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Abstract
Cancer continues to be among the leading healthcare problems worldwide, and efforts continue not just to find better drugs, but
also better drug deliverymethods. The need for delivering cytotoxic agents selectively to cancerous cells, for improved safety and
efficacy, has triggered the application of nanotechnology in medicine. This effort has provided drug delivery systems that can
potentially revolutionize cancer treatment. Nanocarriers, due to their capacity for targeted drug delivery, can shift the balance of
cytotoxicity from healthy to cancerous cells. The field of cancer nanomedicine has made significant progress, but challenges
remain that impede its clinical translation. Several biophysical barriers to the transport of nanocarriers to the tumor exist, and a
much deeper understanding of nano-bio interactions is necessary to change the status quo. Mathematical modeling has been
instrumental in improving our understanding of the physicochemical and physiological underpinnings of nanomaterial behavior
in biological systems. Here, we present a comprehensive review of literature onmathematical modeling works that have been and
are being employed towards a better understanding of nano-bio interactions for improved tumor delivery efficacy.

Keywords Agent-basedmodeling .Cancertreatment .Drugtransport .Mechanisticmodeling .Multiscale .Pharmacokineticsand
pharmacodynamics

1 Introduction

Leveraging on the improvements in nanotechnology,
nanomaterials can bemeticulously engineered to obtain repro-
ducible and custom biological behavior, which has catalyzed
progress in the field of cancer nanomedicine through targeted
delivery of biopharmaceutical agents to solid tumors.
Nanoparticle1 (NP)-based formulations (nanocarriers) are
used to package and deliver cargos that are too toxic, insolu-
ble, rapidly cleared, or unstable for delivery as free molecules

(e.g., chemotherapeutic drugs, silencing RNAs, and contrast
agents). Nanocarriers have been demonstrated to facilitate the
delivery of such agents specifically to the tumor site by pas-
sive accumulation or active targeting (Sykes et al. 2014a),
thereby overcoming potential drug-resistance mechanisms
(Brocato et al. 2014). Whereas the former phenomenon de-
pends on the leakiness of tumor vessels (defined as enhanced
permeability and retention or EPR effect) (Jain and
Stylianopoulos 2010), the latter involves surface
functionalization of NPs with ligands specific to receptors

1 Microscopic particles with aerodynamic diameter < 100 nm.
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on the tumor cell surface. A prolonged circulation half-life is
generally regarded as a common prerequisite for either process,
and NPs have been demonstrated to alter the pharmacokinetics
(PK) of the cargo and enhance its circulation half-life, thereby
promoting delivery specifically to the tumor and reducing col-
lateral damage to healthy cells (Chow et al. 2011). Additionally,
nanocarriers can be engineered to allow triggered release of
cargo, i.e., the payload remains encapsulated inside NPs unless
a particular physiological or external stimulus is presented, e.g.,
pH, enzymes, temperature, or electromagnetic radiation. To
date, a diverse variety of nanomaterials have been developed
for tumor delivery applications. They include organic (e.g.,
polymeric, liposomal, solid lipid) and inorganic (e.g., silica,
gold, iron, titanium) NPs, which can be spherical, rod-like, or
disc-like in shape (among others), can be synthesized in a range
of sizes, and possess a net surface charge (zeta potential).While
remarkable progress has been made in the field of cancer
nanomedicine over the past 50 years (Fig. 1), and some
nanocarriers are already in clinical use (Table 1), there are sig-
nificant challenges that remain unanswered, impeding the clin-
ical translation of a majority of nanocarriers (Shi et al. 2016).

Based on ameta-analysis of literature in cancer nanomedicine
over the past decade (Wilhelm et al. 2016), it has been noted that
on average only 0.7% of the injected dose of NPs reaches the
tumor. This is generally ascribable to the biological barriers to
transport of NPs that span across multiple scales and pose a
serious threat to the clinical translation of upcoming
nanoformulations, making it imperative to investigate the under-
lying nano-bio interactions responsible for the suboptimal tumor
deliverability of nanocarriers. While certain physicochemical
properties of NPs may correlate with higher tumor deliverability
in vitro or in vivo (e.g., size <100 nm, neutral charge, and rod-
shape (Albanese et al. 2012; Wilhelm et al. 2016)), an improved
understanding of biological barriers faced by nanocarriers can

provide NP design guidelines for optimized tumor delivery, and
foster their clinical translatability. To this end, mathematical
modeling has been an important tool in supporting cancer
nanomedicine, and also for many other cancer research fields
(Wang and Deisboeck 2014; Wang et al. 2015; Wang and
Maini 2017). For example, modeling has provided mechanistic
understanding of phenomenological observations based on
physical principles and helped establish important quantitative
relationships. Modeling efforts in cancer nanomedicine have
been applied to phenomena spanning several biologically rele-
vant scales in time and space (Fig. 2). Here, we review various
mathematical modeling techniques that have been helpful to the
field of cancer nanomedicine to answer questions related to
nano-bio interactions and to provide insights into the problem
of low tumor deliverability of NPs.

2 The voyage of nanoparticles

Before we discuss any specific modeling work, it is critical to
understand the journey of NPs from the site of injection to the
site of action, which can be broadly divided into three phases:
i) vascular, ii) transvascular, and iii) interstitial, to reach the
cancerous cells (Fig. 3) (Jain and Stylianopoulos 2010;
Chauhan et al. 2011; Nichols and Bae 2012). NPs are faced
with physical and physiological challenges during these stages
of transport that strongly influence their biological fate.

Immediately after NPs are injected into the blood stream,
they are exposed to a high concentration of plasma proteins
(60–80 g ∙ l−1), such as albumins, apolipoproteins, and opso-
nins, which adsorb on the particle surface and form a sur-
rounding biomolecular corona that redefines their chemical
identity and provides them with the so-called biological
identity, and ultimately plays an important role in governing
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nano-bio interactions (Monopoli et al. 2012; Caracciolo et al.
2017). The bimolecular corona around the particles is a dy-
namic entity and, depending upon the relative affinity of the
proteins for the NP surface, the coronas at steady state can
have varied compositions. The nature of the corona can im-
pact nano-bio interactions by affecting the hydrodynamic size,
surface charge, and immunogenicity of the NPs, thereby af-
fecting their cellular internalization, biodistribution, and cir-
culation half-life (Aggarwal et al. 2009).

Simultaneously, NPs are transported across the body via
the vascular network, and upon arrival at the finest blood
vessels, i.e., capillaries, particles are faced with special ana-
tomical, physiological, and hemodynamic conditions that
strongly influence their fate. Healthy capillaries are broadly
classified as: i) continuous, ii) fenestrated, and iii) sinusoidal,
depending upon the upper limit of pore size in the vessel
walls. Continuous capillaries have pore sizes <5 nm (e.g.,
brain, lungs, muscles, skin), fenestrated capillaries haves
pores <15 nm (e.g., kidneys), and sinusoids in liver have pores
<200 nm, while those in spleen are ~5 μm (Sarin 2010). Thus,
the NP to pore size ratio becomes a determining factor (be-
sides surface charge) in the extravasation of NPs into tissue
interstitium (Stylianopoulos et al. 2013) or excretion in kid-
neys (Choi et al. 2007). In addition, the presence of resident
macrophages in the lumen of capillaries causes NPs, which
are already opsonized,2 to be imminently phagocytosed and
removed from circulation, thereby affecting their circulation
time in the body. Kupffer cells of the liver (Tsoi et al. 2016)
and splenic macrophages (Cataldi et al. 2017) have been rec-
ognized to contribute significantly to this mechanism of NP
clearance. Given the significant decrease of blood flowrate in
capillaries (~1mm ∙ s−1), compared to larger vessels (>10 cm ∙
s−1), hemodynamic conditions exist in capillaries conducive

for NP interaction with vessel wall pores or immune cells (Jain
and Stylianopoulos 2010; Tsoi et al. 2016). However, it is
important as a prerequisite that NPs gain near-wall access
via a size-, shape-, and hematocrit3-dependent phenomenon
referred as margination4 (Lee et al. 2013; Müller et al. 2014).
As a result, a complex interplay between these microscopic
interactions inside blood capillaries defines the global
biodistribution and clearance of NPs from the body, thereby
strongly influencing the tumor delivery of NPs (Dogra et al.
2018).

Once NPs enter into the tumor interstitium following cap-
illary extravasation, they are subject to a hostile microenviron-
ment that weakens convective transport; thus diffusion be-
comes the primary means of transport for NPs. This signifi-
cantly limits the penetration distance and delivery of cargo to
cancerous cells distant from the tumor-feeding capillaries
(Deisboeck et al. 2011; Pascal et al. 2013b; Wang et al.
2016; Cristini et al. 2017). Readers are referred to the follow-
ing review for a detailed discussion on intra-tumoral trans-
port barriers responsible for chemotherapy resistance
(Brocato et al. 2014).

3 Mathematical modeling in cancer
nanomedicine

We now discuss mathematical modeling works that focus on
the above mentioned biophysical processes for optimizing NP
design towards improved tumor delivery and efficacy. The
following sections are organized based on the problem they
seek to investigate (Table 2). Upon entering the blood stream,
the formation of an enveloping protein corona changes the
biochemical properties of NPs, a process which is best

2 Adsorbed with plasma proteins of the complement system (opsonins) that
cause recognition of xenobiotics by the immune system.

3 Volume percentage of red blood cells in blood.
4 Lateral drift of particles towards the vessel well.

Fig. 2 Classification of
mathematical models.
Mathematical models in cancer
nanomedicine can be classified
based on the characteristic
spatiotemporal scale of the system
under consideration

40 Page 4 of 23 Biomed Microdevices (2019) 21: 40



described mathematically by kinetic models or coarse-grained
molecular dynamics simulations. Subsequent to corona for-
mation, the biochemically altered NPs are transported via
blood to tumor and various organs. The processes during
transport are modeled by discrete, hybrid, or continuum
models at the microscopic or mesoscopic length scales.
Once NPs arrive at the capillary wall or extravasate into the
extravascular space, cellular uptake of NPs is modeled using
discrete modeling approaches. The emergent whole-body dis-
tribution and clearance of NPs due to microscopic nano-bio
interactions is described by pharmacokinetic models, while
tumor deliverability of particles is studied using hybridmodel-
ing methods. Finally, nanotherapy efficacy and toxicity are
evaluated with pharmacodynamic models.

3.1 Biomolecular corona formation

Kinetic modeling In a first attempt to model the NP-protein
interactions during corona formation, Dell’Orco et al. devel-
oped a mathematical model to describe the kinetics of com-
petitive interaction of human serum albumin (HSA), high den-
sity lipoprotein (HDL), and fibrinogen for binding with a
70 nm-sized copolymer NP (Dell'Orco et al. 2010). The mod-
el, based on the law of mass action, is formalized as a system
of three linear first order differential equations describing the
interaction of each protein with the NPs, represented as:

d NP∙pro½ �
dt

¼ nprokonpro NP½ � pro½ �−koffpro NP∙pro½ �; ð1Þ

where [NP], [pro], and [NP ∙ pro] represent the concentration
of NPs, protein, and NP-protein complex, respectively, and

konpro and k
off
pro are the association and dissociation rate constants

of NP-protein binding. npro, which is the number of available
binding sites on NP surface for a given NP-protein pairing, is
approximated by the ratio of surface area of the NP-protein
complex and cross-sectional area of protein molecules, assum-

ing a spherical shape, given by npro ¼ 4π rNPþrproð Þ2
πr2pro

protein

radius. This model has been used to simulate the temporal
evolution of the corona composition that seems to depend
on the association and dissociation rate constants of the pro-
teins that govern the time required to reach steady state.
Simulation results show that over time, the high affinity
HDL displaces HSA from the corona, despite the much higher
plasma concentration of the latter, primarily because of a rel-
atively lower affinity of HSA for the NPs (Vroman effect).
They also extended the model to study the effect of corona
formation on the binding of NPs to target cell surface recep-
tors, taking into account the kinetic, stoichiometric, and geo-
metric variables of the system (Dell'Orco et al. 2012). Global
sensitivity analysis revealed that successful NP-receptor bind-
ing is more strongly dependent on NP size than the number
and size of peptides bound to NP surface.

Sahneh et al. made further improvements to the model by
using population balance equations to derive the ordinary dif-
ferential equations (ODEs) for successive binding of HSA,
HDL, and fibrinogen to NPs, i.e. binding of a protein when
the NP is already covered with different proteins, thereby
representing a more realistic physiological scenario (Sahneh
et al. 2013). Briefly, Sahneh et al. revised the NP-protein
binding biochemical reactions such that Eq. (1) is modified to:

d NP∙pro½ �
dt

¼ nprokonpro pro½ �Y−koffpro NP∙pro½ � ð2Þ

Site of injection

Site of action
Not to scale

Endothelium
NPs
RBCs

Basement 
membrane

Tumor cells

Extracellular
matrix

Diffusion Convection

Vascular

Transvascular

Interstitial

Tumor

Fig. 3 Nanoparticle transport
in tumors. Biophysical barriers
involved in the delivery of NPs to
tumors via microcirculation
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where Y ¼ NP½ �0− ∑
m

j¼1
pro j∙NP½ �
npro j

 !
is the concentration of

available binding sites, as governed by the presence of already
bound proteins on NP surface. This model reveals the tempo-
ral evolution of corona formation progressing from an early
metastable composition to a late stable composition
representing the hard corona, thus providing a mathematical
underpinning to the phenomenon which can be used to make
projections about NP behavior in varied physiological condi-
tions. As a further extension of these modeling efforts,
Zhdanov and Cho incorporated irreversible protein reconfig-
uration (denaturation) into the kinetic equations of adsorption
and desorption of proteins on the NP surface (Zhdanov and
Cho 2016). They also studied the role of protein diffusion
during the adsorption process, given that the diffusion rate
constant diminishes at the solution-solid interface compared
to the bulk, and ultimately revealed that the rate limitations
imposed by protein diffusion are negligible.

In the models discussed above, independent, single binding
sites are assumed such that protein-protein interactions and
cooperative effects are considered insignificant. To investigate
this assumption, Angioletti-Uberti et al. developed a model
based on the dynamic density functional theory (DDFT)
which describes the density evolution of systems undergoing
Brownian dynamics, to include the effects of inter-particle
interactions on the adsorption kinetics of proteins
(Angioletti-Uberti et al. 2014). Specifically, the free-energy
function in their DDFTmodel is composed of the translational
free energy of the proteins, free energy of protein-NP interac-
tion, and free energy of protein-protein interactions. The mod-
el was used to understand the temporal evolution of the den-
sity profile of proteins around the NP-solution interface and
protein adsorption onNP surface. In comparison to a reference

model with ideal diffusion alone and no protein interactions,
this model resulted in closer agreement with experimental
findings. Thus, by incorporating fluxes due to different chem-
ical potential gradients in the system, DDFT gives a more
comprehensive picture than a simple diffusion-based model.

Coarse-grained molecular dynamics simulations While ad-
vancement of technology has made great strides to expand
the ability to computationally simulate the atomic interactions
of biochemical processes involving a handful of proteins for
several nanoseconds, the feasibly-modeled size and time
scales for such all-atom models are still well below what is
relevant to the formation of a biomolecular corona around a
NP (Tozzini 2005; Lopez and Lobaskin 2015). To reduce the
degrees of freedom so that simulations of corona formation
can be effectively carried out, coarse-graining techniques
(CG) have been developed and employed in recent computa-
tional studies (Fig. 4). The CG approximation has been previ-
ously adopted to simulate phenomena associated with protein
adsorption onto flat surfaces, such as the Vroman effect
(Vilaseca et al. 2013). In a protein, atoms within each amino
acid may be coarse-grained and thus represented by one or a
few beads, allowing the interconnecting force fields between
these beads to be incorporated. There are two major classes of
CG protein models: elastic network models and Go-type
models. In an elastic network model, the force fields are ap-
proximated as springs between beads, suitable for including
thermal fluctuations and analyzing principal modes (Tozzini
2005). For corona formation, thermal fluctuations are negligi-
ble compared to the adsorption energies and ruggedness of
protein folding energy landscapes, and Go-type models are
usually adopted (Tozzini 2005; Tavanti et al. 2015a; Shao
and Hall 2016). In a canonical Go model, a bead is placed at

Fig. 4 Biomolecular corona formation studied with CG modeling. a
Moving average (25 time steps; each time step represents 1 fs in real time)
of number of insulin proteins adsorbed on citrate-coated gold NP over
time. Colors represent different number of insulin molecules in the

solution: blue, 10; green, 20; red, 34; cyan, 50; purple, 70; and brown,
100. b Snapshot, from a model simulation of a NP with 70 insulin mol-
ecules in solution taken at 45 ns shows the surrounding corona formation.
Reproduced with permission from (Tavanti et al. 2015b)
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the α-carbon position of each amino acid residue that collec-
tively forms the crystal structure of a protein. Such a Bone-
bead^ model can further be refined by placing one or more
beads to represent the positions of the side chains if more
details of the protein structure are desired and computationally
feasible. The simulation of corona formation is carried out by
discontinuous molecular dynamics, for which the protein
structure can be retrieved from the Protein Data Bank (PDB)
(Berman et al. 2003), and force fields governing the dynamics
are evaluated between adjacent amino acid residues and be-
tween the surface of NPs through CG models. Typically, the
force fields, expressed as interaction energies, consist of
(Tavanti et al. 2015a, b)

U ¼ ∑Ubonded þ ∑Unon−bonded; ð3Þ
where the bonded force fields are

∑Ubonded ¼ ∑
i; j
Ubonds i; jð Þ þ ∑

i; j;k
U angles i; j; kð Þ

þ ∑
i; j;k;l

Udihedrals i; j; k; lð Þ: ð4Þ

The first term on the right-hand side is the bonding energy
between two consecutive amino acids; the second term de-
scribes the bending energy due to the angle between two con-
secutive bonds, hence three consecutive amino acids; and the
last term describes the bending energy due to the dihedral angle
of four consecutive amino acids. The non-bonded forces typi-
cally involve van der Waals interactions UVdW and electrostatic
interactions Uel between two arbitrary non-bonded amino acids:

∑Unon−bonded ¼ ∑
i; j
UVdW i; jð Þ þ ∑

i; j
U el i; jð Þ; ð5Þ

based on the pairwise Hamaker approach. For the process of
corona formation, the interactions between amino acids and
the surface segments of NPs are described by both bonded and
non-bonded interactions.

Based on the concept of CG models, Lopez and Lobaskin
studied the adsorption of six common blood plasma proteins onto
hydrophobic NPs (Lopez and Lobaskin 2015). They showed that
the size of the NP, and thus the curvature of the NP surface,
affected the adsorption energies considerably for different protein
orientations. Comparatively, NP surface charges had small effect
on adsorption energies. Tavanti et al. used a CG model to inves-
tigate the adsorption of ubiquitin onto the surface of gold NPs for
various NP sizes and coating conditions of NP surfaces (Tavanti
et al. 2015a). They observed a two-phase corona formation,
where a consistent number of proteins (depending on NP size)
were quickly attracted to the NP surface in a few nanoseconds;
however, the final configuration of the corona was not achieved
until a slow reorientation, which could even be prolonged if NPs
were coated with citrates, as ubiquitin competed with citrates for
binding sites. Similar competition was also observed in the CG

simulations between the adsorption of insulin and fibrinogen
onto gold NPs (Tavanti et al. 2015b). In such models, force field
parameters may be experimentally measured using
monocomponent solutions of each protein. For example,
Vilanova et al. parameterized their model by individually evalu-
ating the binding affinities of three proteins, HSA, transferrin,
and fibrinogen, and their model prediction of the prolonged ad-
sorption due to competition agreed well with experiments
(Vilanova et al. 2016). Shao and Hall used CG simulations to
examine seven known isothermal adsorption formulas estimating
the equilibrium adsorption coverage with varying protein con-
centration (Shao and Hall 2016). They found that for the two
proteins (Trp-cage and WW domain) that they studied, four of
the adsorption formulas (Langmuir, Freundlich, Temkin, and
Kiselev) described the results reasonably well, while the remain-
ing three (Elovich, Fowler-Guggenheirm, and Hill-de Boer) per-
formed relatively worse.

Machine learning For the purpose of constructing a predictive
model of corona formation to guide the engineering of NP
designs, machine learning is a conceptually similar approach
to coarse-graining in that it trades accuracy for efficiency.
Instead of incorporating mechanical descriptions of the phys-
iochemical processes, machine learning statistically infers ob-
servable features from controllable physiochemical properties.
For example, using random forest classification, Findlay et al.
constructed a decision tree learning model to predict the coro-
na composition from biophysicochemical properties of pro-
teins, NPs, and the surrounding solution (Findlay et al.
2018). Through model training, they were also able to esti-
mate the weight of each biophysicochemical property, which
could potentially be useful for guiding the design of NPs.

3.2 Microvascular transport, margination,
and binding

Continuum models Decuzzi and Ferrari et al. studied the lon-
gitudinal transport of nanocarriers in non-permeable and per-
meable capillaries using the Taylor-Aris theory of shear dis-
persion (Decuzzi et al. 2006; Gentile et al. 2008). The trans-
port of solute under fluid flow is governed by a convection-
diffusion equation:

∂C
∂t
¼ Dm∇2C−u∙∇C ð6Þ

where C is the local concentration of the solute, u is the fluid
velocity field, and Dm is the diffusion coefficient5 of the sol-
ute. This equation suggests that NPs in blood are transported

5 Stokes-Einstein equation provides the diffusion coefficient for spherical par-

ticles in low Reynolds number. Dm ¼ kBT
6πηr, where kB is Boltzmann’s con-

stant, T is the absolute temperature, η is dynamic viscosity, and r is the
radius of NP.
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under the influence of pressure gradient driven blood flow
(advection) and their inherent Brownian motion (diffusion).
Taylor (Taylor 1953) and Aris (Aris 1956) introduced the
concept of an effective diffusion coefficient (Deff) as a solution
to the above equation averaged over the cross-section of a
cylindrical tube of radius Re and mean fluid velocity U, thus
combining the contribution of both convection and diffusion
in the longitudinal dispersion of NPs such that

Deff ¼ Dm 1þ P2
e=48

� �
; ð7Þ

where Pe is the Peclet number (Pe = ReU/Dm). Using the
Taylor-Aris approach, Decuzzi and Ferrari et al. obtained an
analytical formulation for the effective diffusion coefficient of
NPs in a blood capillary (approximated as a cylindrical tube),
incorporating the effects of vessel permeability and blood rhe-
ology. Eq. (7) is thus modified to:

Deff ¼ Dm 1þ P2
e0

48

cosh ~zГ ξcð Þ
� �

−Ωcosh Г ξcð Þð Þ−~zГ ξcð Þ
� �2

∙G ξcð Þ
1−Ωcosh Г ξcð Þð Þ ∙G ξcð Þ

264
375; ð8Þ

where Pe0 is the Peclet number at vessel inlet, ~z is the dimen-
sionless longitudinal coordinate, Г is the permeability param-
eter, Ω is the pressure parameter, ξc is the rheological param-
eter (ratio between the plug and the vessel radii assuming a
non-Newtonian Casson fluid velocity profile), and G is an
expression that depends upon ξc. With this model, they found
that an increase in hematocrit or vessel permeability causes a
reduction in the effective diffusion coefficient of NPs,
highlighting implications to intravascular transport of NPs.

In order to establish the mechanism of clearance of hard
nanomaterials by the liver, Tsoi et al. implemented a minimal
model of the liver sinusoid in order to study the role of flow
dynamics and NP physicochemical properties on sequestra-
tion of NPs in the sinusoids (Tsoi et al. 2016). The sinusoid
is modeled as a cylindrical channel of length L and radius r0,
with the inner wall of the channel lined by cells capable of
sequestering NPs, which move in the channel under the influ-
ence of pressure gradient-driven advection along the longitu-
dinal axis and Brownian motion along the radial axis. The
model is expressed as a partial differential equation (PDE) that
defines the temporal evolution of NP density along the length
of the channel. The PDE is then solved to obtain an expression
for the probability P of NP sequestration in the channel, given
by:

P ¼ ∑
∞

i¼1
1−exp −

DL
Ur20

λi

� �� 	
bi; ð9Þ

where D is NP diffusivity, U is the average flow velocity, and
λi and bi are numerical coefficients that depend upon flow

profile and boundary conditions. In this expression, DL
Ur20

resembles the inverse of the Peclet number (1/Pe) and is the
ratio of the rate of diffusion to the rate of advection that con-
trols the extent of NP interaction with the channel walls.
Further, to account for the effect of NP-cell pair properties
on cellular internalization of NPs and under the assumption
that the cells do not function as perfect traps, a sticking coef-
ficient (ratio of dissociation constant to association constant)
is introduced into the model, making the model predictions
more reliable. Model analysis demonstrated that hemodynam-
ic conditions and particle properties that lead to DL

Ur20
≫1 favor

greater NP sequestration in the channel, explaining the under-
lying mechanism for high NP sequestration in liver.

Discrete models In order to study the margination of NPs in
blood vessels, Decuzzi et al. developed a mathematical model
of a spherical NP of radius R circulating freely in blood at
distance z from the endothelial wall (Decuzzi et al. 2005).
The model considers buoyancy, hemodynamic, van der
Waals, electrostatic, and steric force interactions acting on
the particle and takes the form of the following non-linear
differential equation:

a1~h ηð Þ dη
dτ

−
a3

η−1ð Þ4 þ a2e−
~k η−1ð Þ þ a4e

−η−1eRg ¼1; ð10Þ

where the parameter a1 gives the ratio between hemodynamic
force and buoyancy; a2 gives the ratio between the repulsive
electrostatic force and buoyancy; a3 gives the ratio between
the attractive van der Waals interaction and buoyancy, and a4
gives the ratio between the repulsive steric force and buoyan-
cy. η is the dimensionless distance of the particle from the

endothelial wall, ~h accounts for the hemodynamic forces act-

ing on the particle, ~k is the dimensionless Debye length, and
~Rg is the dimensionless radius of gyration of the polymer
chains on the NP surface. Numerical solution of the model
determines the trajectory of the NP in the blood stream, in
addition to its margination velocity and the time needed to
contact the endothelium. Although the model did not account
for the presence of erythrocytes, it revealed some interesting
results. For example, it found that as the size of the particle is
reduced, the time needed to reach the wall increases up to a
maximum, beyond which the time to reach the wall decreases
as the radius is further reduced. NP margination was further
explored in a more comprehensive manner by Decuzzi and
Lee et al. using a computational model of erythrocyte and NP
transport in blood capillaries based on the immersed finite
element method (discussed in next section) (Lee et al. 2013).

Furlani and Ng developed an analytical model specifically
focused on magnetic NPs, to study their microvascular trans-
port and capture under the influence of an external magnetic
field (Furlani and Ng 2006). The model primarily accounts for
magnetic and viscous forces acting on the particles and solves
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for the trajectory of the NPs in microvessels. By inputting
magnetic force (obtained by the Beffective^ dipole moment
method6) and fluidic force (obtained from Stoke’s law7) into
Newton’s second law of motion, they arrived at an analytical
expression for the trajectory of the NPs:

x
3
−3xþ 3 f x0; z0; z

� �
¼ 0; ð11Þ

where x and z are the dimensionless position coordinates of
the NP along the x- and z-axis, respectively; f is a function of z
and the normalized initial position coordinates of the NP
x0; z0. Since magnetic force has no y-component, the model
assumes NP motion in the x-z plane only. Their model dem-
onstrates the suitability of paramagnetic NPs for delivering
payload specifically to tumors under the influence of external-
ly applied magnetic fields. Their model also determined the
minimum radius of the particle required for successful capture
in the capillary, by showing that the NP critical size is a func-
tion of the distance of the magnet from the capillary.

Hybrid models Hydrodynamic modeling hybridized with
agent-based descriptions of NPs and blood cells has shed
valuable insights into the dynamics of NP movement within
capillary flow and shed new light on how NPs may be de-
signed to increase extravasation. This is accomplished through
a Navier-Stokes description of blood plasma flow within the
capillary, which is solved numerically to obtain flow dynam-
ics around agent representations of blood cells and NPs; these
in turn move within the capillary due to forces applied as
determined by the solution of the Navier-Stokes equation at
their location (Fig. 5). Using these techniques, Lee et al.
showed that NPs ≤ 100 nm diameter tended to remain in cir-
culation with the blood bulk and have reduced incidences with
and adhesion to the vasculature wall, while particles in the
500–1000 nm range were more likely to be displaced by red
blood cells towards the vasculature walls (margination) (Lee
et al. 2013). This increased rate of incidence with the vascu-
lature endothelium likely increases extravasation rates and
contributes to higher tumor accumulation in particles
≥100 nm than those ≤100 nm. Previously, Lee et al. had also
studied the effect of particle shape on the margination propen-
sity in linear laminar flow, although without incorporating
RBCs into the model, and found that particles with discoidal
shape and low aspect ratio have the highest propensity to
marginate (Lee et al. 2009a, 2009b).

Interestingly, Müller et al. found similar effects of particle
size on NP radial distribution within the capillary, and further

demonstrated that particle shape, hematocrit, and capillary
diameter also play key roles in NP distribution and dynamics
within the capillary, as well as on NP extravasation (Müller
et al. 2014). They found that increased hematocrit, smaller
capillary diameter, and NP diameter ≥ 250 nm all promote
increased margination; but, unlike the observations of Lee
et al. discussed above, in the presence of RBCs, particles with
aspect ratios approaching unity (spherical shapes) marginate
better.

The above findings were also supported by results obtained
from two other studies, which provided further evidence that
red blood cells play a key role in plasma flow dynamics, with
higher hematocrit increasing NP margination within the cap-
illary (Tan et al. 2012; Fullstone et al. 2015). Tan et al. further
demonstrated that small, rod-shaped particles have greater
binding capacity than spherical ones due to reduced drag
and greater contact area (Tan et al. 2013).

The adhesion of NPs with the endothelium during the tran-
sit of particles through microvasculature has been extensively
investigated using a mathematical modeling approach by
Decuzzi and Ferrari et al. (Decuzzi and Ferrari 2006; Van
De Ven et al. 2012). They explored the binding of spherical
and non-spherical particles under the influence of dislodging
hemodynamic forces and adhesive nonspecific or specific in-
teractions at the NP-endothelial cell interface. A force balance
between hemodynamic forces, specific receptor-ligand inter-
actions, and non-specific forces (van der Waals, electrostatic,
steric) acting on the NP governs the probability of adhesionPa

of NPs to vasculature, expressed as:

Pa ¼ mrmlK0
aAce

− λ Fdis
kBTmrAc ; ð12Þ

where mr and ml are the surface density of receptors on cells

and ligands on NPs, respectively; K0
a is the association con-

stant at zero load of ligand-receptor pair; Ac is the area of
interaction between the particle and the substrate; λ is a char-
acteristic length of the ligand–receptor bond typically on the
order of 1 Å; kBT is the Boltzman thermal energy; and Fdis is
the total dislodging force. Their results suggest that particles
with an oblate shape tend to have a higher propensity and
strength of adhesion under laminar flow compared to spherical
particles.

3.3 Cellular internalization

Discrete models Depending upon the size of the particle and
its surface chemistry, different pathways may be invoked for
cellular internalization of NPs, with receptor-mediated endo-
cytosis (clathrin-, caveolin-dependent and -independent) be-
ing the most common pathway for particles in the nano-sized
range (Fig. 6) (Zhang et al. 2015). To this end, Gao et al.
developed a mathematical model to understand the mecha-
nism of cell membrane wrapping around a spherical or

6 Magnetized NP is substituted by an equivalent point dipole with an effective
dipole moment mp, eff such that the magnetic force Fm on the dipole is,
Fm = μf(mp, eff · ∇)Ha, where μf is the permeability of the fluid, and Ha is the
external magnetic field intensity.
7 The drag Fd on a spherical object of radius r, moving through a viscous fluid
of viscosity η at a relative velocity v, is, Fd = − 6πηrv.
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cylindrical particle during receptor-mediated endocytosis
(Gao et al. 2005). The model assumes that the particle surface
is uniformly coated with immobile surface ligands that are
complementary to mobile receptors on the cell membrane sur-
face. Given that cells are much larger than NPs, the problem is
simplified by assuming NP interaction with a flat membrane.
Following initiation of contact and receptor-ligand binding,
the diffusive receptors on cell membrane are drawn towards
the site of contact to match receptor density with ligand den-
sity, thereby increasing the area of contact over time; this
process continues until the area of contact equals the area of
the particle. The power balance between the rate of free energy
reduction gained from the wrapping process (receptor-ligand
binding and membrane cytoskeleton bending) and the rate of
energy dissipation consumed during receptor migration yields
the particle wrapping time τ:

τ ¼ πR

2α
ffiffiffiffi
D
p

� �2

; for cylindrical particlesð Þ ð13Þ

τ ¼ R

α
ffiffiffiffi
D
p

� �2

; for spherical particlesð Þ ð14Þ

where R is the radius of the particle, α is the speed factor, and
D is the diffusivity of membrane receptors. Their model high-
lights the importance of particle size in receptor-mediated
endocytosis.

Yuan and Zhang developed a model based on the energy
balance between receptor-ligand binding energy and work

done in membrane wrapping around the particle (Yuan and
Zhang 2010). Their model provided analytical expressions for
minimal particle size for a given ligand density ξl (Eq. 15) and
minimal ligand density for a given particle size of radius R
(Eq. 16) below which receptor-mediated endocytosis cannot
occur:

Rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B= ξl εþ ln ξ0ð Þ½ �

p
; ð15Þ

ξl;min ¼ 2B= R2 εþ ln ξ0ð Þ� �
; ð16Þ

where, ξ0 is the receptor density on cell surface, B is the mem-
brane bending modulus, and ε is the receptor-ligand binding
energy. Their findings suggest that both NP size and ligand
density are critical in governing the kinetics of endocytosis,
and are important in guiding the rational design of NPs.

In another model, which was experimentally validated
using iron oxide NPs and human macrophages, Lunov et al.
ignored receptor diffusion on cell membrane surface, and in-
stead employed pit formation followed by membrane wrap-
ping around the spherical particle as the mechanism of
receptor-mediated endocytosis (Lunov et al. 2011). By equat-
ing the mechanical work performed by cytoskeletal motor
proteins for pit formation with the elastic energy of the mem-
brane, the wrapping time τ is obtained as:

τ ¼ 4πR2σ
p

; ð17Þ

where R is the particle radius, σ is the surface tension of the

Fig. 5 Computational domain for hydrodynamic simulations of NP
transport in microcirculation.NP transport was studied in a capillary of
length 60 μm and diameter 20 μm in the presence of deformable red
blood cells. Periodic boundary conditions are imposed at the inlet and

outlet of the capillary, and a parabolic velocity profile with a maximum
velocity of 100 μm ⋅ s−1 is imposed at the inlet. Reproduced with
permission from (Lee et al. 2013)
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membrane, and p is the power of motor proteins. Their anal-
ysis provides quantification of important parameters, includ-
ing rate of NP uptake, number of NPs uptaken per cell at
saturation, and mean uptake time.

Sorrell et al. investigated endocytosis of NPs by can-
cerous cells using a kinetic model based on a system of
differential equations (Sorrell et al. 2014). The model ac-
counts for the rate of change of unbound, bound, and
internalized NPs. Key model parameters include associa-
tion and dissociation rate constants of NP-receptor bind-
ing, the recycling rate constant of receptors, and the in-
ternalization rate constant of NPs. The results suggested
that the rate of NP uptake depends on the number of
receptors engaged by the particle.

Decuzzi and Ferrari modified the model by (Gao et al.
2005) assuming a non-constant radius of curvature of the
cylindrical particle, i.e., the curvature depends on the
particle-cell area of contact and thus varies with time
(Decuzzi and Ferrari 2008). As a result, the contribution of
the elastic bending energy of membrane wrapping around
the particle varies as the area of contact changes. Their mod-
el reveals the occurrence of a critical size and aspect ratio for
cylindrical particles: for circular cylindrical particles, radius
below ~40 nm are energetically unfavorable for internaliza-
tion, and for elliptical cylindrical particles there exists an
optimal range of aspect ratio values, below or above which
internalization is incomplete.

3.4 Whole-body biodistribution and clearance

Pharmacokinetic models For successful clinical translation of
nanomedicine, it is important to establish the pharmacokinet-
ics (PK) of NPs, and to this end, mathematical modeling ap-
proaches are routinely used; these are referred to as pharma-
cokinetic models. PK modeling typically operates at the mac-
roscopic (organ) scale and involves a phenomenological de-
scription of the ADME (absorption, distribution, metabolism,
and excretion) of NPs. PK modeling can be roughly classified
into classical and physiological modeling approaches. The
classical PK approach deconstructs the body into a system
of compartments, and often contains a central compartment
that may be connected via rate constants to one or more pe-
ripheral compartments (Fig. 7). The central compartment is a
lumped compartment that contains the blood pool of the body
and highly perfused organs, like heart, lungs, liver, and kid-
neys. Similarly, the peripheral compartment is generally
formed by lumping the poorly perfused or slowly equilibrat-
ing tissues, like fat, bones, and muscle. First-order kinetics is
typically assumed for mass transfer between compartments
and for elimination from compartments. ODEs are used to
describe various PK processes, which are fit to the
concentration-time data of the NPs in plasma, urine, or other
tissues, to obtain estimates for numerical coefficients and rel-
evant PK parameters like half-life, clearance, volume of dis-
tribution, and mean residence time. Being simplistic and

Fig. 6 Cellular internalization pathways. Phagocytosis (a) or
micropinocytosis (b) may be involved in the internalization of
micrometer-sized particles. Caveolin-dependent (c) or clathrin-
dependent (d) endocytosis occurs by receptor-ligand binding leading to
the formation of flask-shaped caveolae and clathrin-coated pits, respec-
tively, on the cytosolic side of the cell membrane. Although receptor-

mediated endocytosis may also be clathrin- and caveolin-independent
(e). Non-specific interactions maybe involved in endocytosis of NPs
without conjugated ligands (f). Small NPs and molecules (<1 nm) may
enter the cell by diffusion (translocation) through the plasma membrane
(g). Reproduced with permission from (Zhang et al. 2015)
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empirical (data-driven), such models have great clinical rele-
vance, e.g. dosage regimen design, but their predictive capac-
ity is very limited since they lack an underlying physiological
and mechanistic reference (Gerlowski and Jain 1983;
Gabrielsson andWeiner 2001; Jones and Rowland-Yeo 2013).

This is where physiological PKmodels fill the gap. Usually
referred to as Bphysiologically based pharmacokinetic
(PBPK) models,^ they have a similar underlying framework
as classical PK models but have anatomically based compart-
ments connected via physiological blood flow rates (Fig. 8).
The models are thus parameterized with anatomical and phys-
iological variables (e.g., tissue weights, tissue volumes, blood

flow rates (Table 3)) and physicochemical information of the
xenobiotics (e.g., blood-tissue partition coefficients), obtained
from literature or data fitting (Gerlowski and Jain 1983; Li
et al. 2010; Jones and Rowland-Yeo 2013). Each compartment
represen t ing a re levant organ or t i s sue is sub-
compartmentalized into vascular, interstitial, and cellular
spaces. Based on the physicochemical properties of the xeno-
biotic under investigation, PBPK models are classified into: i)
perfusion or blood flow rate-limited and ii) diffusion or
permeability-limited (Khalil and Läer 2011). Perfusion rate-
limited models assume that xenobiotic transfer between
the vascular space and interstitial space of an organ is not
limited by capillary permeability but is only governed by the
blood flow rate to the organ. Conversely, permeability-limited
models assume capillary permeability to be the limiting factor.
When applied to nanomedicine, PBPK models serve to pro-
vide a mechanistic description of the concentration time-
course of NPs in any given tissue or plasma. Like classical
PK, linear kinetics is usually assumed for mass transport
across the system and coupled ODEs model the NP concen-
tration in tissues. Because the underlying framework is phys-
iologically meaningful, these models can help with dose ex-
trapolation from animals to humans, or healthy volunteers to
diseased patients, based on differences in physiological pa-
rameters (Sharma and McNeill 2009; Jones and Rowland-
Yeo 2013). They are also valuable in predicting dose adjust-
ments for special populations, like pregnant women (Gaohua
et al. 2012) and pediatrics (Hornik et al. 2017). PBPK has also
emerged as a critical tool in addressing regulatory questions
about the effect of intrinsic (e.g., organ impairment, age, and
genetics) and extrinsic (e.g., drug-drug interactions) factors on
the PK and pharmacodynamics (PD) of drugs (Huang and
Rowland 2012).

Like free drugs, PK modeling of NPs requires quantifica-
tion of NP concentration (usually expressed as percent of
injected dose per gram of tissue (%ID · g−1)) over time in
plasma, urine, and other tissues. For this purpose, the most
commonly employed techniques include plasma/urine
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Fig. 7 Schematic of a classical pharmacokinetic model for i.v. bolus
administration. A representative two-compartment PK model with a
central compartment and a peripheral compartment is shown.
Elimination is restricted to the central compartment. Master equations
for the two compartments are also shown, where Cc and Cp are NP
concentrations in the central and peripheral compartments, respectively;

k12 and k21 are the rates of transfer of NPs between central and peripheral
compartments, and k10 is the rate of elimination of NPs from the central
compartment. C0 is the concentration in the central compartment at time
zero. All mass transfer processes are assumed to follow first-order kinet-
ics, and solution of the coupled ordinary differential equations provides
the temporal evolution of NP concentration in the given compartments
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radioactivity quantification (Kommareddy and Amiji 2007;
Xu et al. 2013), whole-body radioactivity imaging and quan-
tification (e.g. single photo emission computed tomography
(SPECT) (Woodward et al. 2007; Chrastina and Schnitzer
2010; Patil et al. 2011; Black et al. 2015; Li et al. 2016;
Ming et al. 2017; Dogra et al. 2018), positron emission to-
mography (PET) (Schluep et al. 2009; Kumar et al. 2010;
Phillips et al. 2014; Chen et al. 2016)), fluorescent imaging
(Kumar et al. 2010; Vasquez et al. 2011), magnetic resonance
imaging (MRI) (Neubauer et al. 2008), inductively coupled
plasmamass spectroscopy (ICPMS) (Crayton et al. 2012), and
accelerator mass spectrometry (AMS) (Malfatti et al. 2012).
The most suitable compartmental model is then fit to the time
course of NP concentration obtained using one or more of
these experimental techniques. Most in vivo studies (Yu
et al. 2012) report a biphasic decline in plasma (or mediasti-
num (Schluep et al. 2009), a substitute for plasma when im-
aging techniques are used) concentration of NPs, following
intravenous (i.v.) injection. Thus, a two-compartment model
is most commonly employed to describe systemic NP dispo-
sition (Fig. 7). However, it is important to note that the fre-
quency of experimental data collected can impact the nature of
concentration time course, and a biexponential decline will
not always be the case. Hence, some studies report using a

one compartment model (for monophasic decline) (Sykes
et al. 2014b; Dogra et al. 2018). Thus, the selection of the type
of compartmental model depends solely on the observed na-
ture of the concentration time course, which in turn is depen-
dent on the method of data collection.

Classical PK approaches have also been employed to study
nanomedicine delivery to solid tumors. Sykes et al. (Sykes
et al. 2014b) adapted a mathematical model, developed by
Schmidt and Dane Wittrup (2009) for antibodies, to predict
tumor delivery efficiency of gold NPs. In this one-
compartment model, representing the plasma pool of the body,
a monoexponential decay function describes the clearance of
NPs from blood following i.v. injection. A tumor compart-
ment is linked to the plasma compartment such that
monoexponential decay of NP concentration in the blood acts
as a forcing function to govern influx of NPs into the tumor.
As a simplification, it is assumed that NP influx into the tumor
does not influence the monoexponential clearance behavior of
NPs in the blood. Once inside the tumor, permeability of tu-
mor vessels governs the extravasation of NPs into the tumor
interstitium. Following extravasation, NPs diffuse through the
available volume of tumor interstitium, bind or unbind from
cell surfaces, and are eventually endocytosed and degraded by
tumor cells. With all reactions assumed to follow first order

Table 3 List of a priori physiological parameter values for lab animals and humans for organ- or whole-body-scale models

Mouse (0.02 kg) Rat (0.25 kg) Rhesus monkey (5 kg) Human (70 kg)

Weight
(g)

Volume
(ml)

Blood flow
rate (ml/
min)

Weight
(g)

Volume
(ml)

Blood flow
rate (ml/
min)

Weight
(g)

Volume
(ml)

Blood flow
rate (ml/
min)

Weight
(g)

Volume
(ml)

Blood flow
rate (ml/
min)

Brain 0.36 0.48 0.46 1.8 1.2 1.3 90 94 72 1400 1450 700

Heart 0.08 0.095 0.28 1 1.2 3.9 18.5 17 60 330 310 240

Lung 0.12 0.1 ≈ C.O. 1.5 2.1 ≈ C.O. 33 35.7 ≈ C.O. 1000 1170 ≈ C.O.

Liver 1.75 1.3 1.8 10 19.6 13.8 150 100 218 1800 1690 1450

Gut 1.5 1.5 1.5 6.3 11.3 7.5 230 230 125 2100 1650 1100

Spleen 0.1 0.1 0.09 0.75 1.3 0.63 8 5.95 21 180 192 77

Pancreas 0.2 0.09 0.27 1 1 1 5 12.5 10.2 80 104 41

Kidneys 0.32 0.34 1.3 2 3.7 9.2 25 30 138 310 280 1240

Muscle – 10 0.91 – 245 7.5 – 2500 90 – 35,000 750

Fat – 1.98 – – 10 0.4 – 154 20 – 10,000 260

Skin – 2.9 0.41 – 40 5.8 – 500 54 – 7800 300

Blood – 1.7 – – 13.5 – – 367 – – 5200 –

Plasma – 1 – – 7.8 – – 224 – – 3000 –

Hepatic
artery

– – 0.35 – – 2 – – 51 – – 300

Portal vein – – 1.45 – – 9.8 – – 167 – – 1150

Cardiac
output
(C.O.)

– – 8 – – 74 – – 1086 – – 5600

Source: (Davies and Morris 1993; Gabrielsson andWeiner 2001; Peters 2012; Shah and Betts 2012). Lymph flow rates are ~500 times lesser than blood
flow rates (Shah and Betts 2012)
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kinetics, the resulting biexponential function describes the
NP-associated, dose-normalized, fluorescence concentration
time-course (% ID · ml−1, percent of injected dose per ml of
tumor) in the tumor compartment. The model was then used to
predict the influence of plasma clearance rate and tumor cell
binding affinity of NPs on their tumor accumulation (repre-
sented by concentration-time area under the curve (AUC)).
The model can thus be employed as an in silico platform to
test NP design configurations for their impact on tumor accu-
mulation of NPs.

The application of the more mechanistic PBPK models in
nanomedicine is in only a premature stage to date, and most
studies involve the application of PBPK models in their ca-
nonical form (Li et al. 2010; Li et al. 2012; Bachler et al. 2013;
Li et al. 2013), i.e., models developed traditionally for free
drugs. However, fundamental differences between physico-
chemical characteristics of NPs and free drugs demand mod-
ifications to the structure of conventional PBPK models to
better fit the purpose of modeling NP disposition kinetics
(Riviere et al. 2013).

Our group has recently demonstrated the application of PK
modeling to disposition kinetics data of mesoporous silica
NPs (MSNs) acquired through SPECT/CT imaging in vivo
(Fig. 9) (Dogra et al. 2018). Guided by the data and built on
our prior work (Das et al. 2013; Pascal et al. 2013b; Koay et al.
2014; Frieboes et al. 2015), we developed simplemaster equa-
tions in closed form to model the kinetics of MSN
biodistribution and clearance with the goal of establishing
the structure-activity relationships of MSNs. By systematical-
ly varying MSN physicochemical variables (including size,
surface charge, and surface coatings) in the therapeutically
relevant size range of ~25–150 nm, we examined the effect
of size, zeta potential, and surface chemistry on in vivo dispo-
sition of hydrodynamically stable, monodisperse, non-
targeted MSNs administered via intravenous (i.v.) or

intraperitoneal (i.p.) injection. Our analysis showed that (1)
smaller MSN size results in a higher systemic bioavailability,
irrespective of the route of administration; (2) positive charge
favors greater excretion; and (3) surface exposed charged mol-
ecules (amines) increase vulnerability to sequestration in liver
and spleen. Importantly, a consistent mathematical function
between one key PK parameter (AUC0 − 24 h; area under the
curve―a parameter that evaluates the extent of xenobiotic
exposure of organs) and MSN core diameter (size) was iden-
tified in the form of AUC0 − 24 h = λ ∙ size−n for systemic cir-
culation and source-like organs (e.g., heart and lungs) in both
i.v. and i.p. cases; conversely, for sink-like organs (e.g., spleen
and liver), the function identified is AUC0 − 24 h = λ ∙ sizen,
where λ and n are fitted parameters. This finding is highly
significant because these newly discovered, consistent math-
ematical functions simplify and facilitate the understanding of
the relationships between MSNs’ physicochemical properties
and their PK behaviors in vivo.

3.5 Tumor deliverability

Hybrid modelsWe now discuss relevant modeling works that
focus on the penetrability of NPs in the tumor tissue. These
models prioritize various aspects of NP transport and help
understand the relationships between physicochemical prop-
erties of NPs and their deliverability to the tumor tissue.

Chauhan et al. developed a mathematical model of tumor
vasculature (Chauhan et al. 2012) based on percolation theory
(Gazit et al. 1995). The model is cast in the form of a two-
dimensional percolation network representing tumor vascula-
ture with one inlet and one outlet to study the effect of vascular
normalization on tumor delivery efficiency of nanomedicine.
The network consists of a series of interconnected nodes
representing blood vessel segments, with each segment
endowed with vessel wall pores obtained from a distribution

Fig. 9 Imaging-based pharmacokinetics. a Representative SPECT/CT
images of a rat injected with radiolabeled, 25 nm-sized mesoporous silica
NPs (MSNs). b Concentration kinetics obtained from fitting a

phenomenological PK model to concentration versus time data for differ-
ent types of MSNs injected i.v. or i.p. Reproduced from (Dogra et al.
2018)
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of pore sizes. It is assumed that blood flow in the vessels
follows Poiseuille’s law,8 transvascular fluid exchange occurs
according to Starling’s approximation,9 and Darcy’s law10

governs interstitial fluid transport. Further, the transport of
NPs across vessel wall pores is modeled using Bpore theory^
to determine barriers to diffusion and convection across cylin-
drical pores. By capturing critical transport phenomena at the
tissue scale, this model provides insights into the significance
of vascular normalization in cancer nanomedicine. Further,
they also studied the effect of NP surface charge on
transvascular flux of NPs, and demonstrated the superiority of
cationic particles in crossing into the tumor interstitium
(Stylianopoulos et al. 2013) using a mathematical model of
tumor vasculature based on a previously developed algorithm
of tumor-induced angiogenesis governed by vascular endothe-
lial growth factors and fibronectin gradients (McDougall et al.
2006).

Hendricks et al. developed a multiscale kinetic model to
study the tumor delivery efficiency of doxorubicin via drug-
loaded liposomal formulations (Hendriks et al. 2012). The
model consists of a one-compartment PK model of liposome
disposition kinetics, integrated with a two-compartment PK
model of liposome-released doxorubicin disposition kinetics,
in plasma. The PK models are connected to a physiologically
based tumor model that incorporates transvascular flow, inter-
stitial transport, and cellular uptake of liposomes and free drug.
Their model reveals strong dependence of delivery efficiency
on liposomal PK and tumor vascular permeability to lipo-
somes, thereby highlighting the significance of these patient-
specific parameters in determining the success of nanotherapy.

Frieboes at al. developed a computational model to predict
accumulation of NPs in tumor vasculature (Frieboes et al.
2013). It combines a previously developed two-dimensional
model of tumor growth and angiogenesis (Anderson and
Chaplain 1998; Cristini et al. 2003; McDougall et al. 2006;
Macklin et al. 2009; Wu et al. 2013) with a mesoscopic model
of NP adhesion to the tumor neovasculature. Tumor dynamics
are primarily governed by cell division, cell death, cell migra-
tion, and cell-cell and cell-extracellular matrix adhesion.
These processes are accounted for in the tumor growth com-
partment as a mathematical model based on conservation prin-
ciples (mass, momentum) and transport phenomena (diffu-
sion, convection). This tumor growth model is then coupled
with a model of tumor-induced angiogenesis based on tumor
angiogenic factor (TAF) gradients. This component accounts

for tumor blood flow, non-Newtonian effects, vascular leak-
age, and vasculature remodeling due to shear stress and me-
chanical stress because of a growing tumor, thus simulating a
pathophysiologically relevant scenario to test neovascular ac-
cumulation of systemically injected NPs based on a
mesoscopic mathematical formulation (Eq. (12)) (Decuzzi
and Ferrari 2006). Thus, by integrating the evolution of a
growing tumor with NP-cell interactions, the model demon-
strates the dependence of vascular accumulation of NPs based
on the tumor growth stage, in addition to the importance of NP
vascular affinity in controlling total accumulation of NPs and
their spatial distribution inside a tumor (Fig. 10).

Hauert et al. (2013) modeled a representative section of
tumor tissue to study the design characteristics of targeted
NPs responsible for binding site barriers (Fujimori et al.
1990), and proposed guidelines to overcome such barriers.

The modeled section represents a hypoperfused, near-
necrotic region of the tumor where NPs extravasating from
the microvessels diffuse into surrounding tumor tissue, and
may bind to cell surfaces and subsequently be internalized.
Reaction-diffusion kinetics thus forms the basis of such a

model, and is represented by the following biochemical reac-

tion: NPF þ R !ka;kdC→kiNPI þ R, where NPF represents
free NPs, R refers to cell-surface receptors, C are the NP-
receptor complexes, NPI represents internalized NPs, and ka,
kd, and ki are the association, dissociation, and internalization
rate constants, respectively. This system has been modeled
using both deterministic and stochastic approaches. The deter-
ministic modeling approach is comprised of coupled reaction-
diffusion PDEs governing the spatiotemporal evolution of
species of interest (NPF, R, C, NPI) in a one-dimensional do-
main. The stochastic modeling approach discretizes the spatial
domain into cubes with side S, assuming a well-mixed volume
in each unit. NPs diffuse across these sub-volumes while
interacting with surface receptors (potentially forming com-
plexes and undergoing internalization), with each event being
governed by a dynamic probability. Unlike the deterministic
model, the stochastic model captures the randomness and fluc-
tuations of a biochemical system; however, the former is a
better choice for systems with large populations and relatively
small fluctuations, since the SSC might be computationally
expensive for such systems. Thus, in this work the authors
used the deterministic model to simulate different experi-
ments, and only validated key findings using the stochastic
model. Their work suggests that delaying the binding of NPs
to target cells could avoid binding site barriers on the tumor
periphery and allow them to penetrate deeper into the tumor
tissue, which can be achieved by engineering NPs to avoid
premature cellular uptake.

Stapleton et al. developed a mathematical model to
specifically investigate the transport of liposomes in solid
tumors through the EPR effect (Stapleton et al. 2013). The

8 Qvasc ¼ − πd4
128μ

Δpv
Δx where Qvasc is the blood volumetric flow rate in a

vessel of lengthΔx and diameterd, for vascular pressure differenceΔpv
and blood viscosity μ.
9 Qtransv = LpS(pv − pi) where Qtransv is the volumetric fluid flow rate across a
vessel wall of hydraulic conductivity Lp, vessel surface area S, and interstitial
fluid pressure pi.
10 Qinter ¼ −ktAc

Δpi
Δx where Qinter is the volumetric fluid flow rate in

interstitial space with hydraulic conductivity kt, cross-sectional area
Ac, tissue length Δx, and interstitial pressure differenceΔpi.
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model was formulated as a differential equation, and accounts
for the transvascular and interstitial convective flux to determine
the rate of liposome accumulation in the tumor interstitium. The
extravasation of NPs from the vessels is primarily driven by the
difference between microvascular pressure and interstitial fluid
pressure, while interstitial transport is driven by an interstitial
pressure gradient estimated by Darcy’s law. The model was
validated against experimental data and predicted inter-subject
and intra-tumoral variations in the EPR effect based on biophys-
ical properties of the tumor microenvironment.

Sykes at al. performed Monte Carlo simulations to study
diffusion of NPs through tumor extracellular matrix (ECM)
(Sykes e t a l . 2016) , based on the approach of
(Stylianopoulos et al. 2010). They modeled the tumor
ECM in three-dimensions as an anisotropically oriented net-
work of collagen fibers (the most abundant protein in ECM)
to study the mobility of NPs through matrices of different
collagen densities. Collagen fibers were approximated as
immobile cylinders and NP-fiber collision was assumed to
be elastic. NP movement was simulated as a discrete ran-
dom walk following the Stokes-Einstein relation for diffu-
sion of spherical particles in a fluid with low Reynolds
number. They also modeled in 2D the microscopic collagen
matrix pores to study the effect of NP size and matrix pore
size on the frequency of NP-fiber collisions to provide a
mechanistic explanation to the results of the 3D model. In

this model, a pore was represented by a square bounded by
collagen fibers, a NP underwent 2D Brownian motion in-
side the square, and particles were tracked for their colli-
sions with the wall (fibers). Their models helped elucidate
the mechanisms underlying particle size-dependent reten-
tion of NPs in clinically relevant tumor conditions.

3.6 Nanotherapy efficacy and toxicity

Pharmacodynamic models We now discuss the modeling ap-
proaches employed to investigate nanotherapy efficacy, which
is the ultimate determinant of success of cancer nanomedicine.
(Pascal et al. 2013a) evaluated the cytotoxicity of NP-loaded
doxorubicin to hepatocellular carcinoma cells using a mathe-
matical model based on cell and drug mass conservation. The
model is based on the hypothesis that cell death rate is a
function of the total amount of drug taken up by the cells over
time, which is represented by the following equations that
predict the asymptotic behaviors of cell and drug concentra-
tions for short and long drug exposure times (λn0t), respec-
tively:

n
n0

≈1−
1

2
λAσ0λn0t2

σ
σ0
¼ e−λn0t

; λn0t≪1ð Þ

8><>: ð18Þ

Fig. 10 Model predictions of
NP tumor delivery efficiency. A
multiscale tumor growth model is
used to predict the delivery
efficiency of nanocarriers of
different sizes (100 nm, 600 nm,
1000 nm) and at different levels of
intratumor vasculature receptor
expression (α) 100 min after in-
jection on day 18 of tumor
growth. Reproduced with per-
mission from (Frieboes et al.
2013)
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n
n0

∼e−λA σ0−σ∞ð Þt

σ≈σ∞
; λn0t≫1ð Þ

(
ð19Þ

where, n, n0 are the cell concentrations at time t and t = 0,
respectively, σ, σ0, σ∞ are the drug concentrations at time t,
t = 0, and t =∞, respectively, λA is the specific cell death rate,
and λ is the specific drug uptake rate by cells. Eq. 18 implies
that cells initially consume drug, thus decreasing drug concen-
tration over time at an exponential rate λn0. As the drug con-
centration reaches a constant value σ∞, cells begin to die. At
large times (Eq. 19), cells die exponentially, with death rate
λA(σ0 − σ∞) linearly proportional to the total amount of drug
(σ0 − σ∞). Analysis and predictions of this model, validated
with in vitro cell viability assays, demonstrate the superiority
of drug delivery using NPs over free-drug delivery (left shift
in dose response curve in Fig. 11), primarily because NP-
based delivery allows cells to uptake drug at a higher rate,
thereby enhancing the rate of cell death. This model was ex-
tended further to incorporate the effect of spatial heterogene-
ities of diffusion and perfusion in solid tumors on therapy
efficacy, and a closed-form solution was derived for the
time-dependent drug concentration and tumor volume equa-
tions, given as the fraction fkill of viable tumor killed following
nanotherapy (Hosoya et al. 2016; Wang et al. 2016; Brocato
et al. 2018):

f kill ¼
Fλk

2VT ;0
t2 ð20Þ

where F is the flux of drug from the NPs, F is a function of NP
size, λk is the cell death rate per unit cumulative drug concen-
tration, and VT, 0 is the initial tumor volume. Note that there is
a quadratic increase in treatment efficacy (represented by fkill)
with time. The model predicts faster and greater tumor death

when treated with nanocarriers than with free drug, in excel-
lent agreement with experimental observations under various
conditions. In particular, using this model and by linking mea-
sured tumor growth with NP distribution, Brocato et al. found
that treatment efficacy increases exponentially with increased
NP accumulation within the tumor, highlighting the impor-
tance of optimizing the delivery efficiency of NPs to the tumor
(Brocato et al. 2018).

Stylianopoulos et al. further developed their tumor delivery
model (Stylianopoulos et al. 2013) to incorporate controlled
release of drugs from NPs and their binding and internaliza-
tion into tumor cells in order to study efficacy of NP-delivered
chemotherapy on cancer cells (Stylianopoulos et al. 2015).
They mathematically formulated the interstitial processes of
drug release from NPs, drug diffusion, cell surface bonding,
and cellular internalization in the form of coupled PDEs in
order to model the evolution of internalized drug concentra-
tion and compare the cell-kill induced by a two-stage and a
multi-stage nanoparticulate system with conventional chemo-
therapy. The model explored the effects of NP size, drug re-
lease kinetics, and binding affinity on therapy efficacy, and
demonstrated the superiority of multistage nanocarriers over
two-stage NPs. Papageorgis et al. used the same model to
mechanistically understand the effect of Tranilast-induced re-
duction of mechanical stresses in tumors on improved efficacy
of nanotherapeutics, thereby proposing the repurposing of
tranilast as mechanical-stress alleviating agent (Papageorgis
et al. 2017).

Leonard et al. (2016) employed the model developed by
Frieboes et al. ((Frieboes et al. 2013) discussed previously) to
investigate the efficacy of macrophage-encapsulated NP
albumin-bound-paclitaxel in simulated patient breast cancer
liver metastasis. Their model demonstrates the potential of this
novel formulation for clinical translation based on the

Fig. 11 Predictions of dose-
response curve from a mathe-
matical model. Numerical
solutions of the model are tested
against experimental observations
of the fraction of viable cells 24 h
after incubation with free-
doxorubicin and doxorubicin-
loaded NPs at variable drug con-
centrations. NP-mediated deliv-
ery causes a left-shift (lowered
drug IC50) in dose-response
curves of multi-drug resistant he-
patocellular carcinoma cells.
Reproduced with permission
from (Pascal et al. 2013a)
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histological evidence of tumor biopsies. Miller and Frieboes
employed the same model to study the effects of vasculature-
induced heterogeneity and drug strength (IC50) on therapy
efficacy of drug-loaded gold NPs (Miller and Frieboes
2018). The results indicate that in the case of drugs with high
IC50, the intra-tumoral vascular density should be above a
threshold for optimal transport of nanocarriers for satisfactory
efficacy, while efficacy depends less strongly on vessel den-
sity for NPs loaded with drugs with lower IC50.

A relatively less studied aspect that can potentially stall
nanomedicine from clinical translation is NP-induced toxicity.
Recently, a multiscale hybrid model was developed by
Laomettachit et al. to assess NP toxicity in human liver
(Laomettachit et al. 2017). The model uses a standard
whole-body PBPK framework to predict hepatic accumula-
tion of administered NPs, and feeds the whole-body model-
derived information into a tissue scale Bcell-response model^
of liver tissue. The cell-response model accounts for cell divi-
sion and cellular uptake of NPs to predict the impact of NPs on
hepatocyte viability. This multiscale platform demonstrates
the dose-dependent toxicity of titanium dioxide NPs in liver,
i.e., the tissue damage from a low dose of NPs is negligible
and reversible due to compensation by cell proliferation, while
high exposure can cause irreversible tissue damage unless a
large fraction of cells undergoes cell division to renew the
damaged tissue mass.

4 Conclusions

Cancer nanomedicine has been inspired by Paul Ehrlich’s no-
tion of the Bmagic bullet^, which visualizes the design of
therapeutic agents that selectively attack diseased cells while
sparing the healthy ones. Due to the advances in nanotechnol-
ogy, progress has been made towards specifically delivering
cytotoxic agents to cancerous cells, despite the complexities
inherent to a cancerous system. Although much of this tech-
nology still remains to be translated into the clinic, the inves-
tigation to understand and overcome the often-limited perfor-
mance of nanomedicine-mediated cancer therapy continues.
In a nutshell, the challenges associated with successful deliv-
ery of nanomedicine to the cancerous tissue range from sub-
microscopic NP-protein interactions to microscopic NP-cell
interactions, leading to an emergent behavior at the macro-
scopic scale in the form of whole-body biodistribuiton and
clearance from the body. It is imperative to study these inter-
actions in isolation, as well as in unification, to better under-
stand the fundamental principles that lie underneath the prob-
lem.Moving forward, the intergration of mathematical model-
ing with experimental investigation of NP kinetics, efficacy,
and toxicity in order to better under the structure-activity re-
lationships of nanocarriers for their clinical translatability will
become increasingly important. This review has explored

many of the mathematical modeling approaches developed
in the field of cancer nanomedicine that seek to expand our
capability to fully explore the nano-bio interactions. In the
future, we believe nanomedicine will bring notable improve-
ments in patient survival and quality of life.
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