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Abstract
Species distribution models (SDMs) represent a widely acknowledged tool to identify pri-
ority areas on the basis of occurrence data and environmental factors. However, high levels 
of topographical and climatic micro-variation are a hindrance to reliably modelling the dis-
tribution of narrow-endemic species when based on classic occurrence and climate data-
sets. Here, we used high-resolution environmental variables and occurrence data obtained 
from dedicated field studies to produce accurate SDMs at a local scale. We modelled the 
potential current distribution of 23 of the 25 rarest species from Mount Kaala, a hotspot 
of narrow-endemism in New Caledonia, using occurrence data from two recent sampling 
campaigns, and eight high-resolution (10 m and 30 m) environmental predictors in a Spe-
cies Distribution Modelling framework. After a first sampling operation, we surveyed six 
additional areas containing, overall, 13 of the 20 species modelled at this stage, to validate 
our projections where the highest species richness levels were predicted. The ability of 
our method to define conservation areas was largely validated with an average 84% of pre-
dicted species found in the validation areas, and additional data collected enabling us to 
model three more species. We therefore identified the areas of highest conservation value 
for the whole of Mount Kaala. Our results support the ability of SDMs based on presence-
only data such as MaxEnt to predict areas of high conservation value using fine-resolution 
environmental layers and field-collected occurrence data in the context of small and hetero-
geneous systems such as tropical islands.
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Introduction

More than half of plant extinction events over the last 500  years occurred in oceanic 
islands, which are home to more than 30% of critically endangered plants (Tershy et  al. 
2015). In this regard, islands are priority territories for the development of plant conserva-
tion programs (McGeoch et al. 2016). In an era of global biodiversity crisis (Ceballos et al. 
2015), the world’s biodiversity hotspots have been defined according both to the level of 
richness and endemism of their flora and the threats they are facing, nearly half of them 
being island territories (Myers et al. 2000). As stressed by Cañadas et al. (2014), some hot-
spots are composed with micro- or nano-hotspots due to high levels of narrow-endemism 
and should be the focus of conservation actions. The presence of such narrow-hotspots was 
highlighted in New Caledonia by Wulff et al. (2013) and was recently identified as in need 
of urgent conservation planning (Gâteblé et al. 2018). In these areas of high conservation 
value, management planning often suffers from a lack of high-resolution background data 
on precipitation and temperature regimes, resulting in a poor understanding of biogeo-
graphical patterns and species ecology (Heywood 2011). Knowledge about the ecology of 
rare species is even more limited in the case of narrow endemic species (NES) occurring 
in inaccessible locations (Kier et al. 2009). Pressures from global changes are particularly 
concerning in islands (Weigelt et  al. 2016) and NES are particularly threatened (Wulff 
et al. 2013; Cañadas et al. 2014). There is a need to characterise the ecological niche of 
rare insular plants and their potential response to environmental changes.

Species distribution models (SDMs) are now widely used to produce transferable pro-
jections of the potential distribution of known species, which helps identify important 
areas for conservation among other goals (Guisan et al. 2013; Leroy et al. 2014). In this 
regard, Heywood (2011) proposed the use of this tool to guide the protection of island flora 
in data-poor territories. However, modelling the distribution of rare plant species is chal-
lenging in several aspects. First, the resolution of the most commonly used bioclimatic data 
(Booth et al. 2014) such as the Worldclim Database (Fick and Hijmans 2017) or Chelsa 
climate data (Karger et al. 2017) are too coarse to properly represent highly heterogeneous 
habitats. The most up to date WorldClim dataset is available at a 1 km resolution (World-
Clim2—Fick and Hijmans 2017), while it is known that rare plant distributions can be 
locally driven by topo-climatic variations at a 10–100 m scale (Franklin et al. 2013). The 
resolution of these global datasets is therefore insufficient to properly model species dis-
tributions and guide decision-making tools at the local scale (Kier et al. 2009). Secondly, 
occurrence data of rare or narrow-ranging plant species are difficult to obtain from exist-
ing databases. Generalist datasets and herbarium collections are the most common sources 
of such data (Loiselle et al. 2003; Gallardo and Aldridge 2013). However, they often lack 
occurrence data on rare species, and herbarium collections may be geographically biased 
(Ter Steege et  al. 2011). Ad hoc collection of input presence data may thus form a bet-
ter basis for high resolution modelling of rare plant species in narrow ranges. Finally, the 
selection of absence data is a key point in SDM projections, hence calling for a precise 
description of the survey effort underlying each occurrence dataset (Phillips 2008). Poorly 
defined absence data may indeed result in overpredictions in surveyed areas and produce 
“precise answers to the wrong questions” (Yackulic et al. 2013).

While SDM studies have advanced toward more efficient algorithms at large scales, 
there have been relatively few applications to the projection of NES distributions. Recent 
studies are answering some of these challenges by integrating microvariation predictors 
into their projections (Tomlinson et al. 2019). However, high-resolution background data 
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are not always available. When such background data are lacking, a combination of dedi-
cated field collection of presence data and post hoc field validation of projections should 
produce reliable guidelines for in situ conservation purposes.

The New Caledonia archipelago is one of the world’s biodiversity hotspots of the high-
est conservation value (Myers et  al. 2000; Wulff et  al. 2013). Almost 1% of the world’s 
flora is endemic to this southwest Pacific archipelago (Munzinger et  al. 2020). In this 
region, about 20% of the indigenous flora is considered as narrow-endemic, i.e., restricted 
to one, two or three locations (Wulff et al. 2013). This high endemism is the consequence 
of a unique geological history, resulting in a high topographic and climatic heterogene-
ity. Ultramafic soils are very frequent in the south of Grande Terre (the main island) and 
sparsely distributed northwards along the west coast in isolated and steep mountains (Bon-
vallot et al. 2012). In terms of plant ecology, these mountains are considered as ultramafic 
islands within a non-ultramafic matrix (Isnard et  al. 2016). The original composition of 
ultramafic soil, particularly the abundant presence of nickel ore, offers substantial eco-
nomic value to the mining industry that is widely developed in New Caledonia.

Mining represents a major threat to biodiversity through vegetation removal, topo-
graphic alteration, and persisting pollution (Lefcort et al. 2010; Palmer et al. 2010; Duran 
et al. 2013). In New Caledonia, the number of mining tenements issued rose by about a 
hundred between 1997 and 2017, resulting in more than 45% of all ultramafic areas cur-
rently being under mining concessions (Ibanez et  al. 2019). Furthermore, no protected 
areas have been implemented on ultramafic substrates in the northern half of the main 
island (Ibanez et al. 2019), which emphasises the need for urgent conservation programs to 
identify and protect its endemic-rich flora. In 2019, the conservation status of one third of 
the New Caledonian flora was assessed by the local Red List Authority (RLA-NC). Out of 
a thousand species, 43% were classified as threatened, mainly by open-cast mining, bush-
fires or invasive alien species, and 11% were considered “data-deficient” (RLA-NC 2019). 
This lack of information needs to be addressed urgently for the design of efficient manage-
ment strategies (Collen et al. 2008; IUCN 2012; IUCN/SSC 2013).

In this study, we coupled empirical field data collection and species distribution model-
ling to produce high-resolution “conservation priority” maps and promote the conservation 
of narrow-endemic taxa in one of New-Caledonia’s hotspots of narrow-endemism threat-
ened by mining activity. We predicted the distribution of 23 species among the rarest taxa 
of Mt. Kaala, using presence data from two recent sampling campaigns, and eight available 
habitat variables (10  m and 30  m resolution). To evaluate the ability of our projections 
to define areas for conservation, we carried out six additional surveys in areas where the 
highest species richness was predicted. Our results are discussed in light of the local and 
regional strategies for plant conservation. The study provides an integrative framework that 
should be considered by environment managers in hotspots of narrow-endemism.

Methods

Study site

The New Caledonia archipelago is located in the Coral Sea, 1500  km east of Australia 
and 2000 km north-northwest of New Zealand. It encompasses the main island of Grande 
Terre, the Loyalty Islands, and a number of smaller islands and islets. Grande Terre is 
400 km long and 50–70 km wide.
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Our study site is defined by the geological entity known as Mount Kaala, located in 
northwest Grande Terre (164°23′E, 20°36′S), with an altitude of 1070  m (Fig.  1). The 
site is dominated by ultramafic substrates with a serpentinite outcrop at the bottom, and 
is isolated in a large volcano-sedimentary coastal plain. The vegetation of Mount Kaala is 
a mosaic of varyingly degraded shrublands called “maquis miniers” (ca. 61% of the study 
area based on Barrière et al. 2007), dense humid forest (ca. 19%) and degraded second-
ary herbaceous patches (ca. 16%) on the slopes. The summit plateau, exploited for ore 
extraction, is composed of bare soils (ca. 4% of the study area) and secondary herbaceous 
patches.

Studied species

The species list we used in this study was determined in a previous study (Table 1, Lan-
nuzel, unpublished.), and is based on a comprehensive screening of all herbarium data 

Fig. 1  Detailed map of Mount Kaala with survey transects, validation areas and active mining areas (a) and 
its location in New Caledonia (b)
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available worldwide (mainly Paris—P, Nouméa—NOU, Missouri Botanical Garden—MO) 
for the Mount Kaala area. We filtered the resulting species list using the IUCN criteria and 
methodology (IUCN 2012). This process highlighted 23 taxa assessed as either Critically 
Endangered or Endangered in 2017 by the local Red List Authority (RLA-NC). We also 
kept two non-evaluated taxa because we assumed their extinction risk was very high. We 
identified four specimens collected in the early stages of the study as new species and the 
publication of their formal description is pending. We assume the species list we used is up 
to date for this area. However, given that new species are continuously described in New 
Caledonia (Gâteblé et al. 2018), our study provides recommendations for conservation on 
the basis of current knowledge.

Environmental variables

We used six environmental predictors in this study, all based on topography and remote 
sensing. Because of the high resolution needed, the use of global bioclimatic data was not 
appropriate. Recently, Tomlinson et al. (2019) showed the relevance of using edaphic prox-
ies versus downscaled climatic variables in the case of narrow-range endemic species. As a 
consequence of the lack of reliable edaphic predictors in New Caledonia, we used proxies 
representing the local topo-climatic variations (Pouteau et al. 2012), as well as a geological 
layer, as proxies for edaphic conditions. We computed four abiotic layers all derived from 
a Digital Elevation Model (DEM) freely available at a 10 m resolution (accuracy ± 2 m) 
(Gouvernement de la Nouvelle-Calédonie 2017), following the TopoTo Raster methods 
(Juffroy 2012). The first proxy is the DEM per se, because elevation is linked to temper-
ature at the local scale (Bonvallot et  al. 2012). Slope steepness (hereafter referred to as 
“slope”) affects the velocity of both surface and subsurface flow, and hence soil water con-
tent, erosion potential and soil formation (Pouteau et al. 2012; Wilson and Gallant 2000). 
Slope exposure (hereafter “exposure”) was used as a proxy of both insolation and wind-
wardness, which can influence the drying rate of vegetation (Wilson and Gallant 2000). We 
used the topographic wetness index (TWI) as a proxy for soil moisture, and therefore water 
availability for plants (Western et al. 1999; Radula et al. 2018). In New Caledonia, TWI 
was recently proven to affect species assemblages at local scales (Blanchard et al. 2019). 
Slope and exposure were calculated using the QGIS 2.18.7 “terrain analysis” tool. TWI 
was computed with the SAGA GIS dedicated algorithm. It is based on slope and catchment 
area, the latter also computed using SAGA GIS. We also used a geological polygon layer 
(1/50,000 scale) with substrate type categories (Maurizot et al. 2005) rasterized at a 10 m 
resolution.

The only biotic predictor used was the Normalised Difference Vegetation Index (NDVI), 
a continuous index representing vegetation productivity (Pettorelli et  al. 2005). Recent 
studies showed a correlation between tree species richness and single NDVI scene taken 
in the wet season in New Caledonia (Pouteau et al. 2018). We therefore interpreted it as a 
proxy for habitat suitability because many taxa are restricted to specific vegetation types 
(Isnard et  al. 2016). NDVI was calculated from 30 m-resolution Landsat 8 images from 
24th March 2017 (USGS 2017), corresponding to one of the only scenes without clouds in 
the study area during the wet season. We accounted for collinearity between environmental 
predictors using Pearson correlation coefficients (Le Lay et al. 2010; Gogol-Prokurat 2011) 
with a threshold set at 0.70 (see Appendix Tables 4). Correlation indices of the predictors 
ranged between − 0.48 (Soil-DEM) and 0.39 (Slope-DEM).
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Sampling effort

We acquired a first dataset during the five field studies in 2017 and 2018. We sought the 
most cost-effective method for data collection considering the steepness of the mountain 
and limited accessibility. Field surveys were designed to equally sample all altitudinal 
(DEM—100  m classes) and vegetation classes (NDVI—0.1 index value classes). We 
used strip transects, which is recommended in the case of highly clustered multi-species 
assemblages (Melville and Welsh 2001; Ogutu et al. 2006). Because strip transect accu-
racy depends on width, we assumed that detection was possible within a 5 m wide strip 
on either side of the observer. We chose a 5 m limit as the maximum distance at which 
we confidently detected a shrub species in dense shrublands, and small herbaceous spe-
cies in herbaceous maquis. Each GPS mark was then located at the centre of a 10  m 
wide square-cell within which all species of interest were recorded.

A total of twenty-one strip transects were carried out on Mount Kaala (Fig.  1a). 
Transect locations were recorded using a GPS device (Garmin GPSMap64; spatial accu-
racy ± 3 m). All data were transmitted to the local Red List Authority and are available 
on the www.endem ia.nc website.

Modelling

To broaden the appeal of our approach to the widest user community, we chose a mod-
elling algorithm that is reproducible without needing high computational power and 
which can be undertaken by any stakeholder with moderate background knowledge of 
SDMs. We used MaxEnt (v.3.3.3; Phillips et al. 2006), a user-friendly and well docu-
mented software. This algorithm is widely acknowledged to be efficient for rare species 
and performs well with small datasets (Phillips et al. 2004, 2006; Pearson et al. 2007; 
Wisz et al. 2008). The convergence threshold was set at 0.00001 with a maximum num-
ber of iterations of 500. We chose the logistic output format with suitability values rang-
ing from 0 (unsuitable) to 1 (optimal; Phillips and Dudík 2008). We ran five cross-vali-
dation replicates for each species. When the number of occurrences was lower than five, 
the software automatically reduced this number. For each replicate, it randomly splits 
the dataset into two parts: 80% for training, 20% for testing. The remaining parameters 
were kept as default settings.

Sampling bias correction

The sampling methodology inevitably produced spatial and ecological auto-correlation 
of occurrences, which could represent a major bias (Kramer-Schadt et  al. 2013). One 
expected consequence of this bias is to make predictions biased toward over-sampled 
areas (Phillips et al. 2009). As stated by Phillips et al. (2009), presence-only modelling 
is fairly robust as long as background points have the same sample selection bias as the 
presence points (Yackulic et al. 2013). However, this background selection method was 
hard to implement where the sampling effort is not precisely reported (Phillips et  al. 
2009; Kramer-Schadt et al. 2013; Fourcade et al. 2014). In our case, the dedicated sam-
pling inherently provided sampled and unsampled areas. Moreover, this method ena-
bled the use of all presence locations, as opposed to split or spatial filtering methods 
(Fourcade et al. 2014). It is therefore preferable for rare species with fewer occurrence 

http://www.endemia.nc
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data. We added a 5 m buffer to our GPS tracks to generate 10-m wide polygons corre-
sponding to our sampling design. The resulting polygon layer was rasterised to obtain a 
10-m resolution raster layer with a value of 1 in sampled pixels, and 0 in unsampled pix-
els. This layer was implemented in Maxent as a “Bias file”. The software then selected 
background points within the surveyed area, while results were projected on the overall 
study area.

Model performance

Selection of appropriate validation metrics such as AUC and TSS is a matter of debate 
in presence-pseudo-absence modelling, especially for rare species when prevalence is 
low (Leroy et al. 2018). To reduce misleading results, Leroy et al. (2018) advocated for 
the use of similarity tests in such cases. To evaluate model performance independently 
from prevalence, we used the continuous Boyce index  (Bcont(0,1); Hirzel et  al. 2006) 
which avoids arbitrary selection of class cutting thresholds by using a sliding window, 
and consequently might be more efficient for small sample tests. This indicator was 
computed for each replicate using the “ecospat” package (Di Cola et al. 2017) in R (R 
Core Team 2018). The Boyce index varies from − 1 to 1. A value of 1 corresponds to a 
perfect match between observed and predicted occurrences, while values under 0 are no 
better than random. Every acceptable prediction  (Bcont(0,1) > 0.5) layer was transformed 
into a binary presence/absence map using the maximum sensitivity/specificity threshold 
(Jiménez-Valverde and Lobo 2007; Cao et al. 2013). Considering the debate on valida-
tion metrics for SDM, we also computed the true skill statistics (TSS), because many 
authors consider it as prevalence-independent, but did not refer to it for further analy-
ses. Model performance is considered as poor if TSS value is lower than 0.4, moderate 
between 0.4 and 0.6, and good above 0.6 (Beauregard and de Blois 2014). We used the 
maximum sensitivity/specificity threshold to calculate TSS (Allouche et al. 2006; Wil-
liams et al. 2009). We also provide AUC (that is automatically calculated by MaxEnt) in 
Appendix Table 5. We present average predicted values for each taxon.

Field validation

We produced a general map by stacking every specific binary map (Fig. 2, and Appen-
dix Fig. 4). We obtained a raster layer giving the expected number of species present 
within each pixel. Six areas labelled from “a” to “f” (Fig.  2) were chosen for survey 
within the areas where pixel values fell within the 4th upper quartile (Rhoden et  al. 
2017). These areas were surveyed, during a sampling trip on 6th and 7th February 2018. 
We then computed a post-hoc test, i.e. the Positive Predictive Power index (PPP; Fois 
et al. 2015) to assess the efficiency of our SDMs. PPP represents the ratio between true 
positives and the sum of predicted positives. Here, we considered a true positive when a 
predicted species was actually observed in the area considered and a false positive when 
a species was predicted but not observed.

All data collected during this second field campaign were added to the total dataset 
to produce the final prediction maps.  Bcont(0,1) were re-calculated accordingly.
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Plant conservation priority scoring

A lot of literature is available to determine important areas for conservation (Blasi et al. 
2011; Balaguru et  al. 2006; Darbyshire et  al. 2017). We adapted the different criteria to 
match available data and specific local characteristics, such as narrow-endemism. Darby-
shire et al. (2017) identified three important criteria while considering the establishment 
of important plant areas (IPAs): threatened species, botanical richness, and threatened 
habitat. The threatened species criterion is relatively straightforward if IUCN assessments 
are locally available, which was the case here. Other criteria are harder to implement in a 
data-poor context. When no exhaustive inventories are available, botanical richness can be 
assessed by the density of important/valuable species (Darbyshire et  al. 2017). We used 
the predicted presence of species in our list, weighted by the IUCN status, to inform both 
these criteria. The IUCN (2016) recommended considering the irreplaceability of a spe-
cies or population. In New Caledonia, NES that are restricted to one locality are irreplace-
able, because, if they disappear from Mount Kaala in our example, they go extinct. We 
thus considered every predicted presence of such species as of irreplaceable value in our 
index. Threatened habitats are not known clearly in New Caledonia. In the absence of such 
a reference source, scores of the “threatened habitat” criterion were computed using two 
components. The first was the hierarchy of the given vegetation type within the post-fire 
ecological succession based on McCoy et al. (1999), from bare soil (lower level) to dense 
humid forest (upper level). The second was an area index representing the relative scar-
city of each vegetation type on the mountain. The vegetation map used at this step was 

Fig. 2  Stack map of every acceptable binary occurrence prediction of 20 rare plant taxa on Mt Kaala (New 
Caledonia) obtained during the 1st field study, which we used to define validation areas (“a”–“f”). The loca-
tion of transect surveys are also indicated. On the right, examples of validation areas with transect surveys 
and studied species’ occurrences



972 Biodiversity and Conservation (2021) 30:963–990

1 3

produced by Barrière et  al. (2007). This results in the following formula where i is the 
vegetation type:

We then proposed the list of criteria shown in Table 2.
The final layer was calculated to determine an index of conservation priority I, com-

puted with the following formula:

where A, B, and C are the priority conservation criteria mentioned in Table 2 and j is the 
taxon considered. Criteria A and B were calculated for each taxon, while criterion C was 
calculated once for the whole study area. The I index therefore varies between 0 and 3, 
where 0 corresponds to an area with the lowest conservation priority, and 3 represents the 
highest level of priority.

Results

Pre‑validation modelling

At the end of the first data collection phase, the mean number of occurrences was 33 ± 11 
SE per species. Three species were detected only once, and a maximum of 259 occurrences 
was reached for Zieria chevalieri. All elevation and NDVI classes were included in the sur-
veys. Relative to the whole massif area, transects represented about 0.5% of Mount Kaala. 
A total of 1610, pixels (10 × 10 m) were sampled, for a total of 800 “presence” pixels. For 
elevation classes, 0.68 ± 0.19% of areas were surveyed with an over-representation of the 
highest classes (700 m and higher). For NDVI, 0.36 ± 0.07% of areas were surveyed with a 
slight over-representation of the 0.1–0.2 classes. An under-representation on higher classes 
(0.4 and more) corresponded to dense humid forests.

Ci = 1 − (Areai∕Areatotal)

I =
Ci

Cmax

+

jmax
∑

j=1

Aj

Amax

+

jmax
∑

j=1

Bj

Bmax

Table 2  Criteria, modality and 
scores used for the identification 
of priority areas for the 
conservation of rare plant species 
of Mt Kaala (New Caledonia)

EN endangered, CR critically endangered, A vegetation relative rarity 
based on the area occupied by one vegetation type

Layer Criteria Modality Score

A IUCN status EN 1
CR 2

B Narrow-endemism No 0
Yes 1

C Vegetation Anthropic area 0
Herbaceous maquis 1 × Aherb

Open shrubland 2 × Aop − sh

Dense shrubland 3 × Ade − sh
Para-forest 4 × Apa − fo

Forest 5 × Afo
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Species with one or two occurrences (four species) were discarded for the modelling 
procedure. Distributions of twenty-one species were projected, among which 17 had a 
 Bcont(0,1) ranging from 0.58 to 1 and were thus considered reliable.The four models with a 
 Bcont(0,1) < 0.5 were not considered for the validation step.

Binary maps highlighted different distributions. Species’ projected niches were either 
restricted to low elevation (e.g. Casearia kaalaensis, Cleidion velutinum, Deltaria brachy-
blastophora), high elevation (e.g. Comptonella fruticosa, Psychotria sp. nov., Pytinicarpa 
sp. nov.), or more broadly distributed (e.g. Gynochthodes truncata, Xylosma kaalaense). 
Niche overlap values ranged from 0 to 8 species predicted per pixel.

Field validation

We conducted surveys in six areas projected to host more than five species. We selected 
two areas at low altitude, one in the middle altitudinal range, and three at high altitude. 
Mean PPP was 0.80 ± 0.02 SE, with no PPP under 0.7 (Table 3). Surveyed areas contained 
15 of 17 predicted taxa, and no unpredicted species were observed.

Surveys represented 5% of each selected area on average, and 460 additional surveyed 
pixels (46,000 m2—28% of the initial dataset). Additional occurrence data were then added 
to the occurrence datasets. This allowed modelling of the distribution of one more spe-
cies, and improved the validation metric of four others. Final results included 22 prediction 
maps, with  Bcont(0,1) values ranging from 0.51 to 1. Each predictor’s contribution varied 
among species. DEM was the predominant predictor with 51% contribution on average, 
but some species’ projections were mostly driven by NDVI (e.g. Gynochthodes truncata), 
exposure (e.g. Marsdenia kaalaensis) or slope (e.g. Myrsine novocaledoniae subsp kaal-
aensis). Soil contribution represented 7% on average, but emerged as a strong predictor 
for some species (e.g. Olax hypoleuca—28%, Gynochthodes truncata—26%). TWI was the 
poorest predictor with an average 2% contribution, and a maximum contribution of 6%. 
Detailed statistics and results are given in Appendix Table 5. Detailed response curves are 
also given in Appendix Fig.  5. For most species, the marginal response curves of each 
predictor showed no significant differences with the response obtained with models cre-
ated using only the corresponding variable. In a few specific cases only (C.  kaalaensis, 
C. velutinum, P. deciduiramus, Psychotria  sp. nov., T. minutiflora), exposition and slope 
show different curve shapes. The final specific maps, once stacked, showed a spatial niche 
overlap (spatial congruence) of 71% with at least two species predicted per pixel. The num-
ber of predicted species per pixel ranged from 0 to 12 (mean = 2.77). The 4th upper quartile 
of the total number of species per pixel (i.e., more than 9 species predicted) represented 
0.8% of the study area.

Table 3  Predictive power index 
(PPP) calculated for each area 
used for field validation

Area Predicted 
species

Observed pre-
dicted species

Observed unpre-
dicted species

PPP

a 6 6 1 1
b 6 5 0 0.83
c 7 5 0 0.71
d 8 7 0 0.88
e 8 7 0 0.88
f 7 5 1 0.71
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Priority areas for rare plant conservation

The I index varied within the study area and was rather low on average (median I = 0.60). 
Pixels with I > 1.5 represented 6.3% of the total study area and were mostly located on 
the slopes, at intermediate altitudinal range inside and outside active mining concessions 
(Fig. 3). On the western slopes, it represented some areas at the top end of the three main 
valleys, where vegetation is less impacted. On the southern and eastern slopes, valleys are 
less deep, and areas of high I index were revealed in every little thalweg protected from 
mining erosion and bushfires.

Discussion

In a context of highly heterogeneous habitats, our results showed that the occurrence of 
narrow-endemic species can be accurately predicted using topographic, geological and 
vegetation predictors. The Boyce validation metric seemed efficient in assessing the qual-
ity of predictions, even with only four presence data (P. pinifolia,  Bcont(0,1) = 0.97, verified 
during validation). Our field validation surveys confirmed 80% of projected occurrences, 
which supports the reliability of our models (Jiménez-Valverde 2012; Somodi et al. 2017; 
Leroy et al. 2018). Hence, we were able to use the projected maps to develop an evidence-
based spatially explicit index for local environment managers.

Data sampling was designed to offset the lack of presence data in international data-
bases. However, the production of presence-only data sets depends on three parameters: (i) 
sampling probability, (ii) occurrence probability, and (iii) detection probability. Together, 
they produce a bias often occurring in presence-only modelling studies (Yackulic et  al. 
2013). Our bias correction method maximised sampling-probability using transect tracks 
as bias files, without removing any occurrence data, which is a key point when modelling 

Fig. 3  Distribution of priority 
areas for conservation (computed 
with the I index) at Mt Kaala 
(New Caledonia). High I values 
represent areas with a high 
number of rare plant species, 
weighted according to IUCN 
status, narrow-endemism status 
and habitat importance. Active 
mining concessions are circled 
in black
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the distribution of rare species (Fourcade et al. 2014). This method, here applied to transect 
sampling, also addressed the detection probability issue by using the 5 m-buffer added to 
the tracks. Finally, we measured a first likelihood of occurrence, and used it for further 
field surveys which enabled us to add new occurrence data for the final models. This was 
only possible because we started from dedicated surveys, allowing a high confidence in 
the definition of sampled/unsampled pixel maps. Controlling for these three parameters 
is obviously more difficult on SDMs at large scales when the sampling effort underlying 
occurrence data is often unknown (Phillips et al. 2009; Kramer-Schadt et al. 2013; Four-
cade et al. 2014).

The choice of environmental predictors is a challenging issue in fine-scale SDMs (Nezer 
et al. 2016). Hijmans et al. (2005) showed the inaccuracy of global climate products such 
as Wordclim in the case of remote oceanic islands (including New Caledonia), because 
of the scarcity of local meteorological station networks (Turner et al. 2003; Pouteau et al. 
2015). These products are thus unlikely to produce reliable predictions of very rare plants’ 
suitable habitat, often influenced by 10–100 m scale variations (Franklin et al. 2013). The 
proxies we used here, mostly derived from the DEM layer, are the most relevant and locally 
available at high resolution for plant ecology (Pouteau et  al. 2012; Wilson et  al. 2013). 
However, three predictors were computed from the DEM which increases the risk of mul-
ticollinearity issues. We tested this issue using the Spearman correlation index, but also 
analysed the response curves of each predictor and species (Appendix Fig. 5) to confirm 
the absence of multicollinearity. For each species and predictors, two curves are computed. 
The first one represents the response of the model to the predictor while all other predic-
tors are set at their mean value in the sample. The second represents the response to the 
predictor in a model built only with this predictor. The comparison between both curves 
shows whether a predictor is independent (both curves are similar) or correlated (both 
curves show different shapes—Elith et  al. 2011; Phillips 2017). Almost all results show 
independence between predictors, except for some species, for which exposition and slope 
had slightly different shapes. In these cases, the influence of a predictor on a species’ dis-
tribution must be read on the response curve of the predictor alone as it is more accurate 
if predictors are correlated, even slightly. The level of collinearity between variables was 
relatively low (maximum Spearman index = − 0.48 and 0.39) and was low across species. 
Therefore, we believe potential collinearity between our environmental predictors may 
occur at the margin of species distributions, but may not alter our conclusions.

DEM was the most influential predictor overall. However, the contribution of each pre-
dictor varied with species. Gynochthodes truncata for example, one of the most commonly 
recorded target species, was found all along the altitudinal gradient, and had a distribu-
tion influenced mostly by NDVI, while Phyllanthus pterocladus was equally influenced by 
DEM (34%) and NDVI (29%). The potential distribution of most NES restricted to Mount 
Kaala was influenced primarily by DEM and high altitude. This could be explained by 
a stronger island-like isolation of high-altitude areas on ultramafic mountains like Mount 
Kaala in New Caledonia. Further studies on other ultramafic mountains would give more 
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insight on narrow-endemism patterns, and contribute to understanding the drivers of such 
restricted distributions in the New Caledonian flora.

DEM per se and exposure are considered as climate proxies for temperature, and wind-
wardness/insolation respectively. Slope, along with TWI and soil, influence soil formation 
and water content. In New Caledonia, L’Huillier et al. (2010) showed a causal relationship 
between elevation, slope, and soil characteristics on ultramafic substrates. Brown hyper-
magnesian soils such as colluvial formations (Isnard et  al. 2016) cover lower altitudes, 
whereas ferralsols with high rock content influenced by slope and proximity to the ridges 
(Isnard et al. 2016) occur at middle and higher altitudes. The combination of soil substrate, 
elevation, and slope can be considered as reliable proxies of soil characteristic diversity. 
Our models were based on edaphic and climate proxies, which are known to be more rel-
evant than strictly climatic ones for distinguishing subtle variations in plant distributions 
(Illan et al. 2010; Beauregard and de Blois 2014; Meineri and Hylander 2017).

Because of the uniqueness of New Caledonian flora, with high narrow-endemism rates 
and topo-climatic heterogeneity (Jaffré 1993; Isnard et al. 2016), we adapted already-exist-
ing criteria for the selection of conservation areas (Balaguru et al. 2006; Blasi et al. 2011; 
IUCN 2016; Darbyshire et  al. 2017). The criteria we used considered both habitat suit-
ability and vegetation conservation value. Narrow-endemism represents a major conser-
vation stake on mined ultramafic mountains (Wulff et al. 2013).Considering the potential 
distribution of NES in our irreplaceability index highlighted new areas that would not have 
emerged from vegetation and species density-based indices. Our scoring therefore accounts 
for both the local flora specificity and the lack of comprehensive survey data. In the same 
way, since the country still has no red list of ecosystems, we evaluated the relative rarity of 
each vegetation type and its position in the vegetation succession in order to assess conser-
vation values. We believe that this index constitutes a strong basis for further implementa-
tion of conservation programs in Mount Kaala. Our framework could even be replicated in 
similar ultramafic mountain contexts, provided that the reliability of irreplaceability indi-
ces could be controlled. One may be surprised by the relatively low I index value of low 
altitude areas, despite the proven high presence of IUCN threatened species. This is likely 
to be a result of the absence of NES at low altitude, and the relative rarity of forests on 
these areas mainly covered by shrublands on brown hypermagnesian soils. Consequently, 
the lower value attributed to early-stage vegetation compared to nearly climax forests 
tends to decrease the global conservation value of low altitude slopes. However, recent 
works emphasised the sensitivity of these rich vegetation types that are highly threatened 
by bushfires (Ibanez et al. 2019). Further developments of vegetation conservation value 
indices may give more weight to these habitats harbouring high levels of IUCN threatened 
taxa. Here, we consider the higher I index values in higher elevations relevant with regard 
to the threats due to mining activity.

Ibanez et  al. (2019), following previous works (Jaffré et  al. 2010; Wulff et  al. 2013), 
also stressed the need to consider the high narrow-endemic species diversity on the island. 
The local network of protected areas, composed of few relatively large areas (Ibanez 
et al. 2019), does not sit well with the distribution of highly restricted taxa. A network of 
micro-scale conservation areas, such as the ones identified in this study, could enhance 
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the conservation status of flora across the territory overall. Our results will be transmitted 
to mining operators on Mount Kaala to promote the protection of areas of high conserva-
tion value, and to local environmental authorities as an operational tool for conservation 
planning.

The high PPP values in every checked area corroborated the statistical results and 
enabled us to find additional presence data points, consolidating the dataset for final 
analyses and unravelling additional occurrences of rare species. MaxEnt-guided surveys 
confirmed the relevance of our models for onsite conservation planning. However, the 
extent of these surveys was restricted due to time/funding limitations, and we focused 
on areas with the highest density of rare species. In so doing, we validated the areas 
of greater conservation interest on the basis of NES diversity with a cost-effective 
approach. This method cannot therefore be considered as a statistical validation of mod-
els stricto sensu (Rhoden et al. 2017; Hertzog et al. 2014), as we did not validate the 
predicted areas of NES absence on Mount Kaala. A further improvement could be a 
validation sampling protocol in which every quartile, including predicted absences, of 
projected species density is equally surveyed (Rhoden et al. 2017; Hertzog et al. 2014). 
On the other hand, a confirmation of “low conservation” value areas may legitimate 
further degradations and may not appear to be an efficient resource investment to fund-
ing institutions. We validated entire areas containing several species, but didn’t check 
the pixel per pixel validity of the model. Such validation would certainly lead to poorer 
PPP values. Another solution would have been the use of coarser resolution (e.g. 30 m). 
However, such resolution would have required additional sampling efforts to balance 
the lower detection probability if we aimed at being exhaustive in bigger pixels, signifi-
cantly reducing the cost-effectiveness of our approach. We thus consider our predictions 
as a fair trade-off between limitations and conservation objectives, i.e. spatial prioriti-
sation rather than species-specific distribution modelling. This prioritisation relied on 
fewer environmental predictors than in other areas with more fine-grained data available 
and must be used with caution. The partial field validation process appeared here as an 
acceptable counterpart to the lack of ecological data.

Island floras are characterised by high levels of endemism and sensitivity often asso-
ciated with greater knowledge gaps (Caujapé-Castells et  al. 2010), resulting in a lack of 
reliable data for local-scale biodiversity management (Cayuela et  al. 2009; Collen et  al. 
2008). Plus, in rugged terrain areas (Whittaker and Fernandez-Palacios 2007), plant distri-
butions are driven by very fine scale topo-climatic variations. Hence, biodiversity conser-
vation needs to be assessed at a scale that matches these variations. Tomlinson et al. (2019) 
showed the relevance of coupled edaphic and topographic predictors in modelling short-
range endemic species distributions through high resolution SDMs. In their case, the effect 
of topography was supposed to come from the correlation between soil characteristics and 
elevation, with certain soil types occurring only at high altitude. As shown by L’Huillier 
et  al. (2010), New Caledonian ultramafic edaphic diversity is partly linked to elevation, 
slope, and position on the slope as well, justifying our choice of predictors. A detailed 
mapping of fine soil characteristics would be of great help to improve our understanding 
of the discrete drivers of plant species’ distribution in New Caledonia, but the cost–benefit 
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ratio of such data acquisition would need to be assessed. Considering the local context, and 
the urgent need for conservation planning, we assumed that the risk of using limited envi-
ronmental proxies was lower than the benefits from the acquisition of such predictions of 
conservation value. Our maps may be used as guidance for the determination of new occur-
rences for the considered rare species, and our index as a spatial guide for the prioritisation 
of management actions.

The global conservation effort suffers from a lack of funding, as has been highlighted 
for tropical islands (Caujapé-Castells et al. 2010). One aim here was to propose a repro-
ducible framework while trying to use the best practices in biodiversity assessment using 
SDMs (Araujo et al. 2019). We used only freely available data covering all of New Caledo-
nia, and the computational power required was that of a common office computer. Hence, 
we believe that our study addresses the difficulties encountered by biodiversity managers 
in areas with high topo-climatic diversity and low data availability such as tropical islands 
(Koch et  al. 2017; El-Gabbas et  al. 2020), and would be easily transferable to decision-
makers (Guisan et  al. 2013). In addition, both dedicated surveys and field validation of 
our results gave weight to our model projections despite the constraints encountered. Both 
the distribution maps and the spatially explicit index we produced represent an opportu-
nity for local stakeholders to develop their conservation plans. Our study promotes fur-
ther collaboration efforts between researchers, managers and landowners to incorporate our 
results into existing management strategies and reproduce similar assessments in other rich 
and understudied areas. Finally, we encourage the use of user-friendly modelling tools in 
urgent conservation contexts to stimulate further initiatives and help rare plants step into 
the limelight.

Appendix

See Tables 4 and 5, Figs. 4 and 5.  

Table 4  Correlation matrix 
based on Pearson index between 
all environmental variables 
considered

Expo exposition, Irad solar irradiation, DEM digital elevation model, 
NDVI Normalised Difference Vegetation Index, TWI topographic wet-
ness index

Expo DEM NDVI Slope Soil TWI

Expo 1.00 0.09 0.01 0.13 − 0.09 − 0.05
DEM 1.00 − 0.07 0.39 − 0.48 − 0.02
NDVI 1.00 0.11 − 0.02 0.01
Slope 1.00 − 0.35 − 0.02
Soil 1.00 0.00
TWI 1
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Fig. 4  Specific maps showing binary predictions obtained before the validation campaign, and all (pre and 
post validation) occurrences obtained for each species

Fig. 5  MaxEnt outputs for each taxon. Marginal response curves above (above), showing how the logistic 
prediction changes as each environmental variable is varied, keeping all other environmental variables at 
their average sample value. And responses curves representing a model created using only the correspond-
ing variable (below)
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