Automated Software Engineering (2018) 25:743-744
https://doi.org/10.1007/s10515-018-0245-6

@ CrossMark

Guest editorial: advanced topics in automated software
engineering

Lars Grunske'® - Mike Whalen?

Received: 3 September 2018 / Accepted: 5 September 2018 / Published online: 21 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Welcome to the special issue of the Automated Software Engineering journal. Soft-
ware now flourishes at many scales, from giant service-oriented cloud systems to
tiny embedded IOT devices. Automation approaches for software design, construc-
tion, verification, and deployment are now regularly applied by practitioners to build
scalable and robust software systems. As software engineering researchers, we must
continue to improve the techniques and tools available to engineers so that this soft-
ware, which has become central to many aspects of our societies, can be safely and
cost-effectively fielded. The problems in constructing good software are substantial,
as are the opportunities for improvement and impact for practitioners. This issue con-
tains work automating aspects of design, synthesis, and verification drawn from highly
rated papers from the ASE 2015 conference.

In their paper “Inferring Visual Contracts from Java Programs”, Alshanqiti, Heckel,
and Kehrer describe an approach to automatically construct visual contracts from
Java programs. Such contracts are important for program understanding, testing, and
analysis, but have in the past have required extensive manual effort to construct.
Their approach infers accurate visual contracts based on examining program behavior
dynamically over execution traces. The resulting specifications include object transfor-
mations, pre- and post-conditions in terms of object structures, parameter and attribute
values, and generalised specification by universally quantified (multi) objects, pat-
terns, and invariants. The paper focuses on construction techniques but also explores
potential uses for many tasks in software engineering.

In “Synthesis of Probabilistic Models for Quality-of-Service Software Engi-
neering”’, Gerasimou, Calinescu, and Tamburrelli examine a similar problem of
architectural variants in terms of Quality of Service (QoS). They examine a problem

B Lars Grunske
grunske @informatik.hu-berlin.de

Mike Whalen
mwwhalen@umn.edu
http://www.cs.umn.edu/~mwwhalen

Humboldt-Universitit zu Berlin, Berlin, Germany

University of Minnesota, Minneapolis, MN, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-018-0245-6&domain=pdf
http://orcid.org/0000-0002-8747-3745
http://orcid.org/0000-0003-3824-1435

744 Automated Software Engineering (2018) 25:743-744

space involving many alternative architectures and instantiations of system parameters
that impact QoS which lead to more variants than can be reasonably analyzed. Their
approach and tool, called EvoChecker, employs evolutionary algorithms to automate
the model synthesis process to synthesise Pareto-optimal sets of probabilistic models
associated with the QoS requirements of a system under design, and to support the
selection of a suitable system architecture and configuration. EvoChecker can also be
used for self-adaptation at runtime.

In “Static Window Transition Graphs for Android”, Yang, Wu, Zhang, Wang,
Swaminathan, Yan, and Rountev construct models of GUIs of Android applications.
The approach constructs a graph (the window transition graph) that describes the set of
windows that may be displayed and the transitions between them in terms of events and
callbacks. Such graphs allow a concise description of the “flow” of applications and
potentially unexpected transition sequences in the GUL. It is based on careful modeling
of the active window stack and operations that modify this stack. They then describe
how the WTG can be used for test-case generation and evaluate its performance and
efficacy.

In “Developing and Evolving a DSL-Based Approach for Runtime Monitoring of
Systems of Systems”, Rabiser, Thanhofer-Pilisch, Vierhauser, Griinbacher, and Egyed
examine an approach for monitoring heterogeneous large-scale complex software
systems. Due to the heterogeneity and (often) different organizational boundaries in
systems-of-systems (SoS) software, it is often not possible to determine system behav-
ior at runtime. The authors present a rich domain specific language that can determine
whether or not the SoS is meeting its requirements, and evaluate it on an industrial
SoS from a collaborating organization. The evaluation demonstrates that while a DSL
is a good solution, such languages must be extensible to evolve to support the needs
of a diverse and evolving group of engineers.

Finally, in the paper “How Verified (or Tested) is My Code? Falsification-Driven
Verification and Testing”, Groce, Ahmed, Jensen, McKenney and Holmes propose a
new falsification-driven methodology for formal verification and automated testing.
The goal is to determine the adequacy of a particular verification effort in terms of
mutation analysis. The methodology provides substantial insights into the interplay
between the strength of the oracle (e.g., the property set) and the strength of the
exploration (structural coverage of the test suite or depth of bounded verification). It
also enables a uniform approach to verification using multiple techniques, where the
verification activities are driven by the number of remaining mutants.

We are deeply grateful to the authors for their excellent submissions and for the
reviewers of this special section for their time and feedback. We hope you will enjoy
reading this special section.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

@ Springer



	Guest editorial: advanced topics in automated software engineering



