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Abstract
In this paper we consider a mass- and energy–conserving Crank-Nicolson time dis-
cretization for a general class of nonlinear Schrödinger equations. This scheme, which
enjoys popularity in the physics community due to its conservation properties, was
already subject to several analytical and numerical studies.However, a proof of optimal
L∞(H1)-error estimates is still open, both in the semi-discrete Hilbert space setting,
as well as in fully-discrete finite element settings. This paper aims at closing this gap
in the literature. We also suggest a fixed point iteration to solve the arising nonlinear
system of equations that makes the method easy to implement and efficient. This is
illustrated by numerical experiments.

Keywords Nonlinear Schrödinger equations · Finite elements · A priori error
estimates · Energy conserving methods
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1 Introduction

In this paper we consider nonlinear Schrödinger equations (NLS) seeking a complex
function u(t, x) such that
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i∂t u = −�u + Vu + γ (|u|2)u

in a bounded domain D ⊂ R
d , with a homogenous Dirichlet boundary condition

on ∂D and a given initial value. Here, V (x) is a known real-valued potential and
γ : [0,∞) → R is a smooth (and possibly nonlinear) function that depends on
the unknown density |u|2. Of particular interest are cubic nonlinearities of the form
γ (|u|2)u = κ|u|2u, for some κ ∈ R. In this case, the equation is called Gross–
Pitaevskii equation. It has applications in optics [1,2], fluid dynamics [3,4] and, most
importantly, in quantum physics, where it models for example the dynamics of Bose-
Einstein condensates in a magnetic trapping potential [5–7]. Another relevant class
are saturated nonlinearities, such as γ (|u|2) = κ|u|2(1 + α|u|2)−1 for some α ≥ 0,
which appear in the context of nonlinear optical wave propagation in layered metallic
structures [8,9] or the propagation of light beams in plasmas [10]. In order to discretize
nonlinear Schrödinger equations in time, splittingmethods and exponential integrators
yield typically highly efficient solution schemes that can be easily combined with a
spectral discretization in space (cf. [11–18] and the references therein). If the exact
solution to the NLS admits high regularity, such discretization schemes typically show
a remarkably good performance. However, if the regularity of the solution is strongly
reduced, either by rough potentials V (e.g. disorder potentials or optical lattices) or
by rough initial values u(0) (e.g. when effects close to phase transitions are studied),
then the performance of these methods can drop dramatically. Here we refer exem-
plarily to the recent numerical experiments reported in [19–21]. To overcome this
issue, Ostermann and Schratz proposed new low-regularity time-integrators [19,20]
which improve the convergence in low regularity regimes significantly. However, the
approach still relies on a Fourier discretization in space, which is not an optimal choice
due to the loss of spectral convergence for non-smooth solutions. Practically, the usage
of a (low order) finite element space discretization is often desirable in order to account
for spatial low regularity. In the following we will only discuss approaches that can be
easily combined with finite elements in space, meaning that we put ourselves into the
situation that we assume that the solution to the NLS does not admit much smoothness.

Nonlinear Schrödinger equations come with important physical invariants, where
themass and the energy are considered as two of themost crucial ones.When solving a
NLS numerically it is therefore of great importance to also reproduce this conservation
on the discrete level. This aspect was emphasized by various numerical studies [21,22],
where it was also found that the complexity of the physical setup (or low-regularity)
can stress this issue even further .

For the subclass of power law nonlinearities of the form γ (|u|2) = ∑K
k=1 κk |u|2σk

for σk ≥ 0 and αk ∈ R, a mass and energy conserving relaxation scheme was pro-
posed and analyzed by Besse [23,24]. Thanks to its properties, the scheme shows a
very good performance in realistic physical setups [21]. Despite the large variety of dif-
ferent numerical approaches for solving the time-dependent NLS (cf. [16–18,25–34]
and the references therein) the literature knows however only one time discretization
that conserves both mass and energy simultaneously for arbitrary (smooth) nonlinear-
ities. This discretization, which was first mathematically studied by Sanz-Serna [31]
and which is long-known in the physics community, is a Crank-Nicolson-type (CN)
approach where the nonlinearity is approximated by a suitable difference quotient
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involving the primitive integral of γ . This is also the time discretization that we shall
consider in this paper. Here we note it was analytically and numerically demonstrated
that this method is applicable and reliable in low-regularity regimes [21,35].

A combination of the method with a finite difference space discretization was pro-
posed and analyzed by Bao and Cai [36,37]. Combining the Crank-Nicolson time
discretization with a P1 finite element discretization in space, the first a priori error
estimates for the arising method were obtained by Sanz-Serna 1984 [31] for cubic
nonlinearities. He considers the case d = 1 and derives optimal L∞(L2)-error esti-
mates under the coupling constraint τ � h, where τ denotes the time step size of
the Crank-Nicolson method and h the mesh size of the finite element discretization in
space. In 1991,Akrivis et al. [25] improved this result by showing optimal convergence
rates in L∞(L2) in dimension d = 1, 2, 3 and under the relaxed coupling constraint
τ � hd/4. Finally, in 2017 [35], the L∞(L2)-error estimates could be improved yet
another time by showing that the coupling constraint can be fully removed. Further-
more, general nonlinearities could be considered, the influence of potentials could be
taken into account and even convergence under weak regularity assumptions could be
proved (with reduced convergence rates). However, so far, optimal error estimates in
L∞(H1) for this particular CN-discretization are still open in the literature.

One reason for this absence of H1-results could be related to the techniques used
for the error analysis in previous works (cf. [25,28–31,34]) which is based on the
following steps: 1.Appropriate truncation of the nonlinearity to obtain a problem with
bounded growth. 2.Analyzing the schemewith truncation in the FE space and deriving
corresponding L∞(L2)- and/or L∞(H1)-error estimates. 3. Using inverse estimates
in the finite element space to show that the truncated approximations are uniformly
bounded in L∞(L∞) by a term of the form C(1 + h−s(τ 2 + h p)), with appropriate
powers p > s > 0 that depend on the considered space discretization, regularity and
space dimension. 4.Concluding that if τ and h are coupled in an appropriate way, then
the truncated approximations are all uniformly bounded by a constant C and hence
coincide with a solution to the scheme without truncation.

This strategy does not only have the disadvantage that it produces unnecessary
coupling conditions, but also that it becomes impractically technical when considering
L∞(H1)-error estimates for the Crank-Nicolson FEM. This is because it requires a
suitable truncation of the primitive integral of γ that is on the one hand consistent
with the energy conservation and on the other hand allows for uniform bounds of
the approximations in L∞(W 1,∞). However, thanks to the new techniques developed
in [33] and the CN error analysis suggested in [35] in the context of L∞(L2)-error
estimates, the truncation step is no longer necessary and the desired L∞(L∞)-bounds
can be derived with elliptic regularity theory. With this, it is now possible to obtain
L∞(H1) estimates in a direct way, not only in the finite element setting, but also in
the semi-discrete Hilbert space setting.

In this paper we will therefore build upon the results from [33,35] to fill the gap in
the literature and prove optimal L∞(H1)-error estimates for the energy-conservative
Crank-Nicolson approach without coupling constraints and for a general class of non-
linearities. The paper is structured as follows. In Sect. 2 we present the notation and
the analytical assumptions on the problem. In Sect. 3 we present the time–discrete
Crank-Nicolson method, we recall its well-posedness and optimal error estimates in
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L∞(L2). Furthermore, we present and prove the new error estimate in L∞(H1). The
paper continues with the fully-discrete setting presented in Sect. 4, where the time dis-
cretization is combined with a finite element discretization in space. We recall what is
known about this discretization and finally prove corresponding L∞(H1)-error esti-
mates, which is the main result of this paper. The paper concludes with a note on how
to efficiently implement the method and two numerical experiments to confirm the
convergence rates and to illustrate a setting in which it makes computational sense to
use the CN-FEM instead of for example a spectral method.

2 Notation and assumptions

We start with introducing the analytical setting of this work. Throughout the paper
we assume that D ⊂ R

d (for d = 2, 3) is a convex bounded domain with polyhedral
boundary.OnD , theSobolev spaceof complex-valued,weaklydifferentiable functions
with a zero trace on ∂D and L2-integratable partial derivatives is as usual denoted by
H1
0 (D) := H1

0 (D,C). The potential V ∈ L∞(D;R) is assumed to be real and
nonnegative. Indirectly, we also assume that V is sufficiently smooth so that it is
compatible with the regularity assumptions for u listed below (see [35] for a discussion
on this aspect). The (possibly nonlinear) function

γ : [0,∞) → [0,∞)

is assumed to be two times differentiable, fulfills γ (0) = 0 and its growth can be
characterized with

|γ (|v|2)v − γ (|w|2)w| ≤ L(K )|v − w| for all v,w ∈ C with |v|, |w| ≤ K

where L is a function with the following growth properties

0 ≤ L(s) ≤ Csq for s ≥ 0 and

{
q ∈ [0,∞) for d = 2,

q ∈ [0, 4) for d = 3.

Note that in [35] the admissible growth condition in 3d requires q ∈ [0, 2), which
is however a typo and should be, as above, q ∈ [0, 4) (cf. [38, Proposition 3.2.5 and
Remark 3.2.7] for the original result). Examples for nonlinearities that fulfill these
assumptions are mentioned in the introduction. The most common and physically
relevant choices covered by our setting are power law nonlinearities γ (ρ) = κρq

for κ ≥ 0 and 0 ≤ q < ∞ in 2d and 0 ≤ q < 4 in 3d. Other physically relevant
nonlinearities that fulfill the conditions are saturated nonlinearities appearing in the
modeling of optical wave propagation such as γ (ρ) = κρ(1 + αρ)−1 for α, κ ≥ 0.

The above assumptions cover the regime of so-called defocussing (positive) non-
linearities and guarantees that the NLS and its Crank-Nicolson discretization are
well-posed. For focussing (negative) nonlinearities, i.e. γ : [0,∞) 	→ (−∞, 0],
the well-posedness (of both the continuous and discrete models) can no longer be
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guaranteed without making additional technical assumptions. Typically, effects such
as finite time blow ups can occur in this regime. To avoid constantly having to invoke
a saving clause we restrict our attention to the defocussing case. We do however point
out that under the assumptions that the NLS and the Crank-Nicolson discretizations
are well-posed (without blow-up in the time interval [0, T ]) then all our error estimates
hold without changes.

For the initial value we assume that u0 ∈ H1
0 (D) ∩ H2(D) and, without loss

of generality, that it has a normalized mass, i.e.
∫
D |u0(x)|2 dx = 1. With this, the

considered nonlinear Schrödinger equation (NLS) reads as follows. For a maximum
time T > 0 and an initial value u0, we seek

u ∈ L∞([0, T ], H1
0 (D)) and ∂t u ∈ L∞([0, T ], H−1(D))

such that u(·, 0) = u0 and

i∂t u = −Δu + V u + γ (|u|2) u (2.1)

in the sense of distributions. Problem (2.1) admits at least one solution, that is even
unique for repulsive cubic nonlinearities in 1d and 2d (cf. [38] in general and [35,
Remark 2.1] for precise references). We assume that the solution admits the following
additional regularity, which is

uttt ∈ L2(0, T ; H1(D))

and u ∈ L∞(0, T ;W 1,∞(D)), ∂
(k)
t u ∈ L2(0, T ; H2(D)) for 0 ≤ k ≤ 2, (2.2)

where we note that any solution with such increased regularity must be unique (cf.
[35, Lemma 3.1]). In the rest of the paper u hence always refers to this uniquely
characterized solution.

It is well known that solutions to the NLS (2.1) preserve the mass, i.e.

∫

D
|u(t, x)|2 dx =

∫

D
|u0(x)|2 dx = 1

and the energy, i.e.

E[u(t)] = E[u0], where E[u] := 1

2

∫

D
|∇u(x)|2 + V (x) |u(x)|2 + Γ (|u(x)|2) dx,

with Γ (ρ) := ∫ ρ

0 γ (r) dr .
For brevity, we shall denote the L2-norm of a function v ∈ L2(D) := L2(D,C) by

‖v‖. The L2-inner product is denoted by 〈v,w〉 = ∫
D v(x) w(x) dx . Here, w denotes

the complex conjugate of w.
Throughout the paper we will use the notation A � B, to abbreviate A ≤ CB,

where C is a constant that only depends on u, T , d, D , V and γ , but not on the
discretization.
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Remark 2.1 In the analysis we restrict our attention to homogeneous Dirichlet bound-
ary conditions. Typically these boundary conditions can be motivated by physical
reasoning. For example in the context of Bose Einstein condensates, the magnetic
potential V is a trapping potential that becomes very quickly very large and hence
traps the condensate in a bounded region. Mathematically this leads to an exponential
decay of the solution u to zero (in moderate distances from the origin of the coordinate
system) and hence justifies to truncate the computational domain to a simple geometric
object on which the problem is solved with zero boundary conditions. A typical alter-
native found in the literature are periodic boundary conditions which are e.g. favorable
for spectral methods. Both the formulation of the Crank-Nicolson method and its error
analysis can be easily generalized to that case.

3 Time-discrete Crank-Nicolson scheme

In this section we will state the semi-discrete Crank-Nicolson scheme, recall its well-
posedness and available stability bounds, and then use these results to prove optimal
L∞(H1)-error estimates in the Hilbert space setting. For that, let T denote the final
time of computation, N the number of time-steps, and τ = T /N the time step size.
By tn we shall mean tn = nτ . The exact solution at time tn shall be denoted by
un := u(tn, ·). We also introduce a short hand notation for discrete time derivatives
which is Dτun := (un+1 − un)/τ and analogously Dτunτ := (un+1

τ − unτ )/τ .

3.1 Method formulation andmain result

With the notation above, the semi-discrete Crank-Nicolson approximation un+1
τ ∈

H1
0 (D) to un+1 is given recursively as the solution (in the sense of distributions) to

the equation

iDτu
n
τ = −Δu

n+ 1
2

τ + V u
n+ 1

2
τ + Γ (|un+1

τ |2) − Γ (|unτ |2)
|un+1

τ |2 − |unτ |2
u
n+ 1

2
τ , (3.1)

where u
n+ 1

2
τ := (unτ + un+1

τ )/2. The initial value is selected as u0τ = u0. It is easily
seen that the discretization conserves both mass and energy, i.e.

∫

D
|unτ |2 dx =

∫

D
|u0|2 dx and E[unτ ] = E[u0] for all n ≥ 0.

The scheme (3.1) is well-posed and admits a set of a priori error estimates. The
properties are summarized in the following theorem that is proved in [35, Theorem
4.1].

Theorem 3.1 Under the general assumptions of this paper, there exists a constant
C(u) > 0 and a solution unτ ∈ H1

0 (D) to the semi-discrete Crank-Nicolson scheme
(3.1) that is uniquely characterized by the property that

123



A note on optimal H1-error estimates for Crank-Nicolson… 43

sup
0≤n≤N

(‖unτ‖L∞(D) + ‖unτ‖H2(D)

) ≤ C(u), (3.2)

and the a priori estimate for the L2-error

sup
0≤n≤N

‖unτ − un‖ � τ 2,

where u is the (unique) exact solution with the regularity property (2.2).

Our main result on optimal error estimates in the L∞(H1) reads as follows.

Theorem 3.2 (Optimal H1-error estimates for the semi-discrete method) Consider
the setting of Theorem 3.1, then the L∞(H1)-error converges with optimal order in
τ , i.e.

sup
0≤n≤N

‖unτ − un‖H1(D) � τ 2.

The theorem is proved in Sect. 3.2 below.

3.2 Proof of Theorem 3.2

In this section we will prove Theorem 3.2. Let us introduce some notation that is
used throughout the proofs. We recall Dτ en = (en+1 − en)/τ . Furthermore, we let
en+1/2 := (en+1 + en)/2 and un+1/2 := (un+1 + un)/2. For time derivatives at fixed
time tn , we also write ∂t un := ∂t u(tn, ·).

We begin by establishing a differential equation for the time discrete error en =
un − unτ . This is stated in the following lemma.

Lemma 3.1 (Consistency error) The error en = un − unτ fulfills the identity

iDτ e
n + Δen+1/2 − Ven+1/2 − enγ = T n, (3.3)

where the the consistency error T n is given by

T n := i (Dτu
n − ∂t u(tn+1/2)) + Δ(un+1/2 − u(tn+1/2)) − V (un+1/2 − u(tn+1/2))

−
(

γ (ξn) − γ (|u(tn+1/2)|2)
)

. (3.4)

Here, enγ := γ (ξn)un+1/2−γ (ξnτ )un+1/2
τ for somebounded functions ξn, ξnτ ∈ L∞(D)

with the properties that

ξn(x) ∈ [min(|un|2, |un+1|2),max(|un|2, |un+1|2)] and

ξnτ (x) ∈ [min(|unτ |2, |un+1
τ |2),max(|unτ |2, |un+1

τ |2)]

for almost all x ∈ D .

123



44 P. Henning, J. Wärnegård

Proof It is easily verified that exact solution fulfills

iDτu
n + Δun+1/2 − Vun+1/2 − Γ (|un+1|2) − Γ (|un|2)

|un+1|2 − |un|2 = T n . (3.5)

By the regularity assumptions we can apply Taylor expansion arguments to T n to see:

N∑

k=0

‖T k‖2 ≤ Cτ 3 (3.6)

The argument that proves (3.6) is elaborated in “Appendix A”, where it becomes
also visible how the regularity assumptions enter explicitly in the estimate. Next,
subtracting (3.5) from (3.1) we find that en = un − unτ satisfies:

iDτ e
n + Δen+1/2 − Ven+1/2 − enγ = T n

where enγ denotes the error coming from the nonlinear term, defined by

enγ = Γ (|un+1|2) − Γ (|un|2)
|un+1|2 − |un|2 un+1/2 − Γ (|un+1

τ |2) − Γ (|unτ |2)
|un+1

τ |2 − |unτ |2
un+1/2

τ .

Recalling the definition of Γ we have:

Γ (|un+1|2) − Γ (|un|2)
|un+1|2 − |un|2 = 1

|un+1|2 − |un|2
∫ |un+1|2

|un |2
γ (r) dr =: γ (ξn),

likewise

Γ (|un+1
τ |2) − Γ (|unτ |2)

|un+1
τ |2 − |unτ |2

= 1

|un+1
τ |2 − |unτ |2

∫ |un+1
τ |2

|unτ |2
γ (r) dr =: γ (ξnτ ).

The expression for enγ is thus simplified to

enγ := γ (ξn)un+1/2 − γ (ξnτ )un+1/2
τ ,

where ξn is a function taking values between |un|2 and |un+1|2 and ξnτ takes values
between |unτ |2 and |un+1

τ |2. ��
The differential equation in Lemma 3.1 is now used to derive a recurrence formula for
the H1-norm of the error. Multiplying (3.3) by Dτ en , integrating and taking the real
part yields:

‖∇en+1‖2 − ‖∇en‖2
2τ

= Re(〈enγ , Dτ e
n〉)

︸ ︷︷ ︸
I

−Re(〈T n, Dτ e
n〉).

︸ ︷︷ ︸
II

(3.7)
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The idea is to bound the terms I and II in such a way that Grönwall’s inequality can be
used. We proceed to bound term I. Multiplying the error PDE (3.3) by enγ results in:

i〈Dτ e
n, enγ 〉 = 〈∇en+1/2,∇enγ 〉 + 〈Ven+1/2, enγ 〉 + ‖enγ ‖2 + 〈T n, enγ 〉

and consequently

|I| = |Re(〈Dτ e
n, enγ 〉)|

≤ |Im(〈∇en+1/2,∇enγ )〉| + |Im〈Ven+1/2, enγ 〉| + |Im(〈T n, enγ 〉)|
� ‖∇en+1/2‖2 + ‖∇enγ ‖2 + ‖V ‖∞(‖en+1/2‖2 + ‖enγ ‖2) + τ 4 + ‖enγ ‖2 + ‖T n‖2
� ‖∇en+1‖2 + ‖∇en‖2 + ‖∇enγ ‖2 + ‖enγ ‖2 + ‖T n‖2 + τ 4. (3.8)

In order to use Grönwall’s inequality we need to bound ‖enγ ‖ and ‖∇enγ ‖ in terms of
‖en‖,‖∇en‖ and terms of O(τ 2). These bounds are formulated in the two following
lemmas.

Lemma 3.2 Given the optimal L2-convergence of Theorem 3.1 and the uniformbounds
(3.2), the error coming from the nonlinear term behaves as τ 2, i.e. ‖enγ ‖ � τ 2.

Proof We introduce the function f by

f (a, b) = 1

b − a

∫ b

a
γ (r) dr . (3.9)

The partial derivatives of f with respect to the i’th variable are denoted by ∂i f . A
standard application of the mean value theorem yields that

enγ = (γ (ξn) − γ (ξnτ ))un+1/2 + γ (ξnτ )(un+1/2 − un+1/2
τ )

= ( f (|un|2, |un+1|2) − f (|unτ |2, |un+1
τ |2))un+1/2 + γ (ξnτ )en+1/2

= (
∂1 f (η

n, ηn+1)(|un|2 − |unτ |2) + ∂2 f (η
n, ηn+1)(|un+1|2 − |un+1

τ |2))un+1/2

+γ (ξnτ )en+1/2

for some functions ηn and ηn=1 with

min{|un(x)|2, |unτ (x)|2} ≤ ηn(x) ≤ max{|un(x)|2, |unτ (x)|2}. (3.10)

Aquick sanity check shows that the partial derivatives of f are boundedby the derivative
of γ :

|∂1 f (a, b)| = | 1

b − a
(γ (c) − γ (a))| = |γ ′(θ−)

c − a

b − a
|

|∂2 f (a, b)| = | 1

b − a
(γ (b) − γ (c))| = |γ ′(θ+)

b − c

b − a
|, (3.11)
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where c and θ lie somehwere between a and b. Hence

‖enγ ‖ ≤ ‖∂1 f (ηn, ηn+1)‖L∞‖un+1/2‖L∞‖|un|2 − |unτ |2‖
+‖∂2 f (ηn, ηn+1)‖L∞‖un+1/2‖L∞‖|un+1|2 − |un+1

τ |2‖
+‖γ (ξnτ )‖L∞‖en+1/2‖.

Since ‖|un|2−|unτ |2‖ ≤ ‖|un|+|un+1‖|L∞‖|en‖| it now followswith themax-norm
bounds for the exact solution and the semi-discrete solution that ‖enγ ‖ � ‖en+1‖ +
‖en‖ � τ 2. ��
Lemma 3.3 Given Theorem 3.1, the gradient of the error coming from the nonlinear
term is bounded as ‖∇enγ ‖ � ‖∇en+1‖ + ‖∇en‖ + τ 2.

Proof The steps are much the same as in the previous lemma, with the exception that
we need to use max-norm estimates for the gradient of the exact solution, which are
however not available for the numerical approximation. We begin with a suitable error
splitting of the form

∇enγ = ∇[γ (ξn)un+1/2 − γ (ξnτ )un+1/2
τ ]

= ∇γ (ξn)un+1/2 + γ (ξn)∇un+1/2 − ∇γ (ξnτ )un+1/2
τ − γ (ξnτ )∇un+1/2

τ

= un+1/2
τ ∇(γ (ξn) − γ (ξnτ )) + ∇γ (ξn)(un+1/2 − un+1/2

τ )

+(γ (ξn) − γ (ξnτ ))∇un+1/2 + γ (ξnτ )∇(un+1/2 − un+1/2
τ ).

Using the previous lemma and the max-norm bounds for the exact solution we may
conclude,

‖∇enγ ‖ ≤ ‖un+1/2
τ ‖L∞‖∇(γ (ξn) − γ (ξn))‖ + ‖∇γ (ξn)‖L∞‖en+1/2‖

+‖∇un+1/2‖L∞τ 2 + ‖γ (ξnτ )‖L∞‖∇en+1/2‖. (3.12)

What is left to bound is the term ‖∇(γ (ξn) − γ (ξn))‖. We consider its dependence
on |un|2, |un+1|2, |unτ |2 and |un+1

τ |2 and find:

∇(γ (ξn) − γ (ξnτ )) = ∇( f (|un |2, |un+1|2) − f (|unτ |2, |un+1
τ |2))

= ∂1 f
n ∇|un |2 + ∂2 f

n ∇|un+1|2 − ∂1 f
n
τ ∇|unτ |2 − ∂2 f

n
τ ∇|un+1

τ |2
= (∂1 f

n − ∂1 f
n
τ )∇|un |2 + ∂1 f

n
τ ∇(|un |2 − |unτ |2)

+(∂2 f
n − ∂2 f

n
τ )∇|un+1|2 + ∂2 f

n
τ ∇(|un+1|2 − |un+1

τ |2), (3.13)

where ∂i f n := ∂i f (|un|2, |un+1|2) and ∂i f nτ := fi (|unτ |2, |un+1
τ |2). Another appli-

cation of the mean value theorem yields:

∂1( f
n − f nτ ) = ∂1,1 f (θ

n, θn+1) (|un |2 − |unτ |2) + ∂1,2 f (θ
n, θn+1) (|un+1|2 − |un+1

τ |2),
∂2( f

n − f nτ ) = ∂2,1 f (ϑ
n, ϑn+1)(|un |2 − |unτ |2) + ∂2,2 f (ϑ

n, ϑn+1)(|un+1|2 − |un+1
τ |2),

(3.14)
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for suitable mean value functions that can be bounded pointwise by the maximum
of the exact solution and the semi-discrete CN-approximation. The following quick
calculations show that the second partial derivatives of f are bounded by the second
derivative of γ :

∂1,1 f (a, b) = 1

(b − a)2
2(γ (c) − γ (a)) − γ ′(a)

b − a
= γ ′(θ−) − γ ′(a)

b − a
+ Cγ ′′ ,

∂1,2 f (a, b) = 1

(b − a)2
(γ (b) − 2γ (c) + γ (a)) = γ ′′(c) + Cγ ′′ ,

∂2,2 f (a, b) = γ ′(b)
b − a

− 1

(b − a)2
2(γ (b) − γ (c)) = γ ′(b) − γ ′(θ+)

b − a
+ Cγ ′′ ,

(3.15)

where it was used that c = (b + a)/2 + Cγ ′′(a − b)2. It thus becomes clear that
‖∂1,1 f + ∂1,2 f + ∂2,2 f ‖L∞ ≤ Cγ ′′ . This gives us the following L2-bound on (3.13)

‖∇(γ (ξn) − γ (ξnτ ))‖ ≤ Cγ ′′ (‖en‖ + ‖en+1‖) + Cγ ′ ‖∇(|un |2 − |unτ |2 + |un+1|2 − |un+1
τ |2)‖.

We conclude that

‖∇enγ ‖ � ‖∇(|un|2 − |unτ |2)‖ + ‖∇(|un+1|2 − |un+1
τ |2)‖ + τ 2.

Here it is noted that ∇(|un|2 − |unτ |2) may be written as

∇(|un|2 − |unτ |2) = 2Re((un − unτ )∇un + unτ∇(un − unτ )).

Hence, using the max-norm bounds for the gradient of the exact solution we have

||∇enγ || � ||∇en+1|| + ||∇en|| + τ 2.

��
With Lemmas 3.2 and 3.3 we now have the following bound on term I.

Lemma 3.4 For term I which is given by (3.8), we have the estimate

|I| � ‖∇en+1‖2 + ‖∇en‖2 + ‖T n‖2 + τ 4. (3.16)

We can now proceed to bound term II. Here we explicate the Taylor term using (3.4)
to see

II = −Re(〈T n, Dτ e
n〉)

≤ |〈(Dτu
n − ∂t u(tn+1/2)), Dτ e

n〉|
︸ ︷︷ ︸

IIa

+Re〈−Δ(un+1/2 − u(tn+1/2)), Dτ e
n〉

︸ ︷︷ ︸
IIb

+ |〈V (un+1/2 − u(tn+1/2)), Dτ e
n〉|

︸ ︷︷ ︸
IIc
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+ |〈
(

Γ (|un+1|2) − Γ (|un|2)
|un+1|2 − |un|2 − γ (|u(tn+1/2)|2), Dτ e

n〉
)

|
︸ ︷︷ ︸

IId

.

We start with estimating IIa, IIc and IId, which can be bounded in a similar way.
Step 1, bounding IIa:

By replacing Dτ en using (3.3) (i.e. time derivative is replaced by regularity in space)
we have

|〈Dτu
n − ∂t u(tn+1/2), Dτ e

n 〉|
≤ |〈Dτu

n − ∂t u(tn+1/2),Δen+1/2〉| + |〈Dτu
n − ∂t u(tn+1/2), Ven+1/2〉|

+ |〈Dτu
n − ∂t u(tn+1/2), e

n
γ 〉| + |〈Dτu

n − ∂t u(tn+1/2), T
n〉|

(3.6)
� ‖∇en+1‖2 + ‖∇en‖2 + ‖Dτu

n − ∂t u(tn+1/2)‖2H1 + ‖T n‖2 + τ 4.

Here we see how the assumption that ∂t t t u ∈ L2(0, T ; H1(D)) will enter, as it allows
us to conclude that

∑ ‖Dτun − ∂t u(tn+1/2)‖2H1 � τ 3.
Step 2, bounding IIc:

We use the same idea as for IIa to get

|〈V (un+1/2 − u(tn+1/2)), Dτ e
n〉| ≤ ‖V ‖L∞|〈un+1/2 − u(tn+1/2), Dτ e

n〉|
≤ ‖V ‖L∞

(|〈un+1/2 − u(tn+1/2),Δen+1/2〉| +
+ |〈un+1/2 − u(tn+1/2), Ven+1/2〉| + |〈un+1/2 − u(tn+1/2), e

n
γ 〉|

+ |〈un+1/2 − u(tn+1/2), T
n〉|)

� ‖∇en+1‖2 + ‖∇en‖2 + ‖un+1/2 − u(tn+1/2)‖2H1 + ‖T n‖2 + τ 4.

Step 3, bounding IId:
We start from

∣
∣
〈Γ (|un+1|2) − Γ (|un|2)

|un+1|2 − |un|2 − γ (|u(tn+1/2)|2), Dτ e
n 〉∣∣

= |〈γ (ξn) − γ (|u(tn+1/2)|2), Dτ e
n〉|

replace Dτ en again using (3.3). Furthermore, in virtue of the assumptions it holds that
‖∇(γ (ξn) − γ (|u(tn+1/2)|2))‖ � ‖un+1/2 − u(tn+1/2)‖H1 . This is made explicit in
the appendix. We thus obtain

|〈γ (ξn) − γ (|u(tn+1/2)|2), Dτ e
n〉| = |〈γ (ξn) − γ (|u(tn+1/2)|2), −Δen+1/2 + Ven+1/2 + enγ + T n〉|

≤ |〈∇(γ (ξn) − γ (|u(tn+1/2)|2)), ∇en+1/2〉| + ‖T n‖2 + O(τ4)

� ‖∇en+1‖2 + ‖∇en‖2 + ‖T n‖2 + ‖un+1/2 − u(tn+1/2)‖2H1 + τ4.

Step 4, bounding IIb:
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The previous technique does not work on this term since replacing the discrete time
derivative with regularity in spacewould give rise to the term∇Δ(un+1/2−u(tn+1/2)),
which we can not afford. Instead we use summation by parts in time to get the factor
DτΔ(un+1/2−u(tn+1/2)), which when integrated against en+1/2 can be handled. First
we recall:

Dτ [akbk] = ak Dτb
k + bk+1Dτa

k ⇐⇒ −ak Dτb
k = Dτ [ak]bk+1 − Dτ [akbk].

Using this on term IIb yields:

〈−Δ(un+1/2 − u), Dτ e
n〉= 〈∇(un+1/2 − u), Dτ ∇en〉

= Dτ [〈∇(un+1/2 − u(tn+1/2)),∇en〉] − 〈Dτ ∇(un+1/2 − u(tn+1/2)), ∇en+1〉
≤ Dτ [〈∇(un+1/2 − u(tn+1/2)),∇en〉] + |〈Dτ ∇(un+1/2 − u(tn+1/2)),∇en+1〉|
≤ Dτ [〈∇(un+1/2 − u(tn+1/2)),∇en〉] + ‖Dτ (un+1/2 − u(tn+1/2))‖2H1 + ‖∇en+1‖2.

Collecting the estimates we have the following estimate for term II.

Lemma 3.5 For term II = −Re(〈T n, Dτ en〉) it holds the estimate

II ≤ Dτ [〈∇(un+1/2 − u(tn+1/2)),∇en〉] + C
(‖∇en+1‖2 + ‖∇en‖2 + τ 4 + ‖T n‖2

+‖Dτu
n − ∂t u(tn+1/2)‖2H1 + ‖un+1/2 − u(tn+1/2)‖2H1

)
.

(3.17)

Here we note the importance of not estimating the absolute value of the first term
since it is necessary to use the fact that n of these terms cancel when summed up, i.e.∑

k Dτak = 1
τ
(an+1 − a0). We are now ready to finish the proof of the first main

result.

Proof of Theorem 3.2 We pick off where we left (3.7) and find by using Lemmas 3.4
and 3.5:

‖∇en+1‖2 − ‖∇en‖2
2τ

≤ Dτ [〈∇(un+1/2 − u(tn+1/2)),∇en〉] + C
(‖∇en+1‖2 + ‖∇en‖2 + τ 4

+ ‖Dτu
n − ∂t u(tn+1/2)‖2H1 + ‖T n‖2 + ‖un+1/2 − u(tn+1/2)‖2H1

)
.

Summing this up and using e0 = 0 gives

‖∇en+1‖2
2τ

≤ C

(
n∑

k=0

‖∇ek‖2
)

+ 1

τ
〈∇(un+3/2 − u(tn+3/2)),∇en+1〉

+ Cτ 3 +
n∑

k=0

‖T k‖2 + ‖uk+1/2 − u(tk+1/2)‖2H1 + ‖Dτu
k

− ∂t u(tk+1/2)‖2H1
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and therefore, recalling (3.6),

‖∇en+1‖2 ≤ C

(
n∑

k=0

τ‖∇ek‖2
)

+ Cτ 4 + |〈∇(un+3/2 − u(tn+3/2)),∇en+1〉|.

Young’s inequality with ε > 0 is used on the last term:

|〈∇(un+3/2 − u(tn+3/2)),∇en+1〉| ≤ C

(
τ 4

ε
+ ε‖∇en+1‖2

)

. (3.18)

Which holds since,

‖∇(un+3/2 − u(tn+3/2))‖ � τ 2‖∂t t u‖L∞(H1),

wherewehave‖∂t t u‖L∞(H1) � ‖∂t t u‖L2(H1)+‖∂t t t u‖L2(H1) bySobolev embeddings.
Finally we arrive at

‖∇en+1‖2 ≤ C

(
n∑

k=0

τ‖∇ek‖2
)

+ Cτ 4 + τ 4

ε
+ ε‖∇en+1‖2

and for e.g. ε = 1/2 we can absorb ε‖∇en+1‖2 in the left hand side and conclude

‖∇en+1‖2 ≤ C

(

τ 4 +
n∑

k=0

τ‖∇ek‖2
)

.

Grönwall’s inequality now yields:

‖∇en+1‖ � τ 2. (3.19)

��

4 Fully-discrete Crank-Nicolson scheme

We shall now consider the fully-discrete setting that is based on a finite element
discretization in space. For that, we let Sh ⊂ H1

0 (D) denote the space of P1 Lagrange
finite elements on a quasi-uniform simplicial mesh on D with mesh size h. In this
setting we have by standard finite element theory (cf. [39]) the following inequality
for any u ∈ H1

0 (D) ∩ H2(D):

‖u − Phu‖ + h‖∇(u − Phu)‖ � h2‖u‖H2 . (4.1)

Here Ph : H1
0 (D) → Sh denotes (for example) the Ritz-projection into the finite

element space. For a given discrete initial value u0h ∈ Sh the CN-FEM approximation
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unτ,h ∈ Sh to un is given by the fully discrete equation

i

〈
un+1

τ,h − unτ,h
τ

, v

〉

= 〈∇un+1/2
τ,h ,∇v

〉 + 〈
Vun+1/2

τ,h , v
〉

+
〈

Γ (|un+1
τ,h |2) − Γ (|unτ,h |2)

|un+1
τ,h |2 − |unτ,h |2

un+1/2
τ,h , v

〉

(4.2)

for all v ∈ Sh . The initial value is selected as u0τ,h = Phu0. As in the semi-discrete
case, the discretization conserves both mass and energy, i.e.

∫

D
|unτ,h |2 dx =

∫

D
|u0τ,h |2 dx and E[unτ,h] = E[u0τ,h] for all n ≥ 0.

The scheme is well-posed and the corresponding approximations converge in the
L∞(L2)-norm with optimal order in space and time to the exact solution. A proof
of this statement can be easily extracted from [35, Theorem 3.1 and Lemma 5.3]. In
particular, we have the following result.

Theorem 4.1 Under the general assumptions of this paper, there exists a solution
unτ,h ∈ H1

0 (D) to the fully discreteCrank-Nicolson scheme (4.2) such that the following
a priori error estimates hold

sup
0≤n≤N

‖unτ,h − unτ‖L2(D) � h2 and sup
0≤n≤N

‖unτ,h − un‖L2(D) � h2 + τ 2.

With this we are ready to state our final theorem.

Theorem 4.2 (Optimal H1-error estimates for the fully discrete method) Let unτ ∈
H1
0 (D) denote the fully-discrete Crank-Nicolson approximations from Theorem 4.1,

then it holds

sup
0≤n≤N

‖unτ,h − un‖H1(D) � τ 2 + h.

Proof First, we recall the inverse estimate on quasi-uniform meshes (cf. [39]), i.e.
‖∇vh‖ ≤ Ch−1‖vh‖ for all vh ∈ Sh , which implies

‖∇(Ph(u
n
τ ) − unτ,h)‖ ≤ Ch−1‖Ph(unτ ) − unτ,h‖. (4.3)

With this, the H1 convergence result (3.19) together with Theorem 4.1 suffice to show
optimal H1-convergence rates for the fully discrete method. This is made clear by the
following splitting.

‖∇(un − unτ,h)‖ ≤ ‖∇(un − unτ )‖ + ‖∇(unτ − Ph(u
n
τ ))‖ + ‖∇(Ph(u

n
τ ) − unτ,h)‖

(4.3)≤ ‖∇(un − unτ )‖ + Ch + Ch.
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Here we have made use of the inequality (4.1), the uniform H2-regularity of unτ , i.e.
‖unτ‖H2 ≤ C(u) (cf. (3.2)) and the optimal L2-estimates. In virtue of Theorem 3.2 we
may thus conclude:

‖∇(u − unτ,h)‖ ≤ C(τ 2 + h). (4.4)

��
Detailed numerical studies that confirm the optimal convergence rates stated in The-
orem 4.1 and Theorem 4.2 are presented in [21,35].

5 Implementation and numerical examples

In this section we will discuss how the Crank-Nicolson FEM discretization can be
efficiently implemented and practically used. Afterwards, we present two numerical
experiments. The first one is to confirm the theoretically predicted convergence rates
in Theorem 4.1 and the second experiment demonstrates that our approach is fully
competitive in low regularity regimes, where we compare it with a time-splitting
spectral method.

5.1 Efficient implementation

The Crank Nicolson method (4.2), albeit popular, suffers from the drawback that it
requires solving a fully nonlinear system of equations in each time step. Furthermore,
this system of equations is often solved through a Newton step, the implementation of
which can become complicated and expensive for general nonlinearities. We present
here a competitive fixed point solver which makes the method perform on par in terms
of computational time with linearized time-stepping methods such as the RE-FEM
proposed by C. Besse [23] which was found to be best performing in [21].

To detail the proposed fixed-point iteration, let Un ∈ R
N denote the vector of

nodal values that belongs to the function unτ,h ∈ Sh . Introducing the following matrix
notation:

(M)i j = 〈v j , vi 〉 Ai j = 〈∇v j ,∇vi 〉
(MV )i j = 〈V v j , vi 〉 (MΓ )i j (U

n+1,Un) = 〈γ (ξ
n+1/2
τ,h )v j , vi 〉

the equation (4.2) in matrix form becomes :

iM
Un+1 −Un

τ
= (

A + MV + MΓ (Un+1,Un)
)Un+1 +Un

2
.

Let L1 = M+ iτ/2(A+MV ) and L2 = M− iτ/2(A+MV ). Our fixed point iteration
takes the form:

Un+1
i+1 = L−1

1 L2U
n + L−1

1 MΓ (Un+1
i ,Un)(Un+1

i +Un)/2. (5.1)
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Here we note that matrix L1 does not change with time. Hence, the above iteration can
be done efficiently by precomputing the LU-factorization of L1. After it is precom-
puted, each time step only involves matrix-vector multiplications, but no longer the
solving of a linear system of equations. In fact, the main cost in each time step account
for the assembly of the updated mass matrix MΓ (Un+1

i ,Un) with the densities from
the previous time step and the previous iteration. Compared to this, all other costs
are essentially negligible. We find that typically, but dependent on τ , 4–8 iterations
are required to reach a tolerance of machine epsilon. To illustrate the efficiency we
conclude with two numerical test problems.

5.2 Harmonic potential

First we consider a smooth potential to confirm the expected convergences rates for
a type of nonlinearity that complements previous test cases [21,35]. Here we seek
u(x, t) with

⎧
⎨

⎩

i∂t u = −Δu + Vu + γ (|u|2)u in D × (0, T ],
u(·, t) = 0 on ∂D × (0, T ],
u(·, 0) = u0 in D,

(5.2)

where we consider the saturated nonlinearity γ (r) := r/(1+ r) (cf. [8–10]) . Further-
more, D = [−5, 5]2 is the computational domain, the maximum time is selected as
T = 1 and the trapping potential V (x, y) = (νx x)2 + (νy y)2. For the time-dependent
problem we set the trapping frequencies to νx = 2 and νy = 3. The initial value u0 is
the unique positive ground state with

∫
D |u0|2 = 1 to the problem with νx = νy = 1,

i.e. it solves the eigenvalue problem

λ0u0 = −Δu0 + Vu0 + γ (|u0|2)u0,

with ground state eigenvalue (chemical potential) λ0 > 0. The H1-errors are presented
in Table 1. The O(h)-convergence is best seen in column τ = 2−9, where initially
the convergence isO(h1.5) but flattens out toO(h1.2) for the last data point. Since the
reference solution is also computed with h = 0.0125, it is expected that this last order
of convergence is an overestimate. Using the values in row h = 0.0125we estimate the
order of convergence with respect to τ to be 1.9, hence, confirming the theoretically
predicted rates from Theorem 4.1.

5.3 Discontinuous potential

This example illustrates a moderate setting where, due to reduced regularity of the
exact solution, finite element based methods are preferable over spectral methods. In
the followingwe compare theCrank-Nicolson approachwith a Strang splitting spectral
method of order 2 (SP2) [40] which is known to show a very good performance in
smooth settings.
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Table 1 H1-errors for harmonic potential test case (5.2)

‖∇(uτ,h − uref)‖L2
τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 τ = 2−9 τ = 2−10 τ = 2−11

h = 0.2 0.829 0.400 0.485 0.526 0.538 0.542 0.543

h = 0.1 1.048 0.396 0.144 0.179 0.191 0.194 0.194

h = 0.05 1.109 0.498 0.129 0.054 0.062 0.066 0.066

h = 0.025 1.124 0.526 0.155 0.037 0.022 0.023 0.023

h = 0.0125 1.128 0.533 0.163 0.039 0.009 0.002 0.0005

The reference solution uref is calculated with h = 0.0125 and τ = 2−13. The energy is E[unh,τ
] = 3.86874

Fig. 1 Plot of the density (|u|2) of the reference solution to (5.3) at T = 1

In this test problem we seek u(x, t) with

{
i∂t u = −Δu + Vu + γ (|u|2)u in D × (0, T ],
u(·, 0) = u0 in D,

(5.3)

where we consider the saturated nonlinearity γ (r) := 10r/(1 + r). For a fair com-
parison with the SP2, we consider our problem with periodic boundary conditions
which are easier to handle by the spectral method. The generalization of the Crank-
Nicolson method to periodic boundary conditions is straightforward. Furthermore,
D = [−5, 5]2 is again the computational domain and the maximum time is selected
as T = 1. The trapping potential V (x, y) = (νx x)2 + (νy y)2 + 100(1|x |≥1(x) +
1|y|≥1(y)), with trapping frequencies νx = 1 and νy = 3, is discontinuous and causes
a slight loss of regularity. We stress that this is a moderate test case, as illustrated in
Fig. 1 most of the dynamics take place within the unit cube where the potential is
smooth. The initial value u0 is the unique positive ground state with

∫
D |u0|2 = 1 and
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Table 2 Errors and computational times for the CN-FEM

‖|uτ,h |2 − |uref|2‖L1 ‖∇(uh,τ − uref)‖L2 CPU [h]

CN-FEM, h = 0.025, NDoF = 4002

τ = 2−8 0.40 4.91 0.4

τ = 2−9 0.18 3.20 0.8

τ = 2−10 0.12 1.43 1.4

CN-FEM, h = 0.0125, NDoF = 8002

τ = 2−8 0.42 5.38 1.8

τ = 2−9 0.22 3.61 3.3

τ = 2−10 0.13 1.77 6.0

τ = 2−11 0.04 0.80 11.5

For a relative comparison of the errors we recall ‖ |uτ,h |2 ‖L1 = 1 and note E[uτ,h ] = 25.539397

Table 3 Errors and computational times for the SP2

‖|uτ,h |2 − |uref|2‖L1 ‖∇(uh,τ − uref)‖L2 CPU [h]

SP2, NDoF = 8002

τ = 2−12 0.28 4.29 0.24

τ = 2−13 0.28 2.42 0.49

τ = 2−14 0.28 2.35 0.96

SP2, NDoF = 16002

τ = 2−12 0.12 2.62 1.15

τ = 2−13 0.12 1.28 2.26

τ = 2−14 0.12 1.18 5.2

For a relative comparison of the errors we recall ‖ |uτ,h |2 ‖L1 = 1 and note E[uτ,h ] = 25.539397

V0(x, y) = x2 + y2, i.e. it solves the eigenvalue problem

λ0u0 = −Δu0 + V0u0 + γ (|u0|2)u0.

The errors and the computational times of the CN-FEM are presented in Table 2 and
the errors and computational times of the SP2 in Table 3. The reference solution, uref,
is computed using the CN-FEM with h = 0.0125 and τ = 2−13. The implantation
was done in Julia. It is important to keep in mind that the SP2 uses mostly inbuilt
functions such as the fast Fourier transform from the C subroutine library (FFTW).
These functions are heavily optimized and show an extremely good performance. In
spite of this we see, comparing the errors of the CN-FEM for h = 0.025 and τ = 2−10

to those of the SP2 for NDoF = 3.2 · 106 and τ = 2−13, that they are on par with
respect to CPU time relative to accuracy, with a slight computational advantage for the
CN-FEM. This advantage becomes clearer, the larger the region of reduced regularity
(e.g. in the context of optical lattices or disorder potentials). This justifies the usage
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of CN-FEM in low regularity regimes. Furthermore, it is clearly seen that the space
discretization dominates the error of the SP2, in order for the spectral method to catch
up in terms of accuracy with the CN-FEM with h = 0.0125, an estimated 10 to 40
million degrees of freedomwould be needed and thus the memory cost would become
an issue.
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by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Explicit decomposition of the consistency error

Here we make the consistency error (3.4) and its estimate (3.6) explicit and highlight
where the regularity assumptions come in. For this we use the following standard
integral remainder of Taylor expansion (for Sobolev functions v ∈ Hn+1(a, b)):

v(b) − T a,b
n (v) =

∫ b

a

(b − t)n

n! v(n+1)(t)dt,

where a is the point of expansion and T a,b
n (v) the Taylor polynomial of degree n of v

evaluated in a and b. Recalling that un+1/2 = (un+1 + un)/2, the Taylor expansion
implies in our case:

‖V (un+1/2 − u(tn+1/2))‖2 = 1

2
‖V

(∫ tn+1

tn+1/2

(tn+1 − s)∂t t u(s)ds

−
∫ tn

tn+1/2

(tn − s)∂t t u(s)ds

)

‖2

�
(∫ tn+1

tn
(tn+1 − s)‖∂t t u(s)‖ds

)2

�
(
τ 3/2‖∂t t u(s)‖L2((tn ,tn+1);L2(D))

)2

� τ 3
∫ tn+1

tn
‖∂t t u‖2ds
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Thus

n∑

k=1

‖un+1/2 − u(tn+1/2)‖2 ≤ τ 3
∫ T

0
‖∂t t u(s)‖2ds ≤ τ 3‖∂t t u‖2L2((0,T );L2(D))

.

Likewise we have

‖i (Dτu
n − ∂t u(tn+1/2))‖2 = 1

τ 2
‖
∫ tn+1

tn+1/2

(tn+1 − s)2

2
∂t t t u(s)ds

−
∫ tn

tn+1/2

(tn − s)2

2
∂t t t u(s)ds‖2

� 1

τ 2
τ 5

∫ tn+1

tn
‖∂t t t u(s)‖2ds

and

‖Δ(un+1/2 − u(tn+1/2))‖2 = ‖
∫ tn+1

tn+1/2

(tn+1 − s)2

2
Δ∂t t u(s)ds

−
∫ tn

tn+1/2

(tn − s)2

2
Δ∂t t u(s)ds‖2

� τ 3
∫ tn+1

tn
‖Δ∂t t u(s)‖2ds.

For the estimate of the term that comes from the nonlinearity, we set for the sake of
brevity a := |un|2, b := |un+1|2 and c := |u(tn+1/2)|2 to obtain
∥
∥
∥
∥
∥

1

|un+1|2 − |un|2
∫ |un+1|2

|un |2
γ (r)dr − γ |u(tn+1/2)|2

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥

1

b − a

∫ b

a
γ (r)dr − γ (c)

∥
∥
∥
∥

2

=
∥
∥
∥
∥

1

b − a

∫ b

a

∫ r

c
γ ′(s)dsdr

∥
∥
∥
∥

2

=
∥
∥
∥
∥γ ′(c)

(
b + a

2
− c

)

� τ 3‖∂t t |u|2‖2L2((tn ,tn+1);L2)
� τ 3‖∂t t u‖2L2((tn ,tn+1);L2)

.

where c’ lies between a and b. Thus

n∑

k=0

‖T k‖2 � τ 3(‖∂t t t u‖2L2((0,T );L2)
+ ‖∂t t u‖2L2((0,T );H2)

+‖∂t u‖2L2((0,T );H2)
+ ‖u‖2L2((0,T );H2)

),

which proves (3.6).
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