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Abstract
Prosocial behavior is of vital importance for the smooth functioning of society. However, the propensity to behave in a proso-
cial manner is characterized by vast individual differences. In order to reveal the sources of these differences, some studies 
have used objective, task-independent neural traits, for instance resting electroencephalography (EEG). Despite providing 
valuable insights into the neural signatures of several domains of prosociality, each of these studies has only focused on 
one single domain. Here, we exposed 137 participants to different social dilemma situations in order to obtain a measure of 
the individuals’ domain-general prosociality and recorded multi-channel task-independent, resting EEG. Using a source-
localization technique, we found that resting current density within the temporo-parietal junction in two beta bands (beta2 
and beta3) was positively associated with domain-general prosociality. This is the first demonstration of neural signatures 
underlying individual differences in the propensity to behave in a prosocial manner across different social situations.
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Introduction

The ability to behave in a prosocial manner is a prerequisite 
for large-scale social living. However, prosocial behavior is 
characterized by vast inter-individual heterogeneity (Kur-
zban and Houser 2001; Andreoni and Miller 2002; Fisch-
bacher and Gächter 2010). Attempts to investigate the ori-
gins of this heterogeneity via personality questionnaires have 
been only moderately successful (e.g., Becker et al. 2012; 
Epstein et al. 2016). One reason for this might lie in the fact 
that self-reporting is susceptible to various sources of bias, 
including socially desirable responding, random respond-
ing, and demand characteristics (Edwards 1957; Nichols 

and Maner 2008). As an alternative, some studies in the 
fields of social neuroscience and neuroeconomics applied a 
so-called neural trait approach, which allows for objective 
and stable measurement of dispositional differences (for a 
review, see Nash et al. 2015). Neural traits are much like 
neural ‘fingerprints’ and have been used to reveal sources of 
individual differences in various aspects of prosociality, such 
as altruism (Morishima et al. 2012), cooperation (Fermin 
et al. 2016), costly punishment (Knoch et al. 2010), honesty 
(Baumgartner et al. 2013), or reciprocity (Watanabe et al. 
2014).

Although these studies have provided valuable insights 
into the neural signatures of several domains of prosociality, 
each of them has only focused on one single domain. How-
ever, as previous behavioral studies have documented the 
existence of a domain-general prosocial ‘phenotype’ (e.g., 
Peysakhovich et al. 2014), it is important to investigate the 
neural signatures underlying prosocial behavior in more than 
one single domain of prosociality.

Here, we recorded task-independent resting electroen-
cephalogram (EEG) of 137 participants before they were 
subjected to different social dilemma situations. Social 
dilemma situations have been extensively used to model 
complex social interactions and allow for rigorous empirical 
investigations. Each of the situations used in this study was 
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characterized by a unique incentive structure, and partici-
pants were required to allocate money amongst themselves 
and other participants. In order to measure domain-general 
prosociality, which is the common denominator of prosocial 
behavior across the different social situations, we applied a 
factor analysis.

Task-independent EEG at rest constitutes an ideal neural 
trait measure due to its high specificity (i.e., the extent to 
which an EEG pattern is uniquely associated with a given 
person; Dünki et al. 2000; Näpflin et al. 2007) and high 
stability over time (e.g., Dünki et al. 2000; Näpflin et al. 
2007; Cannon et al. 2012). In addition, it has been used to 
reveal sources of individual differences in time preferences 
(Gianotti et al. 2012), risk preferences (Gianotti et al. 2009; 
Studer et al. 2013), and social preferences (Knoch et al. 
2010; Baumgartner et al. 2013; for a review, see; Nash et al. 
2015). Hence, resting EEG is a promising tool to investigate 
possible sources of individual differences in domain-general 
prosociality.

Given that this was the first study of its kind, we con-
ducted exploratory whole-brain-corrected analyses without 
any a-priori hypotheses to investigate the neural signatures 
of individual differences in domain-general prosociality.

Materials and Methods

Participants

We collected data from 137 (105 female) right-handed, 
German-speaking participants, recruited at the University 
of Bern. All participants indicated that they had no current 
or previous history of neurological or psychiatric disorders 
or alcohol or drug abuse. Four participants were excluded 
from the analyses due to technical problems during the EEG 
or behavioral recordings. The mean age of the remaining 133 
participants (102 female) was 21 years (SD = 3). The study 
was approved by the local ethics committee. All participants 
provided written, informed consent and were informed of 
their right to discontinue participation at any time. Partici-
pants were remunerated with a flat fee of 40 Swiss francs 
(CHF 1 ≈ USD 1) in addition to the money earned in the 
social dilemma situations. We recruited participants for 1 
academic year and collected as much data as possible dur-
ing that time. Data was collected in a single wave and then 
analyzed after the testing was complete. Data are available 
upon request.

Procedure

The electroencephalographic and behavioral data collec-
tions were separated by several weeks. First, participants 
completed the EEG recording in our EEG laboratory. After 

providing written informed consent, participants completed 
the Positive and Negative Affect Schedule (PANAS, Wat-
son et al. 1988) and a handedness inventory (Chapman 
and Chapman 1987). Participants were seated in a sound-
attenuating, electrically shielded chamber with dim illumi-
nation and an intercom connection to the experimenters. 
Participants were instructed that the EEG recording was to 
be conducted while they rested with their eyes alternately 
open or closed. The resting EEG protocol consisted of the 
participants resting for 20 s with their eyes open, followed 
by 40 s with their eyes closed; this was repeated five times. 
The instructions regarding eye opening/closing were pro-
vided via the intercom. Data analysis was based on the 200 s 
eyes-closed condition.

Participants were then subjected to four social dilemma 
situations in our behavioral laboratory with 24 intercon-
nected computer terminals. Moreover, participants filled out 
the Honesty-Humility scale of the HEXACO questionnaire 
(Ashton and Lee 2009), which has been associated with 
individual differences in prosociality (Hilbig et al. 2012; 
Aghababaei et al. 2014; Thielmann and Hilbig 2014).

EEG Recording and Pre‑processing

Resting EEG was continuously recorded using 60 Ag–AgCl 
electrodes mounted in an elastic cap and placed according 
to the international 10–10 system (Nuwer et al. 1998). The 
electrode at position FCz was the recording reference, while 
the electrode at position CPz served as the ground electrode. 
Data were recorded at a sampling rate of 500 Hz (bandwidth: 
0.1–250 Hz). Horizontal electrooculographic (EOG) signals 
were recorded at the left and right outer canthi, and verti-
cal EOGs were recorded below the right eye. Impedances 
were maintained at < 10 kΩ. Eye-movement artifacts were 
removed using independent component analysis. After an 
automatic artifact rejection (maximal allowed voltage step: 
15 µV; maximal allowed amplitude: ± 100 µV; minimal 
allowed activity in intervals of 100 ms: 0.5 µV), data were 
visually inspected to eliminate residual artifacts. The data 
were then recomputed against the average reference. All 
artifact-free 2 s epochs were extracted. On average, 87.1 
epochs (SD = 16.7) per participant were eventually available. 
A Fast Fourier Transformation (using a square window) was 
applied to each epoch and channel to compute the power 
spectra with 0.5 Hz resolution. The spectra for each channel 
were averaged over all epochs for each participant. Abso-
lute power values were integrated for the following seven 
independent frequency bands (Kubicki et al. 1979): delta 
(1.5–6 Hz), theta (6.5–8 Hz), alpha1 (8.5–10 Hz), alpha2 
(10.5–12 Hz), beta1 (12.5–18 Hz), beta2 (18.5–21 Hz), and 
beta3 (21.5–30 Hz).

Standardized low-resolution electromagnetic tomog-
raphy (sLORETA; Pascual-Marqui 2002) was used to 
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estimate the intracerebral electrical sources that gen-
erated the scalp-recorded activity at each of the EEG 
frequency bands. The sLORETA method is a properly 
standardized, discrete, 3D distributed, linear, minimum 
norm inverse solution that allows for localization of the 
intracerebral sources of scalp-recorded electromagnetic 
signals. The particular form of standardization used in 
sLORETA endows the tomography with the property of 
exact localization to test point sources, and thereby yields 
images of standardized current density with exact localiza-
tion, albeit with low spatial resolution (i.e., neighboring 
neural sources will be highly correlated). sLORETA has 
been validated in several simultaneous EEG/fMRI studies 
(Mobascher et al. 2009a, b) and in an EEG localization 
study for epilepsy (Rullmann et al. 2009). In the current 
implementation of sLORETA, computations are con-
ducted in a realistic head model using the MNI152 tem-
plate (Mazziotta et al. 2001), with the 3D solution space 
restricted to cortical gray matter, as determined by the 
probabilistic Talairach atlas (Lancaster et al. 2000). The 
intracerebral volume is partitioned in 6239 voxels at 5 mm 
spatial resolution. Thus, sLORETA images represent the 
standardized electric activity at each voxel in neuroana-
tomic Montreal Neurological Institute (MNI) space as the 
exact magnitude of the estimated current density. Using 
the automatic regularization method in the sLORETA 
software, we selected the transformation matrix with the 
signal-to-noise ratio set to ten. To reduce confounds that 
have no regional specificity, for each participant, sLO-
RETA images were normalized to a total power of one and 
then log-transformed before statistical analyses. Due to the 
higher number of female participants, we first regressed 
the putative sex-influence out of the sLORETA images. 
The standardized sLORETA residuals were then used for 
all further analyses.

Measurements of Domain‑General Prosociality

A total of nine behavioral sessions were conducted with 
an average number of 16 participants per session. At the 
beginning of each session, participants were randomly 
assigned to cubicles where they made their decisions 
with complete anonymity from the other participants. 
They were not allowed to talk to each other. Participants 
were confronted with four social dilemma situations (see 
below) that measured two domains of prosociality: coop-
eration (public goods game; PGG) and generosity (dictator 
game; DG). Participants played one trial in each of the 
four social dilemma situations. Control questions ensured 
participants’ understanding of the social dilemma situ-
ations. There was no time constraint when participants 

made their decisions. Participants received feedback on the 
other participants’ choices at the end of the experiment.

Situation 1 (PGG‑2)

Participants were assigned to a group of four. Each partici-
pant was then endowed with 20 monetary units (1 MU = 0.5 
CHF, 20 MUs = 10 CHF) and asked to indicate how many 
MUs they were willing to contribute to a public good (one-
shot). Each contributed MU was multiplied by 2 and split 
equally among the four group members. A participant’s 
earning consisted of all the MUs earned from the public 
good as well as the MUs not contributed in the first place. 
After their contribution decision, we asked participants how 
many MUs they believed others had contributed on average.

Situation 2 (PGG‑1.2)

The group size and initial endowment were the same as in 
the first social dilemma situation. However, here each MU 
contributed to the public good (one-shot) was multiplied by 
1.2. Thus, if a participant contributed 20 MUs to the public 
good and the other three players did not contribute at all, 
the monetary consequences for this participant were worse 
in this situation (a reduction of 14 MUs) than in Situation 
1 (namely a reduction of 10 MUs). Hence, a prosocial con-
tribution decision in Situation 2 indicated a higher level of 
prosociality than the same contribution decision in Situation 
1. As in Situation 1, after their contribution decisions, we 
asked participants how many MUs they believed others had 
contributed on average.

Situation 3 (PGG‑3.2)

As in Situation 2, group size and initial endowment remained 
the same. However, here each MU contributed to the public 
good (one-shot) was multiplied by 3.2. In the example of 
a participant who contributed 20 MUs to the public good 
while the other three players did not contribute at all, the 
monetary consequences for this participant were less severe 
(namely a reduction of the initial endowment by 4 MUs) 
than those in both previous situations (Situation 1: reduction 
of 10 MUs; Situation 2: reduction of 14 MUs). Thus, in this 
situation, contributing was minimally costly and maximally 
beneficial to others, while in Situation 2, contributing was 
maximally costly and minimally beneficial to others. In Situ-
ation 1, the costs and benefits were in between those of 
the latter situations. That is, the same contribution was—by 
definition—more ‘expensive’ when the multiplier (i.e., the 
number by which each point contributed to the public good 
was multiplied, specifically, 1.2, 2, or 3.2) was small. Such 
variation is likely to have influenced individuals with differ-
ent levels of prosociality in a different manner. Whereas a 
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highly prosocial participant might have been influenced only 
a little by the context and therefore also cooperated in an 
“expensive” context such as Situation 2, a participant with 
a lower inclination towards prosociality might have been 
strongly influenced by the context and did not contribute 
when the multiplier was small, as in Situation 2. This notion 
was documented for instance by Isaac and Walker (1988), 
demonstrating that a decrease in the multiplier can lead to a 
significant increase in free-riding behavior. In a similar fash-
ion to Situations 1 and 2, in Situation 3 we asked participants 
immediately after making their contribution decisions how 
many MUs they believed others had contributed on aver-
age. Situations 2 and 3 were presented in a counterbalanced 
order.

Situation 4 (DG)

The participants played the role of a ‘dictator’. They were 
endowed with 10 MUs (5 CHF) and were asked to decide 
how many MUs to keep and how many to give to an anony-
mous recipient (one-shot). The participants were informed 
in advance that at the end of the study, their allocation was 
randomly assigned to another participant and implemented 
accordingly.

Statistical Analyses

To capture the domain-general prosociality, we performed 
a factor analysis on participants’ prosocial behavior in the 
different situations. The contributions in the social dilemma 
situations were z-transformed and subjected to a principal 
axis factoring procedure. Factors based only on the common 
variance of the four situations were extracted from the origi-
nal correlation matrix. The number of factors to be extracted 
was determined by the criterion wherein the eigenvalues 
were ≥ 1. The resulting factor scores were obtained using 
regressions. Since only one factor was extracted, we refer to 
this factor score as the ‘Domain-general Prosociality Index.’

The primary aim of this study was to examine whether 
domain-general prosociality can be explained by a task-inde-
pendent neural trait measure. Thus, we conducted whole-
brain voxel-wise Spearman’s rank correlations (separately 
for each frequency band) using the Domain-general Proso-
ciality Index as the dependent variable. Correction for mul-
tiple testing was implemented by means of a nonparametric 
randomization approach (Nichols and Holmes 2002). The 
nonparametric randomization approach was used to esti-
mate empirical probability distributions (number of ran-
domizations used: 5000) and the corresponding corrected 
(for multiple comparisons) critical probability thresholds. 
For regions that displayed significant, whole-brain corrected 
correlations, the voxels with the strongest correlations (peak 
voxels) were then used for the construction of spherical 

regions of interest (ROIs; radius: 10 mm around the peak 
voxel). Mean current density within the ROIs was calcu-
lated and used for visualization and for additional regression 
analyses.

A conjunction analysis was carried out as a second 
approach to examine the neural traits underlying domain-
general prosociality. Four whole-brain corrected Spear-
man’s rank correlation images between resting EEG and 
contribution decisions in the social dilemma situations were 
computed separately. A conjunction was then performed to 
quantify the overlap between the four correlations images.

Results

Behavioral Results

As illustrated in Fig. 1, the four distributions of the partici-
pants’ contributions differed significantly between the differ-
ent social dilemma situations (Wilcoxon signed rank tests: 
all six comparisons p < 0.001).

Factor analysis revealed an underlying structure com-
posed of one single factor. The factor loadings were 0.92, 
0.49, 0.60, and 0.31 for Situations 1–4 (that is, PGG-2, 
PGG-1.2, PGG-3.2 and DG), respectively. No other factor 
had an eigenvalue that exceeded 1 (eigenvalue of the next 
factor: 0.87). This factor, hereby referred to as ‘Domain-
general Prosociality Index’, accounted for 49.9% of the vari-
ance in the four decisions. We observed large inter-individ-
ual differences in domain-general prosociality (Fig. 2). The 
Domain-general Prosociality Index varied from − 1.78 to 
1.88 (M = 0, SD = 0.93). There was no correlation between 
the Domain-general Prosociality Index and the honesty-
humility scale [r(131) = − 0.079, p = 0.37], nor with positive 
affect [r(131) = − 0.141, p = 0.11] or negative affect [r(131) 
= − 0.060, p = 0.50].

PGG-1.2
PGG-2
PGG-3.2
DG

PGG-1.2
PGG-2
PGG-3.2
DG

Fig. 1  Kernel density distribution plots of the participants’ contribu-
tion in the four social dilemma situations (PGG-1.2, PGG-2, PGG-3.2 
and DG)
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Brain Results

To study the putative neural traits underlying individ-
ual differences in domain-general prosociality, we con-
ducted whole-brain Spearman’s rank correlations with 
the Domain-general Prosociality Index as the dependent 
variable. Using sLORETA as a source localization tech-
nique to estimate the intracerebral sources underlying 
scalp-recorded resting EEG, we found that the Domain-
general Prosociality Index was positively correlated with 
task-independent resting EEG in the beta2 and beta3 
frequency bands. The results in the two beta bands were 
largely overlapping and comprised a cluster in the right 
temporo-parietal junction (TPJ, BAs 21, 22, 37, 39, and 
40). Specifically, in the beta2 band, all 30 significant vox-
els fell into one cluster in the right TPJ (BAs 21, 22, 37, 
39, and 40; MNI coordinates peak voxel: x = 60, y = − 60, 
z = 15, Fig. 3a). In the beta3 band, all 19 significant vox-
els fell into one cluster that also peaked in the right TPJ 
(BAs 21, 22, 37, 39, and 40; MNI coordinates peak voxel: 
x = 65, y = − 55, z = 5, Fig. 3b). Spearman’s rank corre-
lations conducted with the two ROIs (spheres of 10 mm 
radius around the peak voxels) revealed positive correla-
tion coefficients of rs(131) = 0.28, p = 0.001 in beta2 and 
rs(131) = 0.26, p = 0.003 in beta3.

Controlling for the belief regarding others’ contributions 
demonstrated that the correlation between resting beta cur-
rent density in the TPJ and the Domain-general Prosociality 
Index remained significant: rs(130) = 0.21, p = 0.02 in beta2; 
rs(130) = 0.19, p = 0.03 in beta3 in the right TPJ.

Our findings were specific to the beta2 and beta3 fre-
quency bands and the right TPJ, as no significant correla-
tions were found in any other EEG frequency band, and in no 
other brain region was the resting beta2 or beta3 current den-
sity correlated with the Domain-general Prosociality Index.

Conjunction analysis confirmed the association between 
the resting beta current density in the right TPJ and the 
contributions in each of the four social dilemma situations. 
Specifically, in the beta2 band (Fig. 4), 23 significant voxels 
fell into one cluster in the right TPJ (BAs 21, 22, 39, and 40; 
MNI coordinates peak voxel: x = 60, y = − 55, z = 20). The 
Spearman’s rank correlations between resting beta2 current 
density and the contributions in the four social dilemma situ-
ations revealed positive significant correlation coefficients 
of rs(131) = 0.22, p = 0.006 in the PGG-1.2 (MNI coordi-
nates of peak voxel: x = 65, y = − 45, z = 25), rs(131) = 0.27, 
p < 0.001 in the PGG-2 (MNI coordinates of peak voxel: 
x = 60, y = − 60, z = 15), rs(131) = 0.21, p = 0.008 in the 
PGG-3.2 (MNI coordinates of peak voxel: x = 65, y = − 50, 
z = 20), and rs(131) = 0.30, p < 0.001 in the DG (MNI coor-
dinates of peak voxel: x = 60, y = − 55, z = 20). The four 
correlation coefficients (between resting beta2 current den-
sity in TPJ and PGG-1.2, PGG-2, PGG-3.2, DG) did not 
differ significantly, as demonstrated by the Meng’s test for 
comparing correlated non-parametric correlation coefficients 
(all p > 0.4).

In the beta3 band, eight significant voxels fell into one 
cluster in the right TPJ (BAs 21 and 22; MNI coordinates 
peak voxel: x = 65, y = − 55, z = 5).

Discussion

In this study, we identified a specific neural trait marker—
resting fast-wave oscillations originating from the temporo-
parietal junction (TPJ)—for domain-general prosociality. 
More specifically, higher levels of beta2 and beta3 current 
density in the right TPJ were associated with higher proso-
cial contributions across different social dilemma situations.

Previous neural trait studies have revealed sources of 
individual differences for several domains of prosocial-
ity in different brain regions, for instance in the right TPJ 
(e.g., Morishima et al. 2012), dorsolateral prefrontal cortex 
(Knoch et al. 2010; Fermin et al. 2016), or anterior insula 
(Baumgartner et al. 2013; Watanabe et al. 2014). However, 
each of these studies has only focused on one single domain. 
In contrast to previous studies, we measured domain-general 
prosociality and investigated the neural signatures underly-
ing an individual’s propensity to behave prosocially across 
different situations. We propose that resting EEG current 
density in the TPJ reflects an individual’s propensity to 
engage in prosocial behavior across situations. As con-
firmed by the conjunction analysis, prosocial decisions in 
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Fig. 2  Histogram depicting the distribution of the Domain-general 
Prosociality Index among all participants
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all four social dilemma situations were indeed associated 
with higher resting beta current density in the TPJ.

To ensure that we obtained a pure measure of prosociality 
and to control for possible strategies, we asked our partici-
pants after their contribution decisions what they believed 
others contributed on average. Since the participants’ final 
pay-off also depended on the other participants’ contribution 
to the public good, the participants’ contribution decision 
could have been influenced by their belief of the other par-
ticipants’ behavior. For example, a participant could strategi-
cally decide to contribute half of their endowment because 
they assumed that the other three players would contribute 
a similar amount. Another participant could contribute half 
of their endowment, according to their prosocial inclination, 
without strategically considering others’ decisions. Clearly, 
the same contribution of these two individuals does not indi-
cate the same level of domain-general prosociality. To con-
trol for this possible confound, we ran additional analyses 
that accounted for the participants’ estimation of the others’ 

average contributions. The results of these additional analy-
ses corroborated the finding that resting EEG current den-
sity in the right TPJ was significantly associated with pure 
domain-general prosociality.

One popular account of TPJ function posits that it allows 
attention to be shifted away from the self to focus on others’ 
perspectives (e.g., Lamm et al. 2016; for a recent review see; 
Steinbeis 2016) and to overcome one’s self-centered per-
spective (Hare et al. 2010; Strombach et al. 2015; Soutschek 
et al. 2016). As prosociality involves sacrificing resources 
for the benefit of others, prosocial decisions are likely to 
require a shift in attention away from the subject’s own state 
to focus on the needs of others. Interestingly, a lack in the 
capacity of distinction between the self and the others can 
indeed have deleterious effects on prosocial behavior (e.g., 
Decety and Lamm 2009). Furthermore, evidence from a 
modulation study suggests that the TPJ is causally involved 
in overcoming self-centeredness, rendering behavior proso-
cial (Soutschek et al. 2016). This leads to the speculation 

Fig. 3  Relationship between 
resting beta current density and 
the Domain-general Prosocial-
ity Index in the right temporo-
parietal junction. On the left, 
locations of the voxels that 
exhibited significant correla-
tions (whole-brain corrected) 
in the beta 2 (a) and beta3 (b) 
frequency bands are indicated 
in red (p < 0.05). On the right, 
the scatter plots, based on a 
10 mm spherical ROI around 
the corresponding peak voxels, 
demonstrate the positive asso-
ciation between the resting beta 
current density (residuals) and 
the Domain-general Prosocial-
ity Index, including regression 
lines (in red), and confidence 
intervals (95%)

a

b

rs= 0.26 
p = 0.003

rs= 0.28 
p = 0.001

Beta2 current density (residuals) in the right TPJ

Beta3 current density (residuals) in the right TPJ
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that people with higher resting beta current density in the 
TPJ, that is, people with higher abilities in self-other distinc-
tion and in overcoming self-centeredness, are more likely 
to exhibit higher levels of domain-general prosociality than 
their counterparts with lower abilities. Support for this 
speculation may also be found in online EEG studies that 
showed that beta oscillations originating from the TPJ play 
an important role when attempting to estimate other´s prefer-
ences (Park et al. 2018) or when differentiating between an 
ingroup or outgroup member (Riecansky et al. 2014).

Finally, we found that domain-general prosociality was 
not related to the honesty-humility scale of the HEXACO 
questionnaire. This result contrasts with previous studies 
that demonstrated a positive association between honesty-
humility and different forms of prosociality (e.g., Hilbig 
et al. 2012; Aghababaei et al. 2014; Thielmann and Hilbig 
2014). However, in these studies, prosociality was measured 
either with self-reports or with economic games that were 
entirely hypothetical and without financial consequences 
(however, see Zhao et al. 2016).
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Fig. 4  Conjunction analysis. In the center, the locations of all voxels 
that proved to be significant in the conjunction analyses for the four 
brain correlation images (whole-brain corrected) in the beta2 band is 
depicted. Red indicates p < 0.05. The scatter plots, based on a 10 mm 

spherical ROI around the corresponding peak voxel demonstrate the 
positive association between the resting beta2 current density (residu-
als) and the contributions in the different social dilemma situations. 
Regression lines and confidence intervals (95%) are indicated in red
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In sum, we believe that this is the first study to demon-
strate that a specific neural trait marker—task-independent 
resting beta current density in the TPJ—explains individu-
als’ variation in domain-general prosociality. These results 
provide neural evidence as to why some people consistently 
behave more prosocially than others in different situations. 
The capacity to differentiate between the self and the others 
and to overcome self-centeredness might be a fundamen-
tal prerequisite for domain-general prosociality. A deeper 
understanding of the neural underpinnings of domain-gen-
eral prosociality will help improving prosocial behavior, 
for instance in patients with autism spectrum disorder (a 
disorder characterized by a hypoactivation in the TPJ; e.g., 
Lombardo et al. 2011; Pantelis et al. 2015). However, with 
our results we cannot completely rule out the possibility 
that resting beta current density in the TPJ is not associ-
ated with behaviors that would still fall under the domain of 
prosociality, like for example, providing instrumental help 
or comforting.

Although neural traits are highly stable across time, 
they are not immutable. It has been well documented that 
repeated practice of skills as well as techniques such as neu-
rofeedback or meditation have the capacity to induce perma-
nent changes in neural structure or function (e.g., Lazar et al. 
2005; Takeuchi et al. 2010; Ghaziri et al. 2013). The results 
of our study could contribute to the improvement of treat-
ment precision via tomographic neurofeedback (e.g., Con-
gedo et al. 2004; Liechti et al. 2012) in order to specifically 
target certain EEG oscillations originating from the TPJ.
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