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Abstract
In this paper we investigate risk prediction of criminal re-offense among juvenile 
defendants using general-purpose machine learning (ML) algorithms. We show that 
in our dataset, containing hundreds of cases, ML models achieve better predictive 
power than a structured professional risk assessment tool, the Structured Assess-
ment of Violence Risk in Youth (SAVRY), at the expense of not satisfying rele-
vant group fairness metrics that SAVRY does satisfy. We explore in more detail two 
possible causes of this algorithmic bias that are related to biases in the data with 
respect to two protected groups, foreigners and women. In particular, we look at 
(1) the differences in the prevalence of re-offense between protected groups and (2) 
the influence of protected group or correlated features in the prediction. Our experi-
ments show that both can lead to disparity between groups on the considered group 
fairness metrics. We observe that methods to mitigate the influence of either cause 
do not guarantee fair outcomes. An analysis of feature importance using LIME, a 
machine learning interpretability method, shows that some mitigation methods can 
shift the set of features that ML techniques rely on away from demographics and 
criminal history which are highly correlated with sensitive features.
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1  Introduction

In recent years there is an increasing use of Machine Learning (ML) to assist deci-
sion making in areas of high societal relevance such as criminal justice (Berk et al. 
2017; Goel et al. 2018). ML models are able to learn rules from large datasets and 
may improve decision processes by being more accurate and avoiding human cogni-
tive biases (Langley and Simon 1995; Kleinberg et al. 2017). However, ML models 
also tend to inherit rules from previously discriminating decisions that are reflected 
as biases in data (Barocas and Selbst 2016) and may automate decisions that dis-
criminate against certain minority groups or populations (Angwin et  al. 2016; 
Chouldechova 2017; Barocas and Selbst 2016). In algorithmic fairness the features 
related to these populations, such as gender, race, nationality or religion are known 
as protected or sensitive features, and ideally they should not affect the outcome.

Statistical methods to inform criminal decision making are not new but have 
become subject to intense evaluation especially since the implementation of ML 
systems (Berk et al. 2017). These are increasingly used to inform decision-making 
situations in the criminal justice system, such as probation or bail decisions, sen-
tencing, or corresponding arrangements (Christin et al. 2015; Monahan and Skeem 
2016; Goel et al. 2018). The use of these methods causes changes in judge and case 
worker decisions and subsequently defendants’ lives, incarceration and public safety 
levels (Cowgill 2018; Corbett-Davies et al. 2017). Moreover, the usage of machine 
involvement itself in these processes can cause substantial changes in criminal deci-
sion making that may bypass jurisdictive protocols (Green 2018). It is therefore cru-
cial for policy makers involved in criminal justice reform to understand the extent of 
the changes in criminal justice outcomes. A comparison in terms of predictive power 
and relevant fairness metrics between a “human-in-the-loop” empirically informed 
assessment and a pure statistical risk-assessment sheds some light on this question.

This research extends the work done in Tolan et al. (2019), which compares off-
the-shelf ML for juvenile recidivism prediction in terms of predictive performance 
and group fairness metrics (introduced in Sects. 2.1 and 5.1.3) with a risk assess-
ment tool, that supports structured professional judgement (SPJ), the Structured 
Assessment of Violence Risk in Youth (SAVRY) (Hilterman et  al. 2014). These 
results (Tolan et  al. 2019) suggest that ML methods can achieve better predictive 
performance than SAVRY but at the expense of unfairer outcomes. The main goal of 
this paper is to investigate why that happens. More precisely, we explore the impact 
of two data-related biases that may translate to algorithmic discrimination: (1) the 
difference in the prevalence of recidivism between protected groups, and (2) the use 
of protected features or those that are correlated with protected features in the algo-
rithm’s training process.

In addition, we design evaluation experiments for different feature sets (Sect. 4.2) 
and we discuss the importance of static versus dynamic features (Sect.  4.4). Our 
assumption is that static features, such as demographic characteristics and past crim-
inal history, have a higher correlation with the protected features and induce more 
disparity between groups on the studied group fairness metrics than the dynamic 
features, which include current substance abuse, peer rejection, or hostile behavior. 
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This is particularly relevant for technology driven reforms in jurisdiction, since sen-
tence-course decisions that only depend on static features preclude defendants from 
being able to actively affect their own sentencing. Such a deterministic decision sup-
port system would contradict a criminal justice system that aims at stimulating soci-
etal reintegration efforts from defendants.

To explore the effects of the two data-related biases, we propose in Sect. 4.3 a 
stratified oversampling algorithm to equalize base rates. We compare this method 
with a state of the art algorithm which reduces bias in data by removing the impact 
of protected features (Zemel et  al. 2013). In the field of Fair, Accountable, and 
Transparent computing (FAT) these two methods are considered forms of pre-pro-
cessing algorithmic bias mitigation.

The results presented in Sect.  5.2 show that the two mitigation strategies, (1) 
equalizing base rates and (2) removing the impact of protected features (Zemel et al. 
2013), improve commonly used metrics of group fairness. However, neither method 
guarantees group fairness. To that extent, fixing disparity between groups for a given 
group fairness metric does not ensure that the ML model satisfies other group fair-
ness metrics (Chouldechova and Roth 2018). Moreover, we find that both methods 
have a negative impact on predictive accuracy. We embed these results into findings 
from the existing literature in Sect. 6.

Our quantitative analysis gives insights on the impact of algorithmic bias on 
juvenile criminal recidivism prediction. Namely, we show that biases that are often 
observed at the data level have a direct impact on the disparity observed in ML sys-
tems. Considering that ML systems are often opaque for end users and policy mak-
ers (Pasquale 2015), data analysis may expose potential disparities between groups 
within ML systems. Although our direct contributions are statistical, we discuss the 
social and policy implication of this in Sect. 7.

Most research in the literature that evaluates the impact of ML in criminal risk 
assessment is US based. This study contributes to this type of analysis in a Euro-
pean context using data from Catalonia in Spain. Moreover, this paper complements 
the fair machine learning literature that proposes unfairness mitigation techniques 
(e.g., Zemel et al. 2013; Žliobaitė and Custers 2016; Zafar et al. 2017; Agarwal et al. 
2018) by testing some of the sources of unfairness mentioned by, among others, 
Barocas and Selbst (2016). Finally, we make use of a state-of-the-art ML explain-
ability method (Ribeiro et  al. 2016), to contribute to the literature that shows the 
negative consequences of unfairness mitigation techniques (Corbett-Davies et  al. 
2017; Kallus and Zhou 2018; Liu et al. 2018).

2 � Background

2.1 � Algorithmic fairness

Algorithmic fairness, a part of the research in Fairness, Accountability and Trans-
parency (FAT) in ML, is concerned with discrimination happening within algorith-
mic systems. Here, we study group fairness under which a process or decision is 
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considered fair if it does not discriminate against people on the basis of their mem-
bership to a protected group.

Fairness is a value driven concept with roots in ethics and law. For instance, the 
United States forbids discrimination based on sex, race, color, religion, national ori-
gin (Civil Rights Act of 1964), citizenship (Immigration Reform and Control Act), 
age (Age Discrimination in Employment Act of 1967). Similarly, the European Con-
vention on Human Rights (Article 14) forbids discrimination by “sex, race, colour, 
language, religion, political or other opinion, national or social origin, association 
with a national minority, property, birth or other status.” Because fairness is a value 
driven concept and not a technical feature of ML models, it is difficult to imple-
ment and evaluate. While discrimination occurs within different institutions and at 
different parts of the process, here we address fairness at the decision stage and we 
do not deal with other types of fairness such as process fairness. The discrimination 
in our specific case is evidenced by a measurable disparity between the outcomes 
of people from different groups using well-established metrics. However, fulfilling 
a single metric solely ensures parity between groups with respect to that metric. It 
does not ensure that the algorithm is “fair.” In fact, the literature mentions at least 21 
definitions of fairness (see, e.g., Berk et al. 2017; Narayanan 2018; Tolan 2018 for 
an overview on different definitions of algorithmic fairness), and proves some group 
fairness criteria are incompatible with each other (Chouldechova 2017; Kleinberg 
et al. 2016). Thus, fairness largely depends on context and value choices.

There are inherent trade-offs between accuracy and group fairness metrics, but 
we note that in some cases, for instance if a classifier is manually crafted instead of 
optimized for accuracy, one in principle could achieve higher accuracy and improve 
group fairness in a particular metric simultaneously. Hence, the trade-off between 
accuracy and a particular group fairness metric needs to be empirically observed on 
a case by case basis (Chouldechova and Roth 2018; Kleinberg et al. 2016).

2.2 � Mitigating unfairness

Part of the research in the FAT field deals with developing fair algorithms that main-
tain the higher accuracy of ML decision support systems. These methods are applied 
at different parts of a ML pipeline. Pre-processing methods modify training data 
before training the model, in-processing optimizes a ML model considering a group 
fairness objective during training, and post-processing modifies the outcomes of a 
ML model (Corbett-Davies and Goel 2018; Žliobaitė and Custers 2016; Lipton et al. 
2018; Hardt et al. 2016; Zafar et al. 2017; Agarwal et al. 2018).

In many cases the data collection pipeline and the data itself have problems 
which are better solved by other structural measures, rather than at the algorithmic 
level. One example is the difference in base recidivism rates as the result of years 
of structural discrimination long before the present data is recorded (Green and Hu 
2018). Related to this is the problem of biased labels, e.g., if overpolicing of minor-
ity groups causes a large part of the minority group to be wrongfully labelled as 
re-offenders (Chouldechova 2017). Other issues refer to feedback loops, skewed data 
distributions, and uninformative (or unequally informative) features. To that extent, 
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risk prediction systems may be part of feedback loops which reinforce previous 
biases. These loops occur in environments characterized by complex interactions 
such as policing systems (Lum and Isaac 2016). Furthermore, a group of people may 
be underrepresented in the data or the features used might not be representative of 
that group (Corbett-Davies and Goel 2018).

We look at two particular issues that occur within the training data, and that are 
potentially problematic for specific group fairness metrics: unequal base rates and 
the use of input features strongly correlated with the protected features. While we 
do not advocate for trying to mitigate these conditions at the algorithmic level for 
the reasons previously described, we deploy two methods, (1) equalizing base rates 
(EBR, details in Sect.  4.3) and (2) “learning fair representations” (LFR) (Zemel 
et  al. 2013), for diagnostic purposes only and not advocating them as “unfairness 
mitigation” techniques. Instead, we use of these two methods to trace specific 
sources of disparity in the data.

2.3 � The SAVRY risk assessment tool

This section gives a general overview of SAVRY. SAVRY is a violence risk assess-
ment tool for juvenile offenders which is designed as a “Structured Professional 
Judgment” (SPJ) (Borum et al. 2011). SAVRY was developed in 2003 (Bartel et al. 
2003) based on research and literature on adolescent development as well as on vio-
lence and aggression in youth.1 SAVRY has been found to have moderate to high 
predictive accuracy for recidivism (AUC​≈ 0.7 ), performing similarly to other instru-
ments for juvenile risk assessment such as YLS/CMI (Ortega-Campos et al. 2020). 
As opposed to COMPAS [a risk assessment tool for adult offenders (Northpoint, 
Inc. 2012)], SAVRY is an open and interpretable assessment that actively guides 
the evaluating expert through the individual features that make up the overall risk 
assessment. As such it leaves a high degree of involvement by individual expert 
assessments.

Compared to the numerous studies published on COMPAS, the literature in juve-
nile criminal justice is still scarce (Hilterman et al. 2014) and it is unclear whether 
SPJs like SAVRY could have discriminating outcomes. An analysis of SAVRY for 
racial bias against black defendants in Pennsylvania found that SAVRY did not pre-
dict significantly different risk scores as a function of race (Perrault et  al. 2017). 
However, this result does not extrapolate to completely different institutional set-
tings, such as our case of juvenile delinquents in Catalonia.

Within SAVRY, juvenile justice professionals give scores on three levels of sever-
ity (low, moderate high) using 24 risk factors and six protective factors. These risk 
factors are divided into three categories: Historical, Individual, and Social/Contex-
tual. The scoring mechanism is described in the SAVRY manual: “[I]n coding the 
History of Violence item, a youth would be coded as ‘Low’ if he had committed no 
prior acts of violence, ‘Moderate’ if he was known to have committed one or two 

1  Note that the authors of SAVRY and the authors of this study do not overlap.
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violent acts, and ‘High’ if there were three or more. Protective factors are simply 
coded as present or absent” (Borum et al. 2003). The total risk score is a simple sum 
of the 24 risk factors (SAVRY sum), while other risks are sums of different sets of 
factors. The six protective factors are recorded as present/absent. After the scores 
are computed, an expert assigns a final overall score on the same three levels of risk 
that indicates the defendants risk of violent recidivism (Expert). This final evalua-
tion is a professional judgment of the case worker, that is informed by the realiza-
tions of risk and protective factors. Thus, it is not algorithmically determined by the 
total score of risk factors.

The 24 risk factors comprise static (e.g., historical factors such as “history of 
violence” or “past supervision/intervention failures”) and dynamic (e.g. “peer rejec-
tion” or “substance-use difficulties”) factors. The focus of the practitioners is to 
choose the proper treatment to change the dynamic factors. Although in our experi-
ments we compare two feature sets corresponding to the 24 SAVRY risk factors and 
to the demographics and criminal history Non-SAVRY features, we use ML inter-
pretability to determine the important features in resulting ML models. By these 
means, we determine the proportion of static and dynamic features within the high-
rank important features.

Note that experts are informed about substantial sex-differences in the response 
to specific risk factors (Björkqvist et al. 1992; Rowe et al. 1995; Wright et al. 2007) 
and are aware that SAVRY is designed mostly for male defendants. Thus, the risk 
factors that may apply differently to males and females (Borum et al. 2003). Meta 
studies show a good predictive validity for the SAVRY expert evaluation with a 
median AUCROC of 0.71 (Olver et al. 2009; Singh 2014) and the SAVRY sum with 
mean weighted AUCROC values of 0.71 (Guy 2008).

SAVRY, as a simple sum of factors, has not been developed through machine 
learning (e.g., using logistic regression), and it has not been algorithmically opti-
mized for accuracy. Additionally, the performance of SAVRY and SAVRY-informed 
expert evaluation have not been evaluated from the perspective of algorithmic fair-
ness. Hence, we would like to understand how these methods compare against 
machine learning in terms of accuracy and group fairness metrics.

3 � Dataset and data pre‑processing

This analysis is based on a dataset of juvenile offenders who were incarcerated in 
the juvenile justice system of Catalonia ( N = 4753 ) and who were released in 2010.2 
The offenders committed the corresponding crimes between 2002 and 2010 when 
they were aged 12–17 years. Their recidivism status (after their release in 2010) was 
followed up on December 31, 2013 and December 31, 2015 (independent of their 
association to the juvenile or adult justice system). In other words, we observe recid-
ivism behaviour between 2010 and 2015. The focus of our analysis is a sub-sample 

2  Provided by the Centre for Legal Studies and Specialised Training (Blanch et al. 2017), available at 
http://cejfe​.genca​t.cat/en/recer​ca/opend​ata/jjuve​nil/reinc​idenc​ia-justi​cia-menor​s/index​.html.

http://cejfe.gencat.cat/en/recerca/opendata/jjuvenil/reincidencia-justicia-menors/index.html
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of 855 defendants whose risk of recidivism was assessed with SAVRY towards the 
end of their sentences in 2010. The SAVRY assessment did not impact the sentence 
that the defendant received for the main crime. We use the recidivism status by 
December 31, 2015 as outcome label. In this research we use a pre-processed ver-
sion of the data. The data-preparation code and the resulting dataset are available on 
the repository described in Sect.  5.1.5. The SAVRY assessment is represented by 
both the SAVRY sum of 24 risk factors as well as the final expert assessment (see 
Sect. 2.3). We elaborate on their dependency in Sect. 4.2.

Table 2 in Appendix shows descriptive statistics by recidivism status in 2015 of 
the relevant features of the analysis. We distinguish between two sets of input fea-
tures: features that are not encoded in SAVRY, including protected features, and fea-
tures that are encoded in SAVRY. Note that SAVRY features are not restricted to the 
24 risk factors but also include indicators on the presence of six protective factors 
(see Sect. 2.3). The top panel depicts additional statistics for the protected features. 
For the present analysis we look at the following protected features: male/female, 
as well as Spaniard/foreign. Among foreigners, we look at two relatively large sub-
groups: Latin Americans and Maghrebis – other groups are too small. The fact that 
many non-SAVRY features as well as almost all SAVRY features significantly dif-
fer between the group of recidivists and non-recidivists emphasizes the empirical 
relevance of the input features used in this analysis. The table further shows that this 
also accounts for almost all protected features. Finally, we observe substantial differ-
ences in the base recidivism rates (the prevalence of recidivism within each group) 
across protected group features.

4 � Methodology

Here we propose a methodology to study the causes of algorithmic discrimination 
when using common ML classification algorithms to predict juvenile criminal recid-
ivism. We evaluate different algorithms, feature sets, and biases in training data on 
metrics related to predictive performance and group fairness. Note that our method-
ology includes the data analysis and the data pre-processing procedures described in 
Sect. 3.

4.1 � Learning algorithms

Recidivism risk assessment is usually modeled as a ML classification problem with 
discrete risk classes (low risk, medium risk, high risk), although it could be modeled 
as a regression problem (risk score). A ML model outputs a probability of recidi-
vism or probabilities for each risk category. To simplify the evaluation in terms of 
group fairness, we consider a binary classification scenario, similar to the majority 
of the algorithmic fairness literature. In this case, we predict “High risk” and “Low 
risk” based on “Recidivist” and “Non-Recidivist” labels. Data for the time between 
2002 and 2010 is used as input and recidivism is predicted for the period between 
release in 2010 and December 31, 2015. There is a certain imbalance between 
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classes, as the positive class (recidivists) comprises about one-third of the cases, 
while the negative class (non recidivists) comprises the other two-thirds.

Our experimental evaluation assumes a k-fold cross validation (Robert 2014) in 
which data is partitioned into k folds and k different learning rounds are executed. 
A different fold of the dataset is used for testing in every round, and the remaining 
k − 1 folds are used for training. We subsequently split this training data by keep-
ing 10% random elements for validation. The validation set is used to tune the ML 
model’s hyper-parameters and to pick the binarization threshold for the prediction of 
the ML models.

We evaluate the following supervised ML algorithms: logistic regression (logit 
in the following tables and figures), multi-layer perceptron (mlp), support vector 
machine with a linear kernel (lsvm), K-nearest neighbors (knn), random forest (rf), 
decision tree (dt), and naive Bayes (nb) (Robert 2014). We report predictive perfor-
mance metrics in terms of area under the curve (AUC, defined in Section 5.2) for 
all ML models. However, to better visualize the group fairness plots across multiple 
experiments we solely analyze the top two performing models in terms of group 
fairness metrics, which correspond to logistic regression (logit) and multi-layer per-
ceptron (mlp).

4.2 � The influence of feature sets

In order to determine the influence of features on the disparity between groups and 
on the predictive performance we train the ML models on different subsets of fea-
tures. In a first setting, denoted “SAVRY,” we take all the SAVRY risk items as input 
variables. We select the final expert evaluation, the 24 risk items, the corresponding 
summary scores, the six protective features, the five average scores on individual 
characteristics as well as the program that the defendant was in (internment or pro-
bation) during the SAVRY assessment. “SAVRY” features include both static (home 
violence, school performance) and dynamic factors (achievement, personality). 
That is, SAVRY features are not limited to criminal history but also contain indi-
vidual and social/contextual features. The full list of “SAVRY” features is detailed 
in Table 2.

For the second setting, “Non-SAVRY,” we choose demographic and crimi-
nal history features which are part of the dataset and not directly included into the 
“SAVRY” features.3 The third setting, “All,” includes “SAVRY” and “Non-SAVRY” 
features sets.

The baselines include the sum of all SAVRY risk items, using no machine 
learning, denoted in the following by “SAVRY Sum,” in addition to the final 
expert evaluation, denoted by “Expert.” While “SAVRY Sum” does not represent 
the final professional judgment, it is a good proxy as a meta-study shows summed 
scores and professional judgments in risk assessments are not significantly differ-
ent in terms of predictive power (Chevalier 2017). Figure 1 supports this finding, 

3  Note that SAVRY implements criminal history as risk factors into its framework.
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comparing the distribution of “SAVRY sum” in cases where the expert indicated 
low risk, medium risk, and high risk. We observe a clear trend to higher “SAVRY 
sum” for cases having higher expert assessments of risks.

We limit the comparison between experiments and baselines to the 855 people 
for which the SAVRY items are available.

4.3 � The influence of data bias with respect to the protected features

Next, we look at whether the bias in the data with respect to the protected features 
yields disparity between groups. To perform this analysis, we propose a compari-
son of the baseline, unrestricted data settings with two mitigation methods that 
address these issues: (1) equalized base rates (EBR) and (2) learning fair repre-
sentations (LFR). Differences in predictive performance, group fairness and the 
set of features, which are important for prediction, provide further insights in the 
role that these conditions play with respect to group fairness.

EBR assumes the following stratified oversampling procedure. Considering the 
input features x and the outcomes y, a protected feature f ′ has I possible value cor-
responding to different groups: {g1,… , gI} , comprising a reference group gref  . For 
each group gi , different to the reference group, we compute the number of posi-
tive or negative condition samples |Si| we need to add to the training data, where 
|Si| is the absolute value of Si = P(x(f �) = gi)(P(y|x(f �) = gi) − P(y|x(f �) = gref )) . 
If Si is negative then we add to the data |Si| negative condition samples 
P(y = 0|x(f �) = gi) , while for Si positive we add |Si| positive condition samples 

Fig. 1   Plot of expert assessment, represented as shares of “low”, “moderate”, and “high” risk categoriza-
tion against “SAVRY Sum”, the summed score of all 24 SAVRY risk factors. We observe that in general 
people with a low “SAVRY Sum” get a “low risk” expert evaluation and people with a high “SAVRY 
Sum” get a “high risk” expert evaluation
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P(y = 1|x(f �) = gi) of group gi . This procedure yields equal base rates between the 
group gi and the reference group gref  , namely P(y|x(f �) = gi) = P(y|x(f �) = gref ).

LFR (Zemel et al. 2013) is a pre-processing method. It transforms the data before 
training a ML model in such a way that the outcomes are more balanced between 
groups with respect to particular features and also between individuals. Namely, 
LFR is based on an optimization procedure which transforms the data with respect 
to a protected feature (e.g. race) by removing any information about membership 
with respect to the protected group.

By including LFR along EBR we can determine whether the cause of disparity 
between groups lies in the difference in base rates, if there are other characteristics 
of the data that LFR is able to fix and EBR is not, or if the measured disparity is due 
to other causes like the type of input features and the ML algorithm.

Pre-processing methods such as LFR achieve fair outcomes with respect to a pro-
tected feature. However, just like EBR, it may be the case that this induces further 
disparity on another related feature. For example, mitigating group fairness issues 
with respect to race may induce disparities with respect to sex, particularly when 
women are under-represented in the training data.

4.4 � The importance of static versus dynamic features

While the “Non-SAVRY” feature set contains static features, “SAVRY” has predom-
inantly dynamic features. Our goal is to determine whether static features are more 
important than the dynamics ones, particularly when we analyze the combination of 
the two feature sets, “All.”

We determine the influence on group fairness outcomes of specific features in 
the feature sets by using ML interpretability (Lipton 2016). ML algorithms such as 
logistic regression or decision trees have the advantage of being easily interpreta-
ble. For instance, the coefficients learned by the logit model correspond to feature 
weights. Other models such as neural networks are not as easy to interpret.

To overcome the lack of interpretability of such models we obtain local explana-
tions for each data point prediction using a state of the art interpretability frame-
work, LIME (Ribeiro et al. 2016). Note that the interpretations are in this case linear 
approximations because LIME fits a linear model each time it perturbs a feature in 
order to determine its importance.

Given a test dataset comprising N pairwise observations (�N×F, �̂N) and their 
associated ground-truth binary labels �N , we derive N feature importance vectors 
�
N×F with LIME. The global importance vector is computed by aggregating the 

local explanations with the formula:

where n = 1…N denotes the explanations and f = 1…F the features.

(1)�(f ) =

√√√√
N∑

n=1

E(n, f )
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5 � Evaluation

5.1 � Experimental setup

5.1.1 � Data encoding

There are different reasons for encoding the data numerically: to make sure 
numerical relations between data are encoded correctly when data is not numeric, 
to ensure the compatibility of data when using different ML algorithms, to ensure 
standardization and robustness.

The encoding depends on the nature of the input features. Numeric features are 
standardized to have a mean of 0 and standard deviation of 1. Categorical features 
are encoded using one-hot encoding if they do not have a numerical relation or 
numerically (e.g. High, Medium, Low are encoded as 1, 0.5, 0). One-hot encod-
ing has the goal to remove any undesired numerical relation between the catego-
ries by creating a set of dummy features for a single feature.

5.1.2 � Predictive performance evaluation metrics

Thresholding is the way to obtain class labels from the class probabilities yielded 
by a ML model. The simplest way is to set this threshold always at 0.5. However, 
particularly in the cases where there is an imbalance between classes, the thresh-
old may be determined by considering the cost-benefit trade-off, maximizing 
accuracy or any other metrics. Since we are interested in the predictive perfor-
mance for both of the classes, we use the threshold for which balanced accuracy, 
defined as BA(�) = 0.5(TPR(�) + TNR(�)) , is maximum; where � ∈ (0, 1) is the 
varying threshold, TPR is the true positive rate, and TNR is the true negative rate.

Because we want to get a measure of the predictive performance for all pos-
sible thresholds, we compute the area under the ROC curve (AUCROC) which 
trades-off false positive rate and true positive rate for all the thresholds � ∈ (0, 1).

The “SAVRY Sum” method generates an integer in [0, 40], which we normal-
ize to lie in the same [0, 1] interval as the output of the ML methods. Similarly 
to the ML models, the threshold for “SAVRY Sum” is set to maximize balanced 
accuracy. The “Expert” evaluation has three possible outcomes: high risk, moder-
ate risk, and low risk. Given we want to maximize balanced accuracy, we assign 
a non-recidivist prediction to moderate or low risk and a recidivist prediction to 
high risk.

5.1.3 � Fairness evaluation metrics

Metrics related to the disparity between groups were previously used in analyz-
ing algorithmic fairness in criminal recidivism. We computed and looked at eleven 
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further group fairness metrics but found these to be highly correlated, in line with 
findings by (Friedler et al. 2018; Miron et al. 2020.

Similarly to Chouldechova (2017) and guided by Aequitas’ (Saleiro et al. 2018) 
fairness metrics decision tree,4 we consider two group fairness metrics that are 
useful to look at and have been widely used in the context of criminal recidivism. 
False positive rate disparity and false negative rate disparity measure the disparity 
between two groups as the ratio of people wrongfully labeled as recidivists and non-
recidivists. Note that both metrics measure different objectives and their relevance 
may differ for different stakeholders. A false positive occurs if a system classifies as 
high risk someone who will not recidivate. That is, a false positive has a detrimental 
(direct) effect on the defendant. In contrast, a false negative occurs if the scoring 
system classifies as low risk someone who will recidivate. If a low risk classifica-
tion normally prevents detainment, a false negative could cause a more detrimental 
(direct) effect on public safety. To acknowledge this crucial difference, and simplify 
policy-relevant interpretations, we show results for both metrics in separate tables. 
The trade off between these two metrics is known as error-rate balance and it is 
impossible to bring to zero when the base rates are unequal (unless the automatic 
classifier can perfectly predict the outcomes, which is not the case in real-world 
conditions).

Given a protected feature f which has the values {g1,… , gI} , group fairness met-
rics are reported for all the protected groups gi with respect to the reference group 
gref  . We denote the outcome as � , where � = 1 if the defendant recidivated, 0 oth-
erwise. We denote the number of defendants of group i labeled with � = 1 as LPi . 
We denote the number of defendants of group i labeled with � = 0 analogously as 
LNi . The predicted outcome is represented by �̂ . The ML algorithm classifies some-
one as high risk for recidivism, i.e. �̂ = 1 if the risk score R surpasses a predefined 
threshold ( � ), i.e. R > 𝜃 . We denote the number of defendants of group i predicted 
positive for recidivism as PPi . We denote the number of defendants of group i pre-
dicted negative for recidivism as PNi . Equivalently, we denote the number of group-
specific false positives ( FPi ), false negatives ( FNi ), true positives ( TPi ), and true 
negatives ( TNi).

The criterion of error rate, i.e., equal false negative rates and equal false positive 
rates, Chouldechova (2017) is achieved when people from the protected group gi 
have the same probability of falsely being classified as recidivist (or non-recidivist) 
than people from the reference group with attribute gref .

The error rate balance is computed using false positive rate and false negative rate 
of group gi ( FPRi,FNRi ), from which we derive false positive rate disparity and false 
negative rate disparity in relation to the reference group gref  ( FPRDi,FNRDi):

(2)
FPRi = FPi∕LNi FPRDi = FPRi∕FPRr

FNRi = FNi∕LPi FNRDi = FNRi∕FNRr

4  http://www.datas​cienc​epubl​icpol​icy.org/proje​cts/aequi​tas/.

http://www.datasciencepublicpolicy.org/projects/aequitas/
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Intuitively, if a group gi has FPRDi = 2 means that someone with attribute gi is 
twice as likely to be wrongly classified as recidivist as someone from the reference 
group with attribute gref .

5.1.4 � Hyper‑parameters’ tuning and model selection

Because we want to obtain predictions for all the people in the dataset, we use a 
k-fold cross validation experimental design with k = 10 . This assumes training suc-
cessively on non-overlapping data folds and testing on the remaining data. Moreo-
ver, to account for variability in the data, we repeat each cross-fold experiment 20 
times for a different random seed which controls the initialization of the parameters 
and the random split between training, validation, and testing.

At each seed and each fold we compute the best values for the hyper-parame-
ters of the ML algorithms. We train 30 models with different hyper-parameters we 
choose the model which achieves the best performance in terms of AUCROC on the 
validation set.

The hyper-parameters depend on the ML algorithms. For logit we pick the inverse 
of regularization strength from a uniform distribution U(0.1, 10) . For mlp, we use a 
two layer network with the sizes (F, L ∗ F), (L ∗ F, (L + 1) ∗ F), (L ∗ F, 1) , where F 
is the number of input features and L is chosen randomly from an uniform distribu-
tion U(1, 10) . In addition we experimentally determined the batch size to be 64, we 
update parameters using the stochastic gradient descent for 100 epochs. The cost 
function for mlp classification is binary cross entropy, with an L2 penalty on weights 
of 0.01 to avoid over-fitting. For knn the number of neighbors and the distance met-
rics are picked randomly between (3, 20) and between Minkowski, Euclidean and 
Manhattan. For the SVM we trained a linear and radial kernel separately. The kernel 
radius and gamma are drawn from uniform distributions U(0.1, 10) . For the rf we 
randomly pick the number of estimators to be between (10, 50), the maximum depth 
between (5, 50) and the minimum number of samples per leaf between (1, 10).

5.1.5 � Software implementation details

We bootstrap experiments for 20 random seeds to ensure robustness and reproduc-
ibility. This research complies with research reproducibility principles. Code in 
Python, including pointers to the machine learning libraries used, as well as the pro-
cessed datasets, are made available as a part of a framework.5

5  https​://gitla​b.com/HUMAI​NT/humai​nt-fatml​.

https://gitlab.com/HUMAINT/humaint-fatml
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5.2 � Results

5.2.1 � Predictive performance

The metrics for predictive performance in terms of AUCROC are presented in 
Table 1. Note that the performance of off-the-shelf ML methods on this dataset is 
similar to the recidivism prediction on other datasets: 0.67 for a 5-variables ran-
dom forest classifier (Green and Chen 2019), 0.68–0.71 for COMPAS (Northpoint, 
Inc. 2012), 0.65–0.66 for the Public Safety Assessment (DeMichele et  al. 2018), 
0.57–0.74 in a meta-study of various risk assessment used in the US (Desmarais 
et al. 2016).

We report results for the machine learning methods logit, mlp, knn, lsvm, dt, nb, 
rf. To assess the influence of different feature sets we compare “SAVRY,” “Non-
SAVRY,” and “All.” For each feature set we further explore whether equalizing the 
base rates (“EQB”) and encoding sensitive features in data with LFR for sex and for-
eigner status affects the predictive performance. Note that LFR is not applied to the 
“SAVRY” feature set for which the features related to sex and nationality are miss-
ing. These features are essential for the data transformation within LFR.

We observe that training on “SAVRY” features leads to 0.02 lower performance 
than the “Non-SAVRY” feature set. In addition, combining “SAVRY” and “Non-
SAVRY” feature sets leads to a 0.01 increase in performance for most of the machine 
learning methods except logistic regression. We note that the majority of the ML 
methods have better predictive performance than “SAVRY Sum” and “Expert.”

Despite recent hype of black-box deep learning methods, we note that interpret-
able methods such as logistic regression and deterministic methods such as naive 
bayes achieve on-par performance with the multi-layer perceptron, particularly 
when using “Non-SAVRY” features. Decision tree has on average 0.08 − .1 less in 
AUCROC than other methods, with random forest performing better. The support 
vector machine with a linear kernel has similar performance to the top two perform-
ing methods, logit and mlp. Moreover, a simple classification method such as k-near-
est neighbors has similar performance to “SAVRY Sum” and “Expert” if the input 
features are predominantly from the “Non-SAVRY” set including demographic fea-
tures and criminal history (“Non-SAVRY,” “All”).

Equalizing base rates (EBR) between men and women or between foreigners and 
nationals introduces on average a 0.01 decrease in performance. Conversely, apply-
ing LFR mitigation decreases the performance with 0.06 on average across all ML 
methods and feature sets and has higher standard deviation. While here we do not 
use EBR and LFR explicitly for mitigation, we confirm a common finding in the 
FAT literature (Corbett-Davies and Goel 2018), the fact that ML methods trade off 
accuracy for group fairness.

5.2.2 � Group fairness

We measure the impact of ML algorithms, of “SAVRY Sum,” and “Expert,” differ-
ent feature sets, and equalized base rates on the disparity between protected groups 
for “sex” and “nationality.”
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The group metrics defined in Sect. 5.1.3 are reported in Figs. 2, 3 and 5. Error 
bars represent 95% confidence intervals across the 20 seeds. The feature sets 
“SAVRY,” “Non-SAVRY,” “All” are separated by vertical blue lines. The EBR and 
LFR results are presented in dashed texture bars. We delimit thresholds for disparity 
with horizontal red lines between (0.8, 1.2) similar to ProPublica’s COMPAS analy-
sis (Angwin et al. 2016). Note that despite the fact that these thresholds are derived 
from US laws and they do not hold any legal status in Catalonia, they are present in 
most of the FAT literature. From a visualization point of view, thresholds are useful 
in claiming that a method is unfair when perfect parity between groups is difficult 
to observe. Note that by definition, the disparity is a ratio between the metrics of a 
group and the reference group. Hence, we do not plot FPRD and FNRD for the ref-
erence group which is by definition equal to 1.

We present the group fairness metrics for the protected feature “sex” in Fig. 2. In 
this case, the reference group are men. We note that “SAVRY Sum” achieves low 
disparity according to FPRD and FNRD while the “Expert” evaluation is slightly 
below the threshold in terms of FPRD. We remark that the experts are informed that 
SAVRY is mainly designed for juvenile men and it is possible that when dealing 
with juvenile women they interpret SAVRY scores differently or rely more on their 
own expert opinion.

In general, ML does not satisfy group fairness criteria when used for classifica-
tion in this setting. The ML methods achieve better predictive performance than 

Fig. 2   Comparison of group fairness metrics using sex as the protected attribute. The reference group are 
men
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“SAVRY Sum” and “Expert” as seen in Sect. 5.2.1, but bring disparities according 
to error rates. For instance, when using logistic regression, men are three or four 
times more likely to be wrongfully classified as recidivists across “Non-SAVRY” or 
“All” feature sets.

There is a clear difference in terms of disparity when looking at the ML models 
trained with different feature sets. Models trained with “SAVRY” features yield less 
disparity than models with “Non-SAVRY” features. Furthermore, when combining 
“SAVRY” and “Non-SAVRY” features, the disparity between men and women is 
reduced.

Equalizing the base recidivism rates (using EBR) of men and women reduces the 
disparity between these two groups. Encoding sensitive features (using LFR) also 
reduces disparity on the group fairness metrics. EBR is particularly useful when 
having predominantly static features as input, such as “Non-SAVRY” and “All” fea-
ture sets. Neither EBR nor LFR, data pre-processing procedures, ensure group fair-
ness criteria are satisfied for all feature sets. In some cases, such as FPRD for “Non-
SAVRY” feature set, performing EBR or LFR shifts the disparity between men and 
women in the opposite direction, discriminating against women. A possible cause is 
the fact that there are considerably less women in the training data set. Thus, over-
sampling data or encoding data transforms the training data in unexpected ways. 
This is in line to the discussion on the problematic use of mitigation methods in 
Sect. 2.2.

Fig. 3   Comparison of group fairness metrics in terms of nationality. The reference group are Spanish 
nationals
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In Fig. 3 we present results in terms of group fairness for “nationality.” Here the 
reference group are Spanish nationals and the protected group are foreigners. Simi-
lar to the “sex” protected feature, “SAVRY Sum” and “Expert” in general satisfy 
group fairness criteria while unmitigated ML methods fail to do so, particularly 
when including predominantly static features like the “Non-SAVRY” and “All” fea-
ture sets. To that extent, logit and mlp produce worse outcomes for foreigners across 
all the feature sets. Foreigners are more likely to be wrongfully labeled as recidivists 
while Spanish nationals are more likely to be wrongfully labeled as non-recidivists. 
The disparity between groups decreases when including “SAVRY” features.

EBR and LFR reduce disparities with a similar amount when the dataset has fea-
tures correlated to nationality. Although the data distribution is the same, EBR is not 
as effective when using “SAVRY” input features. While the difference in base rates 
can be considered the main cause of disparity, it is not the only cause. In this case, 
disparity is caused by the ML algorithm considering interaction between the input 
features and characteristics of the data.

To better understand how EBR and LFR work, in Fig. 4 we plot the FPR and FNR 
for Spanish nationals and foreigner instead of the disparity between the two groups. 
We observe that EBR and LFR increase error rates for the group which has been 
initially positively discriminated. This happens when EBR and LFR are effective, 
on “Non-SAVRY” and “All” feature sets. In this case, Spanish nationals are more 
likely to be falsely labeled as recidivists and less likely to be wrongfully labeled as 
non-recidivists. In addition, when combining “SAVRY” and “Non-SAVRY” features 

Fig. 4   Comparison of FPR and FNR metrics in terms of nationality
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(“All” feature set), LFR increases FPR for Spanish nationals with a larger amount 
than EBR, while not decreasing FPR for the foreigners. This finding suggests that 
although LFR and EBR have a similar impact on disparity, these methods may work 
in a very different way. We further analyze this using interpretability in Sect. 5.2.3.

On another note, Fig. 4 shows that “SAVRY Sum” and “Expert” have different 
false positives rates and false negatives rates, despite their disparity being similar 
as shown in Fig. 3. Experts are more “lenient,” less likely to wrongfully predict that 
someone will recidivate, and more likely to wrongfully predict that someone will not 
recidivate.

Towards finding the influence of feature sets, equal base rates, and ML method on 
disparity between national groups, we subsequently split foreigners into Maghrebi, 
Latin American, non-Spaniard European and Others. The intuition behind this deci-
sion is that a ML model can balance a fair outcome towards a group by discriminat-
ing a particular subgroup and positively discriminate other subgroups. In Fig. 5 we 
present group fairness results for the selected nationality subgroups. Note that for 
“EBR” the base rates are equalized between Spanish nationals and foreigners, and 
not necessarily for the presented subgroups. We exclude small subgroups with less 
than 50 people like non-Spaniard European (37 people) and Others (13 people) for 
which a few different decisions may drastically impact the overall group fairness 
outcome. We note that European and Others tend to be positively discriminated in 
our experiments.

Fig. 5   Comparison of group fairness metrics in terms of national groups. The reference group are Span-
ish nationals
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While in Fig.  3 “SAVRY Sum” and “Expert” in general satisfy group fair-
ness criteria, here we observe disparity close to the threshold for Maghrebis. 
Experts are more likely to wrongfully label them as recidivists. On the other 
hand, “SAVRY Sum” and “Expert” in general do not have group fairness issues 
with respect to Latin Americans. ML methods, logit and mlp, have discrepancies 
between groups for Maghrebi and Latin Americans when using “Non-SAVRY” 
features. Particularly, the Maghrebi subgroup experiences worse outcomes than 
the main group, foreigners.

In a similar trend to the previous analysis on sex and national groups, the mod-
els trained on “SAVRY” features achieve better group fairness. When looking at 
the feature sets, ML methods yield more disparity towards Maghrebi and Latin 
Americans for all metrics when including non-SAVRY features in training. Train-
ing with SAVRY items has slightly higher disparity than the “SAVRY Sum.” This 
disparity is within the acceptable bounds for Latin Americans and surpassing the 
bounds for Maghrebi.

While EBR does not target Maghrebi and Latin Americans in particular, these 
groups are more numerous than the Europeans and Others. Even if the prevalence 
of the recidivism for Maghrebi is higher, there are more Maghrebi non-recidi-
vists than European non-recidivists. Thus, as a side-effect of targeting EBR to 
foreigners, we note a drop in the disparity between Maghrebi and Spanish nation-
als. However, in all the cases the drop of disparity is not within the accepted lim-
its and Maghrebi are still discriminated against. Furthermore, the disparity shifts 
in the opposite direction, positively discriminating Latin Americans when using 
mlp on the “Non-SAVRY” feature set. Reasons why EBR and LFR do not always 
work are related to the group size. Similarly to the case of women, sampling from 
a small population enhances the noise. Furthermore, ensuring fair outcomes for a 
big subgroup does not guarantee group fairness for corresponding subgroups.

EBR and LFR achieve similar metrics across all experiments. The fact that the 
metrics change more substantially when non-SAVRY features are included, is consist-
ent with the hypothesis that both methods are more effective when including features 
which are more correlated with the protected feature they target. This requires a further 
analysis on the feature importance when combining static and dynamic features, which 
we do in the next Sect. 5.2.3.

5.2.3 � Feature importance

As discussed in Sect. 4.4, we use ML interpretability to see which features are impor-
tant for different ML models. Particularly, we analyze the ratio of static and dynamic 
features in the top ten most important features for each ML model. Because the 
“SAVRY” feature set contains mostly dynamic features and the “Non-SAVRY” mostly 
static features, we focus on their combination, “All.”

The top ten most important features, the mean and standard deviation over 20 seeds 
of the global feature importance computed with LIME (Ribeiro et al. 2016) (defined in 
Eq. 1) are given in Table 3 for logit and in Table 4 for mlp in “Appendix”.
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The top ten features ranked in terms of importance for logit and mlp are static and 
personal history features. Sex and nationality, age, province of residence, criminal his-
tory are important when doing off-the-shelf ML. This finding is particularly concerning 
because more informative dynamic features are not deemed to be important. In other 
words, the offender cannot change key traits used by such a ML system.

In Sect. 5.2.2 we show that EBR and LFR have a similar impact on the group fair-
ness outcomes. However, when looking at the features which are important for logit 
and mlp after applying EBR and LFR, we observe that the static features are the most 
important for the EBR, and the dynamic features for LFR. This finding points out to 
the difference between the two algorithms. LFR encodes all the features correlated to 
sex and foreigner in such a way that these features are not helpful in the prediction. The 
fact that LFR relies on a different set of features explains why LFR has considerably 
lower AUCROC than the baseline, while this is not the case for EBR. Basically, LFR 
relies on a different set of features which are not as predictive and do not yield as much 
disparity.

6 � Relation with previous work

This paper expands on the work in Tolan et al. (2019) and aims at studying the 
impact of using ML in criminal justice on group fairness and predictive perfor-
mance. The main contribution of this paper is determining the causes residing in 
data of disparity between groups for ML juvenile recidivism prediction: unequal 
base rates between protected groups and different feature sets. With respect to 
the former, we introduce an oversampling method, EBR, to equalize base rates 
between protected groups. We show that equal base rates partially explain the 
observed disparity between groups. Towards studying the influence of the cor-
relations between the input features and the protected features we compare EBR 
with a more complex and computationally intensive method, LFR (Zemel et  al. 
2013). Our experiments using different feature sets show that including features 
correlated with the protected features may explain disparity between the pro-
tected groups.

In contrast to research done in the field of algorithmic fairness for machine 
learning, we do not propose a mitigation framework such as Zemel et  al. (2013), 
Žliobaitė and Custers (2016), Zafar et al. (2017), Agarwal et al. (2018). We use EBR 
to explain the influence of prevalence among groups on two group fairness met-
rics. Similarly, including LFR (Zemel et al. 2013) in the analysis gives insight on 
the influence of training features. Although a simple oversampling method, EBR, 
reduces unfairness on the selected metrics, at a comparable rate to LFR without a 
significant reduction of the predictive performance, we show that the usage of miti-
gation techniques may be problematic.

Our analysis on the impact of equal base rates on group fairness metrics and the 
impossibility to achieve parity between different subgroups in terms of the reported 
metrics is similar to Chouldechova (2017). In addition, we use a state-of-the-art ML 
explainability method (Ribeiro et al. 2016), to contribute to the literature that shows 
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the negative consequences of unfairness mitigation techniques (Corbett-Davies et al. 
2017; Kallus and Zhou 2018; Liu et al. 2018).

In comparison to the previous research on juvenile recidivism (Olver et al. 2009; 
Singh 2014; Guy 2008; Ortega-Campos et  al. 2020), we evaluate the algorithmic 
fairness problems within a ML based system. To the best of our knowledge, such a 
system is not used in practice at this moment. However, risk assessment tools tend 
to become more actuarial (Hilterman et al. 2014) and less clinical. With the recent 
adoption of deep learning in decision making application, using ML for juvenile 
recidivism prediction is plausible.

7 � Discussion

The evaluation section points out the trade-off between predictive performance and 
group fairness. More precisely, the application of ML over the risk factors yields a 
more accurate prediction than the simple SAVRY sum. The ML methods achieve 
on average 0.04 points of AUCROC more than non-ML methods, depending on 
the input features used. Yet, ML introduces issues of group fairness that a simple 
SAVRY sum does not have. This issue gets more pronounced as we include Non-
SAVRY factors such as the actual group features, further demographic information 
and data on criminal history. Beside gains in accuracy the additional features cause 
an even higher disparity in the error rates. Furthermore, we find that processing the 
data before training the algorithm in a way that removes the predictive power of 
protected features can in some cases help to remove the observed group-unfairness 
regarding the protected features but neither do these methods guarantee the removal 
of group unfairness nor do they necessarily achieve overall group fairness along 
unspecified protected features or intersections of these.

These findings have to be interpreted in light of some limitations. First, despite 
the relatively random selection of the sample by release year in 2010, we find that 
the selection into the SAVRY assessment of 855 defendants is on average targeted 
to defendants with a higher violence risk. Still, the sample remains fairly heteroge-
neous. The second problem is sample bias. The outcomes of the ML analysis could 
mostly be driven by the largest protected group, in this case Spaniard males. How-
ever, we repeated the ML analysis allowing for group-specific features and found no 
substantial differences to the baseline analysis.

We have to consider the potential for measurement error because we measure 
recidivism with rearrests. That is, the base rate of a particular minority group could 
be upwards biased if policing tends to be more strict with this protected group, caus-
ing biased labels.6 Despite these data limitations the overall setting remains relevant 

6  Note that the studied decision-making setting does not suffer from the selective labels problem, i.e. the 
case where the observed outcome depends on the decision of the case workers. The selective labels prob-
lem appears in the context of pre-trial bail decision making (Kleinberg et al. 2017), in which we cannot 
observe potential breach of bail on those who are denied bail. However, in this case the release in 2010 
does not depend on the risk assessment of the decision maker, and recidivism behaviour can be observed 
for every defendant in the sample.
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as long as it occurs similarly in real world settings. This has important policy impli-
cations which we discuss further below. To that extent, it is important to understand 
the underlying mechanisms that eventually lead to group unfairness as structured 
human decision-making processes are replaced (or just even extended) by ML 
applications.

In the following, we discuss the two potential sources of group unfairness that are 
investigated in the current analysis: unequal base rates and the use of features sets 
highly correlated with the protected features. Subsequently, we discuss more general 
limitations of unfairness mitigation techniques. We conclude this section with a dis-
cussion of the policy implications.

7.1 � Sources of group unfairness

Predicting recidivism is not a trivial problem and no ML method achieves per-
fect accuracy. The selected top two ML models trade off predictive performance 
for group fairness. One explanation can be that the base rates (i.e. the prevalence 
of recidivism) differ between various groups, as seen in the top panel of Table 2. 
Another explanation could be that we use input features, such as demographics and 
criminal history, which are correlated to protected features. This was the case of 
“Non-SAVRY” and “All.” We discuss each explanation subsequently.

7.1.1 � Unequal base rates

The literature has shown extensively that base rates substantially affect the outcomes 
of group-fairness measures (Berk et  al. 2017). Most prominently, Kleinberg et  al. 
(2016) and Chouldechova (2017) show that, when base rates differ, it is mathemati-
cally impossible to fulfill multiple measures of group fairness simultaneously. In this 
dataset, the recidivism rate for men is 40%, while the recidivism rate for women 
is 20%. Also, the recidivism rate for foreigners is 46%, (specifically for Latin 
Americans it is 45% and for Maghrebi 55%), while for Spaniards it is 32%. This 
is emphasized by the differences in the group composition between recidivists and 
non-recidivists. In detail, Table 2 shows that compared to non-recidivists, recidivists 
are significantly more likely to be male, foreign and specifically Maghrebi or Latin 
American but less likely to be female or Spaniards. ML methods pick up on these 
empirical correlations when producing predictions on recidivism. Under these con-
ditions, it is clearly difficult to achieve similar classification rates for both groups.

To test the role of unequal base rates in the unfair classification, we oversample 
from the under-represented group until its base rate matches the base rate of the 
reference group. Then, we repeat the accuracy, fairness and interpretability analysis 
under equalized base rates with respect to sex and nationality. The results are pre-
sented in Sect. 5.2. In fact, the results show that in the case of disparity between for-
eigners and Spanish nationals and between males and females, the method leads to 
a level change of FPRD as well as FNRD to presumably acceptable levels (between 
0.8 and 1.2) showing that unequal base rates do in fact contribute to issues in group 
fairness metrics. However, the accompanying reduction in accuracy reveals that part 
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of this equalization in error rates is achieved through increases in error rates for one 
group. In the case of increased FPR, this increases harms for the affected group as 
it could lead to increased wrongful convictions. Similarly, a higher FNR negatively 
affects public safety as it may lead to increased wrongful releases. This shows that 
improving on fairness metrics can lead to increased harms at other places.

Furthermore, we see in Fig. 2 the case of “Non SAVRY” and mlp that EBR is not 
a guaranteed solution to unfair classification as the measure could overcorrect from 
a low FPRD to a FPRD that is too high. A reason for this could be the very small 
sample size of female defendants ( Nfemale = 108 ) as in small samples little changes 
in input can lead to large changes in marginal outcomes. Moreover, the very small 
changes due to EBR when using the “SAVRY” feature set reveals further limits to 
how much of the unfair classification base rates can explain. Similarly, Fig. 5 reveals 
that equalised base rates on a larger group (in this case foreigner status) does not 
address the issue for smaller subgroups, such as different nationalities among for-
eigners. This confirms the finding in Chouldechova (2017).

A closer look at the interpretability results in Tables 3 and 4 reveals that com-
pared to the unconstrained dataset, equalised base rates do not significantly affect 
the order of feature importance when predicting. In fact, the protected feature along 
which the base rates are equalised becomes the most important. That is, instead 
of reducing the role of the protected feature, a supposed mitigation measure could 
aggravate the situation otherwise. In addition, this suggests that not only base rates 
but also confounders, i.e., features that are correlated with the protected feature as 
well as the outcome play a role in explaining unfair algorithmic decision making.

7.1.2 � Demographic and criminal history input features

Besides unequal base rates another, more obvious explanation for unfair classifica-
tion is the influence of input features correlated with the protected features. This 
issue has been discussed extensively in the literature (Barocas and Selbst 2016; 
Hardt et al. 2016) and we discuss a more ad-hoc mitigation measure, i.e. removing 
these features from the input, in Sect. 7.2. The interpretability results in Tables 3 
and 4 reveal that we face the same issue since the protected features, “sex” and “for-
eigner,” are the most important in the unconstrained dataset.

In order to investigate the part that the contribution of protected input features 
can have in explaining unfair classification, we repeat the same analysis for a third 
time with the LFR mitigation measure.

This measure removes the explanatory power of protected features as well as the 
correlation of other features with the protected features and the outcome in predic-
tion. As per the construction of this issue, it cannot explain unfair classification 
based on the “SAVRY” feature set as this set does not contain the actual protected 
features. However, the Figs. 2, 3 and 5 show that this measure works very similar 
to the “ERB” measure in terms of FPRD and FNRD. It explains the fairness met-
rics disparities for the groups that it is addressing without affecting the disparities in 
smaller subgroups.

The interpretability results in Tables  3 and 4 show that this measure further 
addresses the problem of confounding as with “LFR” the protected features as well 
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as the correlated static and demographic features are being outranked by dynamic 
SAVRY features in explaining recidivism.

Finally, it should be highlighted that both unequal base rates as well as the influ-
ence of protected features in input explain parts of unfair classification outcomes. 
However, neither method guarantees a decision making system that does not yield 
any disparity.

7.2 � Mitigation

After having discussed the impact of two specific sources of unfairness by applying 
mitigation measures, we move to a general discussion on limitations of mitigation 
methods for specific unfairness metrics.

7.2.1 � “Color blind” methods

Removing protected attributes from the input, thus creating a “color-blind” model, 
is often suggested as a potential solution to fairness-related issues in ML algorithms. 
In this case this would not affect the results of “SAVRY” and “SAVRY ML,” as 
none of these settings use protected attributes, but it could have an effect in the case 
of “Non-SAVRY” and “All ML.” The idea behind this solution is that, in order to 
not discriminate against men/women or foreigners, the machine (or human) deci-
sion maker should not take these sensitive attributes into consideration (i.e. should 
remain blind to these attributes). However, in general, avoiding disparate treatment 
of different groups (by not including respective features in training) does not guaran-
tee the absence of discriminating outcomes for affected groups. As a matter of fact, 
these two fairness goals (fair treatment and fair outcomes) often trade each other off 
(Corbett-Davies and Goel 2018; Žliobaitė and Custers 2016; Lipton et al. 2018). The 
core problem is that removing the protected feature from the input does not remove 
the correlation of the protected feature with the outcome. The remaining features 
that are correlated with the sensitive attributes will pick up on this correlation (Hardt 
et al. 2016; Barocas and Selbst 2016). Even a drastic reduction of the algorithm to 
only two input features in training (age, and number of previous crimes) can pick 
up on these correlations that make an algorithm produce unfair results (Dressel and 
Farid 2018; Jung et al. 2017). In other words, if the protected attributes and the out-
come of recidivism correlate (see Table 2), this correlation will not disappear if you 
remove the protected features. Besides, the results for “Savry ML” in Figs. 3 and 5 
for Maghrebi show that just using ML methods, without including protected attrib-
utes, produces unfair outputs as well.

7.2.2 � Different models or different thresholds

As a consequence of the issues with color blind algorithms, other unfairness-mitigat-
ing methods arise that deal with the problem of disparate outcomes. The underlying 
idea of these methods is that instead of avoiding the sensitive attributes in training, 
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we consider them in particular by using different prediction models or different risk 
thresholds for members of different protected groups. For instance, treating women 
like men, and ignoring findings that show that in juvenile justice females react dif-
ferently from males to specific risk factors (Wright et al. 2007), can cause consider-
able harm to women (Skeem et al. 2016). In contrast, sacrificing equal treatment for 
the benefit of equal outcomes can be interpreted as holding different groups to dif-
ferent standards, which is equally hard to justify in a very sensitive context such as 
criminal justice, as has been shown in the US Supreme Court lawsuit Ricci v. DeSte-
fano (United States Supreme Court 2009). In addition, equalizing outcomes for one 
protected group does not guarantee equally fair outcomes for respective subgroups 
(Chouldechova 2017). In any case, adjusting the outcomes of a decision process, 
potentially at the expense of accuracy, produces public costs that will either have to 
be paid in the form of sacrificing public safety or making innocent people subject to 
costly criminal justice interventions (Corbett-Davies et al. 2017).

7.2.3 � Algorithm adjustments

In-processing methods to achieve fairness in machine learning are the ones that pro-
duce “fairness-aware” models by adjusting the objective that is optimized during 
the training phase, typically by adding additional fairness constraints. In this case 
for instance, one could introduce an extra term that penalizes classifiers that yield 
different error rates (Hardt et al. 2016; Zafar et al. 2017; Agarwal et al. 2018). The 
results would be similar to applying different thresholds to different groups. There-
fore, adjusting a classifier without understanding the underlying issues that cause 
unfairness can have similar problems as the ones discussed in the previous section. 
For instance, in order to address unbalanced false positive rates, the adjusted clas-
sifier would reduce the risk-assessment of the high-risk group at random, causing 
releases of individuals of uncertain risks. The consequence of this could be a bad 
track records for minority groups, creating downwards dynamics in terms of risk 
assessment for the respective group (Kallus and Zhou 2018; Liu et al. 2018). There-
fore, understanding the causes of recidivism and taking into account the feedback of 
the implementation of the algorithm in the real world is more beneficial than brute-
forcing the decision-making system to fit certain fairness metrics.

7.3 � Policy implications

The findings of our study have considerable policy implications. First, the appli-
cation domain for ML methods, criminal recidivism prediction, can be considered 
a high-risk application. More specifically, the White Paper on AI of the European 
Commission (EC) (COM 2020) defines the risk level of AI applications based on 
two criteria: the first one depends on the sector of exploitation (e.g. health, transport 
and public sectors are considered to be of high-risk) of AI and the second one on the 
particular AI application. Criminal risk recidivism fits both criteria. It belongs to the 
public sector, which includes judicial decisions, a sector where significant risks can 
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be expected to occur. In addition, recidivism assessment is linked to legal or simi-
larly significant effects for the rights of an individual.

Apart from the relevance of the selected use case, the reported accuracy gains 
indicate that the potential for ML to improve decision making in criminal justice 
cannot be ignored. However, at the same time the findings on group fairness high-
light that the involvement of ML in decision making processes still requires human 
oversight to avoid discrimination and ensure that relevant (not necessarily highly 
correlated) risk factors are considered in decision processes related to recidivism. 
Thus, policy makers have to ensure that we achieve decision making mechanisms in 
criminal justice that reap the benefits that come from accuracy gains but also avoid 
the dangers of algorithmic discrimination.

The EC White Paper discusses options to navigate this trade-off between the 
promotion and uptake of AI and the associated risks with certain uses of AI. This 
also involves the creation of an “ecosystem of trust,” i.e., a policy mechanism that 
ensures that AI systems comply with the rules that protect fundamental rights and 
consumers’ rights, in particular for AI systems that pose a high risk. In line with 
this, our study highlights that bias and discrimination can be present in human 
decision-making processes as well as decision making processes supported by ML 
models. Our focus on the group fairness issues of the ML system relates to the fact 
that the same bias that is present in human decision making could have much larger 
effects in an ML-supported process, due to the scaling effects of automated systems. 
Moreover, these processes, if not tested properly, remain hidden due to the fact that 
algorithms may be opaque, complex, unpredictable and partially autonomous (COM 
2020).

The methods presented in this study contribute to the understanding of the mech-
anisms and consequences of ML driven decision making and consequently provide 
a way to deal with issues of opaqueness and check compliance with rules of existing 
EU law meant to protect fundamental rights. In the context of the future regulatory 
framework for AI in Europe, the White Paper discusses types of legal requirements 
that can be imposed on relevant actors in the context of high-risk AI applications. 
The requirements discussed in the White Paper relate to those addressed in our 
study, including the evaluation and consideration of bias in datasets used for train-
ing AI systems, the evaluation of the performance of AI systems (here measured 
as accuracy) and limitations. Further requirements involve the naming of necessary 
conditions for the correct functioning of AI systems, transparency about the infor-
mation provided to final users, and enabling human oversight before, after and dur-
ing the AI operation.

Our study shows that ML can help by better informing experts in the correct 
weighting of different case-related information. At the same time a possible auto-
mation of unfair decision making processes due to certain biases pose a high risk 
to persons affected by the system. Ensuring human oversight through a machine-
human interactive decision framework, i.e. a human-in-the-loop framework could be 
an appropriate response. Yet, further research on the dynamics of human-in-the-loop 
frameworks is necessary to inform the design and policy making of such decision 
processes.
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8 � Conclusions and future work

In this paper we study the causes of disparity between groups of different sex and 
nationality, equal base rates, input features, and ML algorithms. We discover that 
unequal base rates lead to disparity between several groups on the considered group 
fairness metrics. However, base rates alone can not fully explain the observed dis-
parity. Additional disparity between groups is due to the nature of input features 
and the type of ML algorithm used. With respect to the input features, ML models 
exhibit more disparity when using demographic and criminal history features and 
less disparity with risk items taken from a risk assessment tool, SAVRY. These risk 
items contain a high proportion of dynamic features, which are not highly correlated 
to static features such as sex or nationality.

We observe that the usage of mitigation methods may be problematic. To that 
extent, the importance of the SAVRY risk items increases when we use a mitiga-
tion method, LFR (Zemel et  al. 2013), that encodes the input features to remove 
the correlations with the protected features. However, in this case we notice a drop 
in predictive performance. Besides the increase of error rates, mitigation along a 
group fairness metric with respect to a given protected feature may not resolve group 
fairness issues for another protected feature. In addition, some subgroups may be 
discriminated against while others positively discriminated causing an average “fair” 
outcome for the whole group. We provide a comprehensive discussion on the impact 
of unfairness mitigation methods.

In terms of feature importance, we compare dynamic and static features and note 
that the more a model relies on static features, the less group fairness it has. The 
dynamic features are related to items that a defendant can change and reflect the 
validity of the treatment for the defendant at the moment of the SAVRY evaluation. 
A judicial system using a ML model relying solely on items a defendant can not 
change, can be considered coercive, rather than transforming.

Our study contributes to understanding the extent of the changes in criminal jus-
tice outcomes that come with machine learning involvement in criminal risk-assess-
ment. Our comparison in terms of predictive power and relevant group fairness met-
rics between a “human-in-the-loop” empirically informed assessment and a pure 
statistical risk-assessment, sheds light on this question and informs policy makers 
about some of the risks associated with the implementation of ML in criminal jus-
tice processes.

In our study we use SAVRY data from Catalonia between 2002 and 2010 with 
recidivism observed in 2013 and 2015. The conclusions of this study should be fur-
ther assessed on recent data from Catalonia or other regions/countries which use 
SAVRY and further compared with other risk assessment tools.
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Appendix

See Tables 2, 3 and 4.

Table 2   Descriptive statistics

Base rate Not recidivated Recidivated Difference

Mean Std.Dev. Mean Std.Dev. Diff Std.Dev.

Protected features
Male 40.03% 0.839 0.368 0.931 0.253 0.093*** 0.021
Female 20.37% 0.161 0.368 0.069 0.253 − 0.093*** 0.021
Spanish 32.06% 0.667 0.471 0.523 0.499 − 0.143*** 0.035
Foreign 46.22% 0.333 0.471 0.477 0.499 0.143*** 0.035

  Latin American 44.52% 0.161 0.368 0.215 0.411 0.054* 0.028
  Maghrebi 55.12% 0.107 0.309 0.218 0.413 0.111*** 0.027
  European 32.35% 0.043 0.203 0.034 0.182 − 0.009 0.013
  Other 20.00% 0.022 0.148 0.009 0.096 − 0.013 0.008

Static features (not SAVRY)
Age maincrime 16.011 1.009 15.720 1.060 − 0.292*** 0.074
Prior crimes 0.700 0.458 0.863 0.344 0.163*** 0.028
Prior crimes frequency

  1 incident 0.586 0.493 0.604 0.489 0.018 0.035
  2 incidents 0.243 0.429 0.215 0.411 − 0.028 0.030
  3 or more incidents 0.170 0.376 0.181 0.385 0.010 0.027

Maincrime violent 0.609 0.488 0.611 0.488 0.002 0.034
Maincrime category

  Nonviolent against 
property

0.251 0.434 0.265 0.441 0.014 0.031

  Violent against 
property

0.264 0.441 0.293 0.455 0.029 0.032

  Against persons 0.345 0.475 0.318 0.466 − 0.027 0.033
  Other 0.140 0.347 0.125 0.330 − 0.016 0.024

Maincrime program sentence
  Technical sentence 0.060 0.237 0.262 0.440 0.202*** 0.027
  Mediation and repa-

ration
0.021 0.142 0.025 0.156 0.004 0.011

  Enforcement measure 0.919 0.272 0.713 0.452 − 0.206*** 0.028
Internment (no proba-

tion)
0.142 0.349 0.265 0.441 0.122*** 0.029

Days to sentence start 481.803 269.611 364.579 276.429 − 117.224*** 19.343
Sentence duration (days) 285.058 190.887 235.536 233.089 − 49.522*** 15.411

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 2   (continued)

Base rate Not recidivated Recidivated Difference

Mean Std.Dev. Mean Std.Dev. Diff Std.Dev.

Year of main crime
  2006 or earlier 0.064 0.244 0.069 0.253 0.005 0.018
  2007/2008 0.672 0.469 0.449 0.497 − 0.224*** 0.034
  2009/2010 0.264 0.441 0.483 0.5 0.219*** 0.034

SAVRY
Final expert evaluation 0.315 0.330 0.530 0.359 0.215*** 0.025
SAVRY summary scores

  Total (automatic) 14.150 8.424 18.262 8.712 4.112*** 0.608
  Historical factors 5.762 3.941 7.084 3.890 1.322*** 0.276

  Social factors 3.803 2.562 5.050 2.701 1.246*** 0.187
  Individual factors 4.584 3.438 6.128 3.703 1.543*** 0.255
  Protective factors 2.152 1.861 2.956 1.877 0.805*** 0.132

SAVRY 24 risk items
  Previous violent 

offenses
0.428 0.404 0.536 0.402 0.108*** 0.028

  History nonviolent 
offending

0.344 0.368 0.472 0.386 0.128*** 0.027

  Early violence 
(below 14)

0.182 0.326 0.254 0.364 0.072*** 0.025

  Past intervention 
failures

0.184 0.317 0.280 0.365 0.097*** 0.025

  Self-harm/suicide 
history

0.099 0.248 0.132 0.268 0.033* 0.018

  Home violence 0.254 0.383 0.263 0.379 0.009 0.027
  Childhood mistreat-

ment
0.239 0.352 0.290 0.379 0.051** 0.026

  Criminal parent/car-
egiver

0.163 0.310 0.196 0.347 0.033 0.024

  Childhood care giv-
ing disruption

0.285 0.389 0.335 0.402 0.050* 0.028

  Poor school achieve-
ment

0.705 0.351 0.783 0.319 0.078*** 0.023

  Delinquency in peer 
group

0.364 0.362 0.525 0.365 0.161*** 0.026

  Rejection by peer 
group

0.110 0.230 0.154 0.282 0.045** 0.019

  Stress and poor 
coping

0.390 0.350 0.438 0.373 0.048* 0.026

  Poor parental man-
agement

0.456 0.351 0.578 0.368 0.122*** 0.026

  Lack of personal/
social support

0.286 0.340 0.419 0.380 0.133*** 0.026

  Community disor-
ganization

0.297 0.381 0.411 0.394 0.114*** 0.027
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Table 2   (continued)

Base rate Not recidivated Recidivated Difference

Mean Std.Dev. Mean Std.Dev. Diff Std.Dev.

  Negative attitudes 0.279 0.304 0.397 0.326 0.118*** 0.022
  Risk taking/impul-

sive
0.369 0.343 0.469 0.349 0.100*** 0.025

  Substance abuse 0.317 0.347 0.416 0.371 0.098*** 0.026
  Anger management 

issues
0.334 0.340 0.410 0.341 0.075*** 0.024

  Low empathy 0.282 0.326 0.393 0.342 0.111*** 0.024
  Attention deficit 

hyperactivity
0.202 0.297 0.262 0.323 0.059*** 0.022

  Poor compliance 0.202 0.294 0.313 0.348 0.111*** 0.023

  Low commitment to 
school

0.306 0.366 0.405 0.402 0.099*** 0.027

SAVRY 6 protective factors
  Pro-social activities 0.485 0.500 0.333 0.471 − 0.152*** 0.034
  Pro-social support 0.700 0.458 0.536 0.499 − 0.165*** 0.034
  Pro-social support 

(by adult)
0.676 0.468 0.592 0.491 − 0.084** 0.034

  Positive attitude 0.837 0.369 0.741 0.438 − 0.096*** 0.029
  High interest in 

school/work
0.669 0.471 0.508 0.500 − 0.161*** 0.035

  Positive/resilience 
characteristics

0.481 0.500 0.333 0.471 − 0.148*** 0.034

SAVRY 5 factors model
  Antisocial behavior 0.548 0.449 0.747 0.445 0.199*** 0.032
  Family dynamics 0.470 0.527 0.542 0.558 0.072* 0.039
  Personality 0.561 0.422 0.720 0.446 0.159*** 0.031
  Social support 0.540 0.425 0.738 0.468 0.198*** 0.032
  Treatment suscepti-

bility
0.565 0.351 0.727 0.377 0.162*** 0.026

N 534 321

Descriptive statistics of input features by recidivism status. Not displayed: province of residence, prov-
ince of sentencing
Standard errors in parentheses. *, ** and ***Denotes significance level of 10%, 5% and 1%, respectively
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Table 3   Feature importance for 
predicting recidivism, logit on 
“All” feature set

Mean Std

Foreigner 242.83 13.82
Sex* 233.00 22.87
National group* 221.75 13.98
Province of residence* 192.16 13.21
No. of maincrimes* 167.58 9.87
Age maincrime* 167.92 11.23
Province of execution* 165.53 9.38
Maincrime program sentence* 163.08 7.74
No. of prior crimes* 167.63 12.34
Maincrime program duration* 160.10 6.53
EBR on attribute “sex”
Sex* 210.16 10.90
Foreigner* 189.62 5.43
Maincrime violent* 174.24 11.05
No. of maincrimes* 170.70 8.58
No. of prior crimes* 172.40 10.31
Province of execution* 167.44 8.68
Maincrime category* 171.52 13.91
Maincrime program* 164.10 7.60
Maincrime program duration* 160.09 6.51
Says between crime and program* 158.18 6.79
EBR on attribute “nationality”
Foreigner* 228.52 18.53
National group* 213.45 12.75
Sex* 218.75 21.10
Province of residence* 187.01 13.35
No. of prior crimes* 155.59 8.86
No. of maincrimes* 155.28 9.76
Province of execution* 152.80 8.04
Maincrime program* 152.35 8.99
Age maincrime* 157.60 15.19
Maincrime program duration* 149.42 7.44
LFR on attribute “sex”
Positive attitude 123.33 23.26
Antisocial behaviour 122.28 22.96
Family dynamics 122.29 23.03
Attention deficit hyperactivity 121.87 22.83
Expert score 122.21 23.26
Positive/resilience characteristics 122.08 23.18
Community disorganization 122.09 23.36
Pro-social support (by adult) 121.15 22.56
Stress and poor coping 122.10 23.58
Poor parental management 122.15 23.68
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*Denotes Non-SAVRY features

Table 3   (continued) Mean Std

LFR on attribute “nationality”
Antisocial behaviour 123.50 18.96
Attention deficit hyperactivity 123.29 18.85
Anger management issues 122.70 18.39
Treatment susceptibility 122.58 18.30
High interest in school/work 123.38 19.20
Pro-social support (by adult) 122.10 18.13
Substance abuse 122.50 18.64
Personality 122.54 18.73
Family dynamics 122.38 18.66
Positive/resilience characteristics 121.59 17.95
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Table 4   Feature importance for 
predicting recidivism, mlp on 
“All” feature set

Mean Std

Sex* 155.03 13.99
Foreigner* 164.13 29.42
National group* 137.40 18.22
Maincrime program duration* 123.67 15.05
Days of program* 123.58 15.04
SAVRY program* 121.38 13.06
Days between crime and program* 124.14 16.05
Maincrime program* 124.25 16.22
Expert score 121.61 14.04
Province of residence* 120.44 13.38
EBR on attribute “sex”
Sex* 158.61 16.44
Foreigner* 160.53 24.77
National group* 124.58 13.93
SAVRY program* 120.64 10.42
No days of program* 120.64 10.75
SAVRY total score 121.07 11.22
Historical factors 120.18 10.47
Individual factors 120.43 11.01
Expert evaluation 121.20 11.87
Social factors 120.68 11.38
EBR on attribute “nationality”
Foreigner* 165.33 13.89
Sex* 155.99 12.03
National group* 135.81 13.97
No. of maincrimes* 117.60 8.41
Province of residence* 118.45 10.26
Maincrime program* 116.46 9.82
No. of prior crimes* 117.39 10.80
Maincrime violent* 116.22 10.59
Maincrime category* 115.52 10.04
Province of execution* 115.94 10.63
LFR on attribute “sex”
High interest in school/work 114.39 24.57
Family dynamics 114.09 25.02
Social support 114.65 25.70
Stress and poor coping 113.05 24.17
Personality 113.67 24.88
Anger management issues 113.08 24.44
Risk-taking impulsivity 113.84 25.30
Positive/resilience characteristics 113.61 25.08
Pro-social activities 113.22 24.77
Lack of personal/social support 114.37 25.94
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