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Abstract
Precise asymptotic expansions for the eigenvalues of a Toeplitz matrix Tn( f ), as the
matrix size n tends to infinity, have recently been obtained, under suitable assumptions
on the associated generating function f . A restriction is that f has to be polynomial,
monotone, and scalar-valued. In this paper we focus on the case where f is an s × s
matrix-valued trigonometric polynomial with s ≥ 1, and Tn(f) is the block Toeplitz
matrix generated by f , whose size is N (n, s) = sn. The case s = 1 corresponds to
that already treated in the literature. We numerically derive conditions which ensure
the existence of an asymptotic expansion for the eigenvalues. Such conditions gen-
eralize those known for the scalar-valued setting. Furthermore, following a proposal
in the scalar-valued case by the first author, Garoni, and the third author, we devise
an extrapolation algorithm for computing the eigenvalues of banded symmetric block
Toeplitz matrices with a high level of accuracy and a low computational cost. The
resulting algorithm is an eigensolver that does not need to store the original matrix,
does not need to perform matrix-vector products, and for this reason is called matrix-
less. We use the asymptotic expansion for the efficient computation of the spectrum of
special block Toeplitz structures and we provide exact formulae for the eigenvalues of
the matrices coming from the Qp Lagrangian Finite Element approximation of a sec-
ond order elliptic differential problem. Numerical results are presented and critically
discussed.
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1 Introduction

A matrix An of the form

An = [
Ai− j

]n
i, j=1 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

A0 A−1 A−2 · · · · · · A−(n−1)

A1
. . .

. . .
. . .

...

A2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . A−2
...

. . .
. . .

. . . A−1
An−1 · · · · · · A2 A1 A0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

where A−(n−1), . . . , An−1 are blocks in Cs×s , is said to be a block Toeplitz matrix.
Note that the size of An is N (n, s) = sn.

We say that φ : [−π, π ] → Cs×s is a complex matrix-valued Lebesgue integrable
function if all its components φi, j : [−π, π ] → C, i, j = 1, . . . , s, are complex-
valued Lebesgue integrable functions. The nth block Toeplitz matrix generated by φ

is defined as
Tn(φ) = [

φ̂i− j
]n
i, j=1,

where the quantities φ̂k ∈ Cs×s are the Fourier coefficients of φ, that is,

φ̂k = 1

2π

∫ π

−π

φ(θ) e−ikθdθ, k ∈ Z. (1.1)

We refer to {Tn(φ)}n as the block Toeplitz sequence generated by φ, which in turn
is called the generating function or the symbol of {Tn(φ)}n . Such type of matrix
sequences have been studied, especially for s = 1, by many authors including Szegö,
Avram, Böttcher, Parter, Sibermann, Tilli, and Tyrtyshnikov (see e.g. [17,22] and
references therein).

Furthermore, if φ is Hermitian almost everywhere then, by (1.1), φ̂−k = φ̂∗
k for

every k ∈ Z and therefore each Tn(φ) is Hermitian. As a consequence, the spectrum
of Tn(φ) is real. Moreover, the analytical properties of φ decide many delicate features
of the eigenvalues of Tn(φ) such as distribution, clustering, and localization, as we
briefly describe below without entering into technical details.

Distribution. In [22] it was proved that {Tn(φ)}n has an asymptotic spectral distri-
bution, in the Weyl sense, described by φ(θ), under the assumption that φ(θ) is
a Lebesgue integrable matrix-valued function which is Hermitian almost every-
where. An extension to the non-Hermitian case was given in [11], by adapting the
tools introduced by Tilli in [23] for complex-valued generating functions.
When the symbol φ is also continuous, i.e., each component φi, j is continuous, the
present distribution result can be described as follows: for sufficiently large n, up
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to a small number of possible outliers, the eigenvalues of Tn(φ) can be grouped
into s “branches” having approximate cardinality n and for each q = 1, . . . , s the
eigenvalues belonging to the qth branch are approximately given by the samples
over a certain uniform grid in [−π, π ] of the qth eigenvalue function λ(q)(φ).

Clustering. For any ε > 0, take an ε-neighborhood of the set Rφ , which is defined
as the union of the essential ranges of the eigenvalue functions λ(q)(φ). Then the
spectrum of {Tn(φ)}n is clustered at Rφ in the sense that the number of the eigen-
values of Tn(φ) that do not belong to the ε-neighborhood ofRφ is o(n) as n tends
to infinity. If φ is a Hermitian-valued trigonometric polynomial, then the number of
such outliers is O(1) and it is at most linearly depending on s and on the degree of
the polynomial. Such clustering results are consequences of the distribution result.
For the case of trigonometric polynomials, on which the present work is focused,
see also Appendix A.

Localization. Assume that λ(q)(φ), q = 1, . . . , s, are sorted in non-decreasing order,
that is, λ(1)(φ) ≤ λ(2)(φ) ≤ · · · ≤ λ(s)(φ). Then, for all n, the eigenvalues of Tn(φ)

belong to the interval [mφ, Mφ], where mφ = ess infθ∈[−π,π ] λ(1)(φ) and Mφ =
ess supθ∈[−π,π ] λ(s)(φ).Moreover, if the functionλ(1)(φ) is not essentially constant,
then the eigenvalues of Tn(φ) belong to (mφ, Mφ], and, if the function λ(s)(φ) is
not essentially constant, then the eigenvalues of Tn(φ) belong to [mφ, Mφ). For
such results refer to [19,20].

Remark 1.1 Part 1. When the symbol φ is continuous, then each eigenvalue function
λ(q)(φ), q = 1, . . . , s, is continuous and therefore the essential infimum becomes
a minimum and the essential supremum becomes a maximum (because the interval
[−π, π ] is a compact set), while the essential range is the standard range. Part 2.
Finally the interval [−π, π ] can be replaced by the interval [0, π ] when φ(− θ) =
φ(θ)T : this is precisely the case we consider, see (1.3).

In this paper we focus on the case where the symbol is a Hermitian matrix-valued
trigonometric polynomial (HTP) f with Fourier coefficients f̂0, f̂1, . . . , f̂m ∈ Rs×s ,
that is, a function of the form

f(θ) =
m∑

k=−m

f̂keikθ = f̂0 +
m∑

k=1

(
f̂keikθ + f̂Tk e

−ikθ
)

, m = deg (f(θ)) ∈ N,

where we set

f̂−k = f̂Tk , k = 0, . . . ,m. (1.2)

The assumptions on f(θ) imply that Tn(f) is a real symmetric block banded matrix
with “block bandwidth” 2m + 1, of the form
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Tn(f) =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

f̂0 f̂T1 · · · f̂Tm
f̂1

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

f̂m
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

f̂m · · · f̂1 f̂0 f̂T1 · · · f̂Tm
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . f̂Tm

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . f̂T1

f̂m · · · f̂1 f̂0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

.

Note that from (1.2) we have

f(θ)T = f̂0 +
m∑

k=1

(
f̂Tk e

ikθ + f̂T−ke
−ikθ

)
= f̂0 +

m∑

k=1

(
f̂−ke

ikθ + f̂ke−ikθ
)

= f(−θ),

(1.3)

f(θ)∗ = f̂0 +
m∑

k=1

(
f̂Tk e

−ikθ + f̂T−ke
ikθ
)

= f̂0 +
m∑

k=1

(
f̂−ke

−ikθ + f̂keikθ
)

= f(θ),

(1.4)

and hence f(θ) has the same eigenvalues as f(− θ). Thus, each eigenvalue function
λ(q)(f) is even and we can therefore simply focus on its restriction λ(q)(f) : [0, π ] →
Rs×s (in accordance with the second part of Remark 1.1).

In view of the above distribution, clustering, and localization results, up to O(1)
possible outliers, the eigenvalues of the symmetric matrix Tn(f) can be partitioned in
s subsets (or “branches”) of approximately the same cardinality n; and the eigenval-
ues belonging to the qth branch are approximately equal to the samples of the qth
eigenvalue function λ(q)(f) over a uniform grid in [0, π ].

In this paper we show that the different branches have a much finer structure and
that, under mild restrictions, there exists a hierarchy of symbols which allow us to
design extremely economical procedures for the computation of the eigenvalues of
the matrices Tn(f). In particular, we conjecture on the basis of numerical experiments
that for every integer α ≥ 0, every s ≥ 1, and every q ∈ {1, . . . , s}, the following
asymptotic expansion holds under the specific local condition and global condition
that will be discussed below: for all n ∈ N and j = 1, . . . , n,

λγ (Tn(f)) = λ(q)(f(θ j,n)) +
α∑

k=1

c(q)
k (θ j,n)h

k + E (q)
j,n,α , (1.5)

where:
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• γ = γ (q, j) = (q − 1)n + j ;
• λk(Tn(f)), k ∈ {1, . . . , N (n, s)}, are the eigenvalues of Tn(f), which are sorted
so that, for each fixed q̄ ∈ {1, . . . , s}, the eigenvalues λ(q̄−1)n+ j (Tn(f)), for j =
1, . . . , n, are arranged in non-decreasing or non-increasing order, depending on
whether λ(q̄)(f) is increasing or decreasing (this can be seen using the local or the
global condition below);

• {c(q)
k }k=1,...,α is asequence of functions from [0,π ] to R which depends only on f ;

• h = 1
n+1 and θ j,n = jπ

n+1 = jπh, j = 1, . . . , n;

• E (q)
j,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality

|E (q)
j,n,α| ≤ Cαhα+1 for some constant Cα depending only on α and f .

We note that in the scalar-valued case s = 1, several theoretical and computational
results are available in support of the above expansion [2,5,6,9,14–16], including also
extensions to preconditioned matrices and matrices arising in a differential context
[1,13].

Unfortunately, as already shown in [2,15,16], the expansion (1.5) is not always
satisfied even for s = 1. Belowwe give two conditionswhich ensure that the expansion
holds.

Local condition. The eigenvalue λγ (Tn(f)) can be expanded as in (1.5) if there exists
ε̄ > 0 such that, for all ε ∈ (0, ε̄) and all y ∈ (λγ (Tn(f))− ε, λγ (Tn(f))+ ε), there
exists a unique q ∈ {1, . . . , s} and a unique θ̄ ∈ [0, π ] for which

y = λ(q)(f(θ̄)). (1.6)

Global condition. A trivial global condition is obtained by imposing that the local
condition is satisfied for every eigenvalue which is not an outlier (if the eigenvalue
λγ (Tn(f)) is an outlier, then, by definition, it does not belong to the range of f
and consequently relation (1.6) cannot be satisfied). A simple general assumption,
which is equivalent to the trivial global condition, is that each λ(q)(f), q = 1, . . . , s,
is monotone (non-increasing or non-decreasing) over the interval [0, π ] and

max
θ∈[0,π ] λ

(q)(f) < min
θ∈[0,π ] λ

(q+1)(f)

for q = 1, . . . , s − 1. In other words, the global condition can be summarized as
follows: strict monotonicity of every eigenvalue function and the intersection of
the ranges of two eigenvalue functions λ( j)(f) and λ(k)(f) is empty for every pair
of indices j, k ∈ {1, . . . , s} such that j �= k. This version of the global condition
is of course much simpler to verify. Moreover, in the case s = 1 it reduces to
the monotonicity condition already used in the literature; see [2,5,6,9,15,16] and
references therein.

In [15], the authors employed the asymptotic expansion (1.5) with s = 1 for
computing an accurate approximation of λ j (Tn(f)) for very large n, if the values
λ j1(Tn1(f)), . . . , λ jk (Tnk (f)) are available for moderately sized n1, . . . , nk such that
θ j1,n1 = · · · = θ jk ,nk = θ j,n . We stress that the algorithm was developed in [15]
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942 S.-E. Ekström et al.

and then improved in [1,12,14], while the mathematical foundations of the considered
expansions and few numerical tests were already present in [5].

The purpose of this paper is to carry out this idea and to support it by numerical
experiments accompanied by an appropriate error analysis in the more general case
where s > 1. In particular, we devise an algorithm to compute λ j (Tn(f)) with a high
level of accuracy and a relatively low computational cost. The algorithm is completely
analogous to the extrapolation procedure [21, Section 3.4], which is employed in
the context of Romberg integration to obtain high precision approximations of an
integral from a few coarse trapezoidal approximations. In this regard, the asymptotic
expansion (1.5) plays here the same role as the Euler-Maclaurin summation formula
[21, Section 3.3].

The paper is organized as follows. In Sect. 2, assuming the asymptotic eigenvalue
expansion (1.5), we present our extrapolation algorithm for computing the eigenvalues
of the s× s block matrix Tn(f) for s > 1. In Sect. 3 we provide numerical experiments
in support of the asymptotic eigenvalue expansion (1.5) in different cases and we
derive exact formulae for the eigenvalues in some practical examples and for matrices
coming from order p Lagrangian Finite Element approximations of a second order
elliptic differential problem, which are denoted asQp. In Sect. 4 we draw conclusions
and we outline future lines of research. In “Appendix A” we formally prove (1.5) in
the basic case α = 0, and in “Appendix B” we report in detail the mass and stiffness
Qp elements for p = 2, 3, 4.

2 Algorithm for computing the eigenvalues of Tn(f) for s > 1

Assuming that the expansion (1.5) holds true and taking inspiration from [14], in the
present sectionwe propose an interpolation–extrapolation algorithm for computing the
eigenvalues of Tn(f). In what follows, for each positive integer n ∈ N = {1, 2, 3, . . .}
and each s > 1 we define N (n, s) = sn. Moreover, with each positive integer n we
associate the stepsize h = 1/(n + 1) and the grid points θ j,n = jπh, j = 1, . . . , n.
For notational convenience, unless otherwise stated, we will always denote a positive
integer and the associated stepsize in a strongly related way. For example, if the
positive integer is n, then the associated stepsize is h; if the positive integer is n1, then
the associated stepsize is h1; if the positive integer is n̄, then the associated stepsize is
h̄; etc. Throughout this section, we make the following assumptions.

• s > 1 and n, n1, α ∈ N are fixed parameters.
• nk = 2k−1(n1 + 1) − 1 for k = 1, . . . , α.
• jk = 2k−1 j1 where j1 = {1, . . . , n1} and k = 1, . . . , α; jk are the indices such
that θ jk ,nk = θ j1,n1 .

A graphical representation of the grids θ[nk ] = {θ jk ,nk : jk = 1, . . . , nk}, for k =
1, . . . , α, is shown in Fig. 1 for n1 = 5 and α = 4.
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Fig. 1 Representation of the grids θ[nk ], k = 1, . . . , α, for n1 = 5 and α = 4. Red diamonds represent the
grid points θ jk ,nk and black diamonds represent the rest of the grid points of θ[nk ] (color figure online)

For each choice of fixed j1 = {1, . . . , n1} we apply α times the expansion (1.5)
with n = n1, n2, . . . , nα and j = j1, j2, . . . , jα . Since θ j1,n1 = θ j2,n2 = . . . = θ jα,nα

(by definition of j2, . . . , jα), we obtain, for q = 1, . . . , s,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E (q)
j1,n1,0

= c(q)
1 (θ j1,n1)h1 + c(q)

2 (θ j1,n1)h
2
1 + · · · + c(q)

α (θ j1,n1)h
α
1 + E (q)

j1,n1,α
,

E (q)
j2,n2,0

= c(q)
1 (θ j1,n1)h2 + c(q)

2 (θ j1,n1)h
2
2 + · · · + c(q)

α (θ j1,n1)h
α
2 + E (q)

j2,n2,α
,

...

E (q)
jα,nα,0 = c(q)

1 (θ j1,n1)hα + c(q)
2 (θ j1,n1)h

2
α + · · · + c(q)

α (θ j1,n1)h
α
α + E (q)

jα,nα,α,

(2.1)
where

E (q)
jk ,nk ,0

= λγk (Tnk (f)) − λ(q)(f(θ j1,n1)), k = 1, . . . , α, γk = (q − 1)nk + jk

and ∣∣∣E (q)
jk ,nk ,α

∣∣∣ ≤ C (q)
α hα+1

k , k = 1, . . . , α. (2.2)

For q = 1, . . . , s, let c̃(q)
1 (θ j1,n1), . . . , c̃

(q)
α (θ j1,n1) be the approximations of

c(q)
1 (θ j1,n1), . . . , c

(q)
α (θ j1,n1)obtained by removing all the errors E (q)

j1,n1,α
, . . . , E (q)

jα,nα,α
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in (2.1) and by solving the resulting linear system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E (q)
j1,n1,0

= c̃(q)
1 (θ j1,n1)h1 + c̃(q)

2 (θ j1,n1)h
2
1 + · · · + c̃(q)

α (θ j1,n1)h
α
1 ,

E (q)
j2,n2,0

= c̃(q)
1 (θ j1,n1)h2 + c̃(q)

2 (θ j1,n1)h
2
2 + · · · + c̃(q)

α (θ j1,n1)h
α
2 ,

...

E (q)
jα,nα,0 = c̃(q)

1 (θ j1,n1)hα + c̃(q)
2 (θ j1,n1)h

2
α + · · · + c̃(q)

α (θ j1,n1)h
α
α.

(2.3)

Note that this way of computing approximations for c(q)
1 (θ j1,n1), . . . , c

(q)
α (θ j1,n1) is

completely analogous to the Richardson extrapolation procedure that is employed in
the context of Romberg integration to accelerate the convergence of the trapezoidal
rule [21, Section 3.4],with the asymptotic expansion (1.5) playing here the same role as
the Euler–Maclaurin summation formula [21, Section 3.3]. For more advanced studies
on extrapolation methods, we refer the reader to the classical book by Brezinski and
Redivo-Zaglia [8]. The next theorem shows that, for q = 1, . . . , s, the approximation

error
∣∣∣c(q)

k (θ j1,n1) − c̃(q)
k (θ j1,n1)

∣∣∣ is O(hα−k+1
1 ).

Theorem 2.1 There exists a constant A(q)
α depending only on α and q = 1, . . . , s such

that, for j1 = 1, . . . , n1 and k = 1, . . . , α,

∣∣
∣c(q)

k (θ j1,n1) − c̃(q)
k (θ j1,n1)

∣∣
∣ ≤ A(q)

α hα−k+1
1 , q = 1, . . . , s. (2.4)

Proof It is a straightforward adaptation of the proof given in [14, Theorem 1].

Take an n � n1 and fix an index j ∈ {1, . . . , n}. We henceforth assume that
q ∈ {1, 2, . . . , s}. To compute an approximation of λγ (Tn(f)), γ = (q − 1)n + j ,

through the expansion (1.5) we need the value c(q)
k (θ j,n) for each k = 1, . . . , α. Of

course, c(q)
k (θ j,n) is not available in practice, butwe can approximate it by interpolating

and extrapolating the values c̃(q)
k (θ j1,n1), j1 = 1, . . . , n1. For example, we may define

c̃(q)
k (θ) as the interpolation polynomial of the data (θ j1,n1 , c̃

(q)
k (θ j1,n1)), for j1 =

1, . . . , n1,—so that c̃(q)
k (θ) is expected to be an approximation of c(q)

k (θ) over the

whole interval [0, π ]—and take c̃(q)
k (θ j,n) as an approximation to c(q)

k (θ j,n). It is
known, however, that interpolating over a large number of uniform nodes is not advis-
able, as it may give rise to spurious oscillations (Runge’s phenomenon). It is therefore
better to adopt another kind of approximation. An alternative could be the following:
we approximate c(q)

k (θ) by the spline function c̃(q)
k (θ) which is linear on each interval

[θ j1,n1, θ j1+1,n1] and takes the value c̃(q)
k (θ j1,n1) at θ j1,n1 for all j1 = 1, . . . , n1. This

strategy removes for sure any spurious oscillation, yet it is not accurate. In particular,
it does not preserve the accuracy of approximation at the nodes θ j1,n1 established in

Theorem 2.1, i.e., there is no guarantee that |c(q)
k (θ) − c̃(q)

k (θ)| ≤ B(q)
α hα−k+1

1 for

θ ∈ [0, π ] or |c(q)
k (θ j,n) − c̃(q)

k (θ j,n)| ≤ B(q)
α hα−k+1

1 for j = 1, . . . , n, with B(q)
α

being a constant depending only on α and q. As proved in Theorem 2.2, a local
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Exact formulae and matrix-less eigensolvers for block… 945

approximation strategy that preserves the accuracy (2.4), at least if c(q)
k (θ) is suffi-

ciently smooth, is the following: let θ(1), . . . , θ (α−k+1) be α − k + 1 points of the grid
{θ1,n1, . . . , θn1,n1} which are closest to the point θ j,n ,1 and let c̃(q)

k, j (θ) be the interpo-

lation polynomial of the data (θ(1), c̃(q)
k (θ(1))), . . . , (θ(α−k+1), c̃(q)

k (θ(α−k+1))); then,

we approximate c(q)
k (θ j,n) by c̃

(q)
k, j (θ j,n). Note that, by selecting α − k +1 points from

{θ1,n1, . . . , θn1,n1}, we are implicitly assuming that n1 ≥ α − k + 1.

Theorem 2.2 Let 1 ≤ k ≤ α, and suppose n1 ≥ α − k + 1 and c(q)
k ∈ Cα−k+1[0, π ].

For j = 1, . . . , n, if θ(1), . . . , θ (α−k+1) are α − k + 1 points of {θ1,n1, . . . , θn1,n1}
which are closest to θ j,n, and if c̃(q)

k, j (θ) is the interpolation polynomial of the data

(θ(1), c̃(q)
k (θ(1))), . . . , (θ(α−k+1), c̃(q)

k (θ(α−k+1))), then

∣∣∣c(q)
k (θ j,n) − c̃(q)

k, j (θ j,n)

∣∣∣ ≤ B(q)
α hα−k+1

1 (2.5)

for some constant B(q)
α depending only on α and q.

Proof It is a straightforward adaptation of the proof of [14, Theorem 2].

We are now ready to formulate our algorithm for computing the eigenvalues of
Tn(f).

Given n, n1, α ∈ N with n1 ≥ α, we compute approximations of λγ (Tn(f)), γ = (q − 1)n + j , for
j = 1, . . . , n and q = 1, . . . , s as follows.

1. For j1 = {1, . . . , n1}, compute c̃(q)
k (θ j1,n1 ), for k = 1, . . . , α, by solving (2.3).

2. For j = 1, . . . , n,

• for k = 1, . . . , α
– determine α − k + 1 points θ(1), . . . , θ(α−k+1) ∈ {θ1,n1 , . . . , θn1,n1 } which are

closest to θ j ,n ;

– compute c̃(q)
k, j (θ j ,n), where c̃(q)

k, j (θ) is the interpolation polynomial of the data

(θ(1), c̃(q)
k (θ(1))), . . . , (θ(α−k+1), c̃(q)

k (θ(α−k+1)));

• compute λ̃γ (Tn(f)) = λ(q)(f(θ j ,n)) +∑α
k=1 c̃

(q)
k, j (θ j,n)hk .

3. Return the vector (λ̃(q−1)n+1(Tn(f)), λ̃(q−1)n+2(Tn(f)), . . . , λ̃qn(Tn(f)) as an approximation
to the vector (λ(q−1)n+1(Tn(f)), λ(q−1)n+2(Tn(f)) . . . , λqn(Tn(f)).

Remark 2.1 Algorithm 1 is specifically designed for computing λγ (Tn(f)) in the case
where n is quite large. When applying this algorithm, it is implicitly assumed that n1
and α are small (much smaller than n), so that each nk = 2k−1(n1 + 1)− 1 is small as

1 These α − k + 1 points are uniquely determined by θ j ,n except in the following two cases: (a) θ j,n
coincides with a grid point θ j1,n1 and α − k + 1 is even; (b) θ j ,n coincides with the midpoint between two
consecutive grid points θ j1,n1 , θ j1+1,n1 and α − k + 1 is odd.

123



946 S.-E. Ekström et al.

well and the computation of the eigenvalues λ̃γ (Tn(f))—which is required in the first
step—can be efficiently performed by any standard eigensolver (e.g., the Matlab
eig function).

The last theorem of the current section provides an estimate for the approximation
error made by Algorithm 1.

Theorem 2.3 Let n ≥ n1 ≥ α and c(q)
k ∈ Cα−k+1[0, π ] for k = 1, . . . , α. Let

(λ̃(q−1)n+1(Tn(f)), λ̃(q−1)n+2(Tn(f)) . . . , λ̃qn(Tn(f))

be the approximation of (λ(q−1)n+1(Tn(f)), λ(q−1)n+2(Tn(f)) . . . , λqn(Tn(f)) com-

puted by Algorithm 1. Then, there exists a constant D(q)
α depending only on α and

s such that, for j = 1, . . . , n, γ = (q − 1)n + j,

∣∣∣λγ (Tn(f)) − λ̃γ (Tn(f))
∣∣∣ ≤ D(q)

α hhα
1 . (2.6)

Proof By (1.5) and Theorem 2.2,
∣∣∣λγ (Tn(f)) − λ̃γ (Tn(f))

∣∣∣ =
∣
∣∣∣
∣
λ(q)(f(θ j,n)) +

α∑

k=1

c(q)
k (θ j,n)h

k + E (q)
j,n,α − λ(q)(f(θ j,n))

−
α∑

k=1

c̃(q)
k, j (θ j,n)h

k

∣∣∣
∣∣

≤
α∑

k=1

∣
∣∣c(q)

k (θ j,n) − c̃(q)
k, j (θ j,n)

∣
∣∣ hk +

∣
∣∣E (q)

j,n,α

∣
∣∣

≤ B(q)
α

α∑

k=1

hα−k+1
1 hk + C (q)

α hα+1 ≤ h
(
αB(q)

α hα
1 + C (q)

α hα
1

)

≤ D(q)
α hα

1h,

where D(q)
α = (α + 1)max(B(q)

α ,C (q)
α ).

3 Numerical experiments

In the current section we present a selection of numerical experiments to validate
the algorithms based on the asymptotic expansion (1.5) in different cases where f is
matrix-valued, and we give exact formulae for the eigenvalues in some examples of
practical interest.

Description

We test the asymptotic expansion and the interpolation–extrapolation algorithm in
Sect. 2 in order to obtain an approximation of the eigenvalues λγ (Tn(f)), for γ =
1, . . . , sn, for large n.
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Example 1. Weshow that the expansion and the associated interpolation–extrapolation
algorithm can be applied to thewhole spectrum, since the symbol satisfies
the global condition.

Example 2. We show that the expansion and the interpolation–extrapolation algorithm
can be locally applied for computing the approximation of the eigen-
values verifying the local condition. In this particular case, the global
condition does not hold because the intersection of ranges of two eigen-
value functions is a nontrivial interval and in addition there exists an index
q ∈ {1, . . . , s} such that λ(q)(f) is non-monotone.

Example 3. We show that the expansion and interpolation–extrapolation algorithm
can be locally applied for the computation of the eigenvalues satisfying
the local condition. For the specific example, the global condition does
not hold since there exists an index q ∈ {1, . . . , s} such that λ(q)(f) is
non-monotone either globally on [0, π ] or just on a subinterval contained
in [0, π ].

Example 4. We show how to bypass the local condition in a few special cases: in fact,
using different sampling grids, we can recover exact formulas for parts
of the spectrum, where the assumption of monotonicity is violated.

Example 5. We give a close formula for the eigenvalues of matrices arising from the
rectangular Lagrange Finite Element method with polynomials of degree
p > 1, usually denoted as Qp elements. The number of the eigenvalue
functions, which verify the global condition, depends on the order of the
Qp elements. In this specific setting we have s = p.

Experiments

In Examples 1–3 we do not compute analytically the eigenvalue functions of f , but,
for q = 1, . . . s, we are able to provide an ’exact’ evaluation of λ(q)(f) at θ jk ,nk ,
jk = 1, . . . , nk, by exploiting the following procedure:

• sample f at θ jk ,nk , jk = 1, . . . , nk , obtaining nk s × s matrices, Mjk ;
• for each jk = 1, . . . , nk , compute the s eigenvalues ofMjk ,λq(Mjk ),q = 1, . . . , s;
• for a fixed q = 1, . . . s, the evaluation of λ(q)(f) at θ jk ,nk , jk = 1, . . . , nk, is given
by λq(Mjk ), jk = 1, . . . , nk .

This procedure is justified by the fact that here f is a trigonometric polynomial and,
denoting by Cnk (f) the circulant matrix generated by f , the eigenvalues of Cnk (f) are
given by the evaluations of λ(q)(f) at the grid points θr ,nk = 2π r

nk
, r = 0, . . . , nk −1,

since
Cnk (f) = (Fnk ⊗ Is)Dnk (f)(Fnk ⊗ Is)

∗,
where

Dnk (f) = diag0≤r≤nk−1
(
f
(
θr ,nk

))
, θr ,nk = 2π

r

nk
, Fnk = 1√

nk

(
e
−i2π jr

nk

)nk−1

j,r=0
,

and Is the s×s identity matrix [18]. Furthermore, by exploiting the localization results
[19,20] stated in the introduction, we know that each eigenvalue of Tn(f), for each n,
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belongs to the interval

(
min

θ∈[0,π ] λ
(1)(f), max

θ∈[0,π ] λ
(s)(f)

)
.

Example 1. In this example we have block size s = 3, and each eigenvalue function
λ(q)(f), q = 1, 2, 3, is strictly monotone over [0, π ]. The eigenvalue functions satisfy

max
θ∈[0,π ] λ

(1)(f) < min
θ∈[0,π ] λ

(2)(f),

max
θ∈[0,π ] λ

(2)(f) < min
θ∈[0,π ] λ

(3)(f).

In top left panel of Fig. 2 the graphs of the three eigenvalue functions are shown.
The Toeplitz matrix generated by f is a pentadiagonal blockmatrix, Tn(f) ∈ RN×N ,

where N = 3n, and all the blocks belong to R3×3, that is

Tn(f) =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

f̂0 f̂1 f̂2
f̂1

. . .
. . .

. . .

f̂2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . f̂2
. . .

. . .
. . . f̂1

f̂2 f̂1 f̂0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

, f̂0 =
⎡

⎣
50 2 0
2 − 55 2
0 2 10

⎤

⎦ ,

f̂1 =
⎡

⎣
11 − 1 0

− 1 − 6 − 1
0 − 1 9

⎤

⎦ , f̂2 =
⎡

⎣
1 0 2
0 1 0
2 0 1

⎤

⎦ .

Here f is such that the global condition is satisfied. Hence we can use the asymptotic
expansion and Algorithm 1 to get an accurate approximation of the eigenvalues of
Tn(f) for a large n. Solving system (2.3) with α = 4 and n1 = 100, we obtain the
approximation of c(q)

k (θ j1,n1), k = 1, . . . , α. In Fig. 2, in the top right and bottom pan-

els, the approximated expansion functions c̃(q)
k (θ j1,n1), k = 1, . . . , α, q = 1, . . . , s are

shown for each eigenvalue function. For a fixed q = 1, . . . , s, the values c̃(q)
k (θ j1,n1),

k = 1, . . . , α, j1 = 1, . . . , n1 are known, and finally we can compute λ̃γ (Tn(f)) for
n = 10000, by using (1.5). For simplicity we plot the eigenvalue functions and also
the expansion errors, E (q)

j1,n1,0
, for q = 1, 2, 3. In the right panel of Fig. 3 (in black)

we show the errors, E (q)
j,n,0, q = 1, . . . , 3, versus γ , from direct calculation of

λγ (Tn(f)) − λ(q)(f(θ j,n)),

for j = 1, . . . , n, q = 1, . . . , 3. As expected, with α = 0, the errors E (q)
j,n,0,

q = 1, . . . , 3, are rather large. In the right panel of Fig. 3, comparing E (q)
j,n,0 with
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Fig. 2 Example 1: Computations made with n1 = 100, α = 4. Top Left: The three eigenvalue functions,
λ(q)(f), q = 1, 2, 3. Top Right: Approximations c̃k (θ j1,n1 ) for λ(1)(f). Bottom Left: Approximations

c̃k (θ j1,n1 ) for λ(2)(f). Bottom Right: Approximations c̃k (θ j1,n1 ) for λ(3)(f)

errors Ẽ (q)
j,n,α , q = 1, . . . , 3, we see the errors are significantly reduced if we calcu-

late λ̃γ (Tn(f)), γ = 1, . . . , 3n, shown in the left panel of Fig. 3, using Algorithm
1, with α = 4, n1 = 100, and n = 10000. Furthermore, a careful study of the left
panel of Fig. 3 (coloured) also reveals that, for q = 1, . . . , s, Ẽ (q)

j,n,α have local min-
ima, attained when θ j,n is approximately equal to some of the coarse grid points
θ j1,n1 , j1 = 1, . . . , n1. This is no surprise, because for θ j,n = θ j1,n1 we have

c̃(q)
k, j (θ j,n) = c̃(q)

k (θ j1,n1) and c(q)
k (θ j,n) = c(q)

k (θ j1,n1), which means that the error

of the approximation c̃(q)
k, j (θ j,n) ≈ c(q)

k (θ j,n) reduces to the error of the approximation

c̃(q)
k (θ j1,n1) ≈ c(q)

k (θ j1,n1). The latter implies that we are not introducing further errors
due to the interpolation process.

Example 2. In the present example we choose block size s = 3, with eigenvalue
functions λ(1)(f) and λ(3)(f) being strictly monotone on [0, π ]. The second eigenvalue
function, λ(2)(f), is non-monotone on a small subinterval of [0, π ]. Furthermore the
range of λ(2)(f) intersects that of λ(3)(f), that is

max
θ∈[0,π ] λ

(1)(f) < min
θ∈[0,π ] λ

(2)(f),
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Fig. 3 Example 1: Left: Errors log10 |Ẽ(q)
j ,n,α

|, with α = 4, and errors log10 |E(q)
j,n,0| , q = 1, 2, 3, versus

γ for γ = 1, . . . , 3n. Computations made with n1 = 100 and n = 10000. Right: Approximated eigen-
values λ̃γ (Tn(f)), sorted in non-decreasing order. Computation made with the interpolation–extrapolation
algorithm, with α = 4, n1 = 100 and n = 10000

max
θ∈[0,π ] λ

(2)(f) > min
θ∈[0,π ] λ

(3)(f).

When comparing with Example 1, the only difference in forming the matrix Tn(f)
consists in the first Fourier coefficient which is defined as

f̂0 =
⎡

⎣
12 2 0
2 − 55 2
0 2 10

⎤

⎦ .

In this example we want to show that it is possible to give an approximation of the
eigenvalues λγ (Tn(f)), n = 10000, satisfying the local condition.

From the top left panel of Fig. 4, where the graphs of the three eigenvalue functions
are displayed, we notice that

• λ(1)(f) is monotone non-decreasing and its range does not intersect that of λ(q)(f),
q = 2, 3. Hence, using the asymptotic expansion in (1.5), we expect that it is
possible to give an approximation of the first n eigenvalues λγ (Tn(f)), for j =
1, . . . , n;

• λ(3)(f) is monotone non-increasing and there exist θ̂1, θ̂2 ∈ [0, π ] such that, ∀
θ ∈ [0, θ̂1) ∪ (θ̂2, π ],

(λ(3)(f))(θ) /∈ Range(λ(2)(f)).

Hence, of the remaining 2n eigenvalues, we expect that it is possible to give a fast
approximation just of those eigenvalues λγ (Tn(f)) verifying local condition, that
is those satisfying the relation below

λγ (Tn(f)) ∈
[
(λ(3)(f))(π), (λ(3)(f))(θ̂2)

) ⋃ (
(λ(3)(f))(θ̂1), (λ(3)(f))(0)

]
.

(3.1)
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Fig. 4 Example 2: Top Left: The eigenvalue functions, λ(q)(f), q = 1, 2, 3. Top Right: Approximations
c̃k (θ j1,n1 ) for λ

(1)(f). Bottom Left: Approximations c̃k (θ j1,n1 ) for λ
(2)(f). BottomRight: Approximations

c̃k (θ j1,n1 ) for λ(3)(f). Computations made with n1 = 100 and α = 4

We fix α = 4, n1 = 100 and we proceed to calculate the approximation of
c(q)
k (θ j1,n1), k = 1, . . . , α, as in the previous example. As expected, the graph of

c̃(1)
k (θ j1,n1), k = 1, . . . , 4, shown in the top right panel of Fig. 4, reveals that we can
compute λ̃γ (Tn(f)), for q = 1 and j = 1, . . . , n, using (1.5). In other words the first
n eigenvalues of Tn(f) can be computed using our matrix-less procedure.

For q = 2 no extrapolation procedure can be applied with c̃(2)
k (θ j1,n1), for k =

1, . . . , 4, as we can see from the oscillating and irregular graph in the bottom left panel
of Fig. 4. Concerning Fig. 5 the chaotic behavior of c̃(2)

k (θ j1,n1), k = 1, . . . , 4 corre-

sponds to the rather large and oscillating errors E (2)
j,n,0 and Ẽ

(2)
j,n,α . On the other hand for

q = 3we can use the extrapolation procedure and the underlying asymptotic expansion
with c̃(3)

k (θ j1,n1), k = 1, . . . , 4 for θ j1,n1 ∈ [0, θ̂1) ∪ (θ̂2, π ], j1 = 1, . . . , n1.
As a consequence we compute the approximation of the first n eigenvalues

λγ (Tn(f)), for γ = 1, . . . , n and that of other n̂1 + n̂2, that verify (3.1). For sim-
plicity, in the right panel of Fig. 5, we visualize them by using the non-decreasing
order instead of the computational one.
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Fig. 5 Example 2: Left: Errors log10 |Ẽ(q)
j ,n,α

|, with α = 4, and errors log10 |E(q)
j,n,0| , q = 1, 2, 3, versus γ

for γ = 1, . . . , 3n. Computations made with n1 = 100 and n = 10000. Right: Approximated eigenvalues
λ̃γ (Tn(f)), sorted in non-decreasing order, for γ = 1, . . . , n and for γ such that λγ (Tn(f)) verifies (3.1).
Computation made with the interpolation–extrapolation algorithm, with α = 4, n1 = 100 and n = 10000

The good approximation of the n̂1 + n̂2 eigenvalues belonging to

[
(λ(3)(f))(π), (λ(3)(f))(θ̂2)

) ⋃ (
(λ(3)(f))(θ̂1), (λ(3)(f))(0)

]

is confirmed by the error Ẽ (3)
j,n,α in the left panel of Fig. 5. In fact the error is quite

high for γ = 2n + n̂1 + 1, . . . , 3n − n̂2, but it becomes sufficiently small for γ =
2n + 1, . . . , 2n + n̂1 and γ = 3n − n̂2 + 1, . . . , 3n.

Example 3. In this example we set the block size s = 3, and the eigenvalue functions
λ(q)(f), q = 1, 2, 3, satisfy

max
θ∈[0,π ] λ

(1)(f) < min
θ∈[0,π ] λ

(2)(f),

max
θ∈[0,π ] λ

(2)(f) < min
θ∈[0,π ] λ

(3)(f).

See the top left panel of Fig. 6 for the plot of λ(q)(f), q = 1, 2, 3.
The matrix Tn( f ) ∈ RN×N , N = 3n, shows a pentadiagonal block structure, and all
the blocks belongs to R3×3, that is

Tn(f) =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

f̂0 f̂T1 f̂T2
f̂1

. . .
. . .

. . .

f̂2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . f̂T2
. . .

. . .
. . . f̂T1

f̂2 f̂1 f̂0

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, f̂0 = 1

5

⎡

⎣
16 − 12 5

− 12 34 − 10
5 − 10 100

⎤

⎦ ,

123



Exact formulae and matrix-less eigensolvers for block… 953

f̂1 = 1

10

⎡

⎣
− 4 7 0
8 − 16 0
0 0 − 10

⎤

⎦ , f̂2 = 1

20

⎡

⎣
− 12 − 12 0
− 16 12 1

0 2 0

⎤

⎦ .

In analogy with Example 2, we want to give an approximation of λγ (Tn(f)), for
n = 10000, in case that the global condition is not satisfied.
Although the intersection of the ranges of λ( j)(f) and λ(k)(f) is empty for every pair
( j, k), j �= k, j, k ∈ {1, 2, 3}, the assumption of monotonicity is violated either
globally on [0, π ] or on a subinterval in [0, π ].
In detail:

• λ(1)(f), is fully non-monotone on [0, π ], hence we expect that no fast approxima-
tion can be given on first n eigenvalues, λγ (Tn(f)), for γ = 1, . . . , n;

• λ(3)(f) is monotone non-decreasing and its range does not intersect that of λ(q)(f),
q = 1, 2. Hence we can provide an approximation, of the last n eigenvalues
λγ (Tn(f)) for γ = 2n+ 1, . . . , 3n, (analogously with what we did for treating the
first n eigenvalues in Example 2);

• λ(2)(f) is non-monotone on a subinterval [0, θ̂1] in [0, π ] and monotone non-
decreasing on the remaining subinterval, (θ̂1, π ]. Hence we are able to efficiently

Fig. 6 Example 3: Top Left: Eigenvalue functions λ(q)(f), q = 1, 2, 3. Top Right: Approximations
c̃k (θ j1,n1 ) for λ(1)(f). Bottom Left: Approximations c̃k (θ j1,n1 ) for λ(2)(f). Bottom Right: Approxima-

tions c̃k (θ j1,n1 ) for λ(3)(f). Computations made with n1 = 100 and α = 4
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compute also the eigenvalues that verify the following relation

λγ (Tn(f)) ∈
(

(λ(2)(f))(θ̂1), (λ(2)(f))(π)

]
. (3.2)

We set for computation α = 4 and n1 = 100 and we proceed, as in the previous
examples, to calculate first the approximation of c(q)

k (θ j1,n1), k = 1, . . . , α .
In the top right image of Fig. 6 we display the resulting chaotic graph of
c̃(1)
k (θ j1,n1), k = 1, . . . , 4. The graph confirms that, for q = 1, the interpolation–
extrapolation algorithm cannot be used and, consequently, the first n eigenvalues,
λγ (Tn(f)), q = 1, j = 1, . . . , n, cannot be efficiently computed using (1.5): the latter

is confirmed by the errors Ẽ (1)
j,n,α and E (1)

j,n,0, in Fig. 5.

The chaotic behaviour is also present in the values c̃(2)
k (θ j1,n1), k = 1, . . . , 4, see the

bottom left panel of Fig. 6, in the subinterval [0, θ̂1] of [0, π ], that coincides with same
subinterval where λ(2)(f) is non-monotone.
Hence, if we restrict to [0, θ̂1], the extrapolation procedure can be used again on
c̃(2)
k (θ j1,n1), k = 1, . . . , 4, for θ j1,n1 ∈ (θ̂1, π ], j1 = 1, . . . , n1. Consequently we
obtain a good approximation of λγ (Tn(f)), for q = 2, j = ĵ, . . . , n. Notice that ĵ is
the first index in {1, . . . , n} such that ĵπ/(n + 1) ∈ (θ̂1, π ], that is we can compute the
eigenvalues belonging to the interval reported in (3.2). This is reflected, in Fig. 7, in the
gradual reduction of the errors Ẽ (2)

j,n,α and E (2)
j,n,0, for indices larger than n̂1 = n + ĵ .

Finally, the remaining n eigenvalues can be well reconstructed with a standard matrix-
less procedure, using the values of c̃(3)

k (θ j1,n1), k = 1, . . . , 4, shown in the top right

panel of Fig. 6. The errors related to latter approximation, Ẽ (3)
j,n,α , are shown in Fig. 7.

In total, 3n− ĵ+1 eigenvalues of Tn(f) can be computed and plotted (in non-decreasing
order) in Fig. 7.

Example 4. In this further example we consider three trigonometric polynomials,

p(1)(θ) = 2 − 2 cos(θ),

p(2)(θ) = 7 − 2 cos(2θ),

p(3)(θ) = 16 − 8 cos(θ) + 2 cos(2θ) = 10 + (p(1)(θ))2,

with the aim of approximating the eigenvalues of a block banded Toeplitz matrix, with
matrix-valued generating function f(θ), such that λ(q)(f) = p(q) for q = 1, 2, 3. We
choose s = 3 but obviously the following procedure holds for any s ∈ Z+ and for any
chosen s trigonometric polynomials, p(1)(θ), p(2)(θ), . . . , p(s)(θ), such that

max
θ∈[0,π ] p

(q)(θ) < min
θ∈[0,π ] p

(q+1)(θ)
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Fig. 7 Example 3: Left: Errors log10 |Ẽ(q)
j ,n,α

|, with α = 4, and errors log10 |E(q)
j,n,0| , q = 1, 2, 3, versus γ

for γ = 1, . . . , 3n. Computations made with n1 = 100 and n = 10000. Right: Approximated eigenvalues
λ̃γ (Tn(f)), sorted in non-decreasing order, for γ = 2n + 1, . . . , 3n and for γ such that λγ (Tn(f)) verifies
(3.2). Computation made with the interpolation–extrapolation algorithm, with α = 4, n1 = 100 and
n = 10000

for q = 1, . . . , s − 1. We can define

f(θ) = Q3

⎡

⎣
p(1)(θ) 0 0

0 p(2)(θ) 0
0 0 p(3)(θ)

⎤

⎦ QT
3 ,

where Q3 is any orthogonal matrix in R3×3. For the current example we choose

Q3 =
⎡

⎣
1 0 0
0 cos(π/3) − sin(π/3)
0 sin(π/3) cos(π/3)

⎤

⎦ = 1

2

⎡

⎣
2 0 0
0 1 −√

3
0

√
3 1

⎤

⎦ .

Now we define the Fourier coefficients of f(θ), that is

f̂k = Q3

⎡

⎢
⎣
p̂(1)
k 0 0
0 p̂(2)

k 0
0 0 p̂(3)

k

⎤

⎥
⎦ QT

3 = Q3 D̂k Q
T
3 , (3.3)

where p̂(q)
k is the kth Fourier coefficient of the eigenvalue function p(q)(θ), and

k = −m, . . . ,m, where m = maxq=1,...,s deg(p(q)(θ). In our example m = 2, for
p(2)(θ) and p(3)(θ) and m = 1 for p(1)(θ). Each p(q)(θ) is a real cosine trigonomet-
ric polynomial (RCTP), so f(θ) is a symmetric matrix-valued function with Fourier
coefficients

f̂0 = 1

4

⎡

⎣
8 0 0
0 55 − 9

√
3

0 − 9
√
3 37

⎤

⎦ , f̂1 =
⎡

⎣
− 1 0 0
0 − 3

√
3

0
√
3 − 1

⎤

⎦ ,
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f̂2 = 1

2

⎡

⎣
0 0 0
0 1 −√

3
0 −√

3 − 1

⎤

⎦ ,

where f̂−k = f̂Tk = f̂k , k = 0, 1, 2.
The resulting block banded Toeplitz matrix is the following matrix

Tn(f) =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

f̂0 f̂−1 f̂−2

f̂1
. . .

. . .
. . .

f̂2
. . .

. . .
. . . f̂−2

. . .
. . .

. . . f̂−1

f̂2 f̂1 f̂0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

,

with symbol

f(θ) = f̂0 +
2∑

k=1

(
f̂keikθ + f̂−ke

−ikθ
)

= f̂0 + 2f̂1 cos(θ) + 2f̂2 cos(2θ).

We want to approximate the eigenvalues of Tn(f), where f(θ) is constructed from
p(q)(θ), q = 1, 2, 3. For the graph of the chosen polynomials see the top left panel of
Fig. 8.
Due to the special structure of all f̂k , see (3.3), we have

Tn(f) = In ⊗ Q3

⎡

⎢
⎢⎢⎢⎢⎢
⎣

D̂0 D̂−1 D̂−2

D̂1
. . .

. . .
. . .

D̂2
. . .

. . .
. . . D̂−2

. . .
. . .

. . . D̂−1

D̂2 D̂1 D̂0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

In ⊗ QT
3 .

Therefore Tn(f) is similar to the matrix

⎡

⎣
Tn(p(1)(θ)) 0 0

0 Tn(p(2)(θ)) 0
0 0 Tn(p(3)(θ))

⎤

⎦ ,

and finally it is trivial to see that the block case, in this setting, is reduced to 3 different
scalar problems, which can be treated separately.
Differently from previous examples, here the analytical expressions of the eigenvalue
functions of f(θ) are known, since they coincide, by construction, with p(q)(θ), for
q = 1, 2, 3. So we will describe the spectrum of Tn(f), approximating or calculating
exactly the 3n eigenvalues, treating separately the 3 different scalar problems.
For the first n eigenvalues it is known that they can be calculated exactly, sampling
p(1) with grid θ j,n = jπ/(n + 1), j = 1, . . . , n. Analogously, the n eigenvalues can
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Fig. 8 Example 4: Top Left: Constructed eigenvalue functions. Top Right: Errors of the three eigenvalue

functions, presented on global indices γ , when using grid θ j1,n1 = π j1
n1+1 , j1 = 1, . . . , n1, q = 1, 2, 3.

Bottom Left: Errors of the three eigenvalue functions, when using grid defined in (3.4). Bottom Right: Error
expansion for the third eigenvalue function. Computations made with n1 = 100 and α = 4

be found exactly by sampling p(2) on a special grid defined in [16]. For the last n
eigenvalues, the grid that gives exact eigenvalues is not known, but p(3) is monotone
non-decreasing and consequently we can use asymptotic expansion in the scalar case.
We set the parameters as previous cases: n1 = 100 and n = 10000.
In the top right panel of Fig. 8 we report the expansion errors E (q)

j1,n1,0
, calculated using

grid θ j1,n1 = j1π/(n1 + 1), j1 = 1, . . . , n1, q = 1, 2, 3. There is no surprise that in
the first region of the graph (green area) the error is zero, since the first n1 eigenvalues
are exactly given, sampling p(1) on standard θ j1,n1 grid.
In yellow area we see the result of direct calculation of

λγ (Tn1(f)) − λ(3)(f(θ j1,n1)),

for j1 = 1, . . . , n1, q = 3, as we are using asymptotic expansion with α = 0.
The green area, containing the errors related to p(2)(θ), is obviously chaotic since
p(2)(θ) is non-monotone.

Following the notation and the analysis in [16], since p(2) = 7 − 2 cos(2θ) and
n1 = 100, we have two changes of monotonicity which we collect in the parameter
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ω. As a consequence, in accordance with the study in [16], we choose

ω = 2, β = mod(n1, ω) = 0, nω = (n1 − β)/ω = 50,

θ(1)
nω

= jπ

nω + 1
, j = 1, . . . nω,

θ
(2)
nω+1 = jπ

nω + 2
, j = 1, . . . nω + 1.

To map the two grids above to match the given symbol f(θ) we construct θn1 by

θn1 =
{
1

2
θ(1)
nω

,
1

2
θ

(2)
nω+1 + π

2

}
.

Amore general formula to match grids θ
(1)
nω

and θ
(2)
nω+1 to be evaluated on the standard

symbol is

θn = 1

ω

⎧
⎨

⎩

ω−β⋃

r1=1

(
θ(1)
nω

+ (r1 − 1)π
)

,

β⋃

r2=1

(
θ

(2)
nω+1 + (r2 − 1)π + (ω − β)π

)
⎫
⎬

⎭
.

(3.4)

In the left bottom panel of Fig. 8 we report the global expansion errors E (q)
j1,n1,0

,
calculated using grid described above. In this way the region where the error is 0
is the second (red area), since the eigenvalues are calculated exactly, by sampling
p(2)(θ). Furthermore, in the green and in the yellow areas we see the result of the
direct calculation of

λγ (Tn1(f)) − λ(q)(f(θ j1,n1)),

for j1 = 1, . . . , n1, q = 1, 3, as we are using asymptotic expansion with α = 0.
Hence, the first n eigenvalues of Tn(f) can be calculated exactly sampling p(1) with
grid θ j,n = jπ/(n + 1), j = 1, . . . , n and n exact eigenvalues can be found sampling
p(2) on grid (3.4). For the computation of the last n eigenvalues, we use the matrix-less
procedure in the scalar setting, passing through the approximation of c(3)

k (θ j1,n1), k =
1, . . . , α, for α = 4, see the bottom right panel of Fig. 8.

In fact, for α = 4 we ignore the first two evaluations of c(3)
4 at the initial points

θ1,n and θ2,n , because their values behave in a erratic way. This problem has been
emphasized in [2] and it is due to the fact that the first and second derivative of p(3)(θ)

at θ = 0 vanish simultaneously. However, we have to make two observations for
clarifying the situation

• The present pathology is not a counterexample to the asymptotic expansion (1.5)
since we take θ fixed and all the pairs j, n such that θ j,n = θ : in the current case
and in that considered in [2] in the scalar-valued setting, we have j fixed and n
grows so that the point θ is not well defined.
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• There are simpleways for overcoming the problem and then for computing reliable
evaluations of c(3)

4 at those bad points θ1,n and θ2,n . One of them is described in [12]

and consists in choosing a sufficiently large α > 4 and in computing c(3)
k , for k =

1, 2, 3, 4.Using this trick, the c(3)
4 at the initial points θ1,n and θ2,n have the expected

behavior. In addition we stress the fact that this behavior has little impact on the
numerically computed solution. Assuming double precision computations, the
contribution to the error deriving from c(3)

4 (θ j,n)h4 will be numerically negligible,
even for moderate n. Further discussions on the topic are presented in [12].

Example 5. Consider theQp Lagrangian Finite Element approximation, of the second
order elliptic differential problem

{
−Δu + β · ∇u + γ u = f , in Ω = (0, 1)d ,

u = 0, on ∂Ω,
(3.5)

in one dimension with β = γ = 0, and f ∈ L2(Ω). The resulting stiffness matrix is
A(p)
n = nK (p)

n , where K (p)
n is a (pn−1)× (pn−1) block matrix. The construction of

the matrix and the symbol is given in [18]. The p× pmatrix-valued symbol of K (p)
n is

f(θ) = f̂0 + f̂1eiθ + f̂T1 e
−iθ .

We have

K (p)
n = Tn(f)−,

where the subscript− denotes that the last row and column of Tn(f) are removed. This
is due to the homogeneous boundary conditions. For detailed expressions of f̂0 and f̂1
in the particular case p = 2, 3, 4, see “Appendix B”.

In Table 1, we list seven examples of uniform grids, with varying n. The general
notation for a grid, where the type is defined by context, is θ j,n , where n is the number
of grid points, and j is the indices j = 1, . . . , n. The grid fineness parameter h, for
the respective grids, is also presented in Table 1. The names of the different grids are
chosen in view of their relations with the τ -algebras [7] [see specifically equations
(19), (22), and (23) therein].

In Example 1 of [18] the case p = 2 is considered, and explicit formulas for the
two eigenvalue functions are given, with their notation,

λ1(f2(θ)) = 5 + 1

3
cos(θ) + 1

3

√
129 + 126 cos(θ) + cos2(θ),

λ2(f2(θ)) = 5 + 1

3
cos(θ) − 1

3

√
129 + 126 cos(θ) + cos2(θ).

Here we present the two grids used to sample the two eigenvalue functions in order
to attain exact eigenvalues,

λ1(f2(θ
(1)
j1,n−1)), θ

(1)
j1,n−1 = j1π

n
, j1 = 1, . . . , n − 1,
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Table 1 Seven examples of uniform grids

Name Grid j h Description

τn jπ/(n + 1) 1, . . . , n 1/(n + 1) τn(0, 0)

τn−1 jπ/n 1, . . . , n − 1 1/n τn−1(0, 0)

τn−2 jπ/(n − 1) 1, . . . , n − 2 1/(n − 1) τn−2(0, 0)

τ0n−1 ( j − 1)π/n 1, . . . , n 1/n τn(1, 1) = 0 ∪ τn−1(0, 0)

τπ
n−1 jπ/n 1, . . . , n 1/n τn(−1,−1) = τn−1(0, 0) ∪ π

τ
0,π
n−2 ( j − 1)π/(n − 1) 1, . . . , n 1/(n − 1) 0 ∪ τn−2(0, 0) ∪ π

τ
0,π
n−1 ( j − 1)π/n 1, . . . , n + 1 1/n 0 ∪ τn−1(0, 0) ∪ π

Typically the τn -grid is the default choice, unless other grids provides more accurate, or even exact, eigen-
values when sampling the symbol

λ2(f2(θ
(2)
j2,n

)), θ
(2)
j2,n

= j2π

n
, j2 = 1, . . . , n.

With the notation in Table 1, we use the grid τn−1 for the first eigenvalue function,
and grid τπ

n−1 for the second. Since for p > 2 the analytical expression of the the
eigenvalue functions can not be computed easily, the following four steps algorithm
can be used to obtain the exact eigenvalues for any p.

1. Sample the matrix-valued symbol f(θ) with the grid τ
0,π
n−1

θ j ,n+1 = ( j − 1)π

n
, j = 1, . . . n + 1.

Each sampling gives a matrix of size p × p. Use an eigensolver to get the p eigenvalues of the
sampling, sorted in non-decreasing order. This results in a total of p(n + 1) values:
jq = 1, . . . , n + 1 for all p eigenvalue functions, so we have to discard p + 1 of samplings,

since the total number of eigenvalues of the matrix K (p)
n is pn − 1.

2. For the eigenvalue function λ(1)(f) choose samplings with index j1 = 2, . . . , n. This corresponds
to choose the grid τn−1.

3. For eigenvalue functions λ(q)(f), where q is even, choose samplings with index jq = 2, . . . , n + 1.
This corresponds to choose the grid τπ

n−1.

4. For eigenvalue functions λ(q)(f), where q is odd, choose samplings with index jq = 1, . . . , n. This
corresponds to choose the grid τ0n−1.

The mass matrix, of the system (3.5) (that is, γ = 1), is B(p)
n = n−1M (p)

n , where
M (p)

n = Tn(g)− is the scaled mass matrix.
The p × p matrix-valued symbol of M (p)

n is given by

g(θ) = ĝ0 + ĝ1eiθ + ĝT1 e
−iθ .

For detailed expressions of ĝ0 and ĝ1 in the particular case p = 2, 3, 4, see Appendix
B. The algorithm for writing the exact eigenvalues of M (p)

n for p even is the same as
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Fig. 9 Example 5: Grids for the exact eigenvalues of K (p)
n and M(p)

n , with n = 6 and p = 5. Left: Grids
chosen for each eigenvalue functions of f(θ), for q = 1, . . . , 5, according to Algorithm 2. Right: Grids
chosen for each eigenvalue function of g(θ), for q = 1, . . . , 5, according to Algorithm 3

the one described for K (p)
n above, just replacing f(θ) with g(θ). However, for p > 1

odd, we have a slight modification:
If (p+1)/2 is odd, that is p = 5, 9, 13, . . ., define p̂ = p. If (p+1)/2 is even, that

is p = 3, 7, 11, . . ., define p̂ = p−2. In summary, to obtaining the exact eigenvalues
of M (p)

n , the algorithm becomes:

• Do steps 1. and 2. of Algorithm 2, just replacing f(θ) with g(θ).
• For q = 2, . . . , ( p̂ + 1)/2,

– For λ(q)(g), q is even, choose samplings with index jq = 1, . . . , n. This corresponds
to the grid τ0n−1.

– For λ(q)(g), q is odd, choose samplings with index jq = 2, . . . , n + 1. This corresponds
to the grid τπ

n−1.

• Continue with steps 3. and 4. of Algorithm 2, for q = ( p̂ + 1)/2 + 1, . . . , p, just replacing f(θ)

with g(θ).

In Fig. 9 we present the appropriate grids, defined in Table 1, for the exact eigen-
values of K (p)

n and M (p)
n with n = 6 and p = 5.

4 Conclusions and future work

In this paper we considered the case of f being a s × s matrix-valued trigonometric
polynomial, s ≥ 1, and {Tn(f)}n a sequence of block Toeplitz matrix generated by
f , with Tn(f) of size N (n, s) = sn. We numerically observed conditions insuring
the existence of an asymptotic expansion generalizing the assumptions known for the
scalar-valued setting. Furthermore, following a proposal in the scalar-valued case by
the first author, by Garoni, and by the third author, we devised an extrapolation algo-
rithm for computing the eigenvalues in the present setting regarding banded symmetric
block Toeplitz matrices, with a high level of accuracy and with a low computational
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cost. The resulting algorithm is an eigensolver that does not need to store the original
matrix and does not need to perform matrix-vector products: for this reason we call it
matrix-less

We have used the asymptotic expansion for the efficient computation of the spec-
trum of special block Toeplitz structures and we have shown exact formulae for the
eigenvalues of the matrices coming from the Qp Lagrangian Finite Element approxi-
mation of a second order elliptic differential problem.

A lot of open issues remain, including a formal proof of the asymptotic expansion
clearly indicated by the numerical experiments at least under the global assumption
of monotonicity and pair-wise separation of the eigenvalue functions.
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5 Appendix

Appendix A

Theorem 5.1 Let s > 1, N = N (n, s) = sn and f be an Hermitian matrix-valued
trigonometric polynomial (HTP)with Fourier coefficients f̂0, f̂1, . . . , f̂m ∈ Rs×s . Sup-
pose that f is of the form

f(θ) =
m∑

k=−m

f̂keikθ = f̂0 +
m∑

k=1

(
f̂keikθ + f̂Tk e

−ikθ
)

, m = deg (f(θ)) ∈ N,

such that
f̂−k =f̂Tk k = 0, . . . ,m. (5.1)

Suppose that the eigenvalue functions of f , λ(q)(f) : [0, π ] → Rs×s , q = 1, . . . , s,
are monotone on [0, π ] and such that

max
θ∈[0,π ] λ

(q)(f) < min
θ∈[0,π ] λ

(q+1)(f) (5.2)

q = 1, . . . , s − 1, then, fixed q ∈ {1, . . . , s},
∣∣∣λγ (Tn(f)) − λ(q)

(
f
(
θ j,n

))∣∣∣ ≤ Ch (5.3)

∀ n, for j = 1, . . . , n, and γ = γ (q, j) = (q − 1)n + j , where
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• λγ (Tn(f)), γ ∈ {1, . . . , N }, are the eigenvalues of Tn(f), such that, for a fixed q̄ ∈
{1, . . . , s}, λ(q̄−1)n+ j (Tn(f)) are arranged in non-decreasing or non-increasing
order, depending on whether λ(q̄)(f) is increasing or decreasing.

• h = 1
n+1 and θ j,n = jπ

n+1 = jπh, j = 1, . . . , n;

Proof For the sake of simplicity, we assume that for q = 1, . . . , s, λ(q)(f) is monotone
non-decreasing (the other cases have a similar proof).
Notice that the conditions on f imply that the N × N block Toeplitz matrix generated
by f , Tn(f), is Hermitian positive definite so we can order its eigenvalues in non-
decreasing order of as follows

{{
λ(q−1)n+ j (Tn(f))

}n
j=1

}s

q=1
(5.4)

We remark that
Tn(f) = τN (f) + HN (f), (5.5)

where, for ψ (HTP) of degree m and Q =
(√

2
n+1 sin

(
i jπ
n+1

))n

i, j=1
, τN (ψ) is the

following τ matrix [4] of size N generated by ψ

τN (ψ) = (Q ⊗ Is) diag
1≤ j≤n

(
ψ

(
jπ

n + 1

))
(Q ⊗ Is), Q = QT = Q−1,

where Is is the s × s identity matrix, and HN (ψ) is the Hankel matrix

HN (ψ) =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

ψ̂2 ψ̂3 · · · ψ̂m

ψ̂3 . .
.

... . .
.

ψ̂m

ψ̂m

. .
. ...

. .
.

ψ̂3

ψ̂m · · · ψ̂3 ψ̂2

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

,

with ν := ν(s,m) = rank(HN (ψ)) ≤ 2s(m − 1).
For q = 1, . . . , s, j = 1, . . . , n, setting γ = (q − 1)n + j , we find

λγ (τN (f)) = λ(q)

(
f
(

jπ

n + 1

))
. (5.6)
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Note that Tn(f) is similar to the matrix

T̃n(f) = (Q ⊗ Is)Tn(f)(Q ⊗ Is) = diag
1≤ j≤n

(
f
(

jπ

n + 1

))
+ (Q ⊗ Is)HN (f)(Q ⊗ Is)

= diag
1≤ j≤n

(
f
(

jπ

n + 1

))
+ H̃ν,

with rank(H̃ν) = ν, so Tn(f) and T̃n(f) have the same eigenvalues.
Using theMinMax spectral characterization for Hermitian matrices [3], we obtain, for
γ = (q − 1)n + j ∈ {ν + 1, . . . , N − ν},

λγ−ν(τN (f)) = λ(q)

(
f
(

( j − ν)π

n + 1

))
≤ λγ (Tn(f)) ≤ λγ+ν(τN (f))

= λ(q)

(
f
(

( j + ν)π

n + 1

))
. (5.7)

The eigenvalue functions λ(q)(f) are monotone non-decreasing function so we have,
∀ n and for γ = (q − 1)n + j ∈ {ν + 1, . . . , N − ν},

λγ (Tn(f)) − λ(q)

(
f
(

jπ

n + 1

))
≤ λ(q)

(
f
(

( j + ν)π

n + 1

))
− λ(q)

(
f
(

jπ

n + 1

))

=
(
λ(q)(f(θ̄))

)′ νπ

n + 1
≤
∥∥∥∥
(
λ(q)(f)

)′∥∥∥∥∞
νπ

n + 1
, (5.8)

with θ̄ ∈
(

jπ
n+1 ,

( j+ν)π
n+1

)
and

λγ (Tn(f)) − λ(q)

(
f
(

jπ

n + 1

))
≥ λ(q)

(
f
(

( j − ν)π

n + 1

))
− λ(q)

(
f
(

jπ

n + 1

))

≥ −
∥∥∥∥
(
λ(q)(f)

)′∥∥∥∥∞
νπ

n + 1
. (5.9)

By setting C =
∥∥
∥
(
λ(q)(f)

)′∥∥
∥∞ νπ , for γ = (q − 1)n + j ∈ {ν + 1, . . . , N − ν}, we

obtain ∣∣∣
∣λγ (Tn(f)) − λ(q)

(
f
(

jπ

n + 1

))∣∣∣
∣ ≤ Ch. (5.10)

Furthermore, from [10] ∀ γ = 1, . . . , N , we know that

mf ≤ λγ (Tn(f)) ≤ Mf ,

where

mf = min
θ∈[0,π ]

(
λ(1)(f(θ))

)
; Mf = max

θ∈[0,π ]

(
λ(s)(f(θ))

)
,
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with strict inequalities that is mf < λγ (Tn(f)) < Mf since, by the assumptions, the
extreme eigenvalue functions are not constant. Hence for N − ν < γ ≤ N

∣∣∣∣λ
(s)
(
f
(

jπ

n + 1

))
− λγ (Tn(f))

∣∣∣∣ ≤
∣∣∣∣λ

(s)
(
f
(

jπ

n + 1

))
− λ(s)

(
f
(

nπ

n + 1

))∣∣∣∣

≤
∣
∣∣∣
(
λ(s) (f

(
θ̄
)))′∣∣∣∣

∣
∣∣∣
(n − j)π

n + 1

∣
∣∣∣ ,

where θ̄ ∈
(

jπ
n+1 ,

nπ
n+1

)
. If N − ν < γ ≤ N then |N − ν| < |(s − 1)n + j | →

|n − j | < ν, so that

∣∣∣∣λ
(s)
(
f
(

jπ

n + 1

))
− λγ (Tn(f))

∣∣∣∣ ≤
∥∥∥∥
(
λ(s) (f)

)′∥∥∥∥∞
νπ

n + 1
= Ch.

For 1 ≤ γ < ν + 1

∣∣∣∣λ
(1)
(
f
(

jπ

n + 1

))
− λγ (Tn(f))

∣∣∣∣ ≤
∣∣∣∣λ

(1)
(
f
(

jπ

n + 1

))
− λ(1)

(
f
(

π

n + 1

))∣∣∣∣

≤
∣
∣∣∣
(
λ(1) (f

(
θ̄
)))′∣∣∣∣

∣
∣∣∣
( j − 1)π

n + 1

∣
∣∣∣ ,

where θ̄ ∈
(

π
n+1 ,

jπ
n+1

)
. If 1 ≤ γ < ν + 1 then | j | > |ν + 1| ⇒ | j − 1| < ν, so

∣∣∣
∣λ

(1)
(
f
(

jπ

n + 1

))
− λγ (Tn(f))

∣∣∣
∣ ≤

∥∥∥
∥
(
λ(1) (f)

)′∥∥∥
∥∞

νπ

n + 1
= Ch.

Hence for q = 1, . . . , s, j = 1, . . . , n, γ = (q − 1)n + j ∈ {1, . . . , N },
∣∣∣∣λγ (Tn(f)) − λ(q)

(
f
(

jπ

n + 1

))∣∣∣∣ ≤ Ch.

Remark 5.1 With regard to Theorem 5.1, for q = 1, . . . , s, the case where λ(q)(f) are
bounded and non-monotone is even easier. If we consider λ̂(q)(f), the monotone non-
decreasing rearrangement ofλ(q)(f) on [0, π ], taking into account that the derivative of
λ(q)(f)has atmost a finite number S of sign changes,wededuce that λ̂(q)(f) is Lipschitz
continuous and its Lipschitz constant is bounded by ‖ (λ(q)(f)

)′ ‖∞ (notice that λ̂(q)(f)
is not necessarily continuously differentiable but the derivative of λ̂(q)(f) has at most
S points of discontinuity). Furthermore the eigenvalues λγ (τN (f)), g = (q − 1)n are
exactly given by

λ(q)

(
f
(

jπ

n + 1

))

123



966 S.-E. Ekström et al.

so that, by ordering these values non-decreasingly, we deduce that they coincide with
λ̂(q)

(
f
(
x j,n

))
, with x j,n of the form jπ

n+1 (1 + o(1)). With these premises, the proof
follows exactly the same steps as in Theorem 5.1, using the MinMax characterization
and the interlacing theorem for Hermitian matrices.

Appendix B

Recall that the p × p matrix-valued symbols of K (p)
n and M (p)

n are

f(θ) = f̂0 + f̂1eiθ + f̂T1 e
−iθ

and

g(θ) = ĝ0 + ĝ1eiθ + ĝT1 e
−iθ

respectively. The detailed expressions of f̂0, f̂1 and ĝ0, ĝ1 for the particular degrees
p = 2, 3, 4 are given below.
For p = 2,

f̂0 = 1

3

[
16 − 8
−8 14

]
, f̂1 = 1

3

[
0 − 8
0 1

]
,

ĝ0 = 1

30

[
16 2
2 8

]
, ĝ1 = 1

30

[
0 2
0 − 1

]
.

For p = 3,

f̂0 = 1

40

⎡

⎣
432 − 297 54

− 297 432 − 189
54 − 189 296

⎤

⎦ , f̂1 = 1

40

⎡

⎣
0 0 − 189
0 0 54
0 0 − 13

⎤

⎦ ,

ĝ0 = 1

1680

⎡

⎣
648 − 81 − 36

− 81 648 99
− 36 99 256

⎤

⎦ , ĝ1 = 1

1680

⎡

⎣
0 0 99
0 0 − 36
0 0 19

⎤

⎦ .

For p = 4,

f̂0 = 1

945

⎡

⎢
⎢
⎣

16640 − 14208 5888 − 1472
− 14208 22320 − 14208 3048

5888 − 14208 16640 − 6848
− 1472 3048 − 6848 9850

⎤

⎥
⎥
⎦ , f̂1 = 1

945

⎡

⎢
⎢
⎣

0 0 0 − 6848
0 0 0 3048
0 0 0 − 1472
0 0 0 347

⎤

⎥
⎥
⎦ ,

ĝ0 = 1

5670

⎡

⎢
⎢
⎣

1792 − 384 256 56
− 384 1872 − 384 − 174
256 − 384 1792 296
56 − 174 296 584

⎤

⎥
⎥
⎦ , ĝ1 = 1

5670

⎡

⎢
⎢
⎣

0 0 0 296
0 0 0 − 174
0 0 0 56
0 0 0 − 29

⎤

⎥
⎥
⎦ .
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