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Abstract
The sensorimotor cortex is responsible for the generation of movements and interest in the ability to use this area for decoding 
speech by brain–computer interfaces has increased recently. Speech decoding is challenging however, since the relationship 
between neural activity and motor actions is not completely understood. Non-linearity between neural activity and movement 
has been found for instance for simple finger movements. Despite equal motor output, neural activity amplitudes are affected 
by preceding movements and the time between movements. It is unknown if neural activity is also affected by preceding motor 
actions during speech. We addressed this issue, using electrocorticographic high frequency band (HFB; 75–135 Hz) power 
changes in the sensorimotor cortex during discrete vowel generation. Three subjects with temporarily implanted electrode 
grids produced the /i/ vowel at repetition rates of 1, 1.33 and 1.66 Hz. For every repetition, the HFB power amplitude was 
determined. During the first utterance, most electrodes showed a large HFB power peak, which decreased for subsequent 
utterances. This result could not be explained by differences in performance. With increasing duration between utterances, 
more electrodes showed an equal response to all repetitions, suggesting that the duration between vowel productions influ-
ences the effect of previous productions on sensorimotor cortex activity. Our findings correspond with previous studies for 
finger movements and bear relevance for the development of brain-computer interfaces that employ speech decoding based 
on brain signals, in that past utterances will need to be taken into account for these systems to work accurately.
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Introduction

The execution of everyday voluntary body movements gen-
erally occurs without effort and is the result of the concerted 
action of different neural processes and brain areas. The 
sensorimotor cortex is known to play a central role in the 

different aspects of the generation of movement, such as the 
control of body part positions, the velocity and direction of 
movements, applied force and the planning of motor actions 
(Tanji and Evarts 1976; Georgopoulos et al. 1982, 1992; 
Donoghue et al. 1998; Moran and Schwartz 1999; Wang 
et al. 2007; Truccolo et al. 2008). However, for subjects suf-
fering from severe forms of paralysis, even the most com-
mon forms of movements, such as those involved in speech 
and communication can sometimes be completely absent 
(American Congress of Rehabilitation Medicine 1995; 
Smith and Delargy 2005; Posner et al. 2007). To restore 
communication in these subjects, brain-computer-interface 
(BCI) systems are being developed (Wolpaw et al. 2002). 
These systems may convert neural activity into written or 
spoken computer output, and sensorimotor cortex activity 
related to speech has been shown useful in an attempt to 
identify, from the neural signals, which sound or word a user 
may want to communicate (Kellis et al. 2010; Mugler et al. 
2014; Herff et al. 2015; Ramsey et al. 2017). These attempts 
usually rely on the assumption that each specific sound or 
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word is associated with a unique neural signature. Imag-
ing and patient studies, however, have shown that repeating 
a movement in a discrete way (with short pauses between 
each movement) may involve different brain areas than per-
forming the same movements in a continuous way (without 
short pauses between each movement; Kennerley et al. 2002; 
Spencer et al. 2003; Miall and Ivry 2004; Schaal et al. 2004), 
even though the movements are almost identical. Moreo-
ver, there is evidence for a non-linear relationship between 
movement-performance and neural activity in the sensori-
motor cortex. Various studies have suggested that previous 
actions influence the neural activity associated with subse-
quent actions, if spaced close enough together (Miezin et al. 
2000; Soltysik et al. 2004). Indeed, during repeated finger 
movements, the amplitude of sensorimotor neural activity, 
as measured with fMRI and electrocorticography (ECoG), 
was shown to decline over repetitions, despite equal move-
ment output (Hermes et al. 2012b; Siero et al. 2013; for a 
comparison between BOLD and ECoG see: Logothetis et al. 
2001; Hermes et al. 2012a; Siero et al. 2014).

Importantly, the studies mentioned above focused on 
hand and finger movements and it remains to be determined 
whether the observed complex and non-linear relation-
ship between movement and underlying neural activity is 
a general feature of the sensorimotor cortex, or whether it 
is specific to the areas involved in hand movement. Espe-
cially relevant in this respect is our previous finding that 
different parts of the sensorimotor cortex show different 
response profiles to the same speech movement. Some cor-
tical foci show sustained neural activity during a sustained 
motor speech action whereas in other locations responses 
are transient during the same movement (Salari et al. 2018). 
This finding indicates that the relationship between neural 
activity and overt speech behaviour differs between subareas 
of the sensorimotor cortex. It could be speculated that the 
presence, or absence, of a non-linear relationship between 
neural responses and behavioural output during repeated 
movements is specific for cortical foci as well.

With the current study, we aimed to obtain a better 
understanding of the link between speech pronunciation 
and underlying sensorimotor cortex activity. This is of 
interest for BCIs that employ neural signal changes related 
to (attempted) speech. If the neural signal associated with 
a specific (attempted) pronunciation would be affected by 
previous speech actions, the same word or sound may be 
related to a diversity of neural signatures, which have to be 
taken into account for a sensorimotor-speech-BCIs to func-
tion accurately.

In this study, we investigated the relationship between 
repeated orofacial movements during speech, and sensori-
motor brain activity. We recorded neural signals in three 
subjects while they pronounced the same vowel multiple 
times, at different repetition rates. Neural activity was 

recorded with subdural ECoG electrodes, which allows for 
recording at high temporal resolution and with high spatial 
specificity (Siero et al. 2014). We focused on frequencies in 
the range of 75–135 Hz, which are known to have a spatially 
specific relationship with (speech and articulator) move-
ments (Crone et al. 1998; Miller et al. 2007; Bouchard et al. 
2013), and which are thought to reflect underlying neural 
population firing (Manning et al. 2009; Miller et al. 2009; 
Ray and Maunsell 2011). We focused mostly on the ventral 
parts of the sensorimotor cortex as this area has previously 
been shown to be responsible for the generation of speech 
movements (Penfield and Boldrey 1937; Crone et al. 2001; 
Towle et al. 2008; Pei et al. 2011; Bouchard et al. 2013) and 
has been the focus of BCI-studies for the classification of 
speech sounds (see for instance Kellis et al. 2010; Mugler 
et al. 2014; Herff et al. 2015; Ramsey et al. 2017) and articu-
lator movements (Bleichner et al. 2015).

Method

Subjects

Subjects included in this study (n = 3, 2 females, 19, 41 and 
30 years old respectively) were implanted with subdural 
clinical ECoG electrodes for epilepsy treatment at the Uni-
versity Medical Center Utrecht. All subjects had an addi-
tional high-density (HD) electrode grid placed over the sen-
sorimotor cortex (SMC; left for subject A & B and right for 
subject C). These grids were exclusively placed for research 
purposes with the subject’s consent, over an area that was 
not clinically relevant. For subject A & B, the inter-electrode 
distance of the HD grid was 4 mm with an exposed electrode 
diameter of 1 mm for subject A and 1.17 mm for subject B. 
For subject C, the inter-electrode distance was 3 mm with 
an exposed electrode diameter of 1 mm. Only the HD elec-
trodes were used for the current analysis.

This research was approved by the ethics committee of 
the University Medical Center Utrecht. All participants gave 
written informed consent in accordance with the Declaration 
of Helsinki (2013).

Task

Participants were asked to produce the /i/ vowel repeat-
edly at different rates (see below), guided by instructions 
that were visually presented on a computer screen that was 
placed at a distance of approximately 1 m from the par-
ticipant. A trial started with an indication of the production 
speed by a visual cue. Subsequently, to guide the participants 
in producing the sound at the correct speed, the letters ‘ie’, 
corresponding in Dutch to the /i/ sound, were repeatedly 
visually presented for 300 ms at a rate of 5, 4, or 3 times 
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in 3 s (1.66, 1.33 and 1 Hz). These repetition rates were 
chosen as they were relatively easy to perform (not too slow 
or too fast) and because previous research for finger move-
ments has shown that repetition effects are mostly apparent 
at rates of 1 Hz or higher (Hermes et al. 2012b). During the 
inter-trial interval (1800 ms), a fixation cross was presented. 
Trials of different rates were randomized and each rate was 
repeated 26 times, divided over two recording sessions. Any 
trial for which the number of pronunciations was incorrect, 
was excluded from the analyses.

Data Acquisition & Preprocessing

Brain data was recorded and preprocessed as described 
previously (Salari et al. 2018). In short, ECoG data was 
recorded (number of electrodes: 64 for subject A and 128 
for subject B & C) at a sampling frequency of 512 Hz, 
2048 Hz (subject A; Micromed, Treviso, Italy), or 2000 Hz 
(subject B & C; Blackrock Microsystems LLC, Salt Lake 
City, USA). Different sampling frequencies were used due 
to the availability of different clinical and research record-
ing setups and the possibility, or not, to choose the most 
optimal sampling frequency for the current study. For sub-
ject A, the data obtained at the highest sampling frequency 
was down sampled such that the sampling frequencies of 
all datasets of subject A were the same. Electrodes in the 
region of interest (sensorimotor cortex) were identified by 
visual inspection of the electrode positions (as determined 
by using a post-implantation CT scan) plotted over a 3D 
rendering of a presurgical MRI scan (Hermes et al. 2010; 
Branco et al. 2018b). Sensorimotor cortex electrodes with 
noisy or flat signal were removed from further analysis. For 
the remaining electrodes, line noise (50 Hz) and harmonics 
thereof were removed and common average re-referencing 
was applied. Audio recordings of the subject’s pronunciation 
were made during the task, to identify the voice onsets and 
offsets and to be able to correct for possible differences in 
behavioral performance (see below). Voice onset and offset 
were determined for each vowel pronunciation, as described 
previously (Salari et al. 2018). Shortly, these time points 
were first automatically determined using a vowel detection 
algorithm (Hermes 1990), which was adjusted by Hermes to 
also detect vowel offsets. Subsequently, we corrected the on- 
& offsets if necessary (due to background noise for instance) 
using Praat software (Boersma 2002).

Matlab software (The Mathworks, Inc., Natick, MA, 
USA) was used for data analysis, unless specified otherwise. 
For all sensorimotor electrodes, the high frequency band 
(75–135 Hz) power was computed per sample point using a 
Gabor wavelet (Bruns 2004) for all frequencies between 75 
and 135 Hz in bins of 1 Hz with a full width half maximum 
(fwhm) of four wavelets per frequency. Subsequently, a log 
transformation (10 × log10) was applied and these results 

were then averaged (over frequencies) to create the HFB 
power signal. These signals were normalized and subse-
quently smoothed with a moving average window (centered 
around the sample point) of 0.1 s. This smoothing setting 
has been shown to be within the optimal range for accurate 
classification of phonemes (Branco et al. 2018a), and we 
used it to preserve the individual peaks per repetition in the 
data while reducing noise. The data from the two runs were 
concatenated.

Analysis of ECoG data was conducted in two steps. First, 
electrodes were identified and selected for further analysis 
based on their response to the task. Then signals from these 
electrodes were interrogated for vowel repetition effects.

Electrode Selection

For each electrode, we determined whether it was responsive 
to the task. To that purpose, we modeled the neural signal by 
performing a regression analysis on the whole time series. 
Five predictors were used in this study, each representing 
a transient response to one of the possible repetition num-
bers (max 5). Predictor 1 represents the response to all first 
pronunciations, the second predictor to all second pronun-
ciations etcetera. The fourth and fifth predictors had only 
(predicted) responses during the trials in which there actu-
ally was a fourth and/or fifth pronunciation (Fig. 1). The pre-
dictors were created by convolving a Gaussian function with 
an impulse function that indicated when a vowel was spo-
ken. The full width at half maximum of the Gaussians were 
determined for each subject separately, as follows. First, for 

Fig. 1   Model creation for electrode selection and deriving peak tim-
ings. A visual representation of the method to create from the signal 
(shown in blue) the model (shown in red) that was used to select sig-
nificant electrodes and to determine the peak timings. Each predictor 
represents a transient response to one of the possible vowel produc-
tion repetitions and are created by convolving a Gaussian function 
to an impulse at voice onset. The model was created by a regression 
of the five predictors to the signal. The model was used to find elec-
trodes with a significant response to the task and to find the timing of 
(potential) peaks. The latter was done by shifting the predictors and 
repeating the regression until the best fit was found with the data
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each electrode that had, in the trials of the slowest repeti-
tion rate, a maximum peak response higher than 1 standard 
deviation above the mean of the signal, we estimated the 
fwhm of that peak. The mean fwhm over electrodes was 
then used as the fwhm for the Gaussian peak of the model 
for the slowest production rate. For the two faster produc-
tion rates, this value was adjusted to match those repetition 
rates by dividing it by the repetition frequency. We used the 
slowest repetition rate for the fwhm estimation under the 
assumption that this is least ‘contaminated’ with activity 
of other utterances. The fwhm values of the three subjects 
were, respectively, 0.59, 0.51 and 0.65 s for the 1 Hz repeti-
tion rate (leading to a 0.35, 0.30 and 0.39 s fwhm for the 
1.66 Hz repetition rate and 0.44, 0.38 and 0.49 s fwhm for 
the 1.33 Hz repetition rate). Visual inspection showed that 
using these Gaussian widths, the neural activity could be 
accurately modeled for all subjects (Fig. 2). Subsequently, 
since it is known that the HFB response onset of different 
areas in the brain can occur at different time-points rela-
tive to the overt motor action (Crone et al. 1998; Coudé 
et al. 2011; Hermes et al. 2012b; Bouchard et al. 2013), 
we shifted the timing of the model peaks and repeated the 
regression until an optimal fit was found with the data. Tim-
ing shifts ranged from 0.5 s before voice onset time to 0.5 s 

after voice onset, in 0.1 s increments. An electrode was con-
sidered significantly responsive to the task if it was signifi-
cantly explained by the best fitting model and if the average 
response over trials was an increase in power associated 
with at least the first vowel production (for all three repeti-
tion rates). For subject A–C, a total number of 14, 28 and 59 
electrodes were significantly active, respectively. All other 
electrodes were considered not-responsive (NR). Statistical 
analysis was conducted using analysis of variance (ANOVA; 
α = 0.05, false discovery rate corrected), similar as in Salari 
et al. (2018). For this analysis, normally, each sample point 
is assumed to be independent and is used as a degree of 
freedom. The degrees of freedom (DF) value relates to the 
number of independent observations but since consecutive 
sample points are not independent (due to the Gabor wave-
let power conversion) we counted every 0.5 s of data as an 
independent sample point to not overestimate the degrees of 
freedom. Note that, even though the data do not necessarily 
meet all the assumptions for parametric testing (as discussed 
above), inspection of the data showed that the current analy-
sis was useful for selecting task related electrodes.

Repetition Effects

Only the significantly responsive electrodes were used for 
further analysis. For these electrodes, we determined the 
HFB power peak amplitude for every vowel production. 
Since the HFB response peak timing, with respect to voice 
onset, could be different for each electrode we used the shift 
of the model that explained the data best as the determinant 
for timing of the HFB response peak with respect to voice 
onset. Each peak amplitude was determined by taking the 
median of the HFB signal in a window of 0.1 s before and 
0.1 s after the determined peak timing. We used this value 
instead of the maximum value, to prevent possible noise 
peaks in the data to affect the results.

Correction for Performance Differences

To investigate if the duration of vowel production was influ-
enced by the repetition rate, we performed an ANOVA for 
each subject with pronunciation duration (derived from the 
audio signal) as dependent variable and production rate as 
independent variable. Furthermore, we corrected for possi-
ble differences in HFB response peak amplitudes that might 
be caused by differences in pronunciation between repeti-
tions. We derived four behavioral performance measures, 
namely (1) sound intensity, (2) lip aperture, (3) lip move-
ment and (4) lip velocity, for this correction. Sound intensity 
was calculated by taking the envelope of the normalized 
audio signal that was recorded during the task, using the 
absolute value of the Hilbert transform. The sound intensity 
was normalized per run to make measures from different 

Fig. 2   Data and model examples. Each row shows for one subject (A–
C), an example of the response of one electrode in blue (average over 
trials, with shading indicating the standard deviation), with the three 
different production rates separated in columns (fastest on the left and 
slowest on the right). In red, the model that best fitted that specific 
electrode’s response is shown. On the x-axis, time is indicated in sec-
onds after the first cue. On the y-axis, the normalized HFB-power is 
indicated
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sessions comparable. Normalization (of each run) was based 
on the mean and standard deviation of a silent part of that 
run. This envelope was then smoothed with a moving win-
dow of 0.05 s and down sampled to 600 Hz. Lip aperture 
was measured by analyzing video footage of the subjects 
while they performed the task. For each repetition, the mean 
distance (in pixels) between the lips was calculated for the 
video frames corresponding the pronunciation. Lip move-
ments were calculated in a similar way but the video frames 
during silent parts just before each pronunciation were 
now used. The difference between the lip aperture during 
silence and the upcoming pronunciation served as a meas-
ure of lip movement. Lip velocity was calculated by tak-
ing the derivative of the lip positions during the silent part 
before each vowel production and subsequently taking the 
maximum value thereof. The lip position for each analyzed 
frame was normalized, per run. This was done by subtracting 
from each lip position sample, the mean number of pixels 
between the lips (over analyzed frames) and dividing this 
by the standard deviation (of pixels over time). To see if any 
of the measures could explain possible differences in the 
brain signals, we calculated the correlation value of each of 
these measures with the HFB response peak amplitudes for 
all included electrodes. Furthermore, a principal component 
analysis (PCA) was performed on these measures to dis-
sect covariance among the different measures. The principal 
components were used as predictors of the HFB response 
peak amplitudes in a regression analysis, per electrode, the 
result of which was subtracted from the actual HFB response 
peak amplitudes to regress out any performance effects on 
the brain data. Outliers in the HFB response peak ampli-
tudes were disregarded and outliers in the PCA values were 
replaced by the average value of that component. Outliers 
were determined by using the ‘isoutlier’ function from mat-
lab. See Supplementary Figure S1 for an indication of the 
variance in brain data and behavioral measures and their 
relation before and after correction.

Since we could not measure the tongue position in the 
patient subjects, we did not correct for possible differences 
therein. However, after the current study we repeated the 
task with five healthy volunteers (who signed informed con-
sent, median age: 26 years, range 22–31 years, 1 female) and 
recorded their tongue position using ultrasound measures. 
A total of 114 echo pulse scan lines were recorded at 60.11 
frames per second at a depth of 90 mm with a EchoBlaster 
128 ultrasound machine. The probe was stabilized using 
an ultrasound headset (Articulate Instruments Ltd 2008). 
The data were analyzed with Articulate Assistant Advanced 
software (Articulate Instruments Ltd 2012). We then evalu-
ated whether repeated vowel production caused systematic 
changes in tongue movements.

After correction for performance, the peak amplitudes 
of all included electrodes were averaged and grouped by 

repetition number (1–3, 4 or 5) for each repetition rate sep-
arately. Subsequently, for each rate an ANOVA was per-
formed with repetition number as independent variable and 
HFB response amplitude as dependent variable, to see if 
there was a significant difference in HFB-amplitude between 
repetition numbers. The result of this step was used as an 
indication of whether there was an influence of previous 
productions of the same vowel on subsequent productions. 
Since the slowest production rate only contained three rep-
etitions, the ANOVA was performed on the first two and the 
last repetition only, for all production rates. Hermes et al. 
(2012b) suggested that a non-linear function in the form 
of a × (1/x) + bx + c best fitted their results with respect to 
the shape of the HFB response during finger movements. 
For visualization of the response profile, we fitted this 
function with the current data. Furthermore, since those 
authors found that for finger movements the HFB profile 
was dependent on movement rate, we compared the HFB 
response profiles of the three different repetition rates using 
an ANOVA. The repetition rate was used as independent 
variable and the HFB response peak amplitude was used 
as dependent variable (each repetition rate group consisted 
of the amplitudes of the first, second and last repetitions 
combined). Note that also in this step only the first, second 
and last repetitions were used to allow for comparison across 
rates.

HFB Response Profiles

Based on previous research (Hermes et al. 2012b; Salari 
et al. 2018) and on inspection of the data, five models were 
defined to describe the HFB response profiles of the included 
electrodes. Electrodes could show (1) high activity for the 
first vowel production followed by a ‘non-linear decrease’ 
(NLD) of activity for the remaining productions, (2) high 
activity for the ‘first production’ (FP) but none or very little 
activity for the remaining productions, (3) high activity for 
the first and last production with a lower response for the 
productions in between, in the form of a ‘u-shape’ (US), (4) 
linearly decreasing (LD) activity over productions, or (5) 
activity could be equally responsive (ER) to all productions. 
Each electrode was classified as one of these response pro-
files for each repetition rate separately, by regressing three 
predictors to the HFB amplitude data of each electrode. Only 
three predictors were necessary to describe these five pro-
files as will be explained below. The first predictor models a 
NLD and a FP profile in a simplified way, with the first peak 
higher than the other peaks, and the other peaks being more 
or less equally high. For both the NLD and the FP profile 
the predictor was [1 0 0 0 0], [1 0 0 0] or [1 0 0] for a five, 
four and three repetitions trial respectively. If the intercept 
of the regression was significantly above zero (α = 0.05), the 
whole predictor would be moved up. In that situation, there 
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would be a response present for all repetitions, which differ-
entiates the NLD from the FP profile. The second predictor 
characterized the US model, (i.e., [1 0 0 0 1], [1 0 0 1] or [1 
0 1]). The third predictor represented the LD model, (i.e., 
[1 0.75 0.5 0.25 0], [1 0.67 0.33 0] or [1 0.5 0]). Note that 
the slope of this linear predictor was not fixed as the beta 
and intercept value of the regression determined the slope. 
The predictor with the highest correlation to the data was 
chosen as the best fit. Subsequently, we tested if this predic-
tor could significantly explain the amplitude response, based 
on the beta value from the regression analysis (α = 0.05). If 
an electrode was significant for the best fitting profile (i.e. 
NDL, FP, US or LD) it was classified as such. If none of the 
models were significant (and the electrode therefore did not 
show any difference between the response amplitudes of the 
repetitions), an electrode was assigned to the ER profile.

We determined, per repetition rate, the percentage of elec-
trodes that belonged to each profile, and evaluated effects 
of production rate on the number of electrodes per profile.

To investigate the presence of an anatomical organization 
of particular response profiles within the sensorimotor cor-
tex (i.e., whether some profiles are more prominent in spe-
cific sensorimotor regions than others), we determined for 
each electrode if it was classified as the same profile more 
than once (out of three repetition rates). If so, this profile was 
considered the most prominent profile for that electrode. We 
visualized the distribution of these most prominent response 
profiles on a 3D rendering of the subject’s brain as described 
in (Hermes et al. 2010; Branco et al. 2018b).

Results

Task Performance and Behavioral/Acoustic 
Measures

The task was performed well by all subjects, although sub-
ject C showed some difficulties during the first run. For sub-
jects A & B, 7.7% (6/78) of the trials were disregarded due 
to an incorrect response and for subject C this was 35.9% 
(28/78). For the trials performed accurately (i.e. with the 
correct number of repetitions), the intended and performed 
repetition rates did not differ much (see Table 1). Subject 
A produced the vowels significantly slower than instructed 
for the fastest production rate, t(83) = − 7.54, p < 0.001 and 
subject C produced them faster for the two fastest repeti-
tion rates, t(43) = 2.63, p = 0.01 and t(50) = 4.21, p < 0.001 
respectively.

For subject A & C there was a significant difference 
between vowel production durations for the three differ-
ent repetition rates after Bonferroni correction (α = 0.05), 
F(2,281) = 5.15, p = 0.006 and F(2,186) = 14.13, p < 0.001 
respectively, see Table 1. For subject B, the vowel produc-
tion durations did not differ significantly. Since the differ-
ence for subject A is relatively small (only 0.01 s), and there 
is no significant difference for subject B, these results sug-
gest that there was not a strong overall difference between 
vowel production duration for the three repetition rates for 
these two subjects.

The derived behavioral performance measures (sound 
intensity, lip aperture, lip movement and lip velocity) did 
not correlate with the brain signal peak amplitudes for most 
electrodes (see Table 2 for the mean correlation over elec-
trodes) in subjects A & B. In fact, for subject A, none of 
the electrodes showed a significant correlation to any of the 

Table 1   Behavioral 
performance

In the top section, the mean and standard deviation of production rate deviations (instructed minus per-
formed rate) over pronunciations are shown in seconds. The asterisk indicates a significant difference 
between intended and performed production rate. A negative value indicates that vowels were repeated 
slower than intended. In the lower section, the mean and standard deviation of speech duration is shown per 
production rate, for all subjects. Discarded trials were not included here

Subject A B C

Production rate deviation (s)
 5 reps − 0.06* (0.07) 0.01 (0.14) 0.04* (0.11)
 4 reps − 0.01 (0.07) 0.03 (0.14) 0.09* (0.16)
 3 reps 0.01 (0.12) 0.04 (0.20) 0.06 (0.18)

Speech durations (s)
 5 reps 0.19 (0.03) 0.27 (0.05) 0.23 (0.07)
 4 reps 0.20 (0.03) 0.27 (0.04) 0.21 (0.06)
 3 reps 0.20 (0.03) 0.27 (0.04) 0.27 (0.07)
 ANOVA F(2,281) = 5.15, p = 0.006 F(2,281) = 1.17, p = 0.31 F(2,186) = 14.13, 

p < 0.001
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measures. For subject B, only 17.86% (5/28) of the included 
electrodes showed a significant (α = 0.05, FDR corrected) 
correlation of HFB signal amplitude with sound intensity 
(mean r = 0.36, SD = 0.09). For subject C, many electrodes 
did show a significant correlation with the lip measures; 
11.86% (7/59, mean r = 0.26, SD = 0.05) with lip position, 
74.58% (44/59, mean r = 0.36, SD = 0.09) with lip move-
ment, and 47.46% (28/59, mean r = 0.30, SD = 0.06) with lip 
velocity. Note that we correct for these effects in our ECoG 
analyses, see Supplementary Figure S1. This figure shows 
that most of the signal variability due to for instance sound 
intensity (see subject B) or lip movement (see subject C) 
is reduced by the correction we applied and will not have 
contributed to the results presented in the paper.

Electrode Selection and Peak Timing Models

The models used to select significant electrodes and to deter-
mine the peak timings showed an accurate correspondence 
to the HFB response signals (see Fig. 2), with an average 
of 62% (SD = 12), 67% (SD = 11) and 73% (SD = 12) vari-
ance explained for the included electrodes, of subjects A–C 
respectively.

Average HFB Peak Profile During Vowel Repetitions

In general, the first vowel production of a trial was asso-
ciated with a larger HFB peak amplitude than subsequent 
pronunciations (Fig. 3). For all subjects, the mean HFB 
response peak amplitudes over all significant sensorimo-
tor electrodes differed significantly between repetitions for 
almost all repetition rates (Table 3, note that we used the 
first two and the last repetition for all rates). For subject C, 
there was no significant difference during the three repeti-
tions condition.

We investigated whether certain repetition rates were 
associated with a stronger average decrease in amplitude 
than other repetition rates. Only subject A showed a sig-
nificant difference between peak amplitudes over production 
rates (Fig. 4), F(2,209) = 3.27, p = 0.04.

Electrode HFB Peak Profiles

Each included electrode was classified as belonging to one 
of five response profiles (Fig. 5) based on the development 
of the peak amplitude over repetitions, for each repetition 
rate separately. In general, the NLD was the most frequent 
response profile for subjects A & B. For subject C, the US 
and ER responses were most frequent. None of the response 
profiles showed a clear anatomical clustering (Fig. 6).

We investigated whether there was a general change in 
the number of electrodes per profile depending on repeti-
tion rate (Fig. 7). Although no statistical conclusions can be 
drawn from the results with the current number of subjects, 
there was an overall trend for an increasing number of ER 
electrodes with decreasing frequency rate. For subjects A, 
B and C, respectively, 15.38% (2/13), 20.83% (5/24) and 
52.63% (20/38) of all electrodes that showed a repetition 
effect in the five repetitions condition convert to ER in the 
three repetitions condition.

Tongue Movements in Healthy Volunteers

The results from the tongue movement measures indicated 
that 4 subjects did not show much difference in tongue 

Table 2   Correlation between the performance measures and HFB 
peak amplitudes

Values are the mean and standard deviation over included electrodes 
(therefore no p-values are shown)

Subject A B C

Correlation
 Sound intensity 0.04 (0.08) 0.15 (0.14) 0.02 (0.08)
 Lip aperture 0.01 (0.07) − 0.09 (0.08) 0.13 (0.08)
 Lip movement 0.05 (0.07) 0.02 (0.07) 0.31 (0.12)
 Lip velocity 0.06 (0.06) 0.01 (0.05) 0.21 (0.10)

Fig. 3   The average HFB profile for different vowel repetition rates. 
Each panel shows for one subject (A–C), the average profile of the 
HFB peak response for each vowel production averaged over included 
electrodes (marked by gray circles, pronunciations of the same trial 
are connected by gray lines). The three different production rates are 
separated in columns (fastest on the left and slowest on the right). 
A non-linear line, shown in red, was fitted to the data for visualiza-
tion and for comparison with previous studies of hand movements 
(Hermes et  al. 2012b). On the x-axis, time is indicated in seconds 
after the first cue and on the y-axis the normalized HFB-power is 
indicated
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position over the different repetitions and one subject 
showed a slightly higher tongue position for the first vowel 
production compared to subsequent repetitions for the 
two fastest repetition rates (Fig. 8). Whether or not people 
returned their tongue to the rest position in-between repeti-
tions was quite different over subjects.

Discussion

The effect of movement repetition on the sensorimotor HFB 
response during vowel production was investigated using 
a simplified speech task with controlled speed of repeti-
tion. The HFB signal from high-density electrode grids was 
evaluated in three epilepsy patients undergoing a surgical 
procedure for epilepsy diagnosis.

We show that sensorimotor activity related to discrete 
speech movements is influenced by previous speech move-
ments when spaced a second (or less) apart. Averaged across 
electrodes, the HFB-response of sensorimotor cortex had 
a similar amplitude between different production rates but 
did not show equal amplitudes over the course of repetitions 
(Fig. 3). This was seen for all subjects and all tested produc-
tion rates (1–1.66 Hz; except for one instance in subject C 
where the effect was near-significant).

The data suggest that the HFB-amplitude is not linearly 
related to motor output since amplitudes mainly decline 

non-linearly for repeated vowel productions. The analysis 
included a correction for the small variations in sound inten-
sity, lip aperture, lip movement and lip velocity, making it 
unlikely that this finding can be explained by differences in 
performance over repetitions. However, movements of the 
tongue could not be measured (discussed below).

The results for speech movements are in agreement with 
earlier electrophysiological and fMRI data that report a rep-
etition effect for finger movements (Hermes et al. 2012b; 
Siero et al. 2013). We extend these by showing that com-
plicated movements such as those involved in speech show 
a decline in HFB response when repeated at a frequency of 
1 Hz or higher. Furthermore, our data suggest a tipping-point 
between 1 and 2 s (the production rate at which the HFB 
amplitude decline disappears) since the repetition effect was 
still visible for repetitions 1 s apart but was no longer visible 
after 2 s, the time approximately between the last pronun-
ciation of a trial and the first pronunciation of the following 
trial, as indicated by the recovery of a high amplitude for 
each first pronunciation of a trial.

Across electrodes, the non-linear decrease (NLD) pro-
file was dominant for subject A & B. Other response pro-
files were observed, but less frequently in these subjects. 
For subject C, the US and ER responses were most fre-
quent. For all subjects, the number of electrodes with an 
equally responsive (ER) profile tended to increase with 
decreasing vowel production rate. Considering the earlier 

Table 3   The ANOVA results 
per production rate and per 
subject, testing for differences 
between HFB peak amplitudes 
over repetitions

The dependent variable was the mean (over included electrodes) HFB peak amplitudes and the independent 
variable was the repetition number. Significance indicates that the HFB peak amplitudes are significantly 
different between repetitions

Subject A B C

5 reps F(2,59) = 20.61, p < 0.001 F(2,62) = 17.28, p < 0.001 F(2,30) = 4.69 p = 0.02
4 reps F(2,73) = 25.63, p < 0.001 F(2,68) = 24.73, p < 0.001 F(2,45) = 6.26, p < 0.001
3 reps F(2,71) = 19.49, p < 0.001 F(2,74) = 28.43, p < 0.001 F(2,60) = 3.03, p = 0.06

Fig. 4   Comparison of HFB profiles between different production 
rates. Each panel shows for one subject (A–C), the HFB amplitude 
per repetition number, averaged over included electrodes and over 
trials. The three different production rates are indicated in blue, red 

and yellow (for the first two and the last repetition). On the x-axis, 
the repetition number is indicated and on the y-axis the normalized 
HFB-power is indicated. A significant difference between conditions 
is indicated by an asterisk
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discussion on the tipping-point, it could be speculated that 
different cortical patches in sensorimotor cortex exhibit 
different tipping points, which would cause more elec-
trodes to display the repetition effect as vowel produc-
tion rate increases. Note however, that the total number of 
pronunciations and therewith the number of data points, 
is different for each repetition rate, which could make the 
statistical chance to find a particular response profile une-
qual between repetition rates. Therefore, we cannot fully 
exclude the possibility that the tipping point effect may be 
caused partly by an unequal number of data points between 
repetition rates.

The current results did not indicate a clear anatomical 
organization with respect to the different response profiles 
although some clustering seemed to be present (most clearly 
visible in subject B). Please note that, even though we used 
HD electrode grids, individual electrodes are still 3 or 4 mm 
apart. Therefore, the spatial sampling is somewhat sparse 
compared to for instance high field fMRI recordings. Pos-
sibly, repeating the experiment with even higher spatial 
sampling may reveal spatial organization with respect to 
the repetition effect.

Neural Underpinnings of the Repetition Effect

There are several phenomena that may account for the 
decrease in HFB-power observed with repeated speech 
movements. It may be speculated that some articulators 
which we did not correct for, moved more for the first pro-
nunciation than for subsequent pronunciations. Analysis of 
tongue movements during the same task in healthy volun-
teers revealed quite constant tongue positions over repeti-
tions within subjects but also revealed variations in tongue 
movements between subjects, ranging from full contraction 
and relaxation for each repetition to a fixed tongue position 
throughout repetitions (Fig. 8). Previous research has sug-
gested that not only articulator position but also features 
related to articulator movements (such as velocity) are rep-
resented in the sensorimotor cortex (Conant et al. 2018). In 
case the tongue may not return to its rest position between 
repetitions, the first utterance may be associated with more 
activation than the subsequent productions as the articula-
tor movement is then largest for the first pronunciation and 
smaller for the subsequent ones. This may also explain why 
the last repetition sometimes showed an increase in activity 

Fig. 5   Representation of all 
response profiles. Responses 
were ‘non-linear decreasing’ 
(NLD) ‘first production respon-
sive only’ (FP), ‘u-shaped’ 
(US), ‘linearly decreasing’ (LD) 
or ‘equally responsive’ (ER). 
Each row indicates the average 
response (per subject in color 
and for all subjects in black) 
of all electrodes that belonged 
to one profile. The number of 
electrodes on which the mean 
response was based is indicated 
by ‘n’ and the number of elec-
trodes each subject contributed 
is indicated by the numbers 
in brackets for subject A–C 
respectively. Columns separate 
the different production rates. 
The standard deviation of the 
response over subjects is shown 
by shading. On the x-axis, the 
repetition number is indicated 
and on the y-axis the normal-
ized HFB-power is indicated
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compared to its predecessor(s) as the tongue has to return 
to its rest position. Furthermore, it can be speculated, that 
between phonemes the musculature used for the produc-
tion is not fully at rest (in anticipation of the next produc-
tion), even if the articulator position between phonemes is 
close to the rest position. In this case, one could see the 
full sequence of repetitions as one, albeit complex, move-
ment with an onset and an offset. Since various reports have 
shown a neural response at movement offset (Ball et al. 
2008; Hermes et al. 2012b; Salari et al. 2018), neural activ-
ity at the end of a sequence may also be attributed to the 
movement towards full rest. However, this cannot explain all 
the found response profiles. Hence, our findings cannot be 
fully explained by differences in tongue movements between 
repetitions and are therefore also in line with the existence 
of a non-linearity between motor output and neural activity 
during repeated speech-movements that are spaced closely 
apart. Since HFB power is thought to be associated with 
neural firing (Manning et al. 2009; Miller et al. 2009; Ray 
and Maunsell 2011), a decrease in HFB power as observed 

here may suggest that fewer neurons are involved in sub-
sequent motor acts, (see Hermes et al. 2012b for a similar 
interpretation), or that the same neurons fire less frequently. 
Indeed, repetition suppression effects have been found for 
other modalities than motor execution. Suppression during 
repeated visual stimulation has for example been attributed 
to a reduction of neural excitability for repeated stimuli (see 
Grill-Spector et al. 2006 for an interesting discussion on the 
possible mechanisms behind a reduction of neural activity 
for repeated stimuli and the possible function this may have).

Furthermore, repetition suppression effects for repeated 
speech have also been found in other areas than the sen-
sorimotor cortex and may be involved in motor planning. 
Previous fMRI research in the left posterior inferior fron-
tal gyrus, has shown for instance, a repetition suppression 
effect which is related to the degree of shared phonological 
features (such as voicing or manner of articulation) over the 
course of repeated words (Okada et al. 2018). This suggests 
that similar phonological features during speech reduce 
activity in motor planning areas. It would be interesting to 

Fig. 6   Electrode localization. For each subject, the locations of 
all analyzed electrodes are indicated. Small gray dots indicate non-
responsive (NR) electrodes. The other symbols indicate, per elec-
trode, the most prominent response profile, which was determined 
by classifying the HFB responses for each production rate into one 
of five response profiles (for abbreviation clarification of the response 
profiles see Fig.  5). If an electrode was classified as the same 
response profile for at least two out of the three production rates, this 

was considered the most prominent response profile. Gray circles 
(see N.A. in legend) indicate electrodes that did not have a prominent 
response (i.e. where the responses were different for each production 
rate). The difference between the NLD and FP response predictor was 
an intercept difference and therefore light gray triangles (see NLD/FP 
in legend) indicate electrodes which had different responses for each 
repetition rate but which were classified once as NLD and once as FP
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see if such motor planning effects of similar phonological 
features is related to the repetition effect we observed in the 
sensorimotor cortex as it has been suggested that repetition 
effects in some areas may affect the activity in other areas 
(Grill-Spector et al. 2006).

Furthermore, even though in the current study we focused 
on sensorimotor cortex activity, other areas such as the sup-
plementary motor area (SMA), cerebellum, basal ganglia 
and premotor cortex, which are connected to the motor cor-
tex, have been suggested to play an important role in the 
timing of speech production (Kotz and Schwartze 2010). It 
would therefore be interesting to investigate the role of those 
areas during repeated speech production and to see if they 
have an influence on the repetition effect.

Neural Underpinnings of the Different Response 
Types

Although further research is needed to better understand the 
different response types we found, we may speculate about 
the possible underlying mechanisms. There are multiple 
theories on the mechanisms behind repetition suppression 

that may explain the current results. For instance, increased 
influx of potassium ions over the course of repetitions may 
lead to hyperpolarization of the cell membrane, causing a 
reduction in neural firing. If this effect is asymptotic, this 
may lead to a non-linear decrease. Another theory sug-
gests that only neurons that are most specific to the task 
continue firing over repetitions. It could be that in some 
areas the number of task-specific neurons is higher than in 
others, which may lead to the different response types. If 
most of the neurons are task-specific, it would be likely that 
the responses are equal over repetitions (ER). If the ratio 
between task-specific neurons and task-unspecific neurons 
is high, the number of firing neurons may decrease initially 
and stabilize at some point, leading to a non-linear decrease 
(NLD or FP). With a lower ratio, the decrease may be linear, 
as the number of neurons that can stop firing is larger. As 

Fig. 7   Number of electrodes for each profile. In the upper panels, the 
percentage of included electrodes belonging to a profile (indicated by 
color) is shown for all subjects and production rates (indicated on the 
x-axis). On the y-axis, the percentage of electrodes is indicated. For 
subject A–C a total number of 14, 28 and 59 electrodes were signifi-
cantly active, respectively, which corresponds to the 100% value for 
each subject. The lower panel shows the weighted mean and standard 
deviation values over subjects

Fig. 8   Tongue positions. The average tongue position height (normal-
ized) of five healthy volunteers is shown on the y-axis. The part of 
the tongue that moved the most with the task is shown. On the x-axis, 
time is indicated in seconds. Red vertical lines indicate voice onsets. 
The three different repetition rates are shown from top to bottom. The 
data was corrected for differences in pronunciation timing and was 
subsequently averaged per subject. Gray lines indicate the average 
tongue position of the individual volunteers (shading indicates the 
standard deviation) and the black line in the left panel represents the 
average thereof
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discussed earlier, some areas may be related to movements 
in two directions (Fetz et al. 1980; Soso and Fetz 1980), 
which may explain the u-shape response type (US), as at 
the end of the trial the articulators are likely to return to rest 
position, see for instance the tongue position data in Fig. 8. 
This may result in increased neural firing at the end of the 
trial. Besides these theories on the neural underpinnings of 
repetition suppression, there may be an alternative explana-
tion for a higher response for the first vowel production. 
Some parts of the sensorimotor cortex may be involved in 
the planning of a motor sequence (Tanji and Evarts 1976) 
and it may be speculated that this could lead to more neural 
activity for the first production (i.e. beginning of a rhythmic 
sequence) or to only neural activity at the beginning of the 
sequence.

Implications for Neural Based Speech Decoding

Our results are highly relevant for the development of 
sensorimotor-speech BCIs: systems that aim to decode 
(attempted) speech from sensorimotor brain signals. Clas-
sification of speech sounds based on sensorimotor activity 
has been shown before (Kellis et al. 2010; Brumberg et al. 
2011; Mugler et al. 2014; Herff et al. 2015; Ramsey et al. 
2017), but accuracy levels and degrees of freedom do not 
meet the standards for home-use by patients. It has been 
suggested however, that these systems are likely to benefit 
from the use of high-density electrode grids (Kellis et al. 
2016; Ramsey et al. 2017). Classification of sensorimo-
tor signals may also benefit from taking linguistic struc-
tures, such as syntax or likely word combinations, into 
consideration by incorporating a language corpus to the 
predictions (Herff et al. 2015, 2017). We postulate that 
a third factor needs to be taken into account for optimal 
decoding accuracy: previous speech movements. Since 
sensorimotor-speech BCIs try to find specific patterns in 
the brain signals that can consistently be linked to a spe-
cific sound, and use this information to determine which 
sound the user made (or tried to make), any effect of previ-
ous (attempted) utterances on the brain signal of a current 
utterance is important information. Sensorimotor-speech 
BCIs may therefore be improved when information about 
previously spoken sounds is incorporated in the decoding 
pipeline. The current study provides a method for creat-
ing models of HFB profiles related to vowel repetitions. 
Models like these may be used for creating a library of 
models related to variations in brain activity patterns 
associated with speech production and may potentially 
improve speech classification. It will be crucial to extend 
the current findings to more real-life application scenarios 
of sensorimotor-speech BCIs, and to investigate whether 
the results can be generalized to natural speech circum-
stances such as repeating the same phoneme within a word 

or over the course of words. Furthermore, since these BCI 
systems are intended for paralyzed subjects, it is essential 
to investigate if also repeated covert/attempted speech is 
associated with similar phenomena.

Limitations & Future Work

One of the limitations of the current study is the small 
number of subjects. Yet all subjects show similar results 
(decreased activity for repeated vowel production) across 
all investigated production rates (except for one instance 
in subject C where the effect was near-significant) and our 
findings do correspond to that of previous studies for finger 
movements. Also, a larger range of production rates could 
have been more informative, notably to determine the tip-
ping point for HFB response recovery. Third, we did not 
record articulator positions directly (except for the lips) and 
could therefore not correct for all variations in motor output. 
Fourth, in the current study we did not control for a possi-
ble effect of auditory stimulation on the cortical responses 
(by the subjects hearing their own voice during the task). 
However, since previous studies of other repeated move-
ments (not involving speech or auditory stimulation) have 
shown similar results as the current study (e.g. Hermes et al. 
2012b), we argue that it is likely that the repetition effect 
is more a sensorimotor cortex effect related to movements 
than to auditory stimulation. Finally, from our study it is 
not possible to determine whether the repetition effect is 
specific for the same phoneme, or could generalize to dif-
ferent phonemes following one another. This issue clearly 
warrants further investigation, as it is relevant for decoding 
speech where different phonemes are produced in sequence.

Conclusion

We show that neural activity related to discrete repeated 
speech movements is influenced by previous speech move-
ments spaced a second or less apart. The most prominent 
response profile for repeated speech movements is a non-
linear decrease of neural activity over repetitions. These 
findings are of importance for the development of communi-
cation-brain-computer interfaces that use decoding of (overt 
or covert) speech.
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