
variations in agitation speed (Fig. 2IA) and catalyst mass 
(Fig. 2IB) on reaction rate was examined as two well-estab-
lished diagnostic tests to assess external and internal transfer 
constraints [44]. An increase in stirring speed from 300 to 
700 rpm was accompanied by a proportional increase in rate. 

Table 1   Metal content, mean metal particle size from STEM analysis 
(dSTEM), H2 chemisorption (at 353 K) and catalytic activity expressed 
as reaction rate (R) and turnover frequency (TOF) in the liquid phase 
hydrogenation of benzaldehyde (using water as solvent): T = 353 K; 
P = 9 bar

Au/Al2O3 Pt/Al2O3

Metal content w/w (%) 1.1 0.7
dSTEM (nm) 3.6 1.7
H2 uptake (μmol g−1) 2.8 22.7
R (mol mol−1

metal h−1) 78 446
TOF × 10−3 (s−1) 65 186

Fig. 1   I Representative STEM 
images with II associated parti-
cle size distribution for (A) Au/
Al2O3 and (B) Pt/Al2O3
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Rate remained constant > 700 rpm, indicative of minimal 
gas–liquid/liquid–solid mass transfer contributions to overall 
rate [45]. Based on these results, the stirring speed was set 
at 900 rpm for subsequent tests. Rate was invariant over the 
range of catalyst masses considered in this work, confirm-
ing chemical control where external or internal transport 
constraints do not contribute to the catalytic response [45].

3.2.2 � Reaction Mechanism and Solvent Effects

The effect of ring substituents was considered by testing 
the hydrogenation of substituted benzaldehydes bearing 
electron donating and withdrawing substituents (–OCH3, 
–CH3, –CH2CN, –CN) in the para position. In each case, 
Au/Al2O3 showed full selectivity to the corresponding alco-
hol with decreasing activity in the order: p-cyanobenzalde-
hyde > p-formylphenyl acetonitrile > benzaldehyde > p-tol-
ualdehyde > p-methoxybenzaldehyde. The rate data were 
subjected to a Hammett correlation in order to probe reac-
tion mechanism [46]. Rate for the substituted benzaldehyde 
(Ri) is related to benzaldehyde as reference (R) according to

The reaction constant (ρ) provides a measure of the 
susceptibility to substituent electronic effects while the 
σp factor is an empirical parameter (values taken from 
[46]) that reflects substituent electron donating/acceptor 
character [47, 48]. The fit of the experimental rate data 
is presented in Fig. 3. The low ρ (0.9) extracted from the 

(6)log

[

R
i

R

]

= � × �p

linear correlation is close to that (0.7) reported for liq-
uid phase hydrogenation of acetophenones over Pd/C [49] 
and suggests a partial charge in the transition state [7]. A 
positive reaction constant is consistent with nucleophilic 
addition [50]. Hydrogen can undergo heterolytic disso-
ciation on the surface of Au/Al2O3 to generate H− that 
bonds to Au [16]. The hydride ion (H−) supplied by Au 
acts as a nucleophile that attacks the positively charged 
carbon in the –C=O group, activated on support Lewis 
acid sites (Al3+) at the interface with the metal [51]. An 
electron-donating substituent (in the para-position) low-
ers the reactivity of the carbonyl-carbon which, in turns, 
lowers the rate of reaction.

The solvent serves to dissolve the reactant and/or prod-
ucts but can also interact with the catalyst and influence 
performance [45]. Benzaldehyde hydrogenation rate was 
lower in ethanol (23 mol molAu

−1 h−1) relative to water (78 mol 
molAu

−1 h−1). The higher rate in aqueous solution can not be 
due to H2 solubility as under reaction conditions (T = 353 K, 
P = 9 bar) solubility is higher in ethanol (3.7 μmol cm−3) 
than water (0.8 μmol cm−3) [25]. The dielectric constant 
(ε) provides a measure of solvent capacity to interact with 
charged surface sites [52]; ε for water + ethanol mixtures 
was calculated following the approach described previously 
[25]. An increase in rate with solvent dielectric constant (ε) 
is shown in Fig. 4. Competition of solvent and benzalde-
hyde for adsorption sites [53] can impact on hydrogenation 
rate where increased surface affinity for the solvent inhibits 
benzaldehyde activation, resulting in lower reaction rate. 
Water [54] and alcohols [55] can adsorb on Lewis acid sites 
through the oxygen of the hydroxyl group and the greater 
electron density of the hydroxyl oxygen in alcohols must 
result in a stronger interaction that increases with increasing 
alcohol chain length [56].

Fig. 2   I Variation of benzaldehyde concentration in water 
(CBenzaldehyde, mol  cm−3) with time; dependence of benzaldehyde 
consumption rate (R, mol molAu

−1 h−1) with (IA) stirring speed and 
(IB) mass of catalyst (W, g) for reaction over Au/Al2O3. Note: Solid 
lines provide a guide to aid visual assessment. Reaction conditions: 
T = 353 K, P = 9 bar

Fig. 3   Hammett plot for the selective –C=O group reduction of para-
substituted benzaldehydes over Au/Al2O3 at T = 353 K and P = 9 bar. 
Note: Solid line represents fit to Eq. (6)
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The solvent can also influence reactant activation 
through hydrogen bonding with the –C=O function [28, 
29]. This results in charge transfer from the lone pair of 
the oxygen atom in the carbonyl group to the O–H bond 
in protic solvents [57], the carbonyl-carbon becomes more 
electrophilic and the rate of reaction increases. Akpa et al. 
[58] employed DFT calculations to investigate 2-butanone 
hydrogenation in water over Ru/SiO2 and concluded that 
strong interaction between water and 2-butanone lowered 
the activation energy barrier and enhanced reaction rate. 
Catalyst (Ru/C) testing has also shown higher 2-butanone 
hydrogenation rate in solvents with higher ε [28]. In con-
trast, Bertero et al. [27] and Aramendía et al. [30] using 
Ni/SiO2 and Pd/AlPO4, respectively, reported a decrease 
in acetophenone hydrogenation rate with increasing ε due 
to solvation that inhibited the adsorption step.

3.2.3 � Au/Al2O3 versus Pt/Al2O3

The reaction rate (and TOF) recorded for Pt/Al2O3 was 
significantly higher (Table 1), which can be attributed to 
the greater H2 chemisorption capacity. Reaction over Au/
Al2O3 exhibited full selectivity to the target alcohol at all 
levels of benzaldehyde conversion (Fig. 5I) to deliver 100% 
benzyl alcohol yield. This response was probed further by 
considering benzyl alcohol hydrogenation over Au/Al2O3; 
no conversion was detected. The benchmark Pt/Al2O3 pro-
moted hydrogenolysis to toluene and benzene with a lower 
yield (95%) to benzyl alcohol at full benzaldehyde conver-
sion. The reaction was prolonged for a further 15 h after 
complete benzaldehyde conversion (Fig. 5II). Conversion 
of benzyl alcohol (to toluene and benzene) over Pt/Al2O3 
resulted in a temporal decline in selectivity to the alcohol. 
This suggests sequential hydrogenation (step I, Scheme 1) 
and hydrogenolysis (steps II and III) steps. In contrast, full 
selectivity to benzyl alcohol was maintained with Au/Al2O3 
over extended reaction times with no measurable hydrogen-
olysis. The results from this work illustrate the potential of 
supported Au for the selective transformation of substituted 
benzaldehydes with 100% yield of the target alcohol over 
prolonged reaction times.

4 � Conclusions

The liquid phase (T = 353 K, P = 9.0 bar) hydrogenation of 
benzaldehyde over (1% w/w) Au (mean size = 3.6 nm) on 
Al2O3 was fully selective with 100% yield of the target ben-
zyl alcohol. Exclusive –C=O reduction extended to a range of 
p-substituted (–OCH3, –CH3, –CH2CN, –CN) benzaldehydes. 
The reaction proceeds via a nucleophilic mechanism where 
electron withdrawing ring substituents elevated rate as dem-
onstrated by the linear Hammett relationship. Selective hydro-
genation rate increased with increasing solvent dielectric con-
stant (ε), which is accounted for in terms of: (i) competition 

Fig. 4   Benzaldehyde hydrogenation rate (R, mol molAu
−1 h−1) over Au/

Al2O3 as a function of solvent dielectric constant (ε) for reaction in 
(1) pentanol; (2) butanol; (3) ethanol; ethanol:H2O = (4) 5:1; (5) 3:1; 
(6) 1:1; (7) 0.8:1; (8) 0.6:1; (9) H2O. Note: Solid line provides a guide 
to aid visual assessment. Reaction conditions: T = 353 K, P = 9 bar

Fig. 5   Selectivity (Si,  %) as 
a function of (I) benzalde-
hyde fractional conversion 
(XBenzaldehyde) and (II) time, after 
100% conversion of benzal-
dehyde (in water) had been 
reached over Au/Al2O3 (solid 
symbols) and Pt/Al2O3 (open 
symbols); benzyl alcohol (open 
square, filled square), benzene 
(open triangle) and toluene 
(open circle). Reaction condi-
tions: T = 353 K, P = 9 bar
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for surface adsorption sites that is more pronounced for 
alcohols with lower ε; (ii) reactant solvation by solvents with 
higher ε that activates –C=O for nucleophilic attack. Reaction 
over a Pt/Al2O3 benchmark (mean Pt size = 1.7 nm) was non-
selective with the formation of by-products from hydrogen-
olysis. A higher consumption rate recorded for Pt/Al2O3 can 
be attributed to greater H2 chemisorption capacity. Our results 
demonstrate the potential of Au for ultra-selective aldehyde to 
alcohol hydrogenation using water as solvent.
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