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Abstract
The problem of realizability of the second-order turbulence closure models (parametrization
schemes) is addressed through the consideration of the so-called “stability functions”. The
emphasis is on the turbulence kinetic energy–scalar variance (TKESV) closure scheme that
carries prognostic transport equations for the turbulence kinetic energy (TKE) and for the
variances and covariance of two quasi-conservative scalars suitable for describing moist
atmospheric boundary-layer turbulence. Stability functions appear within the framework of
truncated closure schemes, where (i) the Reynolds-stress and scalar-flux equations (and,
within the framework of one-equation TKE schemes, also equations for scalar variances and
covariance) are reduced to the diagnostic algebraic formulations by neglecting the substantial
derivatives and the third-order transport terms, and (ii) simplified linear parametrizations
of the pressure-scrambling terms are used. The stability functions are ill-behaved (tend to
infinity or become negative) over a certain range of governing parameters, e.g., mean velocity
shear and buoyancy gradient. Using the approach of Helfand and Labraga (J Atmos Sci
45:113–132, 1988), we develop regularized stability functions for the TKESV scheme that
reveal no pathological behaviour over their entire parameter space. The physical meaning of
the regularization procedure and its relation to non-linear parametrizations of the pressure-
scrambling terms and toweak non-equilibrium hypothesis are discussed. Finally, realizability
of turbulence closures is consideredwithin amoregeneral frameworkof themoments problem
of the probability theory.
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1 Introduction

A turbulence parametrization scheme is an integral part of a physical parametrization package
of any model of atmospheric circulation, including numerical weather prediction (NWP) and
climate models. The importance of turbulence parametrization schemes will likely further
increase as the resolution of the atmospheric models is refined. As the mesh size becomes
small, quasi-organizedflowstructures, such as deep convective plumes that are chiefly respon-
sible for non-local convective transport of momentum and scalars, are increasingly resolved.
The focus of parametrizations of the subgrid-scale processes is then shifted towards motions
at smaller scales and towards other issues, as, e.g., the anisotropy of turbulence near the sur-
face and in stably-stratified regions of the flow, and the interaction between boundary-layer
turbulence and shallow clouds. Turbulence closure schemes based on truncated second-order
moment equations are viable tools for describing these features.

The so-called one-equation turbulence closure schemes have been very popular in geo-
physical applications over several decades. Those schemes carry the turbulence kinetic energy
(TKE) equation, including the time rate-of-change (or substantial derivative if theTKEadvec-
tion is included) and the third-order turbulent transport terms. All other second-moment
equations, viz., the equations for the Reynolds stress, for the fluxes of scalar quantities
(e.g., temperature and humidity), and for the scalar variances and covariance, are reduced
to diagnostic algebraic expressions. The closure schemes, which carry prognostic transport
equations not only for the TKE but also for the variances and covariance of scalar quantities,
represent a natural step beyond one-equation TKE schemes. Examples are the schemes pre-
sented byMellor and Yamada (1974, their level-3 closure), Cheng et al. (2002), Kenjereš and
Hanjalić (2002) and Z̆eli et al. (2019) for the dry atmosphere, and by Nakanishi and Niino
(2004) and Mironov and Machulskaya (2017) (see also Machulskaya and Mironov 2013)
for the moist atmosphere. The latter scheme, termed the TKE–scalar variance (TKESV)
scheme, receives major attention in the present study. An obvious advantage of the TKESV
and similar schemes over the TKE schemes is a more consistent treatment of the flow ener-
gies. In atmospheric flows, where the buoyancy stratification is either unstable or stable but
virtually never neutral, the TKE and the turbulence potential energy (TPE), characterized
by the variances and covariances of scalar quantities, are equally important and should be
treated in a similar way (see Mironov 2009, for discussion). An improved treatment of scalar
(co)variances helps to improve the performance of atmospheric models in several respects.
These are, for example, a consistent treatment of counter-gradient fluxes of scalars (which
is not possible with the one-equation TKE schemes) and an improved representation of the
fractional cloudiness within the framework of statistical cloud schemes.

In the present study, the problemof realizability of truncated second-order closure schemes
for moist atmospheric boundary-layer turbulence is addressed through consideration of the
so-called stability functions (Mellor and Yamada 1974). Stability functions appear within
the framework of truncated closure schemes in the expressions for the Reynolds stress and
scalar fluxes if (i) the Reynolds-stress and scalar-flux equations (and, within the framework
of one-equation TKE schemes, also equations for the scalar variances and covariances) are
reduced to the diagnostic algebraic formulations by neglecting the substantial derivatives and
the third-order transport terms, and (ii) linear parametrizations (in the second-order moments
involved) of the pressure-scrambling terms are used. The stability functions are ill-behaved
over a certain range of governing parameters, e.g.,mean velocity shear and buoyancy gradient.
The ill-behaved stability functions yield physically meaningless values of the Reynolds stress
and scalar fluxes, e.g., negative velocity variances or infinite scalar fluxes.
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Anappealingway to tackle the problemof ill behaviour of truncated closureswas proposed
by Helfand and Labraga (1988), see also du Vachat (1989) and Helfand and Labraga (1989).
These authors analyzed the pathological behaviour of stability functions of the one-equation
TKE scheme. Using rather plausible physical arguments, they developed regularized func-
tions that reveal no pathological behaviour over their entire parameter space. In the present
study, we extend the approach of Helfand and Labraga to the TKESV scheme. We develop
regularized stability functions that are well-behaved over their entire parameter space and
cause no pathological behaviour of the Reynolds stress and scalar fluxes. We discuss the
physical meaning of the regularization procedure and examine its relation to the non-linear,
more physically sound parametrizations of the pressure-scrambling terms and to weak non-
equilibrium hypothesis often used to develop turbulence closures.

In what follows, a well-accepted terminology ofMellor andYamada (1974, 1982; Yamada
1977) is used. The level 3 refers to the TKESV and similar schemes that carry transport
equations for the TKE and for the scalar (co)variances. The level 2 refers to the schemes,
where all second-moment equations are reduced to the diagnostic algebraic formulations.
The level 2.5 refers to one-equation TKE schemes.

An outline of the salient features of the TKESV scheme pertinent to the present analysis
is given in Sect. 2. Section 3 presents the diagnostic algebraic equations for the Reynolds
stress and scalar fluxes used within the framework of the TKESV scheme. Those equations
are obtained with the aid of the boundary-layer approximation and are one-dimensional (the
flow variables depend on the vertical coordinate only). In Sect. 4, the stability functions
are introduced. The regularization procedure of Helfand and Labraga (1988) is presented
in Sect. 5, and the regularized, well-behaved stability functions of the TKESV scheme are
developed in Sect. 6. In Sect. 7, the relation of the regularization procedure to the non-
linear parametrizations of the pressure-scrambling terms is discussed. The relation of the
Helfand and Labraga (1988) regularization procedure to the so-called weak non-equilibrium
hypothesis (Rodi 1976; Gibson and Launder 1976; Hanjalić and Launder 2011) is discussed
in Sect. 8. In Sect. 9, realizability of turbulence closures is considered within a more general
framework of the moments problem of the probability theory. Conclusions are presented in
Sect. 10. In order to keep the discussion in the main body of the text more concise, we include
three Appendices. Turbulence potential energy is discussed in Appendix 1. The ill behaviour
of stability functions in the shear-free flow is demonstrated analytically in Appendix 2.
Appendix 3 outlines the derivation of regularized stability functions of the TKESV scheme
in the case of shear-free flow.

2 Outline of the TKESV Scheme

In this section, a brief outline of the TKE–scalar variance turbulence parametrization scheme
is given, where the focus is on the aspects pertinent to the present analysis. A detailed
description of the scheme is given in Mironov and Machulskaya (2017). The governing
equations are presented in their full three-dimensional form. The one-dimensional equations
(where the flow variables depend on the vertical coordinate only) obtained with the aid of
the boundary-layer approximation are used in the subsequent text.

The TKESV scheme is formulated in terms of variables that are approximately conserved
for phase changes in the absence of precipitation (Betts 1973; Deardorff 1976). These are
the total water specific humidity qt and the liquid water potential temperature θl defined as

qt = q + ql , (1a)
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θl = θ − θ

T

Lv

cp
ql , (1b)

where q is thewater vapour specific humidity (themass ofwater vapour per unitmass ofmoist
air), ql is the liquid water specific humidity (the mass of cloud water per unit mass of moist
air), cp is the specific heat of air at constant pressure, Lv is the latent heat of vaporization, θ is
the potential temperature related to the absolute temperature T through θ = T (P̃0/P̃)Rd/cp ,
P̃ and P̃0 being the atmospheric pressure and its reference value, respectively, and Rd being
the gas constant for dry air. No supersaturation is assumed, so that ql = qt − qs if qt > qs ,
qs being the saturation specific humidity, and ql = 0 otherwise. Clearly, qt and θl reduce
to q and θ , respectively, in unsaturated conditions. In what follows, the total water specific
humidity and the liquid water potential temperature are also referred to as simply humidity
and temperature, respectively.

The TKESV scheme uses prognostic transport equations for the TKE, e ≡ 1
2

〈
u′2
i

〉
, for the

scalar variances
〈
θ ′2
l

〉
and

〈
q ′2
t

〉
, and for the scalar covariance

〈
θ ′
l q

′
t

〉
. Here, ui is the velocity,

and
〈
u′
i u

′
j

〉
is the Reynolds stress.1 The angle brackets denote mean quantities, and a prime

denotes a turbulent fluctuation. The Einstein summation convention for repeated indices is
adopted. The Boussinesq approximation is used, and the molecular diffusion terms in the
second-moment budget equations are neglected (a good approximation for the atmospheric
flows, where the Reynolds number is very high). The equations for the TKE and for the
temperature–humidity covariance read

1

2

(
∂

∂t
+ 〈uk〉 ∂

∂xk

) 〈
u′2
i

〉+ ∂

∂xk

(
1

2

〈
u′
ku

′2
i

〉+ 〈
u′
k p

′〉
)

= − 〈
u′
i u

′
k

〉 ∂ 〈ui 〉
∂xk

+ βi
〈
u′
iθ

′
v

〉− ε, (2)
(

∂

∂t
+ 〈uk〉 ∂

∂xk

) 〈
θ ′
l q

′
t

〉+ ∂

∂xk

〈
u′
kθ

′
l q

′
t

〉

= − 〈
u′
kq

′
t

〉 ∂ 〈θl〉
∂xk

− 〈
u′
kθ

′
l

〉 ∂ 〈qt 〉
∂xk

− 2εθq . (3)

Replacing qt with θl in Eq. 3 yields the temperature-variance equation, and replacing θl with
qt yields the humidity-variance equation. In Eqs. 2 and 3, t is the time, xi are the space
coordinates, βi = −giαT is the buoyancy parameter, gi is the acceleration due to gravity,
αT is the thermal expansion coefficient, ρ is the density, and p is the kinematic pressure
(deviation of pressure from the hydrostatically balanced pressure divided by the reference
density ρr ). The last terms on the right-hand sides (r.h.s.) of Eqs. 2 and 3 are the molecular
destruction (dissipation) rates of the TKE and of the scalar covariance. The quantity θv is
the virtual potential temperature that is defined with due regard for the water loading effect
(Lilly 1968; Bannon 2007),

θv = θ

[
1 +

(
Rv

Rd
− 1

)
q − ql

]
, (4)

where Rv is the gas constant for water vapour.
Equations 2 and 3 are not closed. Parametrizations (closure assumptions) are required for

the buoyancy flux in the TKE equation (the term incorporating θv), for the dissipation rates,

1 The term “Reynolds stress” is used here in a somewhat loose way. Strictly speaking, the Reynolds stress

tensor is −ρ
〈
u′
i u

′
j

〉
, where ρ is the fluid density. See, e.g., Pope (2000).
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and for the third-order turbulent transport terms. The buoyancy terms are discussed at the
end of this section. The dissipation rates of the TKE and of the scalar covariance (similar for
the scalar variances) are parametrized in terms of the TKE dissipation time scale τε through
the following algebraic expressions,

ε = e

τε

, (5a)

εθq =
〈
θ ′
l q

′
t

〉

2Rτ τε

, (5b)

where Rτ is the dissipation time scale ratio. The TKE dissipation time scale is determined
diagnostically through e and the turbulence length scale, see Eq. 11 below. For the third-
order transport terms, either the simplest isotropic down-gradient parametrizations, or more
advanced anisotropic parametrizations are used (see Mironov and Machulskaya 2017, for
details). The specific form of those parametrizations are not required for the present analysis.
A key point is that the third-order transport terms alongwith the substantial derivatives (which
reduce to the time rate-of-change in the one-dimensional case) are retained in the equations
for the TKE and for the scalar variances and covariance.

Within the framework of the TKESV scheme, the transport equations for the Reynolds

stress
〈
u′
i u

′
j

〉
and for the scalar fluxes

〈
u′
iθ

′
l

〉
and

〈
u′
i q

′
t

〉
are reduced (truncated) to the diagnostic

algebraic expressions by neglecting the substantial derivatives and the third-order transport

of
〈
u′
i u

′
j

〉
,
〈
u′
iθ

′
l

〉
, and

〈
u′
i q

′
t

〉
, and the pressure transport of

〈
u′
i u

′
j

〉
. In atmospheric flows,

the Coriolis terms in the second-moment equations are typically small and can safely be
neglected. The resulting algebraic equations are recast in terms of the departure-from-isotropy
tensor

ai j =
〈
u′
i u

′
j

〉
− 2

3
δi j e. (6)

The diagnostic algebraic equation for ai j (and hence for
〈
u′
i u

′
j

〉
) reads

−
[
4

3
eSi j +

(
aik S jk + a jk Sik − 2

3
δi j akm Skm

)
+ (

aikW jk + a jkWik
)]

+
(

βi

〈
u′
jθ

′
v

〉
+ β j

〈
u′
iθ

′
v

〉− 2

3
δi jβk

〈
u′
kθ

′
v

〉)

+
〈

p′
(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)〉

− εdi j = 0, (7)

where Si j = 1

2

(
∂ 〈ui 〉
∂x j

+ ∂
〈
u j
〉

∂xi

)

and Wi j = 1

2

(
∂ 〈ui 〉
∂x j

− ∂
〈
u j
〉

∂xi

)

are the symmetric and

the antisymmetric parts, respectively, of the mean-velocity gradient tensor, and εdi j = εi j −
2
3δi jε is the deviatoric part of the Reynolds-stress dissipation tensor. In order to obtain Eq. 7,

a decomposition of the pressure gradient–velocity covariance
〈
u′
i∂ p

′/∂x j
〉 +

〈
u′
j∂ p

′/∂xi
〉

into pressure-strain (traceless) and pressure transport (diffusion) is used. The traceless part
does not alter the TKE but acts to redistribute the energy between the components, thus
driving turbulence towards the isotropic state (hence the term “pressure scrambling”). The
non-uniqueness of decomposition of the pressure gradient–velocity covariance into pressure
scrambling and pressure diffusion and the associated issues are briefly discussed in Mironov
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and Machulskaya (2017). The diagnostic algebraic equation for the temperature flux
〈
u′
iθ

′
l

〉

reads

−
(
2

3
eδik + aik

)
∂ 〈θl〉
∂xk

− (Sik + Wik)
〈
u′
kθ

′
l

〉+ βi
〈
θ ′
l θ

′
v

〉

−
〈
θ ′
l
∂ p′

∂xi

〉
− εθ i = 0, (8)

where εθ i is the temperature-flux dissipation rate. Equation for the humidity flux
〈
u′
i q

′
t

〉
is

obtained from Eq. 8 by replacing θl with qt .
The following parametrizations of the pressure-scrambling terms in Eqs. 7 and 8 are used

that are linear in the second-order moments,

−
〈

p′
(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)〉

= Cu
t
ai j
τε

− Cu
s1Si j e

−Cu
s2

(
Sikak j + S jkaki − 2

3
δi j Sklakl

)
− Cu

s3

(
Wikak j + Wjkaki

)

+Cu
b

(
βi

〈
u′
jθ

′
v

〉
+ β j

〈
u′
iθ

′
v

〉− 2

3
δi jβk

〈
u′
kθ

′
v

〉)
, (9)

〈
θ ′
l
∂ p′

∂xi

〉
= Cθ

t

〈
u′
iθ

′
l

〉

τε

− (
Cθ
s1Si j + Cθ

s2Wi j
) 〈
u′
jθ

′
l

〉
+ Cθ

bβi
〈
θ ′
l θ

′
v

〉
. (10)

The expression for the pressure-scrambling term
〈
q ′
t∂ p

′/∂xi
〉
in the humidity-flux equation is

obtained fromEq. 10 by replacing θl with qt . It is significant that the use of linear formulations
of the pressure-scrambling terms yields a linear equation system for the Reynolds-stress
and scalar-flux components. The following estimates of dimensionless constants are used:
Cu
t = 1.8, Cu

s1 = 4/5, Cu
s2 = 3/5, Cu

s3 = 13/15, Cu
b = 3/10, Cθ

t = 5.0, Cθ
s1 = 3/5,

Cθ
s2 = 1, andCθ

b = 1/3. The constantsCq
t ,C

q
s1,C

q
s2, andC

q
b in the humidity-flux equation are

set equal to the respective constants in the temperature-flux equation.A detailed consideration
of disposable constants and parameters of the TKESV scheme is presented in Mironov and
Machulskaya (2017).

The deviatoric part of the Reynolds-stress dissipation rate εdi j and the temperature-flux
dissipation rate εθ i (similar for the humidity-flux dissipation rate εqi ) are incorporated into
the return-to-isotropy parts of the respective pressure-scrambling terms, the first terms on the
r.h.s. of Eqs. 9 and 10, respectively.

The TKE dissipation time scale is expressed in terms of the TKE e and the turbulence
length scale l as

τε = 1

Cε

l

e1/2
, (11)

where Cε is a dimensionless constant. The turbulence length scale is computed through a
Blackadar-type interpolation formula (Blackadar 1962) which includes a correction term
due to stable density stratification (e.g., Stull 1973; Zeman and Tennekes 1977), or through
a more advanced non-local formulation (e.g., Bougeault and Lacarrère 1989), see Mironov
and Machulskaya (2017) for details. The buoyancy terms (the terms with βi ) in Eqs. 2 and
7–10 are parametrized with due regard for the presence of cloud condensate. The problem
essentially amounts to modelling the virtual potential-temperature flux

〈
u′
iθ

′
v

〉
and the scalar–

virtual-potential-temperature covariances,
〈
θ ′
l θ

′
v

〉
and

〈
q ′
tθ

′
v

〉
, in terms of other moments that
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include fluctuations of ui , θl , and qt (but not of ql that enters the definition of θv). The
following formulation is used within the framework of the TKESV scheme,

〈
f ′θ ′

v

〉 = [1 + (R − 1) 〈qt 〉 − R 〈ql〉]
〈
f ′θ ′

l

〉+ (R − 1) 〈θ〉 〈 f ′q ′
t

〉

+ R̂
[
−AP

Q
〈
f ′θ ′

l

〉+ A
Q
〈
f ′q ′

t

〉]
, (12)

where a generic variable f stands for ui , θl , or qt . In Eq. 12, R = Rv/Rd , A =
〈θ〉
〈T 〉

Lv

cp
[1 + (R − 1) 〈qt 〉 − R 〈ql〉] − R 〈θ〉, P = 〈T 〉

〈θ〉
〈
qsl,T

〉
, Q = 1 + Lv

cp

〈
qsl,T

〉
, and

〈
qsl,T

〉 ≡ ∂qs
∂T

∣∣∣∣
T=〈Tl 〉

, Tl being the liquid water absolute temperature, is computed from the

Clausius–Clapeyron equation,
∂qs
∂T

= Lvqs
RvT 2 . The variable R̂ satisfies 0 ≤ R̂ ≤ 1. Equa-

tion 12 interpolates between the “dry” limit (R̂ = 0), where a given grid box of a host
atmospheric model is cloud-free (but the water vapour may be present), and the “wet” limit
(R̂ = 1), where the entire atmospheric-model grid box is saturated (i.e., ql = qt − qs > 0
at each point of the grid box). The interpolation variable R̂ is related to the fractional cloud
cover Ĉ which is determined with the aid of a statistical cloud scheme. In the stratus and
stratocumulus regimes, R̂ may be set equal to Ĉ. In the cumulus regime, highly localized
cumulus clouds account for much of the buoyancy terms in the Reynolds-stress, scalar-flux
and TKE equations, although the fractional cloud cover is typically small. Then, R̂ should
be (considerably) larger than Ĉ.

A comprehensive discussion of various issues related to the parametrization of clouds
and cloud–turbulence interaction in atmospheric models is beyond the scope of the present
paper. Readers are referred to Sommeria and Deardorff (1977), Golaz et al. (2002), Tompkins
(2003, 2005), Machulskaya (2015), and Larson (2017). Essential for the present discussion
is the fact that the covariances

〈
u′
iθ

′
v

〉
,
〈
θ ′
l θ

′
v

〉
and

〈
q ′
tθ

′
v

〉
are expressed as linear combinations

of
〈
u′
iθ

′
l

〉
and

〈
u′
i q

′
t

〉
,
〈
θ ′2
l

〉
and

〈
θ ′
l q

′
t

〉
, and

〈
q ′2
t

〉
and

〈
θ ′
l q

′
t

〉
, respectively, using Eq. 12.

3 Algebraic Reynolds-Stress and Scalar-Flux Equations

A simplification typically made in geophysical applications is the so-called boundary-layer
approximation. This approximation is fairly accurate for large-scale and mesoscale atmo-
spheric models whose grid-box aspect ratio (the ratio of the horizontal grid size to the vertical
grid size) is large. Within the framework of the boundary-layer approximation, all deriva-
tives in the x1 and x2 horizontal directions in the second-moment equations are neglected
and the grid-box mean vertical velocity 〈u3〉 is zero in the second-moment equations (but not
in the equations for the mean fields). The equations become one-dimensional, i.e., the flow
variables depend on the x3 vertical coordinate only.

Substituting parametrizations of the pressure-scrambling terms (9) and (10) into Eqs. 7
and 8, respectively, and applying the boundary-layer approximation, we obtain the following
algebraic equations for the departure-from-isotropy tensor (and hence for theReynolds stress)
and for the scalar fluxes,

Cu
t
ai j
τε

+ (
1 − Cu

s2

) (
aik S jk + a jk Sik − 2

3
δi j akl Skl

)

+ (
1 − Cu

s3

) (
aikW jk + a jkWik

)
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− (
1 − Cu

b

) (
δi3β3

〈
u′
jθ

′
v

〉
+ δ j3β3

〈
u′
iθ

′
v

〉− 2

3
δi jβ3

〈
u′
3θ

′
v

〉)

= −
(
4

3
− Cu

s1

)
eSi j , (13)

Cθ
t

〈
u′
iθ

′
l

〉

τε

+ ai3
∂ 〈θl〉
∂x3

+ [(
1 − Cθ

s1

)
Sik + (

1 − Cθ
s2

)
Wik

] 〈
u′
kθ

′
l

〉

= −2

3
eδi3

∂ 〈θl〉
∂x3

+ (
1 − Cθ

b

)
δi3β3

〈
θ ′
l θ

′
v

〉
, (14)

Cq
t

〈
u′
i q

′
t

〉

τε

+ ai3
∂ 〈qt 〉
∂x3

+ [(
1 − Cq

s1

)
Sik + (

1 − Cq
s2

)
Wik

] 〈
u′
kq

′
t

〉

= −2

3
eδi3

∂ 〈qt 〉
∂x3

+ (
1 − Cq

b

)
δi3β3

〈
q ′
tθ

′
v

〉
. (15)

The estimates of dimensionless constants are given in Sect. 2. Within the framework of the
boundary-layer approximation, S13 = S31 = W13 = −W31 = 1

2∂ 〈u1〉 /∂x3, S23 = S32 =
W23 = −W32 = 1

2∂ 〈u2〉 /∂x3, and other components of Si j and Wi j are zero. The vertical
x3 axis is taken to be aligned with the vector of gravity, so that the only non-zero component
of the buoyancy parameter is β3, which is denoted by β in what follows.

Equations 13–15 constitute a system of 12 linear equations for the components of ai j
(six independent components), of

〈
u′
iθ

′
l

〉
(three independent components), and of

〈
u′
i q

′
t

〉
(three

independent components). This linear system is readily solved, yielding explicit expressions
for the Reynolds stress and scalar fluxes. Unfortunately, the solution to Eqs. 13–15 is non-

realizable. That is, it yields physically meaningless values of ai j (and hence of
〈
u′
i u

′
j

〉
),
〈
u′
iθ

′
l

〉
,

and
〈
u′
i q

′
t

〉
, such as negative velocity variances or infinite scalar fluxes, over a certain range

of governing parameters.
Note that the term “realizability” is used in a somewhat loose sense throughout much of

the paper. Basically efforts are mounted to make sure that the quantities, which must be non-
negative and finite by definition (e.g., velocity and scalar variances), remain non-negative
and finite. In Sect. 9, the notion of realizability is defined in a mathematically more rigorous
way within the framework of the moments problem of the probability theory.

4 The Stability Functions

The system of linear equations 13–15 yields explicit expressions for the Reynolds-stress and
scalar-flux components. The solutions for

〈
u′
3u

′
1

〉
and

〈
u′
3u

′
2

〉
(components of the vertical flux

of horizontal momentum) have the following down-gradient form,

〈
u′
3u

′
1

〉 = −FMτεe
∂ 〈u1〉
∂x3

, (16a)

〈
u′
3u

′
2

〉 = −FMτεe
∂ 〈u2〉
∂x3

. (16b)

The solutions for the vertical scalar fluxes contain both the down-gradient terms and the
non-gradient terms that describe the generation of scalar fluxes by buoyancy,

〈
u′
3θ

′
l

〉 = −FH1τεe
∂ 〈θl〉
∂x3

+ FH2τεβ
〈
θ ′
l θ

′
v

〉
, (17)
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〈
u′
3q

′
t

〉 = −FH1τεe
∂ 〈qt 〉
∂x3

+ FH2τεβ
〈
q ′
tθ

′
v

〉
. (18)

The quantitiesFM,FH1, andFH2 are referred to as the stability functions (Mellor andYamada
1974). It should be emphasized at once that the stability functions are merely the notation
introduced to represent the formulations of fluxes in a compact form. Basically, FM, FH1,
and FH2 reflect the parametrization assumptions invoked to arrive at the algebraic Reynolds-
stress and scalar-flux equations, first of all, the parametrizations of the pressure-scrambling
terms.

The functions FM and FH1 that appear in the down-gradient terms in Eqs. 16–18 depend
on three dimensionless governing parameters. These are the squared dimensionless shear
(τεS)2, the squared dimensionless buoyancy frequency (τεN )2, and the potential to kinetic
energy ratio P/e. The stability functionFH2 that appears in the non-gradient terms in Eqs. 17
and 18 depends on (τεS)2 and (τεN )2 but does not depend on P/e. Here, S2, N 2, and P are
given by

S2 =
(

∂ 〈u1〉
∂x3

)2

+
(

∂ 〈u2〉
∂x3

)2

, (19)

N 2 = β

(
Iθ

∂ 〈θl〉
∂x3

+ Iq
∂ 〈qt 〉
∂x3

)
, (20)

P = τ 2ε β2 [Iθ

(Iθ

〈
θ ′2
l

〉+ Iq
〈
θ ′
l q

′
t

〉)+ Iq
(Iθ

〈
θ ′
l q

′
t

〉+ Iq
〈
q ′2
t

〉)]
, (21)

Iθ = 1 + (R − 1) 〈qt 〉 − R 〈ql〉 − R̂AP
Q , (22a)

Iq = (R − 1) 〈θ〉 + R̂A
Q , (22b)

whereA,P ,Q and R̂ are defined in Sect. 2. The thermodynamic factors Iθ and Iq weigh the
relative contributions of the two scalars to N 2 and P . The quantity P characterizes potential
energy of the turbulent flow and may be referred to as the turbulence potential energy. Other
definitions of TPE have also been used in the analyses of atmospheric turbulence. A brief
discussion is given in Appendix 1. Instead of (τεS)2 and (τεN )2, the stability functions can be
presented in terms of (τεS)2 [or (τεN )2] and the gradient Richardson number Ri = N 2/S2.

The stability functions in (16)–(18) that result from the solution of Eqs. 13–15 are ill-
behaved over a certain range of governing parameters. Figure 1 shows FM and FH1 as
dependent on Ri and (τεS)2 at a fixed value of P/e. As seen from the figure, the stability
functions have physically meaningless values, i.e., they tend to infinity or become negative
over a part of their parameter space. The scalar-flux stability functionFH2 (not shown) reveals
qualitatively similar ill behaviour as FH1. The expressions of FM, FH1, and FH2 are rather
lengthy and are not presented here. However, those expressions are drastically simplified in
the case of shear-free (and rotation-free) flow, and the ill behaviour of the stability functions
can be easily demonstrated analytically. The analysis is presented in Appendix 2. The full
linear algebraic system of equations for the Reynolds-stress and scalar-flux components (12
equations for theTKESVscheme)was solved using symbolic algebra software. [The resulting
expressions can be received from the first author upon request.]

In order to obtain the Reynolds-stress and scalar-flux formulations that remain in force
over the entire parameter space, the stability functions should be modified (regularized) in
one way or the other. A straightforward approach is to simply impose the upper and lower
bounds on the stability functions themselves. Alternatively, constraints may be imposed on
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Fig. 1 Themomentum-fluxFM and the scalar-fluxFH1 stability functions of the TKESV scheme as dependent
on Ri and (τε S)2 at a fixed value of P/e = 5. The functions are computed with the estimates of dimensionless
constants given in Sect. 2. The values of FM and FH1 are indicated by the colour scale. The white area is a
part of the parameter space where the stability functions are negative

the arguments, e.g., on (τεS)2 and (τεN )2, so that the stability functions cannot become
infinite or negative (see, e.g., Mellor and Yamada 1982; Hassid and Galperin 1994). These
methods applied within the framework of a one-equation TKE scheme may lead to either
the model blow-up or to physically implausible solutions (Helfand and Labraga 1988). One
more method is to replace the ill-behaved stability functions with more simple functions
that reveal no pathological behaviour. For example, the stability functions of the algebraic
turbulence parametrization scheme (level 2), where all second-moment equations, including
the TKE equation, are reduced to the diagnostic algebraic formulations, are well-behaved
over their entire parameter space. The use of the algebraic-scheme stability functions within
the one-equation TKE scheme yields regular solutions. However, an arbitrary replacement
of stability functions makes the resulting scheme internally inconsistent. Furthermore, with
the level-2 stability functions, the adjustment of the TKE towards the production–dissipation
equilibrium state would occur on too short a time scale. In other words, turbulence would
respond too quickly to changes in the shear and buoyancy forcing. Amore detailed discussion
of the above (and some other) regularizationmethods is given in Helfand and Labraga (1988),
see also Hanjalić and Launder (2011) and Lazeroms et al. (2013, 2015).
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5 Regularization Procedure of Helfand and Labraga

An appealing way to tackle the problem was proposed by Helfand and Labraga (1988),
see also du Vachat (1989) and Helfand and Labraga (1989). These authors analyzed the
stability functions of the level-2.5 scheme (one-equation TKE scheme). They considered
dry atmosphere, where θ is the only thermodynamic variable that affects buoyancy. As the
subsequent analysis of the TKESV scheme is for themoist air, we consider themoist level-2.5
scheme, using thermodynamic variables θl and qt .

Within the framework of the level-2.5 scheme, the scalar-variance and scalar-covariance
transport equations are truncated to the diagnostic expressions reflecting the steady-state
local balance between the mean-gradient production and the dissipation. The vertical scalar
fluxes are given by the following down-gradient formulations,

〈
u′
3θ

′
l

〉 = −F2.5
H τεe

∂ 〈θl〉
∂x3

, (23a)

〈
u′
3q

′
t

〉 = −F2.5
H τεe

∂ 〈qt 〉
∂x3

, (23b)

where F2.5
H is the level-2.5 scalar-flux stability function. The momentum-flux components〈

u′
3u

′
1

〉
and

〈
u′
3u

′
2

〉
are given by Eqs. 16, where FM is replaced with the level-2.5 stability

functionF2.5
M . The level-2.5 stability functions depend on (τεS)2 and (τεN )2, or, alternatively,

on (τεS)2 [or (τεN )2] and Ri . The level-2.5 functions suffer from the same deficiencies as the
level-3 functions, i.e., they are ill-behaved over a part of their parameter space (Appendix 2).

Helfand and Labraga (1988) recast the functions F2.5
M

(
Ri, τ 2ε S

2
)
and F2.5

H

(
Ri, τ 2ε S

2
)

in terms of Ri and the ratio e/ee of the actual TKE e = e2.5 of the level-2.5 scheme
(hence the subscript) to the equilibrium value of the TKE ee = e2 of the level-2 scheme.
In order to change the variables

(
Ri, τ 2ε S

2
)
to the variables (Ri, e/ee), the equality τ 2ε S

2 =
(τε/τεe)

2 τ 2εeS
2 = (ee/e) τ 2εeS

2 is used, where τεe is the equilibrium TKE dissipation time
scale, i.e., τε computed with ee (see Eq. 11). The value of τ 2εeS

2 for a given Ri is found by
solving the equilibrium TKE equation of the level-2 scheme, which is a quadratic equation in
τ 2εeS

2. Since the stability functions F2
M (Ri) and F2

H (Ri) are well-behaved over their entire
parameter space (any value of Ri), a physically meaningful solution can always be found.
Helfand and Labraga (1988) noticed that F2.5

M and F2.5
H become pathological in the case of

growing turbulence, e/ee = e2.5/e2 < 1, where the TKE production (locally) dominates over
the TKE dissipation. Figure 2 illustrates the pathological behaviour of the level-2.5 stability
functions on the Ri ×e2.5/e2 plane. Note thatF2.5

M andF2.5
H are computed with the estimates

of dimensionless constants given in Sect. 2, which are somewhat different from the estimates
used by Helfand and Labraga (1988). This difference does not appreciably affect the result;
Fig. 2 of the present paper and Figs. 8 and 9 of Helfand and Labraga (1988) are very similar
both qualitatively and quantitatively [within a factor of 21/2Cε since the expression for fluxes
are cast in terms of l(2e)1/2 in op. cit. and in terms of τεe in the present paper]. As seen from
Fig. 2, F2.5

M and F2.5
H are well-behaved in the case of equilibrium or decaying turbulence,

e/ee ≥ 1, but become pathological at e/ee < 1 (a brief explanation of this behaviour in the
regime of shear-free convection is given in Appendix 2).

The failure of the level-2.5 scheme is attributed to the closure assumptions used to develop
the scheme, namely, (i) the neglect of the substantial derivative and the third-order transport
(diffusion) of the Reynolds stress, scalar fluxes, and scalar variances and covariance, and
(ii) the use of simplified linear parametrizations of the pressure-scrambling terms in the
Reynolds-stress and scalar-flux equations. These closure assumptions are valid for the flows
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Fig. 2 The stability functions of the level-2.5 scheme as dependent on Ri and e2.5/e2. The values of F2.5
M

and F2.5
H are indicated by the colour scale. The white area is a part of the parameter space where the stability

functions are negative

where turbulence is not far from the stationary, homogeneous, and isotropic state. Helfand
and Labraga (1988) argue that it is precisely in the regime of growing TKE, where e/ee < 1,
that the turbulence becomes strongly anisotropic (also non-stationary and non-homogeneous)
and the above assumptions are too crude, leading to the ill behaviour of the stability functions
and to malfunctioning of the turbulence closure scheme. In order to remedy the situation,
Helfand and Labraga proposed to account, in an approximate way, for the effects of time
rate-of-change, advection and diffusion in those truncated second-moment equations inwhich
these effects have been neglected. In other words, the idea is to restore to the second-moment
equations some information that has been lost because of truncation. The following approx-
imation was proposed,

dM/dt + DM
GM

= de/dt + De

Ge
. (24)

Here,M stands for (component of) the Reynolds stress, (component of) the scalar flux, and
(within the framework of the level-2.5 scheme) the scalar variances and covariance, d/dt is
the substantial derivative that coincides with ∂/∂t within the framework of the boundary-
layer approximation, D is the diffusion rate of the respective second-order moment, and G
is its production (generation) rate. The production rate GM includes the terms due to mean
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velocity shear and buoyancy (in the Reynolds-stress and scalar-flux equations), and due to
mean scalar gradients (in the scalar-flux, scalar-variance, and scalar-covariance equations).
It should be mentioned that, within the framework of the Helfand and Labraga approach,
the production rate is defined with due regard for the rapid parts of the pressure-scrambling
terms (all but the first terms on the r.h.s. of Eqs. 9 and 10). Equation 24 states that the ratio
of the tendency of the second-order moment M due to d/dt and D to the production rate of
M is the same as the respective ratio for the TKE.

Some comments on the validity of Eq. 24 are in order. Equation 24 is obviously exact in
the regime of production–destruction equilibrium. In this regime, the production rate of any
moment M, including the TKE, is balanced by the destruction rate of M due to return-to-
isotropy (M stands for the Reynolds stress or scalar flux) or viscous dissipation (M stands
for the scalar variance, scalar covariance, or TKE). In the regime of production–destruction
equilibrium, both the r.h.s. and the left-hand side (l.h.s.) of Eq. 24 are zero. Equation 24 is
also valid asymptotically if the production rate of the momentM strongly dominates over its
destruction rate, and the same holds for the TKE. A transport equation forM can be written
in the following form,

dM/dt + DM
GM

= 1 − εM
GM

, (25)

where εM denotes the destruction rate of the momentM. The r.h.s. of Eq. 25 approaches one
as the ratio εM/GM tends to zero. If the ratio ε/Ge for the TKE also tends to zero, both the
r.h.s. and the l.h.s. of Eq. 24 approach one. In the real-world flows, this never holds exactly.
However, εM/GM � 1 may hold approximately following a rapid increase of forcing (by
mean scalar gradient, mean velocity shear, or buoyancy), i.e., precisely in the regime of
growing turbulence.

Using Eq. 24, the truncated, algebraic equations of the level-2.5 scheme can be modified
to approximately account for (mimic) the effects of the time rate-of-change and turbulent dif-
fusion. To this end, approximations dM/dt + DM = αeGM, where αe = (de/dt + De) /Ge
is known from the solution of the TKE equation, are added to the truncated algebraic equa-
tions. In substance, these modifications amount to multiplying the production terms in the
Reynolds-stress and scalar-flux equations (all but the first terms on the l.h.s. of Eqs. 13–15)
and in the scalar-variance and scalar-covariance equations (the first two terms on the r.h.s. of
Eq. 3) by a factor 1 − αe. With due regard to the definition of αe, the one-dimensional TKE
equation is written as

− (1 − αe)

[〈
u′
3u

′
1

〉 ∂ 〈u1〉
∂x3

+ 〈
u′
3u

′
2

〉 ∂ 〈u2〉
∂x3

− β
〈
u′
3θ

′
v

〉]− e

τε

= 0. (26)

The resulting system of the second-moment equations remains algebraic and linear in the
Reynolds stress and scalar fluxes. Its solution (see Helfand and Labraga 1988, for details)
yields the down-gradient formulations of the vertical momentum and scalar fluxes, Eqs. 16
and 23, with the following expressions of the stability functions of the regularized level-2.5
scheme,

F2.5
Mr =

(
e2.5
e2

)1/2

F2
M, (27a)

F2.5
Hr =

(
e2.5
e2

)1/2

F2
H, (27b)
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Fig. 3 The regularized stability functions of the level-2.5 scheme as dependent on Ri and e2.5/e2. The values
ofF2.5

Mr andF2.5
Hr are indicated by the colour scale. In the case of growing turbulence, e2.5/e2 < 1, the stability

functions are computed from Eq. 27

where the subscript “r” indicates the modified (regularized) stability functions. The regular-
ized functions given by Eq. 27 are used in the regime of growing turbulence, where the actual
value of TKE e2.5 of the level-2.5 scheme is less than the equilibrium TKE e2 of the level-
2 scheme. In the regime of equilibrium or decaying turbulence, the original, non-modified
stability functions of the level-2.5 scheme are used that are well-behaved at e2.5/e2 ≥ 1 and
pose no problem. Note that matching of regularized and non-regularized stability functions
is smooth since F2.5

M = F2.5
Mr = F2

M at e2.5/e2 = 1 (similar for the scalar-flux stability
functions). Recall that the stability functions F2

M and F2
H of the level-2 algebraic scheme are

well-behaved over their entire parameter space. Figure 3 illustrates the regularized stability
functions of the level-2.5 scheme that reveal no pathological behaviour.

A note on the critical Richardson number is in order. The critical Richardson number
Ricr is defined here as the value of Ri beyond which the shear-generated turbulence cannot
be maintained against the destructive action of gravity, i.e., the TKE (as well as the TPE)
is zero at Ri ≥ Ricr . The Richardson number is the local quantity, and any turbulence
scheme that accounts for non-local effects in space (third-order transport) and/or time (non-
stationarity) should be able to maintain turbulence at supercritical values of Ri . Clearly,
there is no critical Richardson number within the framework of the level-2.5 scheme, where
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the effects of non-stationarity and third-order transport in the TKE equation are accounted
for. This is different for the level-2 scheme, where the non-local effects are neglected, the
turbulence energy is always in the equilibrium state, and a finite value of Ricr does exist.
With the estimates of dimensionless constants given in Sect. 2, Ricr = 0.96 (cf. Cheng et al.
2002). As Ri approaches Ricr , the equilibrium TKE e2 of the level-2 scheme approaches
zero and so do the stability functions F2

M and F2
H. At Ri ≥ Ricr , a non-trivial solution of

the level-2 system does not exist. In this part of the domain, e2 = 0, e2.5/e2 ≥ 1, and the
original, non-regularized stability functions are applied (which are well-behaved there). Thin
white stripes near the right margins of the plots in Figs. 2 and 3 merely indicate that F2.5

M
and F2.5

H cannot be shown on the Ri × e2.5/e2 plane beyond the critical Richardson number
of the level-2 scheme.

6 Regularized Stability Functions of the TKESV Scheme

The regularization method of Helfand and Labraga (1988) is now applied to the TKESV
(level-3) scheme. Using Eq. 24, the Reynolds-stress and scalar-flux equations are modified,
and the resulting system of algebraic equations for ai j ,

〈
u′
iθ

′
l

〉
and

〈
u′
i q

′
t

〉
is solved. In the

general case of stratified shear flow, the derivations are cumbersome and are omitted here.
Thederivations for the shear-freefloware presented inAppendix 3.The following expressions
of the stability functions in Eqs. 16–18 are obtained,

F3
Mr =

(
e3
e2.p

)1/2

F2.p
M , (28a)

F3
H1r =

(
e3
e2.p

)1/2

F2.p
H1 , (28b)

F3
H2r =

(
e3
e2.p

)1/2

F2.p
H2 , (28c)

where “3” refers to the level-3 (i.e., to the TKESV) scheme, and “r” indicates the regularized
stability functions. The scheme referred to as “2.p” utilizes the equilibrium TKE equation but
carries transport equations for the scalar variances and scalar covariance. That is, the TKE
is determined diagnostically using the steady-state production–dissipation balance, whereas
the scalar variances and covariance (and hence the TPE) are determined prognostically with
due regard for the third-order turbulent transport.2 The equilibrium TKE equation of the
level-2.p scheme is cubic in ee = e2.p (cf. the level-2 scheme, where the equilibrium TKE
equation is quadratic in ee = e2).

Figure 4 shows the stability functions of the level-2.p scheme as dependent on Ri and
〈
s′2〉 = P/

[
e
(
τ 2ε S

2
)2]

, where
〈
s′2〉 is the dimensionless TPE normalized so that it does not

contain the TKE. The momentum-flux stability function F2.p
M is well-behaved over its entire

parameter space. The scalar-flux functions F2.p
H1 and F2.p

H2 are also well-behaved over most of
their parameter space, but they become pathological with strong static stability (large values
of Ri) where the TKE is small. For most practical purposes, a simple clipping should be
sufficient to remedy the situation.

2 The letter “p” in the label “2.p” is used to indicate potential energy. In a similar spirit, the level-2.5 scheme
may be referred to as the “level-2.k“ scheme, where “k” indicates kinetic energy, or, alternatively, the “level-
2.e” scheme, where “e” is a conventional notation for the TKE.
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Fig. 4 The level-2.p stability functions on the Ri ×
〈
s′2
〉
plane (

〈
s′2
〉
is the dimensionless TPE defined in the

text). The values of stability functions are indicated by the colour scale. Black line in F2.p
H1 and F2.p

H2 plots

shows the equilibrium value of
〈
s′2
〉
as function of Ri , i.e., the TPE of the level-2 scheme

123



The Stability Functions and Realizability of the Turbulent Kinetic… 213

A more physically appealing remedy is based on the observation that the ill behaviour is
caused by the factor

B = 1 − C∗τ 2ε S2 = 1 − C∗
C2

ε

l2S2

e
(29)

that appears in the denominator of the expressions of both scalar-flux stability functions.
Here, C∗ is a dimensionless constant (a combination of model constants given in Sect. 2),
and the second expression on the r.h.s. is obtained using (11). As the static stability becomes
strong, the equilibrium e decreases, τε increases, and B eventually becomes negative, leading
to the ill behaviour ofF2.p

H1 andF2.p
H2 . However, this happens only if the turbulence length scale

l is taken to be independent of the density (buoyancy) stratification. This assumption is in
fact unrealistic where the stratification is stable. In the TKESV scheme, a stability correction
to the Blackadar-type interpolation formula for the turbulence length scale is used (e.g. Stull
1973; Zeman and Tennekes 1977). In the limit of strongly stable stratification, the length
scale behaves as

l = CN
e1/2

N
, (30)

whereCN is a dimensionless constant of order 1. Note that an advanced non-local formulation
of the length scale proposed by Bougeault and Lacarrère (1989) also accounts for the effect
of stable density stratification on l; it reduces to Eq. 30 in a particular case of height-constant
N . With due regard for (30), the expression of B becomes

B = 1 − C∗C2
N

C2
ε

Ri−1. (31)

As the static stability increases, the second term on the r.h.s. of Eq. 31 decreases, B remains
positive, and no pathological behaviour of the scalar-flux stability functions takes place.
Thus, it is necessary to use a stability-dependent formulation of the turbulence length (time)
scale in order to ensure that the scalar-flux stability functions of the level-2.p scheme are
well-behaved over their entire parameter space.

Figure 5 shows the original, non-modified stability functions F3
M and F3

H1 of the level-3
scheme (F3

H2 is not shown) on the Ri × e3/e2.p plane at a fixed value of
〈
s′2〉 = 0.01. Again,

the stability functions are well-behaved in the case of equilibrium or decaying turbulence,
but become pathological in the case of growing turbulence. Although the ill behaviour is
only seen over a part of growing-turbulence domain, we apply the regularized functions at
e3/e2.p < 1. In order to apply the regularized stability functions over a part of the growing-
turbulence domain, additional objective criteria are required to separate out the “dangerous”
part of the e3/e2.p < 1 domain (for example, the realizability constraints considered in Sect. 9
can be used). Note also that matching F3

M and F3
H1 with F3

Mr and F3
Hr, respectively, at any

value different from e3/e2.p = 1 would result in discontinuous stability functions. Figure 6
shows the regularized stability functions of the level-3 scheme. As can be seen, the stability
functions reveal no pathological behaviour (and are continuous). Note that the regularized,
well-behaved expressions are obtained for all components of the Reynolds stress and scalar
fluxes, not only for

〈
u′
3u

′
1

〉
,
〈
u′
3u

′
2

〉
,
〈
u′
3θ

′
l

〉
, and

〈
u′
3q

′
t

〉
. Those expressions are not presented

here.
It is interesting to draw analogies betweenEqs. 27 and 28.AsEq. 27 shows, the regularized

level-2.5 stability functions are expressed in terms of the level-2 stability functions. For
the level-2.5 scheme, the level-2 scheme is the nearest lower-level scheme, whose stability
functions are well-behaved. Likewise, for the level-3 scheme, the level-2.p scheme is the
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Fig. 5 Theoriginal, non-regularizedmomentum-fluxF3
M and scalar-fluxF3

H1 stability functions of theTKESV

(level-3) scheme as dependent on Ri and e3/e2.p at a fixed value of
〈
s′2
〉

= 0.01. The values of stability

functions are indicated by the colour scale. The white area is a part of the parameter space where the stability
functions are negative

nearest lower-level scheme with well-behaved stability functions (provided the stability-
dependent formulation of the length/time scale is used). The level-2 and the level-2.p schemes
differ significantly in the way they treat the scalar variances and covariance. However, both
schemes utilize a steady-state equilibrium TKE equation, suggesting that it is the use of the
TKE transport equation in combination with the simplified algebraic formulations of the
Reynolds stress and scalar fluxes that causes ill behaviour of truncated turbulence closure
schemes.

Note an important factor
(
e3/e2.p

)1/2 in the expressions (28) for the regularized level-3
stability functions. It is this factor that takes care of a gradual transition of the TKE towards
the production–dissipation equilibrium. Dropping the factor

(
e3/e2.p

)1/2 in Eq. 28 would
result in a too quick response of turbulence to changes in the forcing and in overestimation
of momentum and scalar fluxes in the regime of growing TKE. The factor (e2.5/e2)1/2 in
Eq. 27 has a similar effect on the behaviour of the level-2.5 scheme.

Neither the level-3 scheme nor the level-2.p scheme has a critical Richardson number.
Within the framework of the level-3 scheme, the effects of non-stationarity and third-order
transport are accounted for in both the TKE and the scalar (co)variance equations. Within the
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Fig. 6 The regularized momentum-flux F3
Mr and scalar-flux F3

H1r stability functions of the TKESV (level-3)

scheme as dependent on Ri and e3/e2.p at a fixed value of
〈
s′2
〉

= 0.01. The values of stability functions

are indicated by the colour scale. In the case of growing turbulence, e3/e2.p < 1, the stability functions are
computed from Eq. 28

framework of the level-2.p scheme, the TKE transport equation is truncated to the diagnos-
tic expression reflecting the steady-state local balance between production and dissipation.
However, the TKE can be maintained at an arbitrary large value of Ri at the expense of the
TPE, whose local value can be different from zero due to the effects of non-stationarity and
third-order transport of scalar (co)variances.

The various truncated second-order closure schemes are summarized pictorially in Fig. 7
on the e/ee × P/Pe plane, where Pe is the equilibrium TPE resulting from the production–
destruction balance of the truncated equations for the scalar variances and scalar covariance.
Within the framework of the level-2 scheme, all second-moment equations are reduced
to diagnostic algebraic expressions. That is, all second-order moments are in the state of
local production–destruction equilibrium. The level-2 scheme corresponds to a single point
(e/ee = 1, P/Pe = 1) on the e/ee × P/Pe plane. A horizontal line P/Pe = 1 depicts the
level-2.5 scheme, where the TPE is in the state of local production–destruction equilibrium,
whereas the TKE can take on any value different from ee due to the effects of time rate-
of-change, advection and diffusion. A vertical line e/ee = 1 corresponds to the level-2.p
scheme, where the TKE is in the production–destruction equilibrium, whereas the TPE can
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Fig. 7 Truncated second-order closure scheme diagram. The red dot depicts the level-2 algebraic scheme. The
level-2.5 and the level-2.p schemes are shown by the blue and green lines, respectively. The level-3 scheme is
represented by the entire e/ee × P/Pe plane (shown by the background colour)

be different from the equilibrium TPE. Finally, the entire e/ee × P/Pe plane (e and P are
non-negative) corresponds to the most flexible level-3 (TKESV) scheme, where both the
TKE and the TPE can assume any values away from their equilibrium states.

7 Relation to Non-linear Parametrizations of the Pressure-Scrambling
Terms

The idea of the regularization method of Helfand and Labraga (1988) is to restore to the
second-moment equations some information that has been lost because of truncation. Equa-
tion 24 is used to approximately account for the effects of the time rate-of-change and
turbulent diffusion in theReynolds-stress and scalar-flux (and, in the case of level-2.5 scheme,
in the scalar-variance and scalar-covariance) equations. An alternative a posteriori interpre-
tation can be suggested, however.

As discussed above, the use of Eq. 24 amounts to multiplying the production terms in
the truncated equations by a factor 1 − αe, where αe = (de/dt + De) /Ge depends on time
t and vertical coordinate x3. Consider, for example, the buoyancy production term in the
temperature-flux equation 14,

(
1 − Cθ

b

)
τεβ

〈
θ ′
l θ

′
v

〉
, (32)

where Cθ
b is a constant that stems from a linear parametrization of the buoyancy contribution

to the pressure-scrambling term. With the estimate of Cθ
b = 1/3, the isotropic turbulence

constraint is satisfied. Recall that the use of simplified linear parametrizations of the pressure-
scrambling terms is identified as one reason for failure of truncated second-order schemes. If
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Eq. 24 is utilized to develop regularized, well-behaved expressions for fluxes, the buoyancy
production term in the temperature-flux equation becomes

[1 − αe (t, x3)]
(
1 − Cθ

b

)
τεβ

〈
θ ′
l θ

′
v

〉 = [
1 − Cθ

b∗ (t, x3)
]
τεβ

〈
θ ′
l θ

′
v

〉
, (33)

where Cθ
b∗ = Cθ

b + αe
(
1 − Cθ

b

)
is no longer a constant, but a function of t and x3. It varies

from Cθ
b∗ = Cθ

b where αe = 0 (which recovers the original, non-regularized formulation)
to Cθ

b∗ = 1 where αe = 1. Then, the Helfand and Labraga regularization procedure can
be viewed as a parametrization assumption that is in effect similar to the use of non-linear
parametrizations of the pressure-scrambling effects.

A turbulence closure proposed by Craft et al. (1996) (see also Mironov 2001) is an illus-
trative example of a closure based on non-linear parametrizations of the pressure-scrambling
terms. The closure of Craft et al. (1996) incorporates a non-linear formulation, where Cθ

b∗
is a function of the departure-from-isotropy tensor. It satisfies both the isotropic constraint
and the so-called two-component limit (TCL) constraint of strongly anisotropic turbulence.
The TCL is the limit that turbulence approaches when the velocity component (both mean
velocity and turbulent fluctuation) in one direction vanishes. This occurs, for example, near
the rigid boundary, where the velocity component normal to the boundary vanishes as the
boundary is approached. It also occurs in stably stratified layers, where the velocity compo-
nent aligned with the vector of gravity vanishes as the stratification becomes strong. In order
to satisfy the TCL constraint, Cθ

b∗ should tend to one as the velocity component aligned with
the vector of gravity tends to zero. Otherwise, spurious generation of the temperature flux by
the buoyancy forces takes place. Clearly, it is impossible to satisfy both the isotropic and the
TCL constraints if linear parametrizations of the pressure-scrambling terms with a constant
Cθ
b∗ are used. The formulation (33) is not the same as the TCL formulation. For example,

αe → 1 and hence Cθ
b∗ → 1 may occur in the case of quickly growing nearly isotropic tur-

bulence, which is clearly not the TCL. However, if the quickly growing turbulence is nearly
two-component, Eq. 33 would affect the buoyancy terms in the scalar-flux equations in a
similar way as the TCL formulation.

8 Relation toWeak Non-equilibriumHypothesis

The so-called weak non-equilibrium hypothesis (Rodi 1976; Gibson and Launder 1976;
Hanjalić and Launder 2011) is often used to develop turbulence closure schemes of wider
applicability than the schemes, where the time rate-of-change, advection, and third-order
transport of the Reynolds stress and scalar fluxes are entirely neglected.Within the framework
of theweak non-equilibriumhypothesis, the above effects are accounted for in an approximate
way. In this section, the relation between the Helfand and Labraga (1988) approach and the
weak non-equilibrium hypothesis is discussed.

Theweak non-equilibrium hypothesis (Rodi 1976) states that during the flow evolution the
sum of the substantial derivative (equal to ∂/∂t within the framework of the boundary-layer
approximation) and the diffusion of the dimensionless departure-from-isotropy tensor ai j/e
is zero. This yields

d
〈
u′
i u

′
j

〉
/dt + Di j =

〈
u′
i u

′
j

〉de/dt + De

e
, (34)

which states that the ratio of the tendency of the Reynolds-stress component due to d/dt and
D to that component itself is the same as the respective ratio for the TKE. This is at variance
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with the Helfand and Labraga approach, where a parametrization assumption is made about
the ratio of the Reynolds-stress component tendency to its production rate, see Eq. 24.

The application of the weak non-equilibrium hypothesis to the scalar (temperature) flux
(Gibson and Launder 1976) assumes that the normalized scalar flux (the u′

i–θ
′ correlation

coefficient)
〈
θ ′u′

i

〉
/
(〈
θ ′2〉 e

)1/2
remains unchanged as the flow evolves. This yields

d
〈
u′
iθ

′〉 /dt + Dθ i =
〈
u′
iθ

′〉

2

[
de/dt + De

e
+ d

〈
θ ′2〉 /dt + Dθθ〈

θ ′2〉
]

. (35)

Consider a simplified case of shear-free temperature-stratified flow, where the potential
temperature is the only thermodynamic variable that affects buoyancy. Using Eqs. 34 and 35,
we obtain the following equations for a33 and

〈
u′
3θ

′〉,

Cu
t

τε

[
1 + γeτε

Cu
t

]
a33 − 4

(
1 − Cu

b

)

3
β
〈
u′
3θ

′〉 = 0, (36)

Cθ
t

τε

[
1 + (γe + γθ ) τε

2Cθ
t

] 〈
u′
3θ

′〉

+ a33
∂ 〈θ〉
∂x3

+ 2

3
e
∂ 〈θ〉
∂x3

− (
1 − Cθ

b

)
β
〈
θ ′2〉 = 0, (37)

where the quantities

γe = de/dt + De

e
and γθ = d

〈
θ ′2〉 /dt + Dθθ〈

θ ′2〉 (38)

have the dimensions of reciprocal time and are taken to be known from the solutions of the
TKE and the

〈
θ ′2〉 equations. If γe > 0, which corresponds to the regime of growing TKE, the

use of the weak non-equilibrium hypothesis results in the reduction of the Reynolds-stress
relaxation (return-to-isotropy) time scale by a factor of

(
1 + γeτε/Cu

t

)−1 (as compared to the
non-modified system). The reduction of the scalar-flux relaxation time scale is by a factor of[
1 + (γe + γθ ) τε/2Cθ

t

]−1
(provided γe +γθ is positive). The application of the Helfand and

Labraga procedure effectively results in the reduction of the Reynolds-stress and scalar-flux
production rates by a factor of 1 − αe, where αe = (de/dt + De) /Ge is known from the
solution of the TKE equation.

A comparison of Eqs. 36 and 37 with Eqs. 59 and 60, respectively, suggests that in the
regime of growing turbulence the two approaches have similar effect on the Reynolds stress
and scalar fluxes. If γe = γθ and in addition Cθ

t = Cu
t , the two approaches are equivalent.

Both approaches yield Eqs. 59–62 where 1 − αe = (
1 + γeτε/Cu

t

)−1. It should be pointed
out, however, that the weak non-equilibrium hypothesis is usually applied not only in the
regime of growing turbulence, but also during the turbulence decay, where γe < 0 and/or
γe +γθ < 0. As seen from Eqs. 36 and 37, large negative γe and/or γe +γθ may yield infinite
or negative relaxation time scale(s), i.e., a spurious result. Then, further modifications of the
Reynolds-stress and scalar-flux formulations are necessary to avoid their ill behaviour (see,
e.g., Lazeroms et al. 2013, 2015; Z̆eli et al. 2019).
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9 Realizability of Turbulence Closures and the Problem of Moments

Until now, we used the notion of realizability in a somewhat loose sense, being concentrated
mostly on the physically meaningful boundedness of the quantities in question in general
and on the non-negativeness of the non-negatively defined quantities in particular. Whereas
the non-negativeness is a well-defined criterion, the physically meaningful boundedness had
a rather diffuse meaning. Observing continuous unbounded growth of the stability functions,
we were unable to argue without any further knowledge where exactly they still have physi-
cally meaningful values and where already not. The notion of realizability can, however, be
defined mathematically more precisely as the assurance of the existence of the probability
distribution of a random variable with prescribed statistical moments (du Vachat 1977). This
is also known as the moments problem (Shohat and Tamarkin 1943). The solution of the
moments problem can be represented as a precise and complete set of constraints that the
modelled statistical moments should obey. If the modelled statistical moments do not obey
those necessary constraints, then there cannot exist any probability distribution or, equiva-
lently, any random variable possessing thosemoments. In such a case, onemay justifiably say
that the model produces an unphysical solution and is non-realizable. As far as the stability
functions are concerned, the solution to the moments problem does not tell us what their
values should be. However, it tells what the values of stability functions may not take on.

A general solution of the moments problem is deduced from the condition that the proba-
bility density function should be non-negative. For amulti-variate randomvariable, it consists
in the requirement that a matrix of a special kind containing all statistical moments should
be positive semi-definite. It is not easy to present that matrix in a generic and compact way.
By way of illustration, we denote the components of the multi-variate random variable as
{a, b, ..., z} and present the first row of the matrix which should contain all moments in the
ascending order, starting with the zeroth-order moment. That is

1 〈a〉 〈b〉 · · · 〈z〉 〈a2〉 〈ab〉 · · · 〈az〉 〈b2〉 · · · 〈bz〉 · · · 〈z2〉 〈a3〉 〈a2b〉 · · · (39)

The same sequence as in (39) constitutes the first column. The element in the i th row and the
j th column of the matrix is determined by multiplying the (not averaged) quantities standing
in the first row of the j th column and in the first column of the i th row and by subsequent
averaging. Note that in our application the variables are centered (fluctuations about the mean
values are considered). Hence 〈a〉 = 0, and the same holds for all other variables.

In accordance with the Sylvester’s criterion (see, e.g., Shafarevich and Remizov 2013),
positive semi-definiteness of a matrix is equivalent to non-negativeness of all its principal
minors (the determinants of smaller quadratic matrices obtained by crossing out all possible
subsets of columns and rows with the same number). This requirement leads to an infinite
chain of inequalities relating the moments of all orders to each other. If, however, positive
definiteness of the matrix in question rather than its positive semi-definiteness were required
(e.g., if wewould not allow variances to be exactly zero), then it would be sufficient to demand
that all leading principal minors be positive. Recall that the leading principal minors are the
determinants of the smaller quadratic matrices (of all orders), which are merely the upper left
corners of the original matrix. It may seem that the order of the variables in the matrix matters
and different variables will not have equal rights. This is not the case, however. Crossing out
all columns and rows except for m first columns and rows (m = 1, . . . ) is in fact equivalent,
in the case of positive definiteness, to crossing out all possible sub-sets of columns and rows.
This can readily be seen from the following example. Consider the second-order and the
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third-order leading principal minors of the matrix
⎛

⎜⎜
⎝

1 0 0 · · ·
0

〈
a2
〉 〈ab〉 · · ·

0 〈ab〉 〈
b2
〉 · · ·

· · · · · · · · · · · ·

⎞

⎟⎟
⎠ . (40)

The requirements
〈
a2
〉
> 0 (second-order leading principal minor is positive) and

〈
a2
〉 〈
b2
〉−

〈ab〉2 > 0 (third-order leading principal minor is positive) immediately yield
〈
b2
〉

> 0.
However, this is no longer true if

〈
a2
〉
is allowed to be zero. Indeed, if

〈
a2
〉 = 0 and 〈ab〉 = 0,〈

a2
〉 〈
b2
〉−〈ab〉2 ≥ 0 is satisfied at any value of

〈
b2
〉
. This point was apparently overlooked in

Schumann (1977), where it was pointed out that non-negative leading principal minors are
sufficient for the matrix to be positive semi-definite.

Now we consider moist turbulence and limit ourselves to the second-order moments. For
five random fields (three components of ui , θl and qt ), the matrix has the following form

⎛

⎜⎜⎜⎜
⎝

〈
u′2
1

〉 〈
u′
1u

′
2

〉 〈
u′
1u

′
3

〉 〈
u′
1θ

′
l

〉 〈
u′
1q

′
t

〉
〈
u′
2u

′
1

〉 〈
u′2
2

〉 〈
u′
2u

′
3

〉 〈
u′
2θ

′
l

〉 〈
u′
2q

′
t

〉
〈
u′
3u

′
1

〉 〈
u′
3u

′
2

〉 〈
u′2
3

〉 〈
u′
3θ

′
l

〉 〈
u′
3q

′
t

〉
〈
θ ′
l u

′
1

〉 〈
θ ′
l u

′
2

〉 〈
θ ′
l u

′
3

〉 〈
θ ′2
l

〉 〈
θ ′
l q

′
t

〉
〈
q ′
t u

′
1

〉 〈
q ′
t u

′
2

〉 〈
q ′
t u

′
3

〉 〈
q ′
tθ

′
l

〉 〈
q ′2
t

〉

⎞

⎟⎟⎟⎟
⎠

, (41)

where the row and the column containing only one and zeros (the variables are centered)
are omitted. The requirement of non-negative definiteness of the matrix (41) generates five
inequalities from the first-order minors, ten inequalities from the second-order minors, ten
inequalities from the third-order minors, five inequalities from the fourth-order minors, and
one inequality expressing the non-negativeness of the determinant of the entire matrix. Those
inequalities impose powerful constraints on the second-order moments and hence on the
stability functions. Consideration of all 21 constraints is rather cumbersome. By way of
illustration, we analyze a simplified case of dry, shear-free flow considered in Appendices 2
and 3. Note though that the white area in Fig. 5 where the stability functions are ill-behaved
widens as Ri decreases, suggesting that it is this seemingly simple shear-free convection case
that is potentially the most dangerous.

In the dry, shear-free flow,
〈
u′
1q

′
t

〉 = 〈
u′
2q

′
t

〉 = 〈
u′
3q

′
t

〉 = 0,
〈
q ′2
t

〉 = 0,
〈
q ′
tθ

′
l

〉 = 0,
〈
u′
1u

′
2

〉 =〈
u′
1u

′
3

〉 = 〈
u′
2u

′
3

〉 = 0,
〈
u′
1θ

′
l

〉 = 〈
u′
2θ

′
l

〉 = 0, and θl = θ . The matrix (41) is simplified to give

⎛

⎜⎜
⎝

〈
u′2
1

〉
0 0 0

0
〈
u′2
2

〉
0 0

0 0
〈
u′2
3

〉 〈
u′
3θ

′〉

0 0
〈
θ ′u′

3

〉 〈
θ ′2〉

⎞

⎟⎟
⎠ . (42)

The requirement of non-negative definiteness of the matrix (42) yields the following inequal-
ities,

〈
u′2
1

〉 ≥ 0,
〈
u′2
2

〉 ≥ 0,
〈
u′2
3

〉 ≥ 0,
〈
θ ′2〉 ≥ 0, (43)

〈
u′2
3

〉 〈
θ ′2〉− 〈

u′
3θ

′〉2 ≥ 0, (44)

which state that the variances are non-negative and the magnitude of the temperature-flux
correlation coefficient does not exceed 1. In what follows, we derive the constraints these
inequalities impose on the second-order moments of the regularized TKESV scheme.
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For the level-3 schemes, the temperature variance
〈
θ ′2〉 is an independent prognostic vari-

able that may be regarded as an external parameter for the algebraic equation system for the
second-order moments. Non-negativeness of

〈
θ ′2〉must be ensured by its transport equation.

Since in shear-free convection regime
〈
u′
3θ

′〉 ≥ 0, Eq. 59 shows that the vertical-velocity
variance is non-negative as well.

Substituting the expression of
〈
u′2
3

〉
from (59) and (67) into (44), then eliminating

〈
u′
3θ

′〉

with the help of (61) and (67), we obtain the following constraint,

[
2

3
+ 4

(
1 − Cu

b

)

3Cu
t

]
P

e
≥
(
e

ee

)−1

. (45)

Equation 45 shows that, although the stability functions of the regularized TKESV scheme
are well-behaved, the scheme can still be non-realizable at certain values of TPE and/or
TKE. In other words, realizability in strict mathematical sense imposes additional, more
rigid constraints as compared to the requirements that some quantities are non-negative and
finite.

Although it may seem different at a glance, the realizability constraint (45) is in fact very
mild as far as practical applications are concerned. The above inequality may be violated
where either e is (very) small as compared to ee, or P is (very) small as compared to e (or
both conditions hold). This is rarely encountered in practice. Numerical experiments with the
TKESVscheme (results not shown) indicate that the inequality (45) is virtually never violated.
The violation may occur over a certain adjustment period if TPE is poorly initialized, e.g., if
e and ee are both positive but P is set equal to zero. However, mean-gradient production and
vertical diffusion will ensure a quick build-up of the scalar variances, and hence of the TPE,
if the TKE is non-zero. Still there is no guarantee that a turbulence scheme will never fall
into the non-realizable state, but it is highly desirable that the scheme is able to handle any
theoretically allowable values of the mean and turbulence quantities. We therefore propose
to apply a simple clipping to the scalar (co)variances, or to the scalar fluxes, so that the
realizability requirements are satisfied.

The realizability constraints given by the first two members of Eq. 43 state that the hori-
zontal velocity variances are non-negative. Using Eq. 62 with due regard for (60), (61) and
(67), we obtain after some algebra

Cu
t ≥ 1 − Cu

b . (46)

This relation demonstrates the usefulness of the realizability considerations in developing
turbulence models. The realizability constraints may help limit the allowable values of the
model constants. With the values ofCu

t andCu
b used within the TKESV scheme (see Sect. 2),

Eq. 46 is satisfied.
The above analysis is limited to the second-order turbulence moments. Principle minors

containing higher-ordermoments yield further powerful constraints that help limit disposable
parameters of turbulencemodels and help control themodel behaviour during the integration.
Illustrative examples are the relations between skewness and kurtosis of fluctuating fields
(e.g., André et al. 1976; Gryanik et al. 2005). Consideration of realizability constraints on
high-order turbulence moments is beyond the scope of the present paper.
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10 Conclusions

The problemof realizability of truncated second-order closure schemes formoist atmospheric
boundary-layer turbulence is addressed through the consideration of the so-called stability
functions. The emphasis is on the TKE–scalar variance closure schemes (the level-3 schemes
in the nomenclature of Mellor and Yamada 1974) that carry prognostic transport equations
for the TKE and for the (co)variances of scalar quantities (e.g., liquid water potential tem-
perature and total water specific humidity). The stability functions were introduced (Mellor
and Yamada 1974, 1982; Yamada 1977) to represent the formulations of the Reynolds stress
and scalar fluxes in a compact form. They appear within the framework of truncated closure
schemes, where (i) the Reynolds-stress and scalar-flux equations (and, within the frame-
work of one-equation TKE schemes, also equations for scalar variances and covariance) are
reduced to the diagnostic algebraic formulations by neglecting the substantial derivatives and
the third-order transport terms, and (ii) linear parametrizations (in the second-order moments
involved) of the pressure-scrambling terms are used. The stability functions are ill-behaved
over a certain range of governing parameters, e.g., mean velocity shear and buoyancy gradi-
ent. They tend to infinity or become negative in the regime of growing turbulence, where the
actual value of the TKE is smaller than the equilibrium TKE corresponding to the steady-
state production–dissipation balance. The ill-behaved stability functions inevitably lead to
malfunctioning of turbulence closure schemes.

Regularized stability functions for theTKESVclosure scheme (Mironov andMachulskaya
2017) are developed that reveal no pathological behaviour over their entire parameter space
(provided a stability-dependent formulation of the turbulence length/time scale is used). To
this end, the approach (regularization procedure) of Helfand and Labraga (1988) is invoked.
The approach, originally developed for the one-equation TKE schemes, is extended to the
TKESV scheme. The idea is to account, in an approximate way, for the effects of time rate-of-
change, advection, and diffusion in those truncated second-moment equations in which these
effects have been neglected. That is, some information that has been lost because of truncation
is restored to the second-moment equations. The physical meaning of the regularization
procedure and its relation to the non-linear, more physically sound parametrizations of the
pressure-scrambling terms are discussed. It is shown that the Helfand and Labraga approach
can be viewed as a parametrization assumption that is in effect similar to the use of non-linear
parametrizations of the pressure-scrambling effects.

The relation between the Helfand and Labraga (1988) approach and the weak non-
equilibrium hypothesis (Rodi 1976; Gibson and Launder 1976; Hanjalić and Launder 2011)
often used to develop turbulence closure schemes is considered. It is demonstrated that, in
the regime of growing turbulence, the use of the Helfand and Labraga procedure effectively
results in the reduction of the Reynolds-stress and scalar-flux production rates, whereas the
use of the weak non-equilibrium hypothesis results in the reduction of the Reynolds-stress
and scalar-flux relaxation (return-to-isotropy) time scales. Where the TKE is smaller than its
equilibrium value, the two approaches have similar effect on the Reynolds stress and scalar
fluxes.

Finally, realizability of turbulence closures is considered within a more general and math-
ematically more rigorous framework of the moments problem of the probability theory.
Realizability in strict mathematical sense imposes additional, more rigid constraints as com-
pared to the requirements that some quantities handled by a turbulence scheme are merely
non-negative and finite. The realizability constraints help control the model behaviour by
imposing limits on the values of turbulence moments computed by a closure scheme. They
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can also limit disposable parameters of turbulence schemes and are, therefore, of considerable
help for the model development purposes.

The results from the present study are useful for numerical weather prediction, cli-
mate modelling, and related applications. Numerical weather prediction and climate models
require physically sound and, importantly, robust turbulence parametrization schemes. Those
schemes should be applied around the clock and (within global models) over the entire
atmosphere, they should be able to handle any atmospheric turbulence regime. Unless regu-
larized stability functions are applied, the TKESV scheme, as well as similar rather advanced
turbulence parametrization schemes, cannot be utilised. Ill-behaved stability functions will
inevitably lead to an atmospheric model blow-up. The use of regularized stability functions
developed herein makes the schemes much more robust.

The TKESV closure scheme of Mironov and Machulskaya (2017) with the regularized,
well-behaved stability functions reported in the present study is implemented into the numer-
ical weather prediction model ICON (ICOsahedral Nonhydrostatic modelling framework).
Testing through numerical experiments is underway at the German Weather Service; results
will be reported later.
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Appendix 1: Turbulence Potential Energy

The quantity P defined by Eqs. 21 and 22 naturally appears in the equations for the Reynolds
stress and scalar fluxes. It is characteristic of the potential energy of turbulent flow and
can, therefore, be referred to as the turbulence potential energy (TPE). By way of illus-
tration, consider the temperature-stratified fluid, where potential temperature θ is the only
thermodynamic variable that affects buoyancy. Then, ql = 0, qt = 0, θl = θ , Iθ = 1,
N 2 = β∂ 〈θ〉/∂x3, and the definition of potential energy (21) is simplified to give

P = τ 2ε β2 〈θ ′2〉 . (47)

The definition of TPE is not unique, however. For example, the following definition of
TPE has been used in the analyses of atmospheric turbulence (see e.g. Zilitinkevich et al.
2007; Mauritsen et al. 2007),

PN = 1

2
N−2β2 〈θ ′2〉 . (48)

A transport equation for PN can be readily derived using the transport equation for buoyancy
(potential temperature) variance. Assuming that N 2 varies slowly in space and time, and
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using the boundary-layer approximation, we obtain

∂PN
∂t

= −β
〈
u′
3θ

′〉− 1

2

∂

∂x3

(
β2

N 2

〈
u′
3θ

′2〉
)

− β2

N 2 εθθ , (49)

In the boundary-layer approximation, the transport equation for the TKE reads

∂e

∂t
= β

〈
u′
3θ

′〉−
(〈
u′
1u

′
3

〉 ∂ 〈u1〉
∂x3

+ 〈
u′
2u

′
3

〉 ∂ 〈u2〉
∂x3

)

− ∂

∂x3

(
1

2

〈
u′
3u

′2
i

〉+ 〈
u′
3 p

′〉
)

− ε. (50)

The buoyancy flux β
〈
u′
3θ

′〉 appears with the opposite signs in Eqs. 49 and 50. It describes
the rate of conversion of the TPE to the TKE that occurs in unstable density (buoyancy)
stratification, and vice versa where the stratification is stable. The use of TPE defined through
Eq. 48 is advantageous as it makes the TPE transport equation particularly convenient and
facilitates the analysis of turbulence energetics. For example, Eqs. 49 and 50 can be added,
leading to the total (TPE+TKE) turbulence energy equation that has been used by some
researchers in the analyses of stably-stratified turbulent flows (e.g. Zilitinkevich et al. 2007,
2009, 2013; Mauritsen et al. 2007).

Note, however, that the TPE defined through Eq. 48 is a well-defined quantity (non-
negative and finite) only if the flow is stably stratified (N 2 > 0). The quantity PN bears
a close analogy to the available potential energy defined as a part of the total potential
energy of the stratified flow that can be converted to kinetic energy (see, e.g., Vallis 2006,
for a comprehensive discussion). Where the buoyancy stratification is neutral (N 2 = 0) or
unstable (N 2 < 0), PN is infinite or negative and is not really convenient to use. For theEarth’s
atmosphere, where the buoyancy stratification is due to both temperature and humidity, and
the thermodynamics is strongly complicated by phase changes, a TPE transport equation as
simple and elegant as Eq. 49 is difficult to derive. It is therefore advantageous to work with
the variance and covariance equations for the scalar quantities that can be derived from the
first principles in a fairly straightforward way. The quantity P defined by Eqs. 21 and 22,
or by Eq. 47 in the case of temperature-stratified flow, is merely a diagnostic quantity that
naturally appears in the equations for the Reynolds stress and scalar fluxes. It has the physical
meaning or turbulence potential energy but a separate transport equation for P is actually
not needed.

Appendix 2: Stability Functions in Shear-Free Flow

Consider a simple case of shear-free (and rotation-free) flow. With Si j = Wi j = 0,
the Reynolds-stress and scalar-flux equations 13–15 are considerably simplified. The off-
diagonal components of the Reynolds stress tensor are zero,

〈
u′
1u

′
2

〉 = 〈
u′
1u

′
3

〉 = 〈
u′
2u

′
3

〉 = 0
and so are the horizontal components of the scalar fluxes,

〈
u′
1θ

′
l

〉 = 〈
u′
2θ

′
l

〉 = 0 and〈
u′
1q

′
t

〉 = 〈
u′
2q

′
t

〉 = 0. The diagonal components of the Reynolds stress tensor (the veloc-
ity variances) are given by

〈
u′2
1

〉 = 〈
u′2
2

〉 = 2

3
e − 2

(
1 − Cu

b

)

3Cu
t

τεβ
〈
u′
3θ

′
v

〉
, (51)

〈
u′2
3

〉 = 2

3
e + 4

(
1 − Cu

b

)

3Cu
t

τεβ
〈
u′
3θ

′
v

〉
, (52)
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where
〈
u′
3θ

′
v

〉
is expressed through

〈
u′
3θ

′
l

〉
and

〈
u′
3q

′
t

〉
using Eq. 12. The vertical scalar fluxes

are given by

〈
u′
3θ

′
l

〉 = −FH1τεe
∂ 〈θl〉
∂x3

+ FH2τεβ
〈
θ ′
l θ

′
v

〉
, (53)

〈
u′
3q

′
t

〉 = −FH1τεe
∂ 〈qt 〉
∂x3

+ FH2τεβ
〈
q ′
tθ

′
v

〉
, (54)

FH1 =
[

1 + 4
(
1 − Cu

b

)

3Cu
t C

θ
t

τ 2ε N
2

]−1 [
2

3Cθ
t

+ 4
(
1 − Cu

b

) (
1 − Cθ

b

)

3Cu
t
(
Cθ
t
)2

P

e

]

, (55)

FH2 = 1 − Cθ
b

Cθ
t

, (56)

where N 2 and P are given by Eqs. 20–22. In the shear-free limit,FH2 is merely a constant and
FH1 is a function of τ 2ε N

2 and P/e. There is no problemwith the stability functionFH1 in the
case of stable buoyancy stratification, where N 2 is positive. If the stratification is unstable,
N 2 is negative, and the expression in the denominator (first set of square brackets) on the
r.h.s. of Eq. 55 may approach zero or become negative, leading to physically meaningless
values of FH1.

A similar problem with the stability functions is encountered within the framework of a
one-equation closure scheme that carries prognostic transport equation for the TKE, whereas
all other second-moment equations, including the scalar-variance and scalar-covariance equa-
tions, are reduced to diagnostic algebraic expressions. Consider a temperature-stratified flow
where θl = θ . Within the framework of the one-equation TKE scheme, the following down-
gradient formulation for the vertical potential-temperature flux holds,

〈
u′
3θ

′〉 = −FHτεe
∂ 〈θ〉
∂x3

, (57)

FH = 2

3Cθ
t

{

1 +
[
4
(
1 − Cu

b

)

3Cu
t C

θ
t

+ 2Rτ

1 − Cθ
b

Cθ
t

]

τ 2ε N
2

}−1

. (58)

As Eq. 58 suggests, FH may become infinite or negative in convective conditions, where
N 2 < 0.

The above considerations help explain why the stability functions are well-behaved in
the case of equilibrium or decaying turbulence but may become pathological in the case of
growing turbulence (see Sect. 5 and 6). Recall that no ill behaviour is encountered if the TKE
is in the state of production-dissipation equilibrium (level-2 and level-2.p schemes). That is,
the value of τ 2ε N

2 corresponding to the equilibrium TKE ee does not lead to ill behaviour of
FH1 and FH given by Eqs. 55 and 58, respectively. As Eq. 11 suggests, the larger the TKE,
the smaller the dissipation time scale. Then, in the case of decaying turbulence, where e > ee
by definition, the value of τ 2ε N

2 is smaller in magnitude than in the equilibrium case, and no
pathology is encountered. As the term “growing” implies, the TKE is small as compared to
its equilibrium value. Then, τ 2ε N

2 in Eqs. 55 and 58 may become large in magnitude (N 2 is
negative in convective conditions), leading to infinite or negative stability functions.
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Appendix 3: Derivation of the Regularized Stability Functions of the
TKESV Scheme in the Case of Shear-Free Flow

To simplify the discussion, consider a temperature-stratified flow,where the potential temper-
ature is the only thermodynamic variable. In the shear-free case, the off-diagonal components
of the Reynolds stress tensor are zero, and so are the horizontal components of the temper-
ature flux. Within the framework of the regularized level-3 (TKESV) closure scheme, the
equations for the “33” component of the departure-from-isotropy tensor (and hence for the
vertical-velocity variance), for the vertical temperature flux, and for the TKE read

Cu
t

τε

a33 − (1 − αe)
4
(
1 − Cu

b

)

3
β
〈
u′
3θ

′〉 = 0, (59)

Cθ
t

τε

〈
u′
3θ

′〉+ (1 − αe)

[
a33

∂ 〈θ〉
∂x3

+ 2

3
e
∂ 〈θ〉
∂x3

− (
1 − Cθ

b

)
β
〈
θ ′2〉

]
= 0, (60)

e

τε

− (1 − αe) β
〈
u′
3θ

′〉 = 0, (61)

where αe = (de/dt + De) /Ge. Once the system (59)–(61) is solved, a11 and a22, and hence
the horizontal velocity variances, are computed from

a11 = a22 = − (1 − αe)
2
(
1 − Cu

b

)

3Cu
t

τεβ
〈
u′
3θ

′〉 . (62)

Consider first the level-2.p scheme, where αe = 0, i.e., the TKE is in the state of local
production–dissipation equilibrium. Solving the system (59)–(61), we obtain the following
expression for the vertical temperature flux,

〈
u′
3θ

′〉 = −F2.p
H1 τεeee

∂ 〈θ〉
∂x3

+ F2.p
H2 τεeβ

〈
θ ′2〉 , (63)

F2.p
H1 = 2

3Cθ
t

+ 4
(
1 − Cu

b

)

3Cu
t C

θ
t

, F2.p
H2 = 1 − Cθ

b

Cθ
t

. (64)

The stability function F2.p
H1 of the level-2.p scheme is simply a constant which clearly cannot

cause pathological behaviour of the temperature flux (cf. Eq. 55). The equilibrium TKE dis-
sipation time scale τεe is computed through the turbulence length scale l and the equilibrium
TKE ee using Eq. 11.

Now consider the case of αe > 0. It is easy to check that the following variable transfor-
mation in Eqs. 59–61,

τε/τεe = (1 − αe)
−1 , (65)

results in the systemof equations that has the same formas the systemof equations of the level-
2.p scheme analyzed above. Taking advantage of this similarity, the following expressions
for the vertical temperature flux is obtained,

〈
u′
3θ

′〉 = −F2.p
H1 τεee

∂ 〈θ〉
∂x3

+ F2.p
H2 τεeβ

〈
θ ′2〉 , (66)

where the stability functions are given by Eq. 64. Then, we invoke Eq. 11 and demand that
turbulence length scales in the level-3 scheme (with non-equilibrium TKE) and the level-2.p
scheme (with equilibrium TKE) are identical. This yields

1 − αe = (e/ee)
1/2 . (67)
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Now substituting τε (1 − αe) for τεe in Eq. 66 and using Eq. 67 to express 1−αe through the
equilibrium and non-equilibrium TKE, ee = e2.p and e = e3, respectively, yields Eqs. 28b
and 28c for the regularized stability functions of the level-3 (TKESV) scheme, where the
stability functions of the level-2.p scheme given by Eq. 64 are well-behaved.

A consideration of the general case of stratified shear flow is principally the same as of
the shear-free flow, but the derivations are more lengthy.
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