
Autom Softw Eng (2018) 25:45–46
https://doi.org/10.1007/s10515-017-0222-5

Guest editorial: selected areas in automated software
engineering

Marsha Chechik1 · Paul Grünbacher2

Received: 24 July 2017 / Accepted: 4 August 2017 / Published online: 16 August 2017
© Springer Science+Business Media, LLC 2017

It is a wonderful time to do research in automated software engineering! Everything is
becoming programmable—phones, TVs, tablets, cars, and even watches and glasses.
Software engineers are the ones who bring life to these programmable devices by
writing systems and applications software. As software engineering researchers, we
are the oneswho are taskedwith developing techniques and tools thatwill help software
engineers in meeting the exploding demand in software production. We are facing an
endless list of research problems that not only bring many challenges, but also bring
many opportunities for contribution and impact.

In their paper “Self-Adaptive Concurrent Components”, Österlund, Löwe look at
the problem of selecting the optimum component implementation variant. Doing so
is often difficult since it can depend on the component’s usage context at runtime,
including the concurrency level of the application using the component, call sequences,
available hardware, etc. Optimal component implementation selection cannot be done
statically, and a single optimal variant might not even exist since the usage contexts
can change significantly over the runtime. The authors introduce self-adaptive con-
current components that automatically and dynamically change not only their internal
representation and operation implementation variants but also their synchronization

B Paul Grünbacher
paul.gruenbacher@jku.at

Marsha Chechik
chechik@cs.toronto.edu

1 Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto,
Ontario, Canada

2 Institute Software Systems Engineering, Johannes Kepler University Linz, Altenberger Straße 69,
4040 Linz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-017-0222-5&domain=pdf
http://orcid.org/0000-0002-1951-5288


46 Autom Softw Eng (2018) 25:45–46

mechanismbasedonapossibly changingusage context. This approach allows selecting
the most suitable variant at runtime rather than at compile time, revising the decision
if the context changes. This allows programmers to defer implementation and opti-
mization decisions about their programs to context-aware runtime optimizations. The
authors demonstrate the effect on performance of their approach with self-adaptive
concurrent queues, sets, and ordered sets. In all three cases, experimental evaluation
shows close to optimal performance.

In their paper “Automatic Performance Prediction of Multithreaded Programs: a
Simulation Approach”, Tarvo and Reiss look at the problem of performance of multi-
threaded programs. It is often difficult to understand and predict since multiple threads
engage in synchronization operations and use hardware simultaneously, resulting in a
complex non-linear dependency between the configuration of a program (the number
of threads, the hardware characteristics) and its performance. Performance prediction
models, as their name suggests, allow to predict the impact of different program con-
figurations on the performance; yet, building models of large applications manually
is extremely time-consuming and error-prone. The paper presents an approach for
the automatic construction of performance models of multi-threaded programs. The
approach uses a combination of static and dynamic analyses of a single representative
run of a system to collect information about the structure of the program, the seman-
tics of interaction between the program’s threads, and resource demands of individual
program’s components. The experiments demonstrate that the built models can accu-
rately predict performance of various multi-threaded programs, including complex
industrial applications.

In his paper “Seeking the User Interface”, Reiss looks at the complex and often
messy problem of interface design and coding. He proposes a system that uses code
search to simplify and automated the exploration of such code, starting with a simple
sketch of the desired interface along with a set of keywords describing the application
context. This resulting solutions constitute only the user interface and yet can compile
and run. The paper compares the generated interfaces with user sketches and reports
on the experiment where programmers can interact with the generated interfaces and
end up with the running code for the solutions they choose, validating the usefulness
of the system for exploring alternative interfaces and for looking at graphical user
interfaces in a code repository.

We are deeply grateful to the authors for their excellent submissions and for the
reviewers of this special section for their time and feedback. We hope you will enjoy
reading this special section.

123


	Guest editorial: selected areas in automated software engineering



