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Abstract
Purpose  Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. 
Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few 
biomarkers to guide benefit.
Methods  We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous 
recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection.
Results  Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of 
PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for 
new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment 
with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved 
prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity 
offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields 
provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient 
tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an 
opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies 
that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise.
Conclusions  HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immuno-
genicity of ‘immune cold’ TNBCs.
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Introduction

Triple-negative breast cancer (TNBC) accounts for approxi-
mately 10–15% of all breast cancers and is defined patho-
logically by the absence of the estrogen receptor (ER), 
progesterone receptor (PR), and absence of amplification 

M. L Telli and D. G. Stover contributed equally to this work.

 *	 D. G. Stover 
	 daniel.stover@osumc.edu

1	 Stanford University School of Medicine, Stanford, CA, USA
2	 Ohio State University Comprehensive Cancer Center, 

Columbus, OH, USA
3	 Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
4	 University of British Columbia, Vancouver, BC, Canada
5	 University of North Carolina, Chapel Hill, NC, USA

6	 University of Pennsylvania School of Medicine, Philadelphia, 
PA, USA

7	 Henry Ford Hospital, Detroit, MI, USA
8	 Dana Farber Cancer Institute, Boston, MA, USA
9	 Ohio State University Comprehensive Cancer Center, 

Biomedical Research Tower, Room 512, 460 West 12th Ave, 
Columbus, OH 43210, USA

http://orcid.org/0000-0001-9003-8165
http://crossmark.crossref.org/dialog/?doi=10.1007/s10549-018-4807-x&domain=pdf


22	 Breast Cancer Research and Treatment (2018) 171:21–31

1 3

or overexpression of the HER2/neu oncogene [1]. Rela-
tive to other subtypes of breast cancer, TNBC is associated 
with poorer prognosis and disproportionately larger propor-
tion—over one-third—of breast cancer-specific deaths [2, 
3]. Despite significant progress over the past decades in the 
management of breast cancer through development of anti-
estrogen and anti-HER2 therapies, the standard-of-care for 
TNBC in the early and advanced disease settings remains 
cytotoxic chemotherapy. Recent advances in our understand-
ing of two key biological processes in TNBC, homologous 
recombination (HR) DNA repair deficiency and host anti-
tumor immunity, and the intersection of these processes, 
offer potential for new and biomarker-driven approaches to 
treat TNBC.

Homologous recombination DNA repair 
deficiency in TNBC

Breast cancer that arises in BRCA1 and BRCA2 mutation 
carriers is characterized by defects in homologous recom-
bination (HR) DNA repair [4]. Loss of functional BRCA1 
and BRCA2 in the tumor leads to an increase in genomic 
instability and increased copy number alterations [5]. HR 
deficiency has also been implicated in sporadic breast can-
cer, particularly TNBC, and suggested mechanisms include 
BRCA1 promoter methylation, mutation in HR-related genes 
including somatic mutations in BRCA1 and BRCA2, or other 
epigenetic mechanisms.

Numerous biomarkers of HR deficiency / proficiency 
have been evaluated with increasing frequency in the clini-
cal setting (Fig. 1). Biomarkers with potential to distinguish 
HR deficient from HR proficient tumors include (1) germline 
BRCA1 and BRCA2 mutations, (2) germline mutations in 
HR pathway genes beyond BRCA1 and BRCA2, (3) somatic 
HR pathway mutations, (4) genomic instability or “scar” 
biomarkers and mutational signature-based approaches, (5) 
gene expression signatures of ‘BRCA​ness,’ and (6) func-
tional HR assays. Other than germline mutations, none are 
yet validated.

In the current clinical management of both early and 
advanced TNBC, important questions remain regarding the 
role of platinum chemotherapy and also if PARP inhibitors 
have a potential role beyond BRCA1 and BRCA2 mutation 
carriers. Alternative approaches to exploiting HR and other 
DNA repair deficiencies in TNBC are also being explored, 
including inhibition of enzymes involved in DNA repair cell 
cycle checkpoints such as CHEK2, WEE1 and ATR as well 
as stabilization of G-quadruplex structures in the genome 
[6–9]. Given the heterogeneity of TNBC, biomarkers of HR 
deficiency may have important clinical implications in the 
future treatment of TNBC.

Germline BRCA1 and BRCA2 mutation status as a HR 
deficiency biomarker

Reported in 2005, BRCA1- and BRCA2-deficient cells 
were found to be markedly sensitive to inhibition of PARP 
in contrast to those cells that were wild-type or heterozy-
gous for BRCA1/2, implicating the potential for synthetic 
lethality [10, 11]. Based on these observations, proof-of-
concept studies tested PARP inhibition in advanced BRCA1 
and BRCA2 mutation-associated breast and ovarian cancer. 
Among 27 heavily pretreated BRCA1/2 mutant breast cancer 
subjects who received olaparib 400 mg orally twice daily, 
Tutt and colleagues reported an objective response rate of 
41% and a clinical benefit rate of 85% [12]. Responses were 
seen in both BRCA1 and BRCA2 mutation carriers and were 
irrespective of breast cancer subtype.

Around the same time, a small proof-of-concept trial 
explored the activity of single-agent cisplatin 75 mg/m2 
IV every 3 weeks for 4 cycles as neoadjuvant therapy for 
BRCA1 mutation-associated breast cancer and demonstrated 
61% pathologic complete response [13]. However, in the 
neoadjuvant GeparSixto clinical trial of weekly paclitaxel, 
weekly non-pegylated liposomal doxorubicin and beva-
cizumab with or without weekly carboplatin, BRCA1/2 
mutation carriers did not have higher pCR rates with the 
addition of carboplatin [14]. Response rates to standard 
chemotherapy in BRCA1 and BRCA2 mutation carriers are 
not well known. A retrospective analysis of BRCA1/2 muta-
tion carriers at a single center reported a pCR rate of 46% 
in BRCA1 mutant versus 31% BRCA1/2 wild-type TNBC 

Fig. 1   Homologous recombination (HR) deficiency biomarkers. HR 
homologous recombination, LOH Loss of heterozygosity, TAI telom-
eric allelic imbalance, LST large-scale state transitions
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patients treated with anthracyclines with or without taxanes 
[15]. Another retrospective series reported a pCR rate of 
67% in BRCA1/2 mutant versus 37% in wild-type TNBC 
patients [16]. In the frontline metastatic TNBC setting, the 
TNT trial compared single-agent carboplatin versus single-
agent docetaxel for 6 cycles followed by cross-over upon 
progression [17]. While both agents resulted in similar rates 
of response in the overall study, objective response rates 
among BRCA1/2 mutation carriers were 68% with carbopl-
atin compared to 33% with docetaxel (absolute difference 
34.7%; 95% CI 6.3–63.1; p = 0.03).

More recently, we have seen Phase III results comparing 
the PARP inhibitor olaparib or talazoparib to non-DNA-
damaging chemotherapy treatment of physician’s choice in 
BRCA1 and BRCA2 mutation carriers with advanced HER2-
negative breast cancer. Both studies showed improvement 
of median PFS with the PARP inhibitor of ~ 3 months and 
greater tolerability, with no overall survival benefit evi-
dent as yet. Among patients with measurable disease, the 
objective response rates were approximately 60% with the 
PARP inhibitor compared to approximately 30% in physi-
cian choice (need to check talazaparib) [18, 19]. The FDA 
approved olaparib for the treatment of germline BRCA1/2 
metastatic breast cancer in January 2018.

Germline HR pathway mutations beyond BRCA1 
and BRCA2 as HR deficiency biomarkers

Of the genes implicated in familial breast cancer beyond 
BRCA1 and BRCA2, many moderate penetrance genes are 
likewise involved in the HR DNA repair pathway [20]. In 
women testing negative for BRCA1 and BRCA2 mutations, 
multi-gene germline sequencing identifies up to another 
10% of patients with pathogenic mutations [21]. Recently, 
a large study of multi-gene germline testing in over 1,800 
unselected patients with TNBC demonstrated that overall 
mutation rate was 14.6% with 8.5% having mutations in 
BRCA1, 2.7% in BRCA2 and an additional 3.7% with muta-
tions in other genes such as PALB2 (1.2%), BRIP1, BARD1, 
and RAD51C among others [22]. Cancers arising in these 
genetic backgrounds are hypothesized to have HR DNA 
repair defects and therefore may have similar chemosensi-
tivity to DNA-damaging therapies as BRCA1/2 mutation car-
riers [4, 23]. Clinical trials are currently underway to assess 
this hypothesis [24].

Genomic scars and mutational signatures as HR 
deficiency biomarkers

An important outstanding question is whether evidence of 
HR deficiency in TNBC patients without germline altera-
tions is also a biomarker for treatment. The Homologous 
Recombination Deficiency (‘HRD’) assay measures levels 

of genomic instability or ‘scarring’ caused by any number 
of alterations in DNA repair capacity. At present, the HRD 
assay incorporates three measures of genomic instability: 
telomeric allelic imbalance (TAI; the number of regions 
with allelic imbalance that extend to the subtelomere, but 
do not cross the centromere), loss of heterozygosity (LOH; 
the number of regions > 15 Mb and less than one chromo-
some lost across the genome), and large-scale state tran-
sitions (LST; the number of chromosomal breaks between 
adjacent genomic regions longer than 10 Mb after filtering 
regions < 3 Mb) [25–27]. The HRD score is currently cal-
culated by adding the LOH, TAI, and LST scores and is a 
continuous score from 0 to 100 with a score of < 41 (previ-
ously < 10) as HR proficient and ≥ 42 (previously ≥ 10) as 
HR deficient. Using this cutoff, it is estimated that approxi-
mately 50% of TNBC patients will be classified as HR defi-
cient. Tumors with BRCA1/2 mutations are classified as HR 
deficient regardless of HRD score.

Recently, multiple groups have reported that the HRD 
assay can be used to identify both BRCA1/2 mutant and 
wild-type TNBC patients more likely to achieve a favorable 
response to platinum-based neoadjuvant chemotherapy [27]. 
In the neoadjuvant PrECOG 0105 trial, responders to this 
platinum-based therapy had significantly higher mean HRD-
LOH scores compared to non-responders; this was true for 
both BRCA1/2 wild-type and mutant responders [28]. Over-
all, 66% of patients with an HRD-LOH score of ≥ 10 or 
BRCA1/2 mutation responded compared with 8% of patients 
with an HRD-LOH score of < 10 and intact BRCA1/2.

The combined HRD score has been assessed in a number 
of clinical trials of platinum-based therapy. In a pooled anal-
ysis of six phase 2 neoadjuvant platinum-based TNBC trials 
(n = 267), the adjusted odds ratio for pathological response 
in HR deficient compared to non-deficient tumors was 4.64 
(95% CI 2.32–9.27; p = < 0.0001) [29]. In addition to assess-
ments in multiple single-arm studies of neoadjuvant plati-
num, in the randomized phase 2 GeparSixto trial, patients 
with high HRD score or tumor BRCA mutation were more 
likely to achieve pCR (55.9% vs. 29.8%), odds ratio 2.51 
(p = 0.009) in multivariate analyses [30]. The addition of 
carboplatin numerically improved pCR rates with a non-
significant interaction between HR deficiency and carbopl-
atin benefit [31]. These data suggest that the HRD assay is 
promising in concept but whether it can be used to identify 
germline BRCA1 and BRCA2 wild-type patients who may 
benefit from platinum-based therapy remains to be seen.

While the results in the neoadjuvant setting have been 
relatively consistent, results in the metastatic setting are 
more difficult to interpret. In the metastatic TBCRC009 
clinical trial of platinum in the 1st and 2nd line setting, mean 
HRD scores were significantly higher in patients achiev-
ing an objective response [32]. In the larger TNT phase 3 
study of docetaxel versus carboplatin, however, platinum 
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sensitivity was not associated with higher HRD scores [17]. 
Subsequent analyses suggested greater numerical (but not 
significant) response rates to docetaxel than carboplatin for 
both BRCA1 promoter methylation and silencing [33]. It is 
hypothesized that a genomic scar once induced in a tumor 
will persist, but secondary events may lead to a restoration 
of HR repair capacity. While genomic scars certainly have 
significant potential to be clinically useful particularly in the 
newly diagnosed setting, questions surrounding the specific-
ity of the test and whether the assay predicts sensitivity to 
chemotherapy in general or specifically platinum and other 
DNA repair-targeted therapies require additional clarifica-
tion. Ultimately, prospective validation of the predictive 
value of HRD in both platinum and PARP inhibitor benefit 
is needed.

An alternative approach to the genomic ‘scar’ phenotype 
detected by the HRD assay is to use mutational signatures 
derived from exome- or genome-level sequencing. Polak and 
colleagues investigated presence of mutational signature 
3 [34] in whole exome sequencing data from nearly 1000 
breast cancer patients [35]. They found that the presence 
of this signature could accurately classify BRCA1/2 altera-
tions, while also demonstrating that epigenetic silencing 
of RAD51C and BRCA1 and germline variants in PALB2 
were associated with signature 3 [35]. A second approach 
defined six new mutational signatures from whole genome 
sequencing of breast cancer patients that were predictive of 
BRCA1/2 deficiency. They integrated these in a weighted 
model, termed ‘HRDetect,’ which identifies BRCA1/BRCA2-
deficient tumors with high (98.7%) sensitivity and also iden-
tifies tumors with somatic loss or functional BRCA1/BRCA2 
deficiency [36, 37]. HRDetect was validated in an independ-
ent dataset and evaluation for clinical utility is ongoing [37].

Additional potential HR deficiency biomarkers: 
expression signatures and functional assays

Non-genomic approaches to characterize ‘BRCAness’ 
have also been explored. The ‘DDR deficiency assay’ is a 
44-gene expression signature derived to identify loss of the 
Fanconi anemia/BRCA​ DNA repair pathways [38]. In two 
independent datasets of patients treated with (neo)adjuvant 
fluorouracil, anthracycline and cyclophosphamide, the DDR 
deficiency assay was significantly associated with pCR and 
relapse-free survival. In the neoadjuvant I-SPY2 trial evalu-
ating the addition of carboplatin and PARP inhibitor veli-
parib to standard anthracycline and taxane-based therapy, a 
77-gene BRCA​ness signature was associated with response 
to veliparib/carboplatin relative to control [39]. Methods to 
functionally characterize HR deficiency in fresh tumor sam-
ples offer a ‘gold standard’ for assessing HR, but are techni-
cally difficult and at this time not feasible to scale in a clini-
cal setting. Powell and colleagues demonstrated that lack of 

RAD51 foci after ex vivo ionizing radiation on fresh breast 
cancer samples was significantly associated with genomic 
scars (LOH, LST, TAI) and biallelic inactivation of DNA 
repair genes [40]. In a prospective series, 16/56 (29%) pri-
mary breast tumors revealed defective RAD51 recruitment 
following irradiation [41]. Both gene expression signatures 
and functional characterization of HR require further vali-
dation in prospective studies yet could help to distinguish 
between functional HR capacity in the context of a genomic 
scar.

Host anti‑tumor immunity in TNBC

In breast cancer, several studies of large cohorts over the 
past decade have demonstrated that infiltration of tumors 
with lymphocytes is associated with improved outcomes 
[42–45]. Tumor infiltrating lymphocytes (TILs) in pretreat-
ment tumor samples are associated with improved response 
to neoadjuvant chemotherapy in TNBC and survival among 
those patients with residual disease after neoadjuvant chem-
otherapy [46–49]. Lymphocytes can intercalate between 
tumor cells (intratumoral TILs) or infiltrate the surrounding 
stromal tissue (stromal TILs). Stromal TIL assessment has 
been more reproducible and of greater predictive/prognostic 
value [50]. Only a subset of breast cancers demonstrate a 
significant number of stromal TILs, with median percent of 
stroma infiltrated with TILs of 10% for ER-positive/HER2-
negative, 15% for HER2-positive, and 20% for TNBCs [42].

Evasion of host anti‑tumor response and T‑cell 
‘exhaustion’ phenotype in breast cancer

Tumor cells evade host anti-tumor immune responses 
through a variety of mechanisms, including tumor cell-
intrinsic avoidance of immune detection (loss of tumor 
antigens or MHC proteins), elaboration of immunosuppres-
sive cytokines, immunosuppressive cell recruitment, and 
immunoediting—the process by which tumors evolve or are 
selected to escape host anti-tumor immunity [51–53]. Failure 
of TILs to kill adjacent tumor cells offers both a challenge 
and potential avenue for therapeutic intervention. TILs are 
primarily T-cells that express checkpoints such as PD-1 and 
CTLA-4, implying chronic antigen exposure but progressive 
loss of T-cell functions, elevated inhibitory receptors, and 
impaired cytokine production resulting in the inability to 
target tumor cells even in close proximity [46, 54, 55].

The ‘exhausted’ T-cell phenotype could reflect the end 
stage of immunoediting. Immunoediting is thought to begin 
early in cancer development as highly immunogenic tumor 
subclones are eliminated or adapt a less immunogenic 
profile in response to anti-tumor T-cells [55, 56]. (Fig. 2). 
As the tumor develops, induction of repressive molecules 
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and decrease in co-stimulatory molecules in the infiltrat-
ing T-cells, among other processes, leads to the exhaustion 
phenotype [57]. Perturbations to this balance between host 
anti-tumor immunity and tumor immunosuppressive sig-
nals—such as surgery, chemotherapy, or radiation—may 
temporarily reinvigorate memory T-cells until immunogenic 
tumor cells are eliminated or another round of immunoedit-
ing occurs [55]. In this way, the subset of tumors with sub-
stantial numbers of TILs locked in this ‘stalemate’ may be 
primed for reactivation by immune checkpoint inhibitors.

Targeting the PD‑1/PD‑L1 checkpoint in TNBC

Programmed death receptor 1 (PD-1) is an inhibitory 
immune checkpoint receptor expressed on activated T-cells 
and other immune cells and plays a key role in regulating 
the activity of effector T-cells. The PD-1 ligand, PD-L1, 
is expressed by multiple cancer types and upon binding to 
PD-1 exerts an immunosuppressive signal. The expression 
of PD-L1 has emerged as an important mechanism by which 
multiple cancer types are able to evade destruction by anti-
tumor effector cells. Monoclonal antibodies targeting PD-1 
(pembrolizumab, nivolumab) or PD-L1 (atezolizumab, 
avelumab, durvalumab) have garnered FDA approvals for 
the treatment of multiple malignancies. In TNBC, multiple 
studies are exploring the activity of these agents alone and in 
combination with cytotoxic chemotherapy, targeted therapy 
or radiation. As yet, none of these drugs have been FDA 
approved in breast cancer.

To date in metastatic TNBC, responses to single-agent 
anti-PD-1/anti-PD-L1 monoclonal antibodies have been 

modest and biomarkers of response have been actively pur-
sued. Nanda and colleagues reported initial results from 
the KEYNOTE 0–12 Phase Ib study of pembrolizumab 
in patients with metastatic triple-negative breast cancer 
with PD-L1-positive tumor status (expression in stroma or 
in ≥ 1% tumor cells). Among 27 evaluable patients with 
a median of 2 prior therapies for metastatic disease, the 
objective response rate was 18.5% [58]. The subsequent 
KEYNOTE-086 Phase II trial evaluated pembrolizumab in 
metastatic TNBC patients that were previously treated with 
any level of PD-L1 expression (Cohort A) and as 1st line 
treatment in patients with PD-L1+ status (Cohort B) [59]. 
Among 170 patients enrolled in cohort A, 105 (61.8%) had 
PD-L1+ status and 43.5% had received 3 or more prior lines 
of therapy. Objective responses were seen in 4.7% with no 
significant difference in ORR based on PD-L1 expression 
status. Patients enrolled in Cohort B (n = 52) had an ORR of 
23.1% suggesting greater benefit in patients with less heavily 
pretreated disease.

A Phase Ia study of atezolizumab enrolled 115 patients 
with metastatic TNBC. Patients had heavily pretreated dis-
ease with a median of 7 prior lines of therapy and 63% of 
patients were PD-L1+, 33% PD-L1- and 4% had unknown 
PD-L1 status [60]. The overall ORR was 10% with a 13% 
ORR in PD-L1+ patients and 5% ORR in PD-L1− patients. 
Among 1st line patients, the ORR was higher at 26%. 
Avelumab was evaluated in the Phase I JAVELIN study 
and among 58 patients with TNBC, an ORR of 8.6% was 
observed [61]. Patients with PD-L1+ status (n = 9) had an 
ORR of 44.4% and those with PD-L1− status had an ORR of 
2.4%. Taken together, these early phase results in metastatic 

Fig. 2   Exhausted T-cells and cancer result in a stalemate. We hypoth-
esize that during the development of some primary breast cancers 
(TNBC, HER2+), the activated T-cells progressively lose T-cell 
function, increase inhibitory receptors, and demonstrate impaired 
cytokine production, a process termed ‘T-cell exhaustion.’ This 
steady-state function eventually fails and is not sufficient enough to 

control cancer. The level and duration of chronic antigen stimulation 
(e.g., long history of metastatic disease, larger tumor burden, secre-
tion of other tumor immunosuppressive molecules i.e., VEGF) are 
perhaps key factors that lead to T-cell exhaustion and immunosup-
pression. It is possible that only a subset of exhausted T-cells can be 
reinvigorated by checkpoint blockade
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TNBC suggest higher activity in 1st line treatment and in 
those with PD-L1+ status. Multiple phase II and III trials of 
PD-1/PD-L1 checkpoint inhibitors in metastatic TNBC are 
ongoing and are evaluating monotherapy as well as combi-
nations with chemotherapy, other immunotherapeutic agents 
and targeted therapies (Table 1).

In addition, the role of PD-1/PD-L1 blockade in TNBC is 
also being actively assessed in the adjuvant and neoadjuvant 
settings. Recent data from the I-SPY 2 trial demonstrated 
that adding pembrolizumab to neoadjuvant anthracycline 
and taxane-based chemotherapy results in an estimated pCR 
rate of 60% versus 20% in TNBC patients [62]. Multiple 
phase II and II studies are currently ongoing in the curable 
setting assessing these agents in combination with standard 
chemotherapy and also as monotherapy following comple-
tion of standard combination chemotherapy in high-risk 
patients.

Enhancing breast cancer immunogenicity

Many TNBC tumors have relatively few infiltrating lym-
phocytes and, in the absence of T-cells to be activated, 
checkpoint blockade is unlikely to be effective. For the 
poor-prognosis basal-like, non-immune infiltrated tumors, 
inducing lymphocyte infiltration in immune ‘quiet’ tumors 
poses a greater challenge than activating lymphocytes in 
tumors with existing TILs. Although tumor immunogenic-
ity is hypothesized to relate to the number of ‘neoantigens,’ 
or tumor-specific antigens recognized as foreign, and neo-
antigen load has been associated with response to immune 
checkpoint therapies [63, 64], breast cancers have relatively 
few somatic mutations and inferred neoantigen load [65]. 
Analyses to date do not show a positive correlation between 
mutational or neoantigen load and gene expression evidence 
of immune cell infiltration in TNBCs [66].

Common strategies to enhance tumor 
immunogenicity

Many of the strategies to enhance tumor immunogenicity 
focus broadly on the induction of DNA damage and neo-
antigens, for example through radiation or chemotherapy. 
However, certain—but not all—chemotherapeutics (taxa-
nes, anthracyclines, cyclophosphamide) appear to induce 
‘immunogenic cell death’ by activating type I IFN-receptor 
ligand systems resulting in recruitment of T-cells, among 
other mechanisms [67, 68]. Radiation enhances the diversity 
of the T-cell receptor repertoire of intratumoral T-cells but 
optimal dose, schedule, and immunotherapy combination is 
not known [69]. Monoclonal antibodies trigger antibody-
dependent cellular cytotoxicity that subsequently activates 
antigen-presenting cells, a phenomenon observed with 
trastuzumab in HER2-positive breast cancers [70]. Certain 
oncogenic drivers, such as the Ras/MAPK pathway, may 
specifically downregulate MHC proteins and TILs, imply-
ing that inhibition may synergize with checkpoint inhibi-
tion [49]. A variety of other approaches to augment T-cell 
infiltration, including standard or personalized/neoantigen 
vaccines, chemotherapy or radiotherapy, immune agonists 
targeting a variety of molecules including STING, adoptive 
T-cell transfer, and others are under investigation.

Targeting homologous recombination deficiency 
to enhance breast cancer immunogenicity

Recent clinical trials demonstrate that adding PARP inhibi-
tors may enhance activity of immunotherapy in breast cancer 
[71, 72]. Several recent pre-clinical studies suggest that PARP 
inhibition enhances immunogenicity in models of ovarian and 
breast cancer and that combining the two results in synergistic 
effects [73–75]. TOPACIO, a multicenter, open-label phase 
1/2 study evaluated the PARP inhibitor niraparib plus pem-
brolizumab in metastatic TNBC and advanced ovarian cancer 
and during the dose-finding portion of the trial, none of the 
eight evaluable patients progressed: 4/8 had objective response 
and 4/8 had stable disease [71]. The MEDIOLA trial of olapa-
rib plus durvalumab included a cohort of BRCA1/2 mutant 

Table 1   Select ongoing studies 
of anti-PD-1/ anti-PD-L1 
inhibitors in metastatic TNBC

Compound Target Trial

Atezolizumab PD-L1 Phase III nab-paclitaxel ± atezolizumab in 1st line mTNBC
Phase III paclitaxel ± atezolizumab in 1st line mTNBC

Avelumab PD-L1 Phase II combinations with talazoparib, utomilumab (anti-CD-137)
Durvalumab PD-L1 Phase II combinations with olaparib, cediranib, tremelimumab
pembrolizumab PD-L1 Phase III study of chemotherapy ± pembrolizumab in 1st line 

mTNBC
Phase III study of pembrolizumab monotherapy versus chemo-

therapy of physician’s choice in pretreated mTNBC
Phase II combinations with niraparib, imprime PGG, binimetinib
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metastatic TNBCs and showed an objective response rate of 
52% [72]. Collectively, these pre-clinical and early phase clini-
cal data suggest that targeting or enhancing HR defects may 
enhance tumor immunogenicity and potentially sensitize to 
immune checkpoint inhibitors.

Conclusions

In summary, HR deficiency remains an important bio-
marker target and potentially effective adjunct to enhance 
immunogenicity of ‘immune cold’ TNBCs. There is now 
an FDA-approved non-chemotherapeutic agent for patients 
with germline BRCA1/2 mutations and we are moving 
closer to integrating biomarkers of HR deficiency to indi-
vidualize therapy in patients with TNBC beyond BRCA1/2. 
Genomic scar biomarkers may identify HR deficiency 
beyond BRCA1/2 in TNBC, but require prospective valida-
tion to determine clinical utility. Harnessing host anti-tumor 
immunity provides a promising approach for TNBC, includ-
ing PD-1/PD-L1 checkpoint inhibitors and combinations of 
standard plus immune therapies. A greater understanding 
of the underlying biology of T-cells, T-cell exhaustion, and 
immunoediting may be crucial to understanding how to lev-
erage anti-tumor immunity in TNBC.
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