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Abstract For stochastic implicit Taylor methods that use an iterative scheme to com-
pute their numerical solution, stochastic B-series and corresponding growth functions
are constructed. From these, convergence results based on the order of the underly-
ing Taylor method, the choice of the iteration method, the predictor, and the number
of iterations, for Itô and Stratonovich SDEs, and for weak as well as strong conver-
gence are derived. As special case, also the application of Taylor methods to ODEs
is considered. The theory is supported by numerical experiments.

Keywords Stochastic Taylor method · Stochastic differential equation · Iterative
scheme · Order · Newton’s method · Weak approximation · Strong approximation ·
Growth function · Stochastic B-series
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1 Introduction

Besides stochastic Runge–Kutta methods, one important class of schemes to approx-
imate the solution of stochastic differential equations (SDEs) are stochastic Taylor
methods. As in the deterministic setting [1], they are especially suitable for problems
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with not too high dimension, and here especially in the case of strong approxima-
tion, because weak approximation of low-dimensional problems can often be done
more efficiently by numerically solving the corresponding deterministic PDE prob-
lem obtained by applying the Feynman-Kac formula. For solving stiff SDEs, implicit
methods have to be considered, as is illustrated in the following two examples.

Example 1.1 (See [12]) Consider the linear Itô-SDE

dX(t) = μX(t) dt + σX(t) dW(t), X(0) = x0, (1.1)

with μ,σ ∈ C. We assume that the exact solution is mean-square stable, i.e.

lim
t→∞ E(|X(t)|2) = 0,

which is the case if and only if 2�μ + |σ |2 < 0. To achieve that also the numerical
approximation Yn obtained with the (explicit) Euler-Maruyama scheme with step size
h is mean-square stable, i.e. limn→∞ E(|Yn|2) = 0, we have to restrict the step size

according to h < h0 := − 2�μ+|σ |2
|μ|2 , whereas for h > h0 the numerical approximations

explode, limn→∞ E(|Yn|2) = ∞. In contrast to this, the semi-implicit Euler scheme
is mean-square stable without any step size restriction. For a numerical affirmation,
see Fig. 1.

Example 1.2 Consider the following stochastic Van der Pol equation,

dX1(t) = X2(t) dt,

dX2(t) = (
μ

(
1 − X1(t)

2)X2(t) − X1(t)
)
dt + θ

(
1 − X1(t)

2)X2(t) dW(t),

X1(0) = x0,1, X2(0) = x0,2.

Fig. 1 Approximation results for the linear test equation (1.1) with μ = −3, σ = √
3, and x0 = 1 by

Euler-Maruyama (explicit) and semi-implicit Euler scheme. Here, E(|Y (t)|2) is approximated as mean
over 106 simulations. The explicit scheme is only stable for appropriate step sizes, the semi-implicit
scheme is stable for all step sizes
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Fig. 2 Approximation of Van der Pol equation with μ = 10, θ = 1, x0,1 = 2, and x0,2 = 0 by the explicit
and semi-implicit Milstein scheme (using the same Brownian path) with step-size h = 0.05. The explicit
scheme suffers from heavy stability problems and aborts

Application of the explicit Milstein scheme (see Example 1.3 with α = 0 and
β = 0) with step-size h = 0.05 to approximate a solution path leads to an explosion
of the approximation, see Fig. 2(a), whereas application of the semi-implicit Milstein
scheme, given by substituting g0(Yn) by g0(Yn+1) (α = 1 and β = 0 in Example 1.3),
yields (for the same Brownian path) the result of Fig. 2(b).

Implicit stochastic Taylor methods have been considered both for strong [15, 17]
and weak [15] approximation. For these methods, the approximation values are only
given implicitly. However, in practice these implicit equations are solved by iterative
schemes like simple iteration or Newton iteration. The “exact numerical” solution can
be written in terms of B-series [8]. As we will prove in this paper, so can the iterated
solution. Moreover, for each iteration scheme in question, we will define a growth
function. Briefly explained, when the exact numerical and the k times iterated solu-
tions are both written in terms of B-series, then all terms of these series for which the
growth function has a value not greater than k coincide. Thus the growth functions
give a quite exact description of the development of the iterations. B-series and corre-
sponding growth functions for iterated solutions have been derived for Runge–Kutta
methods applied to deterministic ordinary differential equations [14], differential al-
gebraic equations [13], and SDEs [7]. Somewhat surprisingly, the growth functions
are exactly the same in all these cases, and, as we will show in this paper, this also
holds for implicit Taylor methods.

The outline of the paper is as follows: First, we will give the SDE to be solved and
the iterated Taylor methods used for its approximation. In Sect. 2 stochastic B-series
are introduced and some useful preliminary results are presented. The main results
of the paper can be found in Sect. 3, where the B-series of the iterated solutions
are developed and the before mentioned growth functions derived. In Sect. 4, these
findings are interpreted in terms of the order of the overall scheme, giving concrete
results on the order of the considered methods depending on the kind and number of
iterations, both for SDEs and ODEs. Contrary to the results obtained for Runge–Kutta
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methods [7], the order of the iteration error is shown to be independent on whether Itô
or Stratonovich SDEs, weak or strong convergence is considered. Finally, in Sect. 5
we present several numerical examples to support our theoretical findings.

Let (Ω, A, P ) be a probability space. We denote by (X(t))t∈I the stochastic
process which is the solution of a d-dimensional SDE defined by

dX(t) = g0(X(t)) dt +
m∑

l=1

gl(X(t)) � dWl(t), X(t0) = x0, (1.2)

with an m-dimensional Wiener process (W(t))t≥0 and I = [t0, T ]. As usual, (1.2) is
construed as abbreviation of

X(t) = x0 +
∫ t

t0

g0(X(s)) ds +
m∑

l=1

∫ t

t0

gl(X(s)) � dWl(s). (1.3)

The integral w.r.t. the Wiener process has to be interpreted e.g. as Itô integral with
�dWl(s) = dWl(s) or as Stratonovich integral with �dWl(s) = ◦dWl(s). We assume
that the Borel-measurable coefficients gl : R

d → R
d are sufficiently differentiable

and chosen such that SDE (1.3) has a unique solution.
To simplify the presentation, we define W0(s) = s, so that (1.3) can be written as

X(t) = x0 +
m∑

l=0

∫ t

t0

gl(X(s)) � dWl(s). (1.4)

Let a discretization Ih = {t0, t1, . . . , tN } with t0 < t1 < · · · < tN = T of the time
interval I with step sizes hn = tn+1 − tn for n = 0,1, . . . ,N − 1 be given. Now, we
consider the general class of stochastic Taylor methods given by Y0 = x0 and

Yn+1 = B(Φex,Yn;hn) + B(Φim,Yn+1;hn) (1.5)

for n = 0,1, . . . ,N − 1 with Yn = Y(tn), tn ∈ Ih, Φex(∅) ≡ 1, Φim(∅) ≡ 0.

Example 1.3 Consider the family of Milstein schemes applied to an Itô SDE with
one-dimensional noise,

Yn+1 = Yn + hn

(
(1 − α)g0(Yn) + αg0(Yn+1)

)

+ I(1),hn

(
(1 − β)g1(Yn) + βg1(Yn+1)

)

+ (I(1,1),hn − βI 2
(1),hn

)[g′
1g1](Yn). (1.6)

Here,

I(1),hn = W(tn+1) − W(tn) = ΔWn,

I(1,1),hn =
∫ tn+1

tn

W(s) dW(s) = 1

2
(ΔW 2

n − hn),
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and the parameters α,β ∈ [0,1] indicate the degree of implicitness. When α = β = 0
we have the explicit Milstein scheme, with α �= 0, β = 0 a semi-implicit scheme. In
all cases, the method (1.6) can be written in the form (1.5) with

B(φex,Yn;hn) = x0 + hn(1 − α)g0(Yn) + I(1),hn(1 − β)g1(Yn)

+ (
I(1,1),hn − βI 2

(1),hn

)
(g′

1g1)(Yn),

B(φim,Yn+1;hn) = hnαg0(Yn+1) + I(1),hnβg1(Yn+1).

The terms Φex and Φim refer to the time- and method-dependent part of each term:
In this case

Φex(•0) = hn(1 − α), Φim(•0) = hnα,

Φex(•1) = I(1),hn(1 − β), Φim(•1) = I(1),hnβ,

Φex([•1]1]) = I(1,1),hn − βI 2
(1),hn

.

The notation will be explained in detail in Sect. 2.

What the general method (1.5) concerns, application of an iterative Newton-type
method yields

Yn+1,k+1 = B(Φex,Yn;hn) + B(Φim,Yn+1,k;hn) + Jk(Yn+1,k+1 − Yn+1,k) (1.7)

with some approximation Jk to the Jacobian of B(Φim,Yn+1,k;hn) and a predictor
Yn+1,0. In the following we assume that (1.7) can be solved uniquely at least for
sufficiently small hn. To simplify the presentation, we assume further that all step
sizes are constant, hn = h.

For the approximation Jk there exist several common choices. If we choose Jk

to be the exact Jacobian ∂2B(Φim,Yn+1,k;h), then we obtain the classical Newton
iteration method for solving (1.5), with quadratic convergence. It will be denoted in
the following as full Newton iteration. If we choose instead Jk = ∂2B(Φim,Yn;h),
then we obtain the so called modified Newton iteration method, which is only linearly
convergent. Here, Jk is independent of the iteration number k, thus its computation
is much cheaper and simpler than in the full Newton iteration case. The third and
simplest possibility is to choose Jk equal to zero. In this case we don’t even have to
solve a linear system for Yn+1,k+1. This iteration method is called simple iteration
method or predictor corrector method. Its disadvantage is that for stiff systems it
requires very small step sizes to converge.

For most stiff problems and problems with additive noise, the use of semi-implicit
methods suffices. As will be demonstrated in Sect. 4 these have the advantage that
less iterations are required to obtain the correct order of the underlying method.

2 Stochastic B-series

B-series, symbolized by B(φ,x0;h), for SDEs were first constructed by Burrage and
Burrage [2, 3] to study strong convergence in the Stratonovich case. In the following
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years, this approach has been further developed by several authors to study weak and
strong convergence, for the Itô and the Stratonovich case, see e.g. [7] for an overview.
A uniform theory for the construction of stochastic B-series has been presented in [7],
in [8] this approach has been used to construct order conditions for implicit Taylor
methods. Following the exposition of these two papers, we define in this section sto-
chastic B-series and present some preliminary results that will be used later.

2.1 Some useful definitions and preliminary results

Definition 2.1 (Trees) The set of m + 1-colored, rooted trees

T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ Tm

is recursively defined as follows:

(a) The graph •l = [∅]l with only one vertex of color l belongs to Tl .

Let τ = [τ1, τ2, . . . , τκ ]l be the tree formed by joining the subtrees τ1, τ2, . . . , τκ each
by a single branch to a common root of color l.

(b) If τ1, τ2, . . . , τκ ∈ T then τ = [τ1, τ2, . . . , τκ ]l ∈ Tl .

Thus, Tl is the set of trees with an l-colored root, and T is the union of these sets.

Definition 2.2 (Elementary differentials) For a tree τ ∈ T the elementary differential
is a mapping F(τ) : R

d → R
d defined recursively by

(a) F(∅)(x0) = x0,
(b) F(•l )(x0) = gl(x0),
(c) If τ = [τ1, τ2, . . . , τκ ]l ∈ Tl then

F(τ)(x0) = g
(κ)
l (x0)

(
F(τ1)(x0),F (τ2)(x0), . . . ,F (τκ)(x0)

)
.

With these definitions in place, we can define the stochastic B-series:

Definition 2.3 (B-series) A (stochastic) B-series is a formal series of the form

B(φ,x0;h) =
∑

τ∈T

α(τ) · φ(τ)(h) · F(τ)(x0),

where φ : T → Ξ := {{ϕ(h)}h≥0 : ϕ(h) : Ω → R is Borel-measurable ∀h ≥ 0} as-
signs to each tree a random variable, and α : T → Q is given by

α(∅) = 1, α(•l ) = 1, α(τ = [τ1, . . . , τκ ]l ) = 1

r1!r2! · · · rq !
κ∏

j=1

α(τj ),

where r1, r2, . . . , rq count equal trees among τ1, τ2, . . . , τκ .



B-series analysis of iterated Taylor methods 535

Note that α(τ) is the inverse of the order of the automorphism group of τ .
To simplify the presentation, in the following we assume that all elementary dif-

ferentials exist and all considered B-series converge. Otherwise, one has to consider
truncated B-series and discuss the remainder term.

The next lemma is proved in [7].

Lemma 2.1 If Y(h) = B(φ,x0;h) with φ(∅) ≡ 1 is some B-series and f ∈
C∞(Rd ,R

d̂ ), then f (Y (h)) can be written as a formal series of the form

f (Y (h)) =
∑

u∈Uf

β(u) · ψφ(u)(h) · G(u)(x0), (2.1)

where

(a) Uf is a set of trees derived from T as follows: [∅]f ∈ Uf , and if τ1, τ2, . . . , τκ ∈
T \ {∅} then [τ1, τ2, . . . , τκ ]f ∈ Uf ,

(b) G([∅]f )(x0) = f (x0) and G(u = [τ1, . . . , τκ ]f )(x0) = f (κ)(x0)(F (τ1)(x0),

. . . ,F (τκ)(x0)),
(c) β([∅]f ) = 1 and β(u = [τ1, . . . , τκ ]f ) = 1

r1!r2!···rq !
∏κ

j=1 α(τj ), where r1, r2,

. . . , rq count equal trees among τ1, τ2, . . . , τκ ,
(d) ψφ([∅]f ) ≡ 1 and ψφ(u = [τ1, . . . , τκ ]f )(h) = ∏κ

j=1 φ(τj )(h).

For notational convenience, in the following the h-dependency of the weight func-
tions and the x0-dependency of the elementary differentials will be suppressed when-
ever this is unambiguous, so Φ(τ)(h) will be written as Φ(τ) and F(τ)(x0) as F(τ).

The next step is to present the composition rule for B-series. In the deterministic
case, this is e.g. given by [10], using ordered trees. The same rule applies for mul-
ticolored trees, as in the stochastic case. But it is also possible to present the result
without relying on ordered trees, as done in [8], and this is the approach that will be
used in the following.

Consider triples (τ,ϑ,ω) consisting of some τ ∈ T , a subtree ϑ sharing the root
with τ , and a remainder multiset ω of trees left over when ϑ is removed from τ . We
also include the empty tree as a possible subtree, in which case the triple becomes
(τ,∅, {τ }).

Example 2.1 Two examples of such triples are

So, for the same τ and ϑ there might be different ω’s.
We next define ST(τ ) as the set of all possible subtrees of τ together with the

corresponding remainder multiset ω, that is, for each τ ∈ T \∅ we have
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ST(•l ) = {
(∅, {•l}), (•l , {∅})},

ST(τ = [τ1, . . . , τκ ]l ) = {
(ϑ,ω) : ϑ = [ϑ1, . . . , ϑκ ]l , ω = {ω1, . . . ,ωκ},
(ϑi,ωi) ∈ ST(τi), i = 1, . . . , κ

} ∪ {
(∅, {τ })}.

We also have to take care of possible equal terms in the formula presented below.
This is done as follows: For a given triple (τ,ϑ,ω) write first ϑ = [ϑ1, . . . , ϑκϑ ]l =
[ϑ̄ r1

1 , . . . , ϑ̄
rq
q ]l , where the latter only expresses that ϑ is composed by q different

nonempty trees, each appearing ri times, hence
∑q

i=1 ri = κϑ . Let τ = [τ1, . . . , τκ ]l .
For i = 1, . . . , q , each ϑ̄i is a subtree of some of the τj ’s, with corresponding remain-
der multisets ωj . Assume that there are exactly pi different such triples (τ̄ik, ϑ̄i , ω̄ik)

each appearing exactly rik times so that
∑pi

k=1 rik = ri . Finally, let δ̄k ∈ ω be the dis-
tinct trees with multiplicity sk , k = 1, . . . , p0, of the remainder multiset which are
directly connected to the root of τ . Then, τ can be written as

τ = [δ̄s1
1 , . . . , δ̄

sp0
p0 , τ̄

r11
11 , . . . , τ̄

r1p1
1p1

, . . . , τ̄
rq1
q1 , . . . , τ̄

rqpq
qpq

]l = [τ̄ R1
1 , . . . , τ̄

RQ

Q ]l , (2.2)

where the rightmost expression above indicates that τ is composed by Q different
trees each appearing Ri times.

With these definitions, we can state the following theorem, proved in [8]:

Theorem 2.1 (Composition of B-series) Let φx,φy : T → Ξ and φx(∅) ≡ 1. Then
the B-series B(φx, x0;h) inserted into B(φy, ·;h) is again a B-series,

B(φy,B(φx, x0;h);h) = B(φx ◦ φy, x0;h),

where

(
φx ◦ φy

)
(τ ) =

∑

(ϑ,ω)∈ST(τ )

γ (τ,ϑ,ω)

(

φy(ϑ)
∏

δ∈ω

φx(δ)

)

(τ ),

γ (∅,∅, {∅}) = 1, and

γ (τ,ϑ,ω) = R1! · · ·RQ!
s1! · · · sp0 !r11! · · · rqpq !

q∏

i=1

pi∏

k=1

γ (τ̄ik, ϑ̄i , ω̄ik)
rik

for τ given by (2.2).

The combinatorial term γ gives the number of equal terms that will appear if the
composition rule using ordered trees is preferred.

In general, the composition law is not linear, neither is it associative. It is, however,
linear in its second operand. Further, if both φx(∅) = φy(∅) ≡ 1, then the composition
law can be turned into a group operation (Butcher group, see [6, 10, 11] for the
deterministic case): The inverse element φ−1(τ ) can be recursively computed by

(φ ◦ φ−1)(τ ) = e(τ ) ≡
{

1 if τ = ∅,

0 otherwise,
(2.3)
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and associativity is proved by

B
(
φz,B

(
φy,B(φx, x0;h);h);h) = B

(
φx ◦ (φy ◦ φz), x0;h

)

= B
(
(φx ◦ φy) ◦ φz, x0;h

)
. (2.4)

This holds even if φz(∅) �≡ 1.
The next result will be needed for the investigation of modified Newton iterations.

Lemma 2.2 If φx(∅) ≡ 0 we have

∂2B(φy, x0;h)B(φx, x0;h) = B(φx ∗ φy, x0;h),

where the bi-linear operator ∗ is given by

(φx ∗ φy)(τ ) =
{

0 if τ = ∅,
∑

(ϑ,{δ})∈SP(τ ) γ (τ,ϑ, {δ}) · φy(ϑ)φx(δ) otherwise,
(2.5)

with

SP(τ ) = {(ϑ,ω) ∈ ST(τ ) : ω contains exactly one element δ}.

Proof Written in full, the statement of the theorem claims that

∑

ϑ∈T

∑

δ∈T

α(ϑ)α(δ) · φy(ϑ)φx(δ) · ∂F (ϑ)F (δ)

=
∑

τ∈T \{∅}
α(τ)

⎛

⎝
∑

(ϑ,{δ})∈SP(τ )

γ (τ,ϑ, {δ}) · φy(ϑ)φx(δ)

⎞

⎠ · F(τ). (2.6)

This is true if

∂F (ϑ)F (δ) =
∑

τ∈A(ϑ,δ)

β(τ,ϑ, δ)F (τ) (2.7)

and

α(ϑ)α(δ)β(τ,ϑ, δ) = α(τ)γ (τ,ϑ, {δ}), (2.8)

where A(ϑ, δ) is the set of all τ ’s constructed by attaching δ to one of the vertices
of ϑ . We will prove this by induction.

First, let ϑ = ∅. Since ∂F (∅)F (δ) = F(δ) we have τ = δ and (2.7) and (2.8) are
trivially true with β(τ,∅, τ ) = 1. Now, let ϑ = •l . Then ∂F (ϑ)F (δ) = g′

lF (δ) =
F([δ]l ). As A(ϑ, δ) = {[δ]l} this gives β([δ]l ,•l , δ) = 1, and again (2.8) is trivially
true. Finally, let

ϑ = [ϑ̄ r1
1 , . . . , ϑ̄

ri
i , . . . , ϑ̄

rq
q ]l
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with distinct trees ϑ̄1, . . . , ϑ̄q . Then

∂F (ϑ)F (δ)

= g
(κϑ+1)
l

(
F(δ),

r1 times
︷ ︸︸ ︷
F(ϑ̄1), . . . ,F (ϑ̄1), . . . ,

rq times
︷ ︸︸ ︷
F(ϑ̄q), . . . ,F (ϑ̄q)

)

+
q∑

i=1

rig
(κϑ )
l

(
F(ϑ̄1), . . . , ∂F (ϑ̄i)F (δ),

ri−1 times
︷ ︸︸ ︷
F(ϑ̄i), . . . ,F (ϑ̄i), . . . ,F (ϑ̄q)

)
,

where κϑ = ∑q

i=1 ri , so τ ∈ A(ϑ, δ) is either

τ = [δ, ϑ̄r1
1 , . . . , ϑ̄

ri
i , . . . , ϑ̄

rq
q ]l with β(τ,ϑ, δ) = 1

or

τ = [ϑ̄ r1
1 , . . . , τi, ϑ̄

ri−1
i , . . . , ϑ̄

rq
q ]l with τi ∈ A(ϑ̄i , δ) and

β(τ,ϑ, δ) = riβ(τi, ϑ̄i , δ).

In the first case, if δ = ϑ̄j for some j , then α(τ) = α(ϑ)α(δ)/M and γ (τ,ϑ, {δ}) = M

with M = rj + 1. Otherwise the same is valid with M = 1. So (2.8) holds. In the
second case, assume that our induction hypothesis (2.8) is true for all τi ∈ A(ϑ̄i , δ).
We obtain

α(τ) = ri

M

α(τi)

α(ϑ̄i)
α(ϑ) and γ (τ,ϑ, {δ}) = Mγ(τi, ϑ̄i , {δ})

with M = rj + 1 if τi = ϑ̄j for some j and M = 1 otherwise. It follows that

α(τ)γ (τ,ϑ, {δ}) = ri
α(τi)

α(ϑ̄i)
γ (τi, ϑ̄i , {δ})α(ϑ) = α(ϑ)α(δ)riβ(τi, ϑ̄i , δ)

= α(ϑ)α(δ)β(τ,ϑ, δ). �

2.2 B-series of the exact and the numerical solutions

From the results of the previous subsection, it is possible to find the B-series of the
exact and numerical solutions. Here, the proofs are only sketched, for details consult
[7, 8].

Theorem 2.2 The solution X(t0 +h) of (1.4) can be written as a B-series B(ϕ,x0;h)

with

ϕ(∅) ≡ 1, ϕ(•l )(h) = Wl(h),

ϕ(τ = [τ1, . . . , τκ ]l )(h) =
∫ h

0

κ∏

j=1

ϕ(τj )(s) � dWl(s).
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Proof Write the exact solution as some B-series X(t0 + h) = B(ϕ,x0;h). As
ϕ(∅) ≡ 1, apply Lemma 2.1 to gl(X(t0 + h)) and Definitions 2.1, 2.2 and 2.3 to
obtain

gl(B(ϕ, x0;h)) =
∑

τ∈Tl

α(τ ) · ϕ′
l (τ )(h) · F(τ)(x0) (2.9)

in which

ϕ′
l (τ )(h) =

⎧
⎨

⎩

1 if τ = •l ,

∏κ
j=1 ϕ(τj )(h) if τ = [τ1, . . . , τκ ]l ∈ Tl.

Insert this into the SDE (1.3) and compare term by term. �

Theorem 2.3 The numerical solution Y1 given by (1.5) can be written as a B-series

Y1 = B(Φ,x0;h)

with Φ recursively defined by

Φ(∅) ≡ 1, (2.10a)

Φ(τ) = Φex(τ ) + (Φ ◦ Φim)(τ ). (2.10b)

Proof Write Y1 = B(Φ,x0;h) and insert this into (1.5). As Φ(∅) = Φex(∅) +
Φim(∅) ≡ 1, apply Theorem 2.1, and compare term by term. �

To study the consistency of the numerical methods, we need to assign to each tree
an order:

Definition 2.4 (Tree order) The order of a tree τ ∈ T respectively u ∈ Uf is defined
by

ρ(∅) = 0, ρ(u = [τ1, . . . , τκ ]f ) =
κ∑

i=1

ρ(τi),

and

ρ(τ = [τ1, . . . , τκ ]l ) =
κ∑

i=1

ρ(τi) +
{

1 for l = 0,

1
2 otherwise.

In Table 1 some trees and the corresponding values for the functions ρ, α, and ϕ

are presented.
To decide the weak order we will also need the B-series of the function f ,

evaluated at the exact and the numerical solution. From Theorems 2.2 and 2.3 and
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Table 1 Examples of trees and corresponding functions ρ(τ), α(τ), and ϕ(τ). The integrals ϕ(τ) are
also expressed in terms of multiple integrals J(... ) for the Stratonovich (S) and I(... ) for the Itô (I) cases,
see [15] for their definition. In bracket notation, the trees will be written as •l , [[•2]0]1, [•1,•1]0, and
[•1, [•2,•2]1]0, respectively

τ ρ(τ) α(τ) ϕ(τ)(h)

{
1 if l = 0

1
2 if l �= 0

1 Wl(h) =

⎧
⎪⎪⎨

⎪⎪⎩

h if l = 0

J(l) (S)

I(l) (I)

2 1
∫ h

0
∫ s1

0 W2(s2) � ds2 � dW1(s1) =
{

J(2,0,1) (S)

I(2,0,1) (I)

2 1
2

∫ h
0 W1(s)2 � ds =

{
2J(1,1,0) (S)

2I(1,1,0) + I(0,0) (I)

3 1
2

∫ h
0 W1(s1)(

∫ s1
0 W2(s2)2 � dW1(s2)) � ds1

=

⎧
⎪⎪⎨

⎪⎪⎩

4J(2,2,1,1,0) + 2J(2,1,2,1,0) + 2J(1,2,2,1,0) (S)

4I(2,2,1,1,0) + 2I(2,1,2,1,0) + 2I(1,2,2,1,0)

+ 2I(0,1,1,0) + 2I(2,2,0,0) + I(1,0,1,0) + I(0,0,0) (I)

Lemma 2.1 we obtain

f (X(t0 + h)) =
∑

u∈Uf

β(u) · ψϕ(u)(h) · G(u)(x0),

f (Y1) =
∑

u∈Uf

β(u) · ψΦ(u)(h) · G(u)(x0),

with

ψϕ([∅]f ) ≡ 1, ψϕ(u = [τ1, . . . , τκ ]f ) =
κ∏

j=1

ϕ(τj ),

and

ψΦ([∅]f ) ≡ 1, ψΦ(u = [τ1, . . . , τκ ]f ) =
κ∏

j=1

Φ(τj ).

One can show [5, 9, 15] that Eψϕ(u)(h) = O(hρ(u)) ∀u ∈ Uf and ϕ(τ)(h) =
O(hρ(τ)) ∀τ ∈ T , respectively, where especially in the latter case the O(·)-notation
refers to the L2(Ω)-norm and h → 0.

In the following we assume that also method (1.5) is consistent with the definition
of the tree order, i.e. that it is constructed as usual such that EψΦ(u)(h) = O(hρ(u))
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∀u ∈ Uf and Φ(τ)(h) = O(hρ(τ)) ∀τ ∈ T , respectively. These conditions are ful-

filled if for τ ∈ T and k ∈ N = {0,1, . . . } it holds that (Φex(τ ))2k = O(h2kρ(τ)) and
(Φim(τ))2k = O(h2kρ(τ)).

3 B-series of the iterated solution and growth functions

In this section we will discuss how the iterated solution defined in (1.7) can be written
in terms of B-series, that is

Y1,k = B(Φk, x0;h).

Assume that the predictor can be written as a B-series,

Y1,0 = B(Φ0, x0;h),

satisfying Φ0(∅) ≡ 1 and Φ0(τ ) = O(hρ(τ)) ∀τ ∈ T . The most common situation
is the use of the trivial predictor Y1,0 = x0, for which Φ0(∅) ≡ 1 and Φ0(τ ) ≡ 0
otherwise.

We are now ready to study each of the iteration schemes, which differ only in the
choice of Jk in (1.7). In each case, we will first find the recurrence formula for Φk(τ).
From this we define a growth function g(τ ):

Definition 3.1 (Growth function) A growth function g : T → N is a function satisfy-
ing

Φk(τ) = Φ(τ) ∀τ ∈ T with g(τ ) ≤ k

⇒ Φk+1(τ ) = Φ(τ) ∀τ ∈ T with g(τ ) ≤ k + 1,
(3.1)

for all k ≥ 0.

This result should be sharp in the sense that in general there exists τ �= ∅ with
Φk(τ) �= Φ(τ) when k < g(τ ). From Lemma 2.1 we also have

f (Y1,k) =
∑

u∈Uf

β(u) · ψΦk
(u) · G(u)(x0)

with

ψΦk
([∅]f ) ≡ 1, ψΦk

(u = [τ1, . . . , τκ ]f ) =
κ∏

j=1

Φk(τj ),

where β(u) and G(u)(x0) are given in Lemma 2.1. This implies

ψΦk
(u) = ψΦ(τ) ∀u = [τ1, . . . , τκ ]f ∈ Uf with g

′(u) = κ
max
j=1

g(τi) ≤ k. (3.2)

As we will see, the growth functions give a precise description of the development
of the iterations. However, to get applicable results we will at the end need the rela-
tion between the growth functions and the order. These aspects are discussed in the
next section. Examples of trees and the values of the growth functions for the three
iteration schemes are given in Fig. 3.
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Fig. 3 Examples of trees and their growth functions for simple (h), modified Newton (r) and full Newton
(d) iterations

3.1 The simple iteration

Simple iterations are described by (1.7) with Jk = 0, that is

Yn+1,k+1 = B(Φex,Yn;h) + B(Φim,Yn+1,k;h). (3.3)

By Theorem 2.1 we easily get the following lemma, where, as in the following, all
results are valid for all l = 0, . . . ,m:

Lemma 3.1 If Y1,0 = B(Φ0, x0;h) then Y1,k = B(Φk, x0;h), where

Φk+1(∅) ≡ 1,

Φk+1(τ ) = Φex(τ ) + (Φk ◦ Φim)(τ ).

The corresponding growth function is given by

h(∅) = 0, h(•l ) = 1, h([τ1, . . . , τκ ]l ) = 1 + κ
max
j=1

h(τj ).

The function h(τ ) is the height of τ , that is the maximum number of nodes along
one branch.

3.2 The modified Newton iteration

In this subsection we consider the modified Newton iteration

Yn+1,k+1 = B(Φex,Yn;h) + B(Φim,Yn+1,k;h)

+ ∂2B(Φim,Yn;h)(Yn+1,k+1 − Yn+1,k). (3.4)

The B-series for Y1,k and the corresponding growth function can now be described
by the following lemma:

Lemma 3.2 If Y1,0 = B(Φ0, x0;h) then Y1,k = B(Φk, x0;h) with

Φk+1(∅) ≡ 1,

Φk+1(τ ) = Φex(τ ) + (Φk ◦ Φim)(τ ) + ((Φk+1 − Φk) ∗ Φim)(τ ).
(3.5)
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The corresponding growth function is given by

r(∅) = 0, r(•l ) = 1, r(τ = [τ1, . . . , τκ ]l ) =
{

r(τ1) if κ = 1,

1 + maxκ
j=1 r(τj ) if κ ≥ 2.

The function r(τ ) is one plus the maximum number of ramifications along any
branch of the tree.

Proof Theorem 2.1 and Lemma 2.2 imply (3.5). We next prove that r is the appro-
priate growth function. If r(τ ) = 0 then τ = ∅ and Φ0(τ ) = Φ(τ). Assume now that
Φk(τ) = Φ(τ) ∀τ with r(τ ) ≤ k. If (ϑ,ω) ∈ ST(τ ) \ SP(τ ) with r(τ ) ≤ k + 1, then
∀δ ∈ ω it holds r(δ) ≤ r(τ ) and therefore Φk(δ) = Φ(δ). So, by (3.5) we have ∀τ

with r(τ ) ≤ k + 1

Φk+1(τ ) = Φex(τ ) +
∑

(ϑ,ω)∈ST(τ )\SP(τ )

γ (τ,ϑ,ω) · Φim(ϑ)
∏

δ∈ω

Φ(δ)

+
∑

(ϑ,{δ})∈SP(τ )

γ (τ,ϑ, {δ}) · Φim(ϑ)Φk+1(δ),

and by induction on the number of nodes of these trees we obtain that Φk+1(τ ) =
Φ(τ) ∀τ with r(τ ) ≤ k + 1. �

3.3 The full Newton iteration

In this subsection we consider the full Newton iteration (1.7) with Jk =
∂2B(Φim,Y1,k;h). Extending the ∗-operator to the case when its first operand does
not vanish on the empty tree by

(φx ∗ φy)(τ ) = ((
φx − φx(∅)e

) ∗ φy

)
(τ ) + φx(∅)φy(τ ),

it follows that the B-series for Y1,k and the corresponding growth function satisfy:

Lemma 3.3 If Y1,0 = B(Φ0, x0;h) then Y1,k+1 = B(Φk+1, x0;h) with

Φk+1(∅) ≡ 1,

Φk+1(τ ) = Φex(τ ) + (
Φk ◦ (

(Φ−1
k ◦ Φk+1) ∗ Φim

))
(τ ).

(3.6)

The corresponding growth function is given by

d(∅) = 0, d(•l ) = 1,

d(τ = [τ1, . . . , τκ ]l ) =
{

maxκ
j=1 d(τj ) if γ = 1,

maxκ
j=1 d(τj ) + 1 if γ ≥ 2,

where γ is the number of trees τi in τ1, . . . , τκ satisfying d(τi) = maxκ
j=1 d(τj ).
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The function d is called the doubling index of τ .

Proof Writing the iterations in terms of B-series, we get

B(Φk+1, x0;h) = B(Φex, x0;h) + B(Φim,Y1,k;h)

+ ∂2B(Φim,Y1,k;h)B(ΔΦk,x0;h) (3.7)

with ΔΦk(τ) = Φk+1(τ ) − Φk(τ). Let x0 = B(Φ−1
k , Y1,k;h) so that

B(ΔΦk,x0;h) = B
(
ΔΦk,B(Φ−1

k , Y1,k;h);h) = B(Φ−1
k ◦ ΔΦk,Y1,k;h).

The use of Lemma 2.2 followed by the use of Theorem 2.1 give the following result:

∂2B(Φim,Y1,k;h)B(Φ−1
k ◦ ΔΦk,Y1,k;h) = B

(
(Φ−1

k ◦ ΔΦk) ∗ Φim,Y1,k;h
)

= B
(
Φk ◦ (

(Φ−1
k ◦ ΔΦk) ∗ Φim

)
, x0;h

)
.

The operator ∗ is bilinear and ◦ is linear from the right, thus

Φk ◦ ((Φ−1
k ◦ ΔΦk) ∗ Φim) = Φk ◦ ((Φ−1

k ◦ Φk+1) ∗ Φim) − Φk ◦ Φim

and the first part of the theorem is proven by (3.7). We will now prove the second
part. Assume that Φk(τ) = Φk+1(τ ) = Φ(τ) for all τ satisfying d(τ ) ≤ k. This is true
for k = 0 and τ = ∅. Let Ψk = Φ−1

k ◦ Φk+1 and notice that by the assumption above,
Ψk(τ) equals the unit element e(τ ) if d(τ ) ≤ k. Consider a tree τ where d(τ ) = k +1.
For this tree we obtain

(Ψk ◦ Φim)(τ ) =
∑

(ϑ,{δ})∈SP(τ )

γ (τ,ϑ, {δ})Φim(ϑ)Ψk(δ)

+
∑

(ϑ,ω)∈ST(τ )\SP(τ )

γ (τ,ϑ,ω)Φim(ϑ)
∏

δ∈ω

Ψk(δ)

= (Ψk ∗ Φim)(τ ) (3.8)

since the last sum of (3.8) disappears: For each (ϑ,ω) ∈ ST(τ ) \ SP(τ ) (if any) there
is at least one δ ∈ ω satisfying d(δ) ≤ k and thereby Ψk(δ) = 0. In this case we obtain

(
Φk ◦ (

(Φ−1
k ◦ Φk+1) ∗ Φim

))
(τ ) = (Φk ◦ Φ−1

k ◦ Φk+1 ◦ Φim)(τ ) = (Φk+1 ◦ Φim)(τ )

by (2.4), so that

Φk+1(τ ) = Φex(τ ) + (Φk+1 ◦ Φim)(τ ).

The theorem is completed by induction on the number of nodes of τ and on k. �
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4 General convergence results for iterated methods

Now we will relate the results of the previous section to the order of the overall
scheme. We have weak consistency of order p if and only if

EψΦ(u)(h) = Eψϕ(u)(h) + O(hp+1) ∀u ∈ Uf with ρ(u) ≤ p + 1

2
(4.1)

((4.1) slightly weakens conditions given in [16]), and mean square global order p if
[4]

Φ(τ)(h) = ϕ(τ)(h) + O(hp+ 1
2 ) ∀τ ∈ T with ρ(τ) ≤ p,

EΦ(τ)(h) = Eϕ(τ)(h) + O(hp+1) ∀τ ∈ T with ρ(τ) ≤ p + 1

2
,

and all elementary differentials F(τ) fulfill a linear growth condition.
Then, the order of the iterated solution after k iterations is qk if

EψΦk
(u) = Eψϕ(u) ∀u ∈ Uf with ρ(u) ≤ qk + 1

2
(4.2)

in the weak convergence case respectively

Φk(τ) = ϕ(τ) ∀τ ∈ T with ρ(τ) ≤ qk,

EΦk(τ) = Eϕ(τ) ∀τ ∈ T with ρ(τ) = qk + 1

2

(4.3)

in the mean square convergence case.
In the following, we assume that the predictors satisfy the condition

Φ0(τ ) = Φ(τ) ∀τ ∈ T with g(τ ) ≤ G0, (4.4)

where G0 is chosen as large as possible. In particular, the trivial predictor satisfies
G0 = 0.

It follows from (3.1) and (3.2) that

Φk(τ) = Φ(τ) ∀τ ∈ T with g(τ ) ≤ G0 + k, (4.5)

as well as

ψΦk
(u) = ψΦ(u) ∀u ∈ Uf with g

′(u) ≤ G0 + k. (4.6)

The next step is to establish the relation between the order and the growth function
of a tree. We have chosen to do so by a maximum growth function, given by

G(q) = max
τ∈T

{g(τ ) : ρ(τ) ≤ q} = max
u∈Uf

{
g
′(u) : ρ(u) ≤ q

}
. (4.7)

With this definition, by (4.6) respectively (4.5), the conditions (4.2) respectively
(4.3) are fulfilled for all u of order ρ(u) ≤ min (qk,p) respectively all τ of order



546 K. Debrabant, A. Kværnø

ρ(τ) ≤ min (qk,p) if

G
(

qk + 1

2

)
≤ G0 + k. (4.8)

Let T S ⊂ T and US
f ⊂ Uf be the set of trees with an even number of each kind of

stochastic nodes. E.g. from [9] we have

Eϕ(τ) = 0 if τ �∈ T S,

Eψϕ(u) = 0 if u �∈ US
f .

(4.9)

Thus, if the method is as usual constructed such that also ∀m,n ∈ N and ∀τ1,i ∈ T ,
i = 1, . . . ,m, ∀τ2,j ∈ T , j = 1, . . . , n,

E

⎛

⎝
m∏

i=1

n∏

j=1

Φex(τ1,i )Φim(τ2,j )

⎞

⎠ = 0 if
m∑

i=1

ρ(τ1,i ) +
n∑

j=1

ρ(τ2,i ) /∈ N, (4.10)

then in (4.8) qk + 1
2 can be replaced by �qk + 1

2�.
The results can then be summarized in the following theorem:

Theorem 4.1 If (4.10) is fulfilled, then the iterated method is of weak respec-
tively mean square order qk ≤ p after G(�qk + 1

2�) − G0 iterations, otherwise after
G(qk + 1

2 ) − G0 iterations.

Our next aim is to give explicit formulas for the maximum growth function. Let
us start with the following lemma.

Lemma 4.1 For k ≥ 1,

h(τ ) = k ⇒ ρ(τ) ≥ k

2
,

r(τ ) = k ⇒ ρ(τ) ≥ k − 1

2
,

d(τ ) = k ⇒ ρ(τ) ≥ 2k−1 − 1

2
.

The same result is valid for h′(u), r′(u), and d′(u).

Proof Let Th,k , Tr,k , and Td,k be sets of trees of minimal order satisfying
h(τ ) = k ∀τ ∈ Th,k , r(τ ) = k ∀τ ∈ Tr,k , and d(τ ) = k ∀τ ∈ Td,k (see Fig. 4), and de-
note this minimal order by ρh,k , ρr,k , and ρd,k . Minimal order trees are build up only
by stochastic nodes. It follows immediately that Th,1 = Tr,1 = Td,1 = {•l : l ≥ 1}.
Since ρ(•l ) = 1/2 for l ≥ 1, the results are proved for k = 1. It is easy to show by
induction on k that
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Fig. 4 Minimal order trees with g(τ ) = 3. The sets Tg,3 consist of all such trees with only stochastic
nodes

Th,k = {[τ ]l : τ ∈ Th,k−1, l ≥ 1}, ρh,k = ρh,k−1 + 1

2
= k

2
,

Tr,k = {[•l1, τ ]l2 : τ ∈ Tr,k−1, l1, l2 ≥ 1}, ρr,k = ρr,k−1 + 1 = k − 1

2
, (4.11)

Td,k = {[τ1, τ2]l : τ1, τ2 ∈ Td,k−1, l ≥ 1}, ρd,k = 2ρd,k−1 + 1

2
= 2k−1 − 1

2
.

For each g being either h, r, or d, the minimal order trees satisfying g′(ug,k) = k are
ug,k = [τg,k]f with τg,k ∈ Tg,k , which are of order ρ(τg,k). �

Now we can prove the following corollary.

Corollary 4.1 For q ≥ 1
2 we have

G(q) =

⎧
⎪⎪⎨

⎪⎪⎩

2q for simple iterations,

�q + 1
2� for modified Newton iterations,

�log2(q + 1
2 )� + 1 for full Newton iterations.

Proof The minimal order trees are also the maximum height/ramification number/
doubling index trees, in the sense that as long as ρ(τg,k) ≤ q < ρ(τg,k+1) there are
no trees of order q for which the growth function can exceed k. �

For some methods, these results can be refined. We call a method semi-implicit, if
Φim(τ) ≡ 0 ∀τ /∈ T0 (remember that T0 is the set of trees with a deterministic root).
Then, by Lemmas 3.1, 3.2, and 3.3 we obtain the following lemma:

Lemma 4.2 For semi-implicit methods, the corresponding growth functions are
given by

hs(∅) = 0, hs([τ1, . . . , τκ ]l ) =
{

1 if l > 0,

1 + maxκ
j=1 hs(τj ) if l = 0,

rs(∅) = 0, rs(•l ) = 1,

rs(τ = [τ1, . . . , τκ ]l) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if l > 0,

rs(τ1) if l = 0, κ = 1,

1 + maxκ
j=1 rs(τj ) if l = 0, κ ≥ 2,
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ds(∅) = 0, ds(•l ) = 1,

ds(τ = [τ1, . . . , τκ ]l ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if l > 0,

maxκ
j=1 ds(τj ) if l = 0, γ = 1,

maxκ
j=1 ds(τj ) + 1 if l = 0, γ ≥ 2,

where γ is the number of trees in τ1, . . . , τκ satisfying ds(τi) = maxκ
j=1 ds(τj ).

This implies immediately:

Lemma 4.3 For k ≥ 1,

hs(τ ) = k ⇒ ρ(τ) ≥ k − 1

2
,

rs(τ ) = k ⇒ ρ(τ) ≥ 3

2
k − 1,

ds(τ ) = k ⇒ ρ(τ) ≥ 3

4
2k − 1.

The same result is valid for hs
′(u), rs

′(u), and ds
′(u).

Corollary 4.2 For semi-implicit methods we have for q ≥ 1
2

G(q) =

⎧
⎪⎪⎨

⎪⎪⎩

�q + 1
2� for simple iterations,

� 2
3 (q + 1)� for modified Newton iterations,

�log2
q+1

3 � + 2 for full Newton iterations.

For the trivial predictor, Table 2 gives the number of iterations needed to achieve a
certain order of convergence, both in the general and in the semi-implicit case.

For the sake of completeness, we also give the corresponding results for (deter-
ministic) Taylor methods applied to deterministic problems. Note that in this case,
(4.10) is automatically fulfilled.

Table 2 Number of iterations
needed to achieve order p when
using the simple, modified or
full Newton iteration scheme in
the Itô and Stratonovich case for
strong or weak approximation,
provided (4.10) is fulfilled. In
parentheses, the numbers for
semi-implicit methods are given

p Simple iter. Mod. iter. Full iter.

1
2 2 (1) 1 1

1 2 (1) 1 1

1 1
2 4 (2) 2 2

2 4 (2) 2 2

2 1
2 6 (3) 3 (2) 2

3 6 (3) 3 (2) 2
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Lemma 4.4 Suppose that the considered problem is purely deterministic, i.e. m = 0
in (1.3). Then, for k ≥ 1,

h(τ ) = k ⇒ ρ(τ) ≥ k,

r(τ ) = k ⇒ ρ(τ) ≥ 2k − 1,

d(τ ) = k ⇒ ρ(τ) ≥ 2k − 1.

The same result is valid for h′(u), r′(u), and ds
′(u).

Corollary 4.3 For deterministic problems, we have for q ∈ N, q ≥ 1

G(q) =

⎧
⎪⎪⎨

⎪⎪⎩

q for simple iterations,

� q+1
2 � for modified Newton iterations,

�log2(q + 1)� for full Newton iterations.

5 Numerical examples

In the following, we analyze numerically the order of convergence of several stochas-
tic Taylor methods in dependence on the kind and number of iterations.

As first examples, we apply the semi-implicit Milstein method [15], denoted by
SIM and given by (1.6), the implicit Milstein-Taylor method [17], denoted by IM and
given by

Yn+1 = Yn + hg0(Yn+1) + I(1)g1(Yn+1) − (I(1,1) + h)[g′
1g1](Yn+1),

both of strong order 1.0, and the semi-implicit strong order 1.5 Taylor method due to
Kloeden and Platen [15, 17], denoted by SIKP and given by

Yn+1 = Yn + hg0(Yn+1) + I(1)g1(Yn) + I(1,1)[g′
1g1](Yn) − I(0,1)[g′

0g1](Yn)

− 1

2
h2

[
g′

0g0 + 1

2
g′′

0g2
1

]
(Yn+1) + I(0,1)

[
g′

1g0 + 1

2
g′′

1g2
1

]
(Yn)

+ I(1,1,1)[g′2
1 g1 + g′′

1g2
1](Yn),

to the non-linear SDE [15]

dX(t) =
(

1

2
X(t) +

√
X(t)2 + 1

)
dt +

√
X(t)2 + 1 dW(t), X(0) = 0, (5.1)

on the time interval I = [0,1] with the solution X(t) = sinh(t + W(t)). With each
method, the solution is approximated with step sizes 2−11, . . . ,2−15 and the sam-
ple average of M = 4000 independent simulated realisations of the absolute error is
calculated in order to estimate the expectation.

The results at time t = 1 are presented in Fig. 5, where the orders of convergence
correspond to the slope of the regression lines. As predicted by Table 2 we observe
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Fig. 5 Error of several Taylor methods applied to (5.1) with up to two simple (SI) and modified Newton
(MI) iterations

strong order 1.0 for one simple or one (modified) Newton iteration of the semi-
implicit Milstein method; and no convergence for one simple iteration but strong
order 1.0 for two simple or one (modified) Newton iteration of the implicit Milstein-
Taylor method. The semi-implicit strong order 1.5 Taylor method yields strong order
1.0 for one and strong order 1.5 for two simple or modified Newton iterations.

Next, we apply the semi-implicit weak order two Taylor scheme due to Platen
[15], denoted by SIW and given by

Yn+1 = Yn + hg0(Yn+1) + I(1)g1(Yn) + I(1,1)[g′
1g1](Yn)

+ 1

2
I(1)h

[
−g′

0g1 + g′
1g0 + 1

2
g′′

1g2
1

]
(Yn) − 1

2
h2

[
g′

0g0 + 1

2
g′′

0g2
1

]
(Yn+1),

to SDE (5.1). Here, we choose as functional f (x) = p(arsinh(x)), where p(z) =
z3 − 6z2 + 8z is a polynomial. Then the expectation of the solution can be calculated
as

E(f (X(t))) = t3 − 3t2 + 2t. (5.2)

The solution E(f (X(t))) is approximated with step sizes 2−3, . . . ,2−6 and M =
4 · 109 simulations are performed in order to determine the systematic error of SIW
at time t = 1. The results with one or two simple or modified Newton iteration steps
are presented in Fig. 6. According to Table 2 we expect approximation order one for
one iteration and order two for two iterations, which is approved by Fig. 6. Finally,
we apply the fully implicit strong order 1.5 Taylor scheme given in [8],

Yn+1 = Yn + 1

2
I(1)g1,n+1 + 1

2
hg0,n+1 + 1

2
(I(1,1) + h)g′

1,n+1g1,n+1

+ 1

4
h2g′

0,n+1g0,n+1 + 1

8
h2g′′

0,n+1(g1,n+1, g1,n+1) + 1

2
I(1)g1
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Fig. 6 Error of the weak second
order (semi-) implicit Platen
method applied to (5.1) with one
or two simple (SI) or modified
Newton (MI) iterations (the
results for one respectively two
simple and modified Newton
iterations coincide)

+ 1

2
hg0 −

(
h + 1

2
I(1,1)

)
g′

1g1 + 1

2

(
I(0,1) − I(1,0)

)
g′

1g0

− 1

2
(I(0,1) − I(1,0))g

′
0g1 +

(
1

2
I(0,1) − 7

4
hI(1) − 2I(1,1,1)

)
g′′

1 (g1, g1)

−
(

3

2
hI(1) + 2I(1,1,1)

)
g′

1g
′
1g1 − 1

4
h2g′

0g0 − h2g′′
1 (g0, g1) − 1

4
h2g′

1g
′
0g1

− 3

4
h2g′

1g
′
1g0 − 1

8
h2g′′

0 (g1, g1) − 1

4
h2g′

1g
′
1g

′
1g1 − 5

8
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′′
1 (g1, g1)

− 7

4
h2g′′

1 (g′
1g1, g1) − 3

4
h2g′′′

1 (g1, g1, g1)

(here we used the abbreviations gl,n+1 = gl(Yn+1) and gl = gl(Yn)), which is denoted
by FIT, and the semi-implicit strong order 1.5 scheme SIKP to the system of non-
linear SDEs

dX1(t) =
(

1

2
X1(t) +

√
X1(t)2 + X2(t)2 + 1

)
dt

+ (
sin(X1(t)) + 2 sin(X2(t))

)
dW(t),

(5.3)

dX2(t) =
(

1

2
X1(t) +

√
X2(t)2 + 1

)
dt + (

cos(X1(t)) + 3 cos(X2(t))
)
dW(t),

X1(0) = 0, X2(0) = 0,

again on the time interval I = [0,1]. The solution is approximated with step sizes
2−11, . . . ,2−15 and the sample average of M = 4000 independent simulated realisa-
tions of the absolute error is calculated in order to estimate the expectation. As here
we do not know the exact solution, to approximate it we use SIKP with two simple
iterations and a step size ten times smaller than the actual step size.
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Fig. 7 Error of SIKP and FIT applied to (5.3) with different numbers of simple (SI) and modified Newton
(MI) iterations

The numerical results at t = 1 are presented in Fig. 7. Again, the orders expected
according to Table 2 are confirmed.

6 Conclusion

For stochastic implicit Taylor methods that use an iterative scheme to approximate the
solution, we derived stochastic B-series and corresponding growth functions. From
these, we deduced convergence results based on the order of the underlying Taylor
method, the choice of the iteration method, the predictor, and the number of itera-
tions, for Itô and Stratonovich SDEs, and for weak as well as strong convergence.
The convergence results are confirmed by numerical experiments. From a practical
point of view, this theory might lead to the construction of more efficient numerical
schemes for SDEs. But we also like to point out that the similarities of the iteration
dependent growth functions g for a range of problems (ODEs, DAEs, and SDEs) and
underlying methods (Runge–Kutta methods, implicit Taylor methods) indicate an un-
derlying structure that could well be investigated in a more general fashion. In spite
of this, the number of iterations needed to obtain the order of the underlying implicit
Taylor method does not depend on whether the SDE is of Itô or Stratonovich type.
This is in contrast to the results obtained for Runge–Kutta methods for SDEs, for
which usually less iterations are needed in the Stratonovich case [7]. The reason for
this is that in the latter case certain error terms have vanishing expectation even if
they do not vanish themselves. This is not the situation for implicit Taylor methods.
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