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could result in electrophysiological and structural remodel-
ing, which further causes conduction system abnormalities 
and arrhythmogenicity[1]. Enhanced MF, characterized by 
fibrogenesis and excessive deposition of fibrous extracellu-
lar matrix proteins (ECM), is recognized as one of the key 
responses to DCM, from the development of myocardial 
remodeling and increased wall stress to progressive cardiac 
dysfunction [2]. Nevertheless, despite their high risk and 
severe morbidity, existing therapies seem to be complicated 
and ineffective [3].

Recently, progress has been made in identifying some 
biomarkers that reflect MF. These include galectin 3 (Gal3) 
[4], placental growth factor (PLGF) [5], cardiac ankyrin 
repeat protein (CARP) [6], platelet-derived growth factor 
(PDGF) [7], and suppression of tumorigenicity 2 (ST2) [8]. 
However, no clear relationships between these markers and 
drugs have been established, and they have not yet been 
applied to personal treatment. Because of these limitations, 
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Abstract
Endoplasmic reticulum (ER) stress has been implicated in the mechanisms underlying the fibrotic process in dilated car-
diomyopathy (DCM) and results in disease exacerbation; however, the molecular details of this mechanism remain unclear. 
Through microarray and bioinformatic analyses, we explored genetic alterations in myocardial fibrosis (MF) and identi-
fied potential biomarkers related to ER stress. We integrated two public microarray datasets, including 19 DCM and 16 
control samples, and comprehensively analyzed differential expression, biological functions, molecular interactions, and 
immune infiltration levels. The immune cell signatures suggest that inflammatory immune imbalance may promote MF 
progression. Both innate and adaptive immunity are involved in MF development, and T-cell subsets account for a con-
siderable proportion of immune infiltration. The immune subtypes were further compared, and 103 differentially expressed 
ER stress-related genes were identified. These genes were mainly enriched in neuronal apoptosis, protein modification, 
oxidative stress reaction, glycolysis and gluconeogenesis, and NOD-like receptor signaling pathways. Furthermore, the 
15 highest-scoring core genes were identified. Seven hub genes (AK1, ARPC3, GSN, KPNA2, PARP1, PFKL, and PRKC) 
might participate in immune-related mechanisms. Our results offer a new integrative view of the pathways and interaction 
networks of ER stress-related genes and provide guidance for developing novel therapeutic strategies for MF.
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there is an urgent need to discover new biomarkers with 
clear mechanisms to delay, prevent or reverse MF and guide 
clinical treatment.

The mechanisms underlying MF remain unclear. Among 
the potential mechanisms that have recently gained sig-
nificant attention, ER stress is an important etiology and 
pathological process in DCM-associated MF. Under con-
stant stress conditions, such as oxidative stress, inflam-
mation, gene defects, and cardiac ischemia, the unfolded 
protein response (UPR) pathways are activated and disturb 
the homeostasis of the ER [9]. ER stress could regulate cell 
apoptosis [10, 11], trigger secretory autophagy, and destroy 
target cells [12]. Recent studies have revealed the patho-
logical role of ER stress in MF. For instance, the ER pro-
tein TXNDC5 is upregulated due to ER stress and promotes 
MF by facilitating extracellular matrix protein folding and 
cardiac fibroblast activation [1]. The overexpression of the 
transmembrane protein disintegrin and metalloproteinase 
17 (ADAM17) could activate mouse cardiac fibroblasts 
(mCFs) by inhibiting the ATF6 branch of the ER stress 
response, further activating mitophagy and leading to MF 
[13]. In addition, ER stress could directly initiate inflam-
matory signaling pathways; cytokines and proinflammatory 
chemokines further trigger ER stress, and vice versa, finally 
resulting in an inflammatory cascade [14]. Persistent activa-
tion of the innate immune response could lead to chronic 
inflammatory processes that promote fibrotic deposition. 
Currently, no effective medical interventions for MF inhibit 
ER stress. Nevertheless, the suppression of ER stress is 
regarded as a promising therapy for MF; thus, there is a 
strong need to identify new pharmacological intervention 
targets to increase these opportunities for better treatments.

Bioinformatic analysis of microarray results has extended 
previous studies to provide meaningful gene information. 
This can be used to screen differentially expressed genes 
(DEGs), biological functional pathways, and promising 
targets for MF. Several previous studies have examined 
genetic alterations from different perspectives. One study 
investigated DEGs in 14 patients with DCM and 10 healthy 
controls. The results found that 11 key genes, including 
CTGF, POSTN, CORIN, and FIGF, are involved in ECM 
and cell-adhesion-related signaling pathways [15]. Another 
study investigated the tissue-specific expression profiles and 
epigenetic profiles of several genes critical for cardiac fibro-
sis, including NLRP3, hsa-mir-223, MMP2, and MMP9, and 
their enhancers contain hypomethylated transcription factor 
binding sites (TFBS) that might lead to the overexpression 
of genes and fibrotic phenotypes [16]. However, differ-
ent chip platforms, statistical methods, and small sample 
sizes have contributed to some inconsistency in the find-
ings of previous studies. Therefore, more in-depth studies 

are needed to identify reliable markers and new therapeutic 
targets for MF to overcome these potential inconsistencies.

To help address these issues, this study aimed to integrate 
microarray datasets and conduct an in-depth bioinformat-
ics analysis to explore genetic changes in MF and screen 
for potential biomarkers related to ER stress. Specifically, 
we integrated two microarray datasets, including 19 DCM 
samples and 16 normal controls, to identify differentially 
expressed ER stress-related genes (DEERSRGs). Given the 
remarkable differences in the immune landscape between 
the subtypes of MF samples, we further conducted an exten-
sive set of enrichment analyses focused on the biological 
functions and interaction networks of DEERSRGs. In addi-
tion, 7 hub genes including AK1, ARPC3, GSN, KPNA2, 
PARP1, PFKL, and PRKC were selected for participating 
in immune related mechanisms. This research will improve 
our understanding of the role of ER stress in DCM with 
fibrosis and will provide a potential target for the therapeu-
tic strategies of MF.

Materials and methods

Data sources and processing

Reliable expression profiles of MF, GSE 3585 [17], 
and GSE 42,955 [18] were downloaded from the Gene 
Expression Omnibus (GEO) dataset using the Bioconduc-
tor package “GEOquery” with R software (version 4.0.4, 
http://r-project.org/) [19]. All samples were extracted from 
Homo sapiens, and the platforms were based on the GPL96 
[HG-U133A] Affymetrix Human Genome U133A Array and 
GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0 
ST Array [transcript (gene) version]. A total of 7 DCM and 
five healthy human myocardial samples from GSE42955 
and 12 DCM and five healthy human myocardial samples 
from GSE42955 were included in the study. Raw data from 
GSE3585 and GSE42955 was deposited using the R “GEO-
query” package [20]. ​The background correction and TMM 
normalization are used to obtain the gene expression matrix. 
TMM normalization(trimmed mean of M-values) method 
was used to normalize the RNA-seq data. It involves two 
key steps: library size adjustment and transcript-specific 
normalization. During the library size adjustment step, we 
ensure that the total read count per sample is normalized 
to a common library size. This adjustment accounts for 
differences in sequencing depth across samples, enabling 
valid comparisons. The TMM calculates a scaling factor 
to achieve this normalization while minimizing the effect 
of extreme outliers.For transcript-specific normalization, 
TMM aims to correct for biases related to transcript length 
and potential compositional effects. It accomplished this 
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by estimating relative expression levels between samples 
based on log-fold changes (M-values) of individual genes. 
The trimmed mean was then calculated by excluding a spe-
cific percentage (usually 25%) of genes with the highest 
and lowest fold changes. This pruning helped to diminish 
the influence of genes with extreme fold changes that may 
not represent true biological variations.By applying TMM 
normalization, we aimed to reduce technical variations, 
enhance comparability between samples, and accurately 
identify differentially expressed genes (DEGs). Sequencing 
batch effects were removed using the “combat” function in 
R (sva) [21]. Plots of inter-sample correction were gener-
ated using the function “boxplot” in R.

Assessment of immune cell infiltration

Deconvolution analysis was performed using the CIBER-
SORT algorithm, which employs a linear support vector 
regression model to evaluate relative subsets of RNA tran-
scripts [22]. The gene expression matrix was further ana-
lyzed using the CIBERSORT algorithm to estimate the 22 
infiltrating immune cell subsets in the samples. The samples 
were filtered with an adjusted P-value of ≤ 0.05, and the 
output of the MOABS algorithm and immune cell infil-
tration matrix was computed. The correlations among the 
22 infiltrating immune cells were calculated and visual-
ized using the R function “corr plot” [23]. Single-sample 
GSEA analysis (ssGSEA) was performed using the R pack-
age “GSVA” [24], and the correlation between the samples 
was visualized using the R package “pheatmap” (https://
CRAN.R-project.org/package=pheatmap) [24].

Construction of immune subtypes and screening for 
DEGs

The immune subtypes of MF were calculated with the R 
extension packages “ConsensusClusterPlus” [25] and 
“Rtsne” [26], and the visualization was implemented using 
the R package “ggplot2” [27]. To identify the DEGs, vol-
cano plots were visualized using the “ggplot2” R pack-
age, and heatmaps were generated using the “pheatmap” 
R package. We defined significant DEGs with an adjusted 
P-value < 0.05 and |log2FC| > 0.1.

Functional enrichment analysis

The Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses and Disease 
Ontology (DO) analysis were conducted for gene intersec-
tions using the R package “clusterProfiler” [28]. The GO 
enrichment analysis was performed using the Metascape 
website [29] and was visualized on DisGeNET [30] using 

disease ontology analysis. The gene expression matrix was 
then intersected with ER stress-related genes, and GSEA 
was performed [31]. The gene set “c2.cp.kegg.v7.0.entrez.
gmt” was chosen as a reference. A false discovery rate 
(FDR) < 0.25 with P < 0.05 was considered significant. 
GSVA was implemented using the R package “GSVA,” 
where P < 0.05 was considered significantly enriched.

Protein-protein interaction (PPI) analysis and 
identification of hub genes

PPI networks were extracted from the STRING database 
(https://string-db.org/) [32] and imported into Cytoscape 
3.8.2 for visualization [33]. Hub genes were screened simul-
taneously using the “Cytohubba” plug-in [34]. The corre-
lation between the hub genes and different immune cells 
and the association of immune subtypes and immune cel-
lular features were calculated and drawn using the “ggpubr” 
package (https://CRAN.R-project.org/package=ggpubr).

Network analysis of key genes

By selecting TF-gene Interaction in Gene Regulatory Net-
works (GRN), the Network Analyst platform (https://www.
networkanalyst.ca/) was used to analyze the interaction 
between the hub genes and potential transcription factors 
(TFs) based on the JASPAR database [35]. We then used the 
miRTarBase database [36] and chose gene-miRNA interac-
tions to identify the interaction between the hub genes and 
potential miRNAs. Finally, we chose “Protein-drug Inter-
actions” in “Diseases, drugs & chemicals” and assessed 
the interactions between the hub genes and potential drug 
effects based on DrugBank database analysis [37].

Statistical analysis

All statistical analyses were performed using R statistical 
software (version 4.0.4, http://r-project.org/). The indepen-
dent t-test was used for normally distributed continuous data, 
and the Mann-Whitney U test was used for non-normally 
distributed continuous data. All statistical tests were two-
sided, and P ≤ 0.05 was considered statistically significant.

Results

Data pre-processing

The microarray data analysis used in this study is shown 
schematically in Fig.  1A; Table  1. The GSE3585 and 
GSE42955 datasets were downloaded from the GEO reposi-
tory and normalized within R. We subsequently merged the 
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Construction of subtypes with different immune 
signatures, screening of differential genes, and 
visualization

Clustering analysis was conducted based on immunohis-
tochemical characteristics. Immunohistochemistry is a 
laboratory method used to visualize and analyze the pres-
ence, distribution, and localization of specific proteins or 
antigens in tissue samples. During immunohistochemical 
analysis, the tissue sample is first fixed and embedded in 
a solid medium (usually paraffin). The tissue is then sliced 
and mounted on a slide. These slices are then subjected to 
a series of steps, including dewaxing, antigen repair, seal-
ing, and incubation with primary and secondary antibodies. 
The primary antibodies used in immunohistochemistry are 
specific to the protein or antigen of interest. When a pri-
mary antibody binds to its target protein, it can be visual-
ized using a detection system such as colored enzyme 
substrates or fluorescent dyes. The resulting staining pattern 
provides information about the presence, abundance, and 
cell localization of the target protein in the tissue sample. 
These immunohistochemical features are used to group or 

two datasets and confirmed that the batch effect between 
them was removed. The gene expression signatures before 
and after batch-effect correction are displayed in the form of 
boxplots in Fig. 1B C, respectively.

Differential expression analysis of Immune Cell 
Infiltration

We estimated the level of immune cell infiltration in patients 
with MF using the CIBERSORT algorithm. Among them, 
T-cell subsets represented the dominant proportion of infil-
trating immune cells (Fig. 2A). The correlation coefficient 
analysis revealed a significant correlation between the lev-
els of immune cell infiltration (Fig.  2B). The ssGSEA of 
the per-sample infiltration levels of 28 immune cell types 
revealed the enrichment of diverse immune cell populations 
in a subset of MF patients (Fig. 2C).

Table 1  GEO microarray data used to identify altered DEERSRGs in MF samples
Platform Number of test Number of control Country Year Author

GSE3585 GPL96 7 fibrosis 5 control Germany 2006 Ruprecht Kuner
GSE42955 GPL6244 12 fibrosis 5 control Spain 2013 Maria Micaela Molina Navarro

Fig. 1  Flow chart and boxplots 
of consolidated datasets before 
and after removing batch effects. 
A Flow chart of methodologies 
applied in the current study. B 
Boxplots of consolidated datasets 
(GSE3585 and GSE42955) 
before removing the batch 
effects. C Boxplots of con-
solidated datasets (GSE3585 and 
GSE42955) after removing the 
batch effects
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Fig. 2  Assessment and visualiza-
tion of immune cell infiltrates. 
A Bar plot of overall immune 
cell proportions. B Correlation 
heatmap depicting the cor-
relations between infiltrating 
immune cells in MF tissues. The 
numbers in the plots represent the 
Pearson’s correlation coefficient. 
C Correlation between sample 
infiltration levels and 28 immune 
cell types in MF tissues. The blue 
shading denotes negative genetic 
correlations, and the red shading 
denotes positive correlations, 
with gradations of color intensity 
reflecting an increasing strength 
in the correlation. MF: Myocar-
dial Fibrosis

 

Fig. 3  Construction of character-
istic immune subtypes, screen-
ing of differential genes, and 
visualization. A Construction of 
subtypes with different immune 
signatures. B Differential gene 
expression between subtypes is 
shown in a volcano map. Here, 
red represents upregulated genes 
and blue represents down-
regulated genes. C Heat map 
depicting a series of differential 
genes between two subtypes. D 
Venn diagram demonstrating the 
intersections of DEGs between 
ERSRGs. DEGs: ERSRGs: ER 
stress-related genes
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Functional enrichment analysis

GO, KEGG, and Disease Ontology (DO) enrichment analy-
ses were performed to explore the biological classification 
of the DEERSRGs, the results of which are shown in Fig. 4. 
Figure 4 A shows the 10 highest-ranking GO terms, i.e., bio-
logical processes (BPs), cellular component (CC), molec-
ular function (MF), ontology, neuron apoptotic process, 
sarcoplasm, and protein ADP-ribosylase activity, that are 
most closely related. These are mainly involved in impor-
tant BPs such as the “neuron apoptotic process,” “apoptotic 
signaling pathway,” “neuron death,” “post-translational 
protein regulation,” and “regulation of supramolecular 
fiber organization” (Fig. 4B), indicating a close association 
between DEERSRGs and the apoptosis and fibrotic process. 
The highly enriched GO terms for the cellular component 
were “sarcoplasm,” “cell leading edge,” “nuclear periph-
ery,” and “extrinsic component of membrane” (Fig.  4C). 

classify tissue samples based on similarities or differences 
in protein expression profiles. According to immunohisto-
chemical characteristics, the MF patients were divided into 
two subgroups—“cluster1” and “cluster2”—with notable 
differences (Fig. 3A).To test the differences between gene 
expression levels in patients with MF, we performed dif-
ferential gene expression analysis on these subtypes. We 
identified 196 DEGs, including 131 upregulated and 65 
downregulated genes. A volcanic map depicting differential 
gene expression between the subtypes is shown in Fig. 3b, 
and a heat map depicting a sequence of differential genes 
between the two subtypes is shown in Fig. 3C. Furthermore, 
the overlap between the DEGs and ER stress-related genes 
(ERSRGs) was calculated, and 103 genes DEERSRGs were 
identified (Fig. 3D).

Fig. 4  Functional enrichment 
analyses of the genes modified 
by DEERSRGs. A GO analysis 
revealed the most enriched cat-
egories for biological processes 
(BP), cellular components (CC), 
and molecular functions (MF). 
B A meshwork of GO clusters 
for the BP. C A meshwork of 
GO clusters for the CC. D A 
meshwork of GO clusters for 
the MF. E Sankey diagram of 
the significant KEGG pathways. 
F Histogram of the DO analy-
sis. BP: Biological Processes; 
CC: Cellular Components; MF: 
Molecular Functions; GO: Gene 
Ontology; KEGG: Kyoto Ency-
clopedia of Genes and Genomes; 
DO: Disease Ontology
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Detailed enrichment results are presented in Table  2. DO 
is an open-source ontology for the integration of human 
disease data and uses semantic similarity to explore dis-
ease similarity. Our results of the DO analysis showed that 
DEERSRGs also had a major impact on diseases such as 
bulbar signs, foot dorsiflexor weakness, and absent reflexes 
(Fig. 4F).

Regarding MFs, “protein ADP ribosylase activity,” “histone 
deacetlylase binding,” “cadherin binding,” and “actin bind-
ing transcription factor binding” were significantly enriched 
(Fig. 4D). The KEGG pathway analysis demonstrated that 
the DEERSRGs were mainly enriched in “metabolic path-
ways,” “endocytosis,” “metabolism of xenobiotics by cyto-
chrome P450,” and the “sulfur relay system” (Fig.  4E). 

ONTOLOGY ID Description GeneRatio P.Value Count
BP GO:0051402 neuron apoptotic process 8/100 4.80123E-05 8
BP GO:2,001,233 regulation of apoptotic signaling 

pathway
10/100 6.7921E-05 10

BP GO:0070242 thymocyte apoptotic process 3/100 9.30975E-05 3
BP GO:0043523 regulation of neuron apoptotic 

process
7/100 0.000143615 7

BP GO:1,902,175 regulation of oxidative stress-
induced intrinsic apoptotic signaling 
pathway

3/100 0.000385337 3

BP GO:0070997 neuron death 8/100 0.000658347 8
BP GO:0043687 post-translational protein 

modification
8/100 0.00069493 8

BP GO:1,902,903 regulation of supramolecular fiber 
organization

8/100 0.000828909 8

BP GO:0006471 protein ADP-ribosylation 3/100 0.000836142 3
BP GO:1,900,407 regulation of cellular response to 

oxidative stress
4/100 0.001453007 4

CC GO:0016528 sarcoplasm 5/103 6.455E-05 5
CC GO:0031252 cell leading edge 9/103 0.00038364 9
CC GO:0034399 nuclear periphery 5/103 0.000646646 5
CC GO:0042405 nuclear inclusion body 2/103 0.001751292 2
CC GO:0019897 extrinsic component of plasma 

membrane
5/103 0.00216984 5

CC GO:0016363 nuclear matrix 4/103 0.00264274 4
CC GO:0005819 spindle 7/103 0.003283326 7
CC GO:0005635 nuclear envelope 8/103 0.003533679 8
CC GO:0035861 site of double-strand break 3/103 0.004090612 3
CC GO:0019898 extrinsic component of membrane 6/103 0.005619794 6
MF GO:1,990,404 protein ADP-ribosylase activity 2/101 0.003422239 2
MF GO:0042826 histone deacetylase binding 4/101 0.003745662 4
MF GO:0070412 R-SMAD binding 2/101 0.00703676 2
MF GO:0003950 NAD + ADP-ribosyltransferase 

activity
2/101 0.007649096 2

MF GO:0004033 aldo-keto reductase (NADP) activity 2/101 0.009624063 2
MF GO:0008139 nuclear localization sequence 

binding
2/101 0.009624063 2

MF GO:0045296 cadherin binding 6/101 0.010098042 6
MF GO:0003779 actin binding 7/101 0.010462289 7
MF GO:0052866 phosphatidylinositol phosphate 

phosphatase activity
2/101 0.014171103 2

MF GO:0061629 RNA polymerase II-specific DNA-
binding transcription factor binding

5/101 0.016050006 5

KEGG hsa01100 Metabolic pathways 15/101 0.020119782 15
KEGG hsa04122 Sulfur relay system 2/101 0.063564379 2
KEGG hsa04144 Endocytosis 5/101 0.071527369 5
KEGG hsa00980 Metabolism of xenobiotics by cyto-

chrome P450
3/101 0.084058908 3

Table 2  Significant GO terms 
and KEGG pathway enrich-
ment analysis of the modified 
DEERSRGs in MF.

Abbreviations: BP, biological 
process; MF, molecular function; 
CC, cellular component; GO, 
Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and 
Genomes;
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the expression levels of ARPC3, PRKCI, UFL1, KPNA2, 
and RB1 in cluster1 were higher than that in cluster2 
(Fig. 6C–L).

Correlation analysis of hub genes and Immune 
Infiltration

The correlative relationships between ER stress-related hub 
genes and immune cell infiltration levels in MF were inves-
tigated using a preliminary analysis, from which we found 
the following significant associations: AK1 was associated 
with CD8+ T cells, ARPC3 with macrophage M2 cells, GSN 
with eosinophils cells, KPNA2 with T follicular helper cells, 
PARP1 with activated mast cells and CD8+ T cells, PFKL 
with CD8+ T cells, PRKCI with T follicular helper cells, 
and RB1 with dendritic resting cells (R ≥ 0.5, P < 0.05) 
(Fig. 7A–I).

Correlation between Immune infiltrating cells and 
Immune Subtypes

We also found significant differences in infiltration levels 
between the two immune subtypes. The extent of infiltration 
of memory B cells, activated NK cells, and follicular helper 

GSEA and GSVA

A total of 3,731 genes were obtained from the intersection 
of all differentially changed genes of patients and ERSRGs, 
and we subsequently performed GESA (see Table  3) and 
GSVA (see Table  4) for these genes. The GSEA results 
indicated that the DEGs were significantly associated with 
five gene set pathways, namely “glycolysis and gluconeo-
genesis,” “cell adhesion molecules (CAMs),” “NOD-like 
receptor signaling pathway,” “N-glycan biosynthesis,” and 
“leishmania infection” (Fig. 5A–E). The GSVA results sug-
gested that differential genes might participate in the regula-
tion of nine signaling pathways.

PPI Network Analysis and Hub Gene Selection

We used the STRING database to mine the key genes and 
imported DEERSRGs into the database to form a PPI net-
work (Fig.  6A). The “cytoHubba” plug-in (https://apps.
cytoscape.org/apps/cytohubba) [34] was used to obtain 15 
hub genes, namely GSN, HIF1A, ERBB2IP, RB1, SACM1L, 
ARPC3, PARP1, CDC42, KPNA2, PRKCI, DBN1, PLEC, 
AK1, PFKL, and UFL1 (Fig. 6B). Subsequently, we found 
that the expression levels of AK1, DBN1, PLEC, PARP1, 
and PFKL in cluster2 were higher than that in cluster1, and 

ID enrichmentScore NES P.Value P.adjust qvalues
KEGG_GLYCOLYSIS_
GLUCONEOGENESIS

0.633571309 2.201461516 2.09E-05 0.002862248 0.00263903

KEGG_NOD_LIKE_
RECEPTOR_SIGNAL-
ING_PATHWAY

-0.634560202 -2.016369297 0.000153308 0.010501608 0.00968262

KEGG_N_GLYCAN_
BIOSYNTHESIS

-0.647374733 -1.931555731 0.000861228 0.032271182 0.029754451

KEGG_CELL_ADHE-
SION_MOLECULES_
CAMS

-0.560157171 -1.851001168 0.000985905 0.032271182 0.029754451

KEGG_LEISHMANIA_
INFECTION

-0.550999577 -1.8357674 0.00117778 0.032271182 0.029754451

Table 4  Results of gene set 
enrichment analysis (GSEA)

 

ID enrichmentScore NES P.Value P.adjust qvalues
KEGG_GLYCOLYSIS_
GLUCONEOGENESIS

0.633571309 2.201461516 2.09E-05 0.002862248 0.00263903

KEGG_NOD_LIKE_
RECEPTOR_SIGNAL-
ING_PATHWAY

-0.634560202 -2.016369297 0.000153308 0.010501608 0.00968262

KEGG_N_GLYCAN_
BIOSYNTHESIS

-0.647374733 -1.931555731 0.000861228 0.032271182 0.029754451

KEGG_CELL_ADHE-
SION_MOLECULES_
CAMS

-0.560157171 -1.851001168 0.000985905 0.032271182 0.029754451

KEGG_LEISHMANIA_
INFECTION

-0.550999577 -1.8357674 0.00117778 0.032271182 0.029754451

Table 3  Results of GSEA 
analysis

 

1 3

1413

https://apps.cytoscape.org/apps/cytohubba
https://apps.cytoscape.org/apps/cytohubba


Apoptosis (2023) 28:1406–1421

Discussion

MF is correlated with elevated mortality in DCM, which is 
one of the most common cardiomyopathies globally and is 
directly associated with sudden cardiac death, heart failure, 
and life-threatening arrhythmia [38]. However, there are no 
clinically effective methods to inhibit MF progression. Thus, 
identifying novel and effective molecular therapeutic targets 
is of critical importance. Accumulating evidence suggests 
that ER stress is a key etiological component in the develop-
ment and progression of MF [39]. Therefore, we conducted 
a comprehensive bioinformatics analysis of two microarray 
datasets (GSE3585 and GSE42955), including 19 DCM 
cardiac tissue and 10 normal cardiac tissue samples.

T cells was higher in cluster1 (Fig.  8A, C, and F), while 
the extent of infiltration of activated mast cells, plasma 
cells, and CD8+ T cells appeared to be higher in cluster 2 
(Fig. 8B, D, and E).

Construction of PPI and ceRNA Networks

Based on the hub genes obtained from our previous study, 
we further analyzed their mutual regulatory relationships 
with other small molecules, including regulatory network 
relationships with transcription factors (TFs) (Fig. 9A), net-
work relationships with miRNAs (Fig.  9B), and network 
relationships of the interactions between hub genes PARP1, 
PRKC1, ARPC3, HIF1A, RB1, and CDC42 and different 
small molecules and drugs (Fig. 9C).

Fig. 5  GSEA and GSVA 
enrichment analysis. A–E Five 
pathways obtained via GSEA 
enrichment analysis. F Heat 
maps of nine pathways obtained 
via GSVA enrichment analysis. 
GSEA: Gene Set Enrichment 
Analysis; GSVA: Gene Set Varia-
tion Analysis
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stress in MF, and the predicted genes in these datasets serve 
as promising therapeutic targets or prognostic biomarkers.

First, we observed a close correlation between MF tissue 
and immune infiltration, which uncovered immunomodu-
latory mechanisms of fibrosis mediated by the recruited 
immune cell subsets. Second, we found a large propor-
tion of T cell-rich infiltrates, which might have important 
biological effects on the pathogenesis of MF. The ssGSEA 
indicated that both the innate and adaptive immune sys-
tems are involved in the occurrence of MF, which is con-
sistent with previous research findings [40]. In the classical 
pathogenic process of DCM, the innate immune response 
is activated first, followed by an adaptive immune response 
and a chronic phase that might persist for several months 
or years, which causes MF and remodeling, culminating in 
DCM [41]. Immune cell imbalance is a driving force in the 
promotion of MF progression. T cells are the most impor-
tant immune-competent cells for cell-mediated immune 
response, and nearly 50% of patients with DCM show car-
diac T-cell infiltrates [42]. T lymphocytes express multiple 
CAMs involved in the development of MF [43], and T cell 
abundance is closely linked to the degree of MF in DCM 
patients [44]. Therefore, for the analysis of differential 
genes, the gene expression profiles included in our study 

We observed significant differences in the total immune 
infiltration in patients with MF. The ssGSEA showed a 
higher level of T-cell infiltration in the MF samples than in 
the normal samples. We subdivided the samples into two 
immune clusters and identified 103 DEERSRGs for fur-
ther analysis. The GO enrichment analysis showed that the 
DEERSRGs were primarily enriched in regulating neu-
ronal apoptotic processes, sarcoplasm, and protein ADP-
ribosylase activity. The KEGG enrichment analysis of the 
DEGs revealed that the DEERSRGs might be involved in 
pathways related to metabolism, endocytosis, cytochrome 
P450, and the sulfur relay system. Using GSEA/GSVA, we 
identified markedly enriched pathways, such as glycolysis/
gluconeogenesis, glycan biosynthesis, and NOD-like recep-
tor signaling, in the MF samples. Based on the PPI network, 
15 hub genes with expression levels significantly correlated 
with MF pathogenesis were selected. We showed that the 
expression of ERSRGs not only varied greatly between the 
two immune clusters but was also correlated with the levels 
of different infiltrating immune cells. Subsequently, rela-
tionships between the hub genes and small-molecule com-
pounds, TFs, miRNAs, and drugs were illustrated. Thus, 
this research improves our understanding of the role of ER 

Fig. 6  Protein-protein interaction 
(PPI) network analysis and hub 
gene screening. A The STRING 
database was used to generate 
the PPI interaction network of 
103 DEERSRGs. B Hub genes 
screened using cytoHubba 
plug-in. C Differential expres-
sion analysis of hub genes 
between two immune subtypes. 
DEERSRGs: Differentially 
Expressed ER Stress-related 
Genes; PPI: Protein-protein 
Interaction

 

1 3

1415



Apoptosis (2023) 28:1406–1421

the GSN gene might lead to MF [46]. Hypoxia-inducible 
factor 1α (HIF-1α) is a key mediator of hypoxia-induced 
MF; it can regulate the production of reactive oxygen spe-
cies in the mitochondria and cause cardiac fibroblast pro-
liferation. Fibroblasts tend to be more hypoxic than other 
cardiac interstitial cells and, therefore, can express more 
HIF-1α and exhibit increased glycolysis [47]. The ErbB2 
gene has been found to play a key role in cardiomyocyte 
proliferation and in inducing DCM [48]. Poly ADP-ribose 
polymerase 1 (PARP1) accelerates MF through NAD-
dependent mTOR activation. The PARP1 gene can regulate 
autophagy, cause TGF-β1-induced proliferation, and affect 
the activity of cardiac fibroblasts[9]. It is worth mentioning 
that the distribution of hub gene expression in MF subtypes 
was also notably different. Our results also revealed that the 
expression of the following eight hub genes was closely 
related to the levels of specific innate immune cell types: 
AK1, ARPC3, GSN, KPNA2, PARP1, PFKL, PRKCI, and 
RB1. These potential links between overlapping hub genes 

were subsequently divided into subtypes according to their 
immune cell signatures.

ER stress contributes to the pathogenesis of MF and dis-
ease progression in cardiac remodeling [1]. Pathological ER 
stress reflects an imbalance in ER homeostasis, and the UPR 
attenuation reaction from ER stress might inhibit fibrosis to 
some extent [45]. Therefore, investigating the molecular 
therapeutic targets involved in the pathogenesis of MF in 
detail is essential to improve the clinical outcomes of DCM. 
In the present study, we identified 196 DEGs, of which 131 
were upregulated, and 65 were downregulated. We then 
screened 103 DEERSRGs for which PPI networks were 
constructed, which revealed the following top 15 genes as 
the most significant hub genes: GSN, HIF-1α, ErbB2IP, 
RB1, SACM1L, ARPC3, PARP1, CDC42, KPNA2, PRKCI, 
DBN1, PLEC, AK1, PFKL, and UFL1. These hub genes were 
found to be associated with ER stress in this study and were 
also previously reported to be closely related to MF. For 
example, the GSN gene encodes the gelsolin protein, which 
is involved in cytoskeletal maintenance. Downregulation of 

Fig. 7  Correlation between hub 
genes and immune infiltrating 
cells. A–I Scatter plots of the 
correlation analysis between hub 
genes and immune cell types
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The traditional view holds that MF is mainly involved 
in activating the renin-angiotensin system, inflammatory 
signaling, and ECM remodeling [16]. Previous microarray 
analysis of the microRNA datasets GSE3585 and GSE42955 
showed that MF-associated DEGs were upregulated in the 
ECM–receptor interaction and focal adhesion [15]. Our 
KEGG pathway analysis revealed several new candidate 
biological pathways implicated in ER stress-induced MF, 
including the metabolism, endocytosis, cytochrome P450, 
and sulfur relay system pathways. ​Our results are consis-
tent with those of several other studies related to ER stress 
and fibrosis.​ For example, spermine metabolic disorders can 
cause MF and ER stress in the myocardial tissue of DCM 
rats via the Wnt/β-catenin signaling pathway [53]. ER stress 
can also enhance caveolin-1-mediated endocytosis in cal-
reticulin-knockout mouse embryonic fibroblast cells [54]. 
Exogenous drug metabolism by cytochrome P450 can also 
trigger ER stress and activate the IRE1α-TRAF2-NF-κB 
signaling pathway [55]. Moreover, we used DO analysis to 
construct an approximate visualization of new gene–disease 
associations. Our results showed associations highlighted in 
neurodegenerative disorders, neuromuscular disorders, and 
left heart failure caused by cardiac injury and fibrosis. These 
findings reveal a possible path through which DEERSRGs 
interact and might provide useful directions for future 
research.

might provide new perspectives for developing new treat-
ment strategies.

The GO analysis confirmed that DEERSRGs had sig-
nificantly higher expression in the BP category involving 
neuronal apoptotic processes, apoptotic signaling pathways, 
and neuronal death. We found that the major significantly 
enriched pathways were closely associated with cell apopto-
sis and death. ER stress and the UPR inhibit cellular protein 
synthesis and degradation of misfolded proteins, ultimately 
inducing apoptosis, necrosis, and autophagy in cardiomyo-
cytes. Multiple studies have confirmed that augmentation 
of ER stress promotes neuronal death and apoptosis [49, 
50]. In addition, many studies have demonstrated that ER 
stress has a similar effect on cardiovascular diseases. For 
example, one study found that in patients with DCM with 
FBXO32 (MAFbx, Atrogin-1) mutations, UPR activity was 
reduced as well as the expression of target genes, and CHOP 
TFs were upregulated, which can lead to CHOP-associated 
apoptosis of cardiomyocytes [51]. In addition, the deletion 
of PKA2, which encodes a stress-responsive kinase located 
near the ER membrane, can also lead to poor ER stress and 
cardiac cell death [52]. Furthermore, we identified some 
unstudied BPs, such as post-translational protein modifi-
cation, oxidative stress, and fiber organization, as well as 
related molecular functions and cellular localization, which 
might help better understand the development and progres-
sion of MF.

Fig. 8  Correlation between 
immune infiltrating cells and 
immune subtypes. A–F Violin 
plots of differential expression 
analysis between the six immune 
cell types and subtypes associated 
with different immune signatures
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are important for interpreting our gene enrichment analysis 
results.

We further determined the regulatory molecular sig-
natures and potential candidate drug signatures of the 
DEERSRGs and mapped the distribution of TFs and miR-
NAs corresponding to each hub gene. We identified many 
new TFs that can bind to the promoters of several crucial 
regulators in differentiated myocardial cells that remain 
unstudied. Previous studies have reported several TFs that 
have a marked impact on disease progressions, such as 
SRF, GATA-4, HAND2, TBX-20, MEF2C, FOXO, and 
HEY2 [58–60]. In addition, we performed an in-depth 
analysis of the relationships between the DEERSRGs and 
the miRNA networks. Previous studies have found several 
microRNAs, such as miR-5571-5p, miR-26, and miR-30, 
to be closely related to the excessive accumulation of ECM 
in MF [61, 62]. miR-185 inhibits the activity of B cells, 
which are involved in MF and myocyte injuries in DCM 
[63]. Finally, we constructed a small-molecule drug–target 

The GSEA and GSVA revealed the most relevant path-
ways associated with DEERSRGs, including glycolysis/
gluconeogenesis, glycan biosynthesis, NOD-like receptor 
signaling pathway, and CAM-associated pathway. Altered 
cardiac glucose metabolism is an early feature of cardio-
myopathy and a crucial cause of cardiac remodeling, fibro-
sis, and myocardial dysfunction. Advanced glycation end 
products can stimulate collagen deposition by promoting 
collagen cross-linking, which leads to increased MF [56]. 
NOD-like receptors can recognize danger signals, recruit 
immune cells to the region of myocardial injury areas, and 
activate an inflammatory response. The activation of NOD1 
receptors induces apoptosis and activates the TGF-β path-
way in cardiac fibroblasts [57]. Intercellular and vascular 
cell adhesion molecules have been postulated to affect car-
diac oxidative stress, remodeling, and fibrosis [43]. Further-
more, the analysis of microarrays for MF from other mRNA 
datasets indicates that core genes participate in pathways 
associated with biological adhesion [15]. These findings 

Fig. 9  Gene network analysis. A 
Transcriptional network relation-
ships with hub genes, where red 
represents hub genes and green 
represents transcription factors. 
B Network relationships of hub 
genes with miRNA, where red 
represents hub genes and purple 
represents miRNAs. C Network 
relationships between hub genes 
and drugs, where red represents 
hub genes and gray represents 
drugs
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our work is the first to establish comprehensive regulatory 
networks for core genes associated with ER stress, which 
helps elucidate the biological mechanisms underlying DCM 
and MF. Our research paves the way for the future explo-
ration of the role of ER stress-related genes and immune 
cell responses in MF, which might provide novel diagnostic 
strategies and therapeutic targets for patients with DCM.
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